JP4040427B2 - Manufacturing method of filter element - Google Patents

Manufacturing method of filter element Download PDF

Info

Publication number
JP4040427B2
JP4040427B2 JP2002307440A JP2002307440A JP4040427B2 JP 4040427 B2 JP4040427 B2 JP 4040427B2 JP 2002307440 A JP2002307440 A JP 2002307440A JP 2002307440 A JP2002307440 A JP 2002307440A JP 4040427 B2 JP4040427 B2 JP 4040427B2
Authority
JP
Japan
Prior art keywords
molded body
filter
filter element
groove
filter molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002307440A
Other languages
Japanese (ja)
Other versions
JP2004141728A (en
Inventor
小林  直樹
宗之 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002307440A priority Critical patent/JP4040427B2/en
Publication of JP2004141728A publication Critical patent/JP2004141728A/en
Application granted granted Critical
Publication of JP4040427B2 publication Critical patent/JP4040427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フィルタエレメントの製造方法に関する。さらに詳しくは、小型で通水性に優れ、特に、化学工業、食品工業等の分野におけるプロセス機器や家庭用の浄水器等に好適に用いられるフィルタエレメントを製造する方法に関する。
【0002】
【従来の技術】
近年、化学工業、食品工業等の分野におけるプロセス機器や家庭用の水道水等に用いられる浄水器において、浄化すべき原液を、その内部を透過させることによって除菌、濾過等の浄化を行うフィルタとして、例えば、原液の流路となる複数のセルを有する多孔質体からなり、一方の端部から取り入れた浄化すべき原液を、その内部を透過させることによって浄化して浄化液として取り出すセラミックス製や中空糸製のフィルタエレメントが用いられおり、特に、その形状が変形しにくく、耐久性が高いことからセラミックス等のフィルタエレメントは様々な分野に渡って広く用いられている。
【0003】
通常、このフィルタエレメントは、通水量を確保しつつ濾過性能を向上させる観点から、比較的大きい細孔を有する多孔質体の表面を、比較的小さい細孔を有するセラミックス濾過膜で被覆したものが用いられており、高分子膜等と比較して、物理的強度、耐久性に優れるため信頼性が高いこと、耐食性が高いため酸アルカリ等による洗浄を行っても劣化が少ないこと、さらには、濾過能力を決定する細孔径の精密な制御が可能である点において優れており、特に、家庭用の浄水器等に好適に用いられている。
【0004】
従来、この家庭用の浄水器に関しては、浄水器本体の省スペース化と通水量の増加という二つの要望があり、このために、上述したフィルタエレメントも、小型化と通水量の増加とが要求されていた。
【0005】
しかしながら、フィルタエレメントはその大きさが小さくなるにつれて通水量が減少する傾向にあり、フィルタエレメントの小型化と通水量の増加とは二律背反の関係にあり、両者を両立させることは極めて困難であった。
【0006】
このため、筒状の多孔体(多孔質体)の長手方向に形成された、多数の平行な流通路(セル)の内周面に、多孔体の細孔に比して更に細孔径が小さい濾過膜を形成し、流通路に供給した被処理液体(原液)を濾過膜で濾過し、この濾過液が多孔体の細孔を透過して外部空間に流出するように構成するとともに、多孔体中心部近傍の流通路からの通水量を増加するために、多孔体の長手方向にスリット状の空隙部を設け、かつ、この空隙部と連通する流通路の縁端部を封止してなるセラミックフィルタにおいて、スリット状の空隙部を、筒状の多孔体の長手方向の中央部のみに設けた構成のセラミックスフィルタが開示されている(特許文献1参照)。
【0007】
【特許文献1】
特開2000−153117号公報
【0008】
【発明が解決しようとする課題】
しかしながら、このようなセラミックスフィルタは、本来、大型、例えば、体積が3.9L以上、長さ500mm以上、端面の直径100mm以上のフィルタに関するものであり、家庭用の浄水器等に用いられる小型、例えば、体積が1.2L以下、長さ150mm以下、端面の直径100mm以下のフィルタに応用することは、前述した流通路を区画する多孔体が、空隙部を形成する際に破損することがあることから極めて困難であるという問題があった。
【0009】
本発明は、上述の問題に鑑みなされたもので、小型で通水性に優れ、特に、化学工業、食品工業等の分野におけるプロセス機器や家庭用の浄水器等に好適に用いられるフィルタエレメントを製造する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上述の目的を達成するため、本発明は、以下のフィルタエレメントの製造方法を提供するものである。
【0017】
] 原料を押出成形して原液の流路となるセルを有する多孔質体からなる所定形状の未焼成フィルタ成形体を得、得られた前記未焼成フィルタ成形体を乾燥及び焼成して焼成フィルタ成形体を得、得られた前記焼成フィルタ成形体の一方の端部に、その端面側から内部に向かって所定の深さを有するとともに、所定の前記セルの並びに沿って前記一方の端面の端縁の一の部位から他の部位に渡って少なくとも一本の溝を形成して、溝付きフィルタ成形体を得、得られた前記溝付きフィルタ成形体の前記溝のうち、前記一方の端面側から前記溝の所定の深さに達しない深さまでの部分だけに封止材を埋め込んで、前記溝付きフィルタ成形体の外周面の、前記一方の端面側から所定距離離れた一の部位から他の部位までほぼ直線状に貫通する貫通孔を有する貫通孔付きフィルタ成形体を得、得られた前記貫通孔付きフィルタ成形体を再度焼成してフィルタエレメントを得るフィルタエレメントの製造方法であって、前記貫通孔付きフィルタ成形体を得る工程において、前記溝付きフィルタ成形体の前記一方の端面側から前記溝の前記所定の深さに達しない深さまでの部分に前記封止材が埋め込まれるように、前記溝付きフィルタ成形体の前記溝に板状部材を配設し、前記溝の前記所定の深さに達しない深さまでの部分だけに前記封止材を埋め込んで前記貫通孔を形成することを特徴とするフィルタエレメントの製造方法。
【0018】
] 他方の端部の、前記一の端部における前記封止材が埋め込まれた前記溝の部分に対応する部位に、前記封止材と同一材質の目詰材を配設する工程を含む前記[]に記載のフィルタエレメントの製造方法。
【0019】
] 少なくともいずれか一方の前記端部の、前記端面を含む表面にシール層を形成する工程を含む前記[]又は[]に記載のフィルタエレメントの製造方法。
【0020】
【発明の実施の形態】
まず、本発明のフィルタエレメントの製造方法の実施の形態によって製造されるフィルタエレメントを、図面を参照しつつ具体的に説明する。
【0021】
図1は、本発明のフィルタエレメントの製造方法の一の実施の形態によって製造されるフィルタエレメントを模式的に示す平面図であって、(a)は側面側からの平面図、(b)は一方の端面側からの平面図である。
【0022】
図1(a)及び(b)に示すように、本実施の形態のフィルタエレメントの製造方法によって製造されるフィルタエレメント1は、原液の流路となる複数のセル9を有する多孔質体からなり、一方の端部3aから取り入れた浄化すべき原液を、その内部を透過させることによって浄化して外周面2側から浄化液として取り出す所定形状のフィルタエレメント1であって、一方の端部3aに、その一方の端面6a側から内部に向かって所定の深さを有するとともに、所定のセル9の並びに沿って一方の端面6aの端縁の一の部位から他の部位に渡って円形における直径又は弦の形状を保持するようにほぼ直線状に延びる少なくとも1本の溝4が形成されてなるとともに、溝4のうち、一方の端面6a側から溝4の所定の深さに達しない深さまでの部分に封止材5が埋め込まれてなり、溝4と封止材5とによって、その外周面2の、一方の端面6a側から所定距離離れた一の部位から他の部位までほぼ直線状に貫通する貫通孔7が形成されてなるものである
【0023】
このフィルタエレメント1は、セル9を区画する多孔質体の隔壁8が実質的に原液を濾過するフィルタとなる。
【0024】
このフィルタエレメント1の一方の端面6aから流入した原液は、セル9を通過して、多孔質体の隔壁8を透過することによって濾過される、この後、外周面2側から浄化液として排出されるとともに、溝4が形成された部位に対応するセル9は貫通孔7とつながっているために、隔壁8を透過して貫通孔7とつながるセル9に流入した浄化液が貫通孔7からも排出される。
【0025】
このように構成することによって、浄化液の通水性に優れたものとすることができ、例えば、家庭用の浄水器等に用いられた場合、その形状を小型化したとしても、従来のフィルタエレメントと比較してその通水量を保持又は向上させることができる。
【0026】
このフィルタエレメント1に用いられる多孔質体の材質としては、フィルタとして用いることができる多孔質体であれば特に制限はないが、強度、耐久性の観点からセラミックスであることが好ましい。また、セラミックスの種類や製法に特に制限はないが、骨材と基体用焼結助剤から形成されたものであることが好ましい。骨材は基体の主成分を構成するセラミックス製の粒子であり、例えば、アルミナ、ムライト、コージェライト、炭化珪素、窒化珪素、窒化アルミニウム、陶磁器屑等の1種又は2種以上の粒子が好ましく、濾過の目的に適合するように適宜選択される。骨材の平均粒子径は、好ましくは5〜200μm程度である。骨材の基体中の含有量は、骨材と基体用焼結助剤の合計を基準として、好ましくは65〜99.5質量%である。また、骨材と基体用焼結助剤に、メチルセルロースやポリエチレングリコールオレイン酸エステル等の成形バインダーを加えたものを用いてもよい。
【0027】
また、多孔質体の細孔径はフィルタエレメント1の目的・用途に応じて適宜選択することができる。
【0028】
基体用焼結助剤は、上記骨材とともに焼成することにより骨材間の結合を強化し、強固な多孔質体を形成するために用いられるものである。その材質は特に限定されないが、例えば、アルミナ、シリカ、ジルコニア、チタニア、ガラスフリット、長石、コージェライト、タルク、ガイロメ粘土等の1種又は2種以上を用いることができ、濾過の目的や骨材の材質によって適宜選択することができる。基体用焼結助剤の平均粒子径に特に制限はないが、5μm以下の平均粒子径であることが好ましい。基体用焼結助剤の含有量は、骨材と基体用焼結助剤の合計を基準として、好ましくは0.5〜35質量%である。製造方法は後に詳述するが、このような骨材と焼結助剤を含む坏土を任意の形状に成形した後、焼成することにより多孔質のフィルタエレメント1を形成することができる。
【0029】
また、前述した溝4の幅は、フィルタエレメント1の大きさにもよるが、例えば、体積が0.283Lのフィルタエレメント1の場合、0.3〜3mmであることが好ましい。溝4の幅が0.3mm未満であると、通水量を増加する効果が得られないことがあり、また、3mmを超えると、フィルタエレメント1の機械的強度が低下し、この溝4からフィルタエレメント1が破損することがある。
【0030】
また、同様に、溝4の深さもフィルタエレメント1の大きさによって異なるが、例えば、体積が0.283Lのフィルタエレメント1の場合、2〜40mmであることが好ましい。溝4の深さが2mm未満であると、通水量を増加する効果が得られないことがあるとともに、一方の端面6a側から溝4の所定の深さに達しない深さまでの部分に封止材を埋め込むことが困難となることがあり、また、40mmを超えると、フィルタエレメント1の機械的強度が低下し、溝4からフィルタエレメント1が破損することがある。
【0031】
また、封止材5は、この溝4の底面から1.0〜20mmの隙間を形成するように埋め込まれている。このフィルタエレメント1においては、貫通孔7の外周面の開口面積が、0.3〜117mm2であることが好ましい。
【0032】
封止材5の材質に特に制限はないが、隔壁8等がセラミックスから形成されている場合には、強度及び基体との接着性の観点からセラミックスであることが好ましく、隔壁8等に含まれる成分の一部と同様の成分を含むセラミックスであることがさらに好ましい。また、封止材5の材料は、収縮が大きすぎると割れが発生しやすくなるため、収縮の小さな材料であることが好ましい。
【0033】
このフィルタエレメント1においては、隔壁8を構成する多孔質体のみで濾過を行ってもよいが、処理速度を確保しつつ分離性能を向上させる観点からは、比較的細孔径の大きな隔壁8を多孔質基体とし、この多孔質基体の表面に、これよりも細孔径の小さい濾過膜10を形成することが好ましい。このような構成とすることによって、濾過膜10の平均細孔径を小さくしても、原液がフィルタエレメント1内部を透過する際の圧力損失を抑えることができる。この場合には、図2に示すように、セル9を区画する隔壁8の表面上に濾過膜10を形成することが上記目的を効率よく達成できる点で好ましい。濾過膜10の平均細孔径はフィルタエレメント1の用途・目的、即ち、浄化すべき原液中に含まれる異物の粒径によって適宜選択することができるが、例えば、フィルタエレメント1を浄水器に用いる場合には、濾過膜10の平均細孔径は、0.1〜2.0μm程度が好ましく、0.2〜0.7μm程度がさらに好ましい。
【0034】
濾過膜10の材質に特に制限はないが、セラミックス粒子と濾過膜用焼結助剤を含むことが好ましい。セラミックス粒子には、骨材に好ましいものとして挙げた上述の材料の中から選択して使用することが好ましく、その平均粒子径は0.1〜10μm程度であることが好ましい。より小さい粒子径を選択することにより、焼成後の細孔径が小さくなるため、粒子径は濾過の目的に応じて適切な細孔径となるよう適宜選択することができ、例えば、浄水器に使用するような範囲の細孔径を得ようとする場合は、セラミックス粒子の平均粒子径を0.2〜5.0μm程度とすることが好ましく、0.4〜2.5μm程度とすることが好ましい。濾過膜用焼結助剤も、基体用焼結助剤に好ましいものとして挙げた材料の中から選択して使用することが好ましい。セラミックス粒子と濾過膜用焼結助剤の比率は、セラミックス粒子と濾過膜用焼結助剤の合計を基準としてセラミックス粒子が好ましくは85〜99.5質量%含まれ、濾過膜用焼結助剤が、好ましくは0.5〜15質量%含まれる。濾過膜10は、これらのセラミックス粒子と濾過膜用焼結助剤をスラリー状として基体表面に施与した後焼成することによって形成することができる。また、濾過膜10は、1層であってもよいが、2層以上としてもよく、その場合は最外層の濾過膜10の平均細孔径を最も小さくし、隔壁8に向かって順に細孔径を大きくすることが好ましい。
【0035】
また、このフィルタエレメント1においては、フィルタエレメント1の他方の端部3bの、一の端部3aにおける封止材5が埋め込まれた溝4の部分に対応する部位に、封止材5と同一材質の目詰材11が配設されてなることが好ましい。このように構成することにより、原液が濾過されずに貫通孔7から排出されることを防止することができる。
【0036】
また、図1(a)及び図2に示すように、フィルタエレメント1の少なくともいずれか一方の端部3の、その端面6を含む表面にシール層12が形成されてなることが好ましい。このように構成することによって、前述しようにフィルタエレメント1が濾過膜10を有する場合、濾過膜10の形成されていない、フィルタエレメントの端部3からの原液が透過することを防止できる。また、図3に示すように、フィルタエレメント1を浄水器等に固定する場合、原液の流入又は滞留する端面6と浄水が流出する外周面2とを、シリコンやフッ素系樹脂等のパッキン13を用いて液密に固定する際に、その確実性を高めることができる。
【0037】
このシール層12の材質は、特に制限はないが、フィルタエレメント1がセラミックスである場合には、強度及び基体との接着性の観点からセラミックスであることが好ましく、隔壁8(図2参照)に含まれる成分の一部と同様の成分を含むセラミックスであることがさらに好ましい。但し、実質的に原液を透過させないことが必要とされるため、セラミックスをフリット化させた釉薬等、特にシリカ及びアルミナを主成分として、これに10質量%以下のジルコニアを含むフリット化された釉薬等が好ましく、バインダーとしてメチルセルロースを含んでいてもよい。
【0038】
また、このフィルタエレメント1の大きさは、特に制限はなく、用途・目的、設置場所等に応じてあらゆる形状とすることができが、例えば、家庭用の浄水器用のフィルタエレメント1として用いる場合には、端面の直径が50〜100mmであるとともに、軸方向の長さが50〜150mmの円柱形状であることが好ましい。また、大きさも、処理量や設置場所等に応じて適宜選択することができる。
【0039】
また、フィルタエレメント1の通水量は、特に限定されることはないが、浄水器用のフィルタエレメント1として用いる際は、水圧0.1MPaにおける通水量が3〜30L/minであることが好ましい。また、その端面の直径が62mmのフィルタエレメント1においては、軸方向の長さが100mm当たり、7〜13L/minの通水量であることが好ましく、端面の直径が90mmのフィルタエレメント1においては、軸方向の長さが100mm当たり、15〜25L/minの通水量であることが好ましい。このように構成することによって、フィルタエレメント1が、家庭用の浄水器の一般的な通水量の仕様を十分に満足しうるものとすることができる。
【0040】
また、図1(b)においては、フィルタエレメント1が有するセル9の断面形状が円形のものを示しているが、これに限定されることはなく、三角形、四角形、五角形、六角形等の任意の多角形の他、円形、楕円形等やコルゲート形状等とすることができるが、隔壁8及び濾過膜10の強度の観点及び濾過膜10を均一に形成できる観点で円形状又は略円形状であることが好ましい。ここで略円形状には、楕円形、長円形、オーバル形状等の他、多角形の頂点が丸められた形状等も含む。セル9の断面の大きさにも特に制限はないが、断面が小さすぎると原液の流入時の抵抗が大きくなりすぎることがあり、逆に断面が大きすぎると十分な濾過面積をとることができなくなることがある。セル9の断面積の好ましい範囲は、原液の粘度によっても異なるが、例えば、フィルタエレメント1を浄水器に用いる場合、0.2〜20mm2であることが好ましく、0.5〜10mm2であることがさらに好ましい。このような範囲にすることにより、濾過膜10を形成させる際の成膜を均一に行いやすく、また、単位体積当たりの濾過膜10の面積を比較的大きくとれる、即ち、フィルタエレメント1を小型化することができる。また、セル9の数に特に制限はなく、強度、大きさ及び処理量の関係から当業者であれば適宜選択することができる。
【0041】
また、フィルタエレメント1が有するセル9の配列状態は特に限定されることはないが、セル9の数が多いほど濾過膜面積がとれるので通水量の向上が図れ、よりフィルタエレメント1のコンパクト化が実現される。好ましい配列としては、セル9の端面における形状を円として各セル9の中心を結び正三角形の配置で最密充填させる。この際のセル9間の隔壁8の厚さは多孔質体を構成する平均粒子径の5〜30倍、又はセル9の直径の0.1〜1倍とすることが好ましい。隔壁8の厚さが、多孔質体を構成する平均粒子径の5倍未満であると多孔質体の強度が低過ぎて多孔質体を成形できないことがあり、30倍を超えるとセル9が最密充填できないことがある。また、セル9の直径の0.1倍未満であると多孔質体の強度が低過ぎて成形できないことがあり、1倍を超えるとセル9が最密充填できなくなることがある。
【0042】
次に、本発明のフィルタエレメントの製造方法の一の実施の形態について、図面を用いて具体的に説明する。
【0043】
本実施の形態のフィルタエレメントの製造方法の製造方法は、まず、図4に示すように、原料を押出成形して原液の流路となるセル9を有する多孔質体からなる所定形状の未焼成フィルタ成形体20を得る。この原料は、例えば、上述の好ましい骨材及び好ましい基体用焼結助剤の中から選択した骨材及び基体用焼結助剤を上述の好ましい比率(骨材:基体用焼結助剤=65〜95質量%:35〜5質量%)で用意し、これに分散媒、有機バインダー、必要により界面活性剤、可塑剤等を添加し、ニーダー混練機等を用いて混練して坏土とする。これを、例えば、真空押出し成形機を用いて、所望の形状、本実施の形態においては、円柱状に押出成形する。
【0044】
次に、得られた未焼成フィルタ成形体20を乾燥及び焼成して焼成フィルタ成形体を得る。乾燥の方法としては、例えば、電子レンジ等を用いて15分間予備乾燥を行い、その後、乾燥器を用いて、未焼成フィルタ成形体20の水分が3質量%以下となるよう乾燥する。
【0045】
乾燥を終えた後に焼成を行うのであるが、製造するフィルタエレメント1(図2参照)が、上述した濾過膜10(図2参照)を有するものである場合には、未焼成フィルタ成形体20を焼成する前に、図5に示すように、濾過膜10(図2参照)を成膜する工程において、未焼成フィルタ成形体20の中心部と外周部とに濾過膜10(図2参照)が均一に成膜されるように、その端面側から内部に向かって所定の深さを有するとともに、所定のセル9の並びに沿って一方の端面の端縁の一の部位から他の部位に渡って、円形における直径又は弦の形状を保持するようにほぼ直線状に延びる少なくとも1本の仮溝21を形成する。本実施の形態においては、深さ15mmの仮溝21を2本形成した。仮溝21は、円盤状のカッター22や金のこ(図示せず)等を用いて容易に形成することができる。また、濾過膜10(図2参照)を有していないフィルタエレメントを製造する場合は、この工程は省略してもよい。
【0046】
次に、図6に示すように、未焼成フィルタ成形体20の仮溝21に、前述した原材料と略同一の仮封止材23を埋め込む。この際、一方の端面側から仮溝21の所定の深さに達しない深さまでの部分に仮封止材23が埋め込まれるように、仮溝21の幅と同程度の厚さの板状部材24を仮溝21に配設し、未焼成フィルタ成形体20の一方の端面にへら25等を用いて仮封止材23を押し込むことが好ましい。また、上述したように仮溝21を形成する工程を省略した場合は、この工程も省略してもよい。
【0047】
次に、乾燥した未焼成フィルタ成形体20を、例えば、平均粒子径80μmのアルミナを目砂に用いて、1000〜1600℃の最高温度で0.1〜3時間焼成して焼成フィルタ成形体を得る。
【0048】
次に、得られた焼成フィルタ成形体に濾過膜10を形成する。上述したように、濾過膜10(図2参照)を有していないフィルタエレメントを製造する場合は、この工程を省略してもよい。濾過膜10(図2参照)を形成する成膜工程は、例えば、図7に示すような、動加圧真空法を用いた成膜装置を用いて行うことができる。上述の好ましいセラミックス粒子の中から選択したセラミックス粒子単独、又はこのセラミックス粒子と上述の好ましい濾過膜用焼結助剤の中から選択した焼結助剤を、セラミックス粒子/濾過膜用焼結助剤の質量比で、好ましくは75〜99.5/25〜0.5、さらに好ましくは80〜95/20〜5の比率で混合した成膜スラリー27を用意し、焼成フィルタ成形体28をフィルタとして成膜スラリー27を濾過することにより、成膜スラリー27の固形分が隔壁8(図2参照)の表面に濾過膜10(図2参照)として成膜される。モノリス形状のセル9(図2参照)に成膜スラリー27を流し、循環させ、濾過膜10(図2参照)が隔壁8(図2参照)の表面に所定の厚さで成膜される分に相当する量(焼成フィルタ成形体28の隔壁8(図2参照)の表面積×濾過膜10(図2参照)の厚さ×成膜スラリー27の密度)の濾過水29を排出する。また、成膜された濾過膜10(図2参照)の形状が保持されるように、濾過水29回収後、濾過水側から焼成フィルタ成形体28を真空脱水する。この後、30〜60℃で、濾過膜10(図2参照)を成膜した焼成フィルタ成形体28を乾燥させた後、選択したセラミックス粒子及び焼結助剤に応じた所定の温度及び時間、例えば、900〜1450℃の最高温度で0.1〜3時間程度保持し、焼成する。
【0049】
次に、濾過膜10(図2参照)を成膜した焼成フィルタ成形体28を、所定の長さ、本実施の形態においては、その長さが100mmとなるように、ダイヤモンドカッター等を用いて切断し、切断した焼成フィルタ成形体28の一方の端部に、図8に示すように、その端面側から内部に向かって所定の深さを有するとともに、所定のセル9の並びに沿って一方の端面の端縁の一の部位から他の部位に渡って円形における直径又は弦の形状を保持するようにほぼ直線状に延びる二本の溝4を形成して、溝付きフィルタ成形体30を得る。この溝4は、例えば、厚さ0.6mmの回転刃36を有する溝加工機32等を用いて容易に形成することができる。また、溝加工の際に、例えば、V字型の位置出し治具33を用いると位置決めが容易になる。
【0050】
また、この溝4の幅は、製造するフィルタエレメント1(図1(a)参照)の大きさにもよるが、例えば、体積が0.283Lのフィルタエレメント1(図1(a)参照)を製造する場合、0.3〜3.0mmであることが好ましい。溝4の幅が0.3mm未満であると、通水量を増加する効果が得られないことがあり、また、3mmを超えると、フィルタエレメント1(図1(a)参照)の機械的強度が低下し、この溝4からフィルタエレメント1(図1(a)参照)が破損することがある。
【0051】
また、同様に溝4の深さも、フィルタエレメント1(図1(a)参照)の大きさによって異なるが、例えば、体積が0.283Lのフィルタエレメント1(図1(a)参照)を製造する場合、2〜40mmであることが好ましい。溝4の深さが2mm未満であると、通水量を増加する効果が得られないことがあるとともに、一方の端面側から溝4の所定の深さに達しない深さまでの部分に封止材5(図1(a)参照)を埋め込むことが困難となることがあり、また、40mmを超えると、フィルタエレメント1(図1(a)参照)の機械的強度が低下し、この溝4からフィルタエレメント1(図1(a)参照)が破損することがある。
【0052】
次に、図9に示すように、得られた溝付きフィルタ成形体30(図8参照)の溝4のうち、一方の端面側から溝4の所定の深さに達しない深さまでの部分だけに封止材5を埋め込んで、溝付きフィルタ成形体30(図8参照)の外周面の、一方の端面側から所定距離離れた一の部位から他の部位までほぼ直線状に貫通する貫通孔7を有する貫通孔付きフィルタ成形体31を得る。封止材5を埋め込む方法としては、図6に示した仮封止材23を埋め込む方法と同様に行う。即ち、貫通孔付きフィルタ成形体を得る工程において、溝付きフィルタ成形体の一方の端面側から溝の所定の深さに達しない深さまでの部分に封止材が埋め込まれるように、溝付きフィルタ成形体の溝に板状部材を配設し、溝の上記所定の深さに達しない深さまでの部分だけに封止材を埋め込んで貫通孔を形成する。
【0053】
封止材5は、溝4の底面から1.0〜20mmの隙間を有するように埋め込むことが好ましい。また、封止材5の材料としては、特に制限はないが、前述した未焼成フィルタ成形体20(図4参照)の原料と略同一のものを好適に用いることができる。
【0054】
また、この際、他方の端部の、一の端部における封止材が埋め込まれた溝4の部分に対応する部位に、封止材5と同一材質の目詰材11(図2参照)を配設してもよい。
【0055】
さらに、図10に示すように、このような貫通孔付きフィルタ成形体31の少なくともいずれか一方の端部の、端面を含む表面にシール層12を形成してもよい。シール層12の材料としては、上述したような釉薬等を好適に用いることができ、シール層12を形成する方法としては、貫通孔付きフィルタ成形体31を回転させるための回転治具34を用いて回転させながら、液体状の釉薬等をスプレーガン25を用いて、霧状にして端面に塗布し、塗布した釉薬等を自然乾燥させてシール層12を形成する。
【0056】
次に、得られた貫通孔付きフィルタ成形体31を、例えば、平均粒子径80μmのアルミナを目砂に用いて、900〜1600℃の最高温度で0.1〜3時間焼成して再度焼成してフィルタエレメント1(図1(a)参照)を得る。
【0057】
このように構成することによって、小型で通水性に優れ、特に、化学工業、食品工業等の分野におけるプロセス機器や家庭用の浄水器等に好適に用いられるフィルタエレメントを簡便かつ低コストに製造することができる。
【0058】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0059】
(実施例1)
原料として、平均粒子径80μm、純度98%以上のアルミナ90質量%に焼結助剤としてタルク/ガイロメ粘土を10質量%を加え、この合計100質量部に対して成形バインダーとしてメチルセルロースを4.5質量部、潤滑材としてポリエチレングリコールオレイン酸エステルを1質量部、及び水を10質量部を加えて、これらをニーダーで混練して押出し用の坏土を調製した。
【0060】
次に、真空押出し成形機を用いて、φ2mmのセルを499個有し、端面の形状がφ62mm、長さが1000mmのモノリス形状の未焼成フィルタ成形体を押出し成形した。成形後、メチルセルロースを硬化させ形状を保持させることを目的に電子レンジを用いて15分間予備乾燥をさせ、その後、乾燥器を用いて、未焼成フィルタ成形体の水分が3質量%以下となるように80℃で16時間乾燥させた。
【0061】
次に、未焼成フィルタ成形体の中心部と外周部が均一に濾過膜が形成されるように、図5に示したような、所定のセルの並びに沿って一方の端面の端縁の一の部位から他の部位に渡って円形における直径又は弦の形状を保持するようにほぼ直線状に延びる、幅1mm、深さ15mmの仮溝を形成した。
【0062】
次に、焼成フィルタ成形体の仮溝に、平均粒子径80μm、純度98%以上のアルミナ80質量%に焼結助剤としてアルミナ/ジルコニア系ガラスを20質量%加え、この合計100質量部に対してポリビニルアルコールを外配で10質量部加えて混錬した仮封止材を埋め込んだ。この際、一方の端面側から仮溝の所定の深さに達しない深さまでの部分に仮封止材が埋め込まれるように、仮溝の幅と同程度の厚さの板状部材を仮溝に配設した。
【0063】
次に、乾燥した未焼成フィルタ成形体を、平均粒子径80μmのアルミナを目砂に用いて、1250℃の最高温度で1時間焼成して焼成フィルタ成形体を得た。
【0064】
次に、平均粒子径2.5μm、純度98%以上のアルミナ90質量%に焼結助剤としてアルミナ/ジルコニア系ガラスを10質量%加え、この合計100質量部に対して解こう剤としてポリカルボン酸アンモニウムを1.0質量部、保形剤として多糖類を5質量部、及び水を90質量部加えて、攪拌機を用いて攪拌して成膜用スラリーを調整し、図7に示した加圧真空法を用いた成膜装置26を用いて、焼成フィルタ成形体の隔壁の表面に、厚さ約200μmとなるように成膜した。濾過膜を成膜した後、30〜60℃で、焼成フィルタ成形体を乾燥させ、その後、平均粒子径80μmのアルミナを目砂に用いて、さらに1000℃で1時間焼成した。
【0065】
次に、焼成フィルタ成形体の長さが100mmとなるように端部を切断し、切断した焼成フィルタ成形体の一方の端部に、その端面側から内部に向かって所定の深さを有するとともに、一方の端面の端縁の一の部位から他の部位に渡って円形における直径又は弦の形状を保持するようにほぼ直線状に延びる、幅1mm、深さ15mmの溝を2本形成して、溝付きフィルタ成形体を得た。
【0066】
次に、得られた溝付きフィルタ成形体の溝のうち、一方の端面側から10mmの深さまでの部分だけに封止材を埋め込んで、溝付きフィルタ成形体の外周面の、一方の端面側から所定距離離れた一の部位から他の部位までほぼ直線状に貫通する幅1×10mmの貫通孔を有する貫通孔付きフィルタ成形体を得た。封止材は、平均粒子径80μm、純度98%以上のアルミナ80質量%に焼結助剤としてアルミナ/ジルコニア系ガラスを20質量%加え、この合計100質量部に対してポリビニルアルコールを10〜20質量部加えて混錬したものを、仮封止材と同様の方法を用いて埋め込んだ。また、溝付きフィルタ成形体の他方の端部の、一の端部における封止材が埋め込まれた溝の部分に対応する部位に、封止材と同一材質の目詰材を配設した。
【0067】
また、溝付きフィルタ成形体の両端部の、端面を含む表面に、アルミナ/ジルコニア系ガラスと、バインダーとしてメチルセルロース2質量%水溶液と、質量比が同じになるように混ぜ合わせ釉薬スラリーを、図9に示すように、溝付きフィルタ成形体を回転させながら、釉薬スラリーをスプレーガンを用いて、霧状にして端面に塗布し、塗布した釉薬等を自然乾燥させてシール層を形成した。
【0068】
次に、得られた貫通孔付きフィルタ成形体を、平均粒子径80μmのアルミナを目砂に用いて、例えば、1000℃の最高温度で1時間焼成して再度焼成してフィルタエレメントを得た。
【0069】
得られたフィルタエレメント(実施例1)の流入口となる一方の端面側から、水圧0.1MPa、温度20℃の条件で、1分間純水を流し、通水量(L/min)を測定した。測定結果を表1に示す。
【0070】
【表1】

Figure 0004040427
【0071】
(実施例2,3)
貫通孔を3本形成した以外は実施例1と同様に構成されたフィルタエレメント(実施例2)と、貫通孔を4本形成した以外は実施例1と同様に構成されたフィルタエレメント(実施例3)とを、上述して方法と同様にして製造した。得られたフィルタエレメント(実施例2,3)の流入口となる一方の端面側から、水圧0.1MPa、温度20℃の条件で、1分間純水を流し、通水量(L/min)を測定した。測定結果を表1に示す。
【0072】
(比較例1)
実施例1と同様の材料を用いて、貫通孔を形成せずにフィルタエレメント(比較例1)を製造した。得られたフィルタエレメント(比較例1)の流入口となる一方の端面側から、水圧0.1MPa、温度20℃の条件で、1分間純水を流し、通水量(L/min)を測定した。測定結果を表1に示す。
【0073】
表1に示すように、貫通孔を有するフィルタエレメント(実施例1〜3)は、貫通孔のないフィルタエレメント(比較例1)に比較して、通水量が多くなっていた。
【0074】
【発明の効果】
以上説明したように、本発明によって、小型で通水性に優れ、特に、化学工業、食品工業等の分野におけるプロセス機器や家庭用の浄水器等に好適に用いられるフィルタエレメントを製造することができるフィルタエレメントの製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明のフィルタエレメントの製造方法の一の実施の形態によって製造されるフィルタエレメントを模式的に示す平面図であって、(a)は側面側からの平面図、(b)は一方の端面側からの平面図を示す。
【図2】 本発明のフィルタエレメントの製造方法の一の実施の形態によって製造されるフィルタエレメントを模式的に示す断面図である。
【図3】 本発明のフィルタエレメントの製造方法の一の実施の形態によって製造されるフィルタエレメントを模式的に示す平面図である。
【図4】 本発明のフィルタエレメントの製造方法の一の実施の形態において得られた未焼成フィルタ成形体を模式的に示す斜視図である。
【図5】 本発明のフィルタエレメントの製造方法の一の実施の形態における、未焼成フィルタ成形体に仮溝を形成する工程を示す斜視図である。
【図6】 本発明のフィルタエレメントの製造方法の一の実施の形態における、未焼成フィルタ成形体に仮封止材を埋め込む工程を示す斜視図である。
【図7】 本発明のフィルタエレメントの製造方法の一の実施の形態に用いられる成膜装置の構成を模式的に示す説明図である。
【図8】 本発明のフィルタエレメントの製造方法の一の実施の形態における、焼成フィルタ成形体に溝を形成する工程を示す斜視図である。
【図9】 本発明のフィルタエレメントの製造方法の一の実施の形態において得られた貫通孔付きフィルタ成形体を模式的に示す斜視図である。
【図10】 本発明のフィルタエレメントの製造方法の一の実施の形態における、貫通孔付きフィルタ成形体にシール層を形成する工程を示す斜視図である。
【符号の説明】
1…フィルタエレメント、2…外周面、3…端部、3a…一方の端部、3b…他方の端部、4…溝、5…封止材、6…端面、6a…一方の端面、7…貫通孔、8…隔壁、9…セル、10…濾過膜、11…目詰材、12…シール層、13…パッキン、20…未焼成フィルタ成形体、21…仮溝、22…円盤状のカッター、23…仮封止材、24…板状部材、25…へら、26…成膜装置、27…成膜スラリー、28…焼成フィルタ成形体、29…濾過水、30…溝付きフィルタ成形体、31…通孔付きフィルタ成形体、32…溝加工機、33…位置出し治具、34…回転治具、35…スプレーガン、36…回転刃。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a filter element.ToIt relates to a manufacturing method. More specifically, the filter element is small and excellent in water permeability, and is particularly suitable for use in process equipment and household water purifiers in fields such as the chemical industry and the food industry.ManufactureRegarding the method.
[0002]
[Prior art]
In recent years, in water purifiers used in process equipment and household tap water in the fields of chemical industry, food industry, etc., a filter that performs purification such as sterilization and filtration by allowing the stock solution to be purified to permeate through the inside. For example, it is made of a ceramic body made of a porous body having a plurality of cells serving as a flow path for a stock solution, and the stock solution to be purified taken in from one end is purified by permeating the inside and taken out as a purified solution. Filter elements made of hollow fibers or the like are used. In particular, filter elements such as ceramics are widely used in various fields because their shapes are difficult to deform and durability is high.
[0003]
Usually, this filter element has a surface of a porous body having relatively large pores covered with a ceramic filtration membrane having relatively small pores from the viewpoint of improving the filtration performance while ensuring a water flow rate. Compared with polymer membranes, etc., it has high physical strength and durability, so it has high reliability, and because it has high corrosion resistance, there is little deterioration even when washing with acid alkali, etc. It is excellent in that precise control of the pore diameter that determines the filtration capacity is possible, and it is particularly suitably used for household water purifiers and the like.
[0004]
Conventionally, with regard to this water purifier for home use, there are two demands for space saving of the water purifier body and an increase in the water flow rate. For this reason, the above-described filter element is also required to be downsized and increase in the water flow rate. It had been.
[0005]
However, as the size of the filter element decreases, the water flow rate tends to decrease, and the downsizing of the filter element and the increase in the water flow rate are in a trade-off relationship, making it extremely difficult to achieve both. .
[0006]
For this reason, the pore diameter is further smaller than the pores of the porous body on the inner peripheral surface of many parallel flow passages (cells) formed in the longitudinal direction of the cylindrical porous body (porous body). A filtration membrane is formed, and the liquid to be treated (raw solution) supplied to the flow passage is filtered through the filtration membrane, and the filtrate passes through the pores of the porous body and flows out to the external space. In order to increase the amount of water flow from the flow passage near the center, a slit-like gap is provided in the longitudinal direction of the porous body, and the edge of the flow passage communicating with the gap is sealed. In a ceramic filter, a ceramic filter having a configuration in which a slit-like gap is provided only in a central portion in a longitudinal direction of a cylindrical porous body is disclosed (see Patent Document 1).
[0007]
[Patent Document 1]
JP 2000-153117 A
[0008]
[Problems to be solved by the invention]
However, such a ceramic filter is originally a large size, for example, a filter having a volume of 3.9 L or more, a length of 500 mm or more, and a diameter of an end face of 100 mm or more, and is a small size used for a domestic water purifier, For example, when applied to a filter having a volume of 1.2 L or less, a length of 150 mm or less, and an end face diameter of 100 mm or less, the porous body that defines the above-described flow path may be damaged when forming a void. Therefore, there was a problem that it was extremely difficult.
[0009]
  The present invention has been made in view of the above-described problems, and is a filter element that is small and excellent in water permeability, and that is particularly suitable for use in process equipment, household water purifiers, etc. in fields such as the chemical industry and the food industry.ManufactureIt aims to provide a method.
[0010]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention provides the following filter element.ToA manufacturing method is provided.
[0017]
  [1The raw material is extruded to obtain a green filter molded body having a predetermined shape made of a porous body having cells serving as a flow path for the stock solution, and the obtained green filter molded body is dried and fired to form a fired filter. The obtained fired filter molded body has a predetermined depth from the end surface side toward the inside, and the edge of the one end surface along the predetermined cell array. Forming at least one groove from one part to the other part to obtain a grooved filter molded body, from among the grooves of the obtained grooved filter molded body, from the one end face side A sealing material is embedded only in a portion of the groove up to a depth that does not reach the predetermined depth, and the outer peripheral surface of the grooved filter molded body is separated from one portion at a predetermined distance from the one end surface side. Penetrating almost linearly to the site Obtained through perforated filter shaped bodies with, obtain a filter element by firing the resulting the through hole with the filter moldings againIn the method of manufacturing a filter element, in the step of obtaining the filter molded body with a through hole, a portion from the one end surface side of the grooved filter molded body to a depth not reaching the predetermined depth of the groove. A plate-like member is disposed in the groove of the grooved filter molded body so that the sealing material is embedded, and the sealing material is applied only to a portion up to a depth that does not reach the predetermined depth of the groove. Form the through hole by embeddingA method for manufacturing a filter element.
[0018]
  [2Including the step of disposing a clogging material of the same material as the sealing material in a portion corresponding to the groove portion in which the sealing material is embedded in the one end portion of the other end portion. [1] The manufacturing method of the filter element of description.
[0019]
  [3Including the step of forming a seal layer on the surface of at least one of the end portions including the end face.1] Or [2] The manufacturing method of the filter element of description.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  First,The filter element of the present inventionManufacturing methodEmbodimentFilter elements manufactured byWill be specifically described with reference to the drawings.
[0021]
  FIG. 1 shows a filter element according to the present invention.Manufacturing methodOne embodimentFilter elements manufactured byFIG. 2A is a plan view schematically showing (a) is a plan view from the side surface side, and (b) is a plan view from one end surface side.
[0022]
  As shown in FIGS. 1A and 1B, the filter element of the present embodimentElement manufactured by the manufacturing method of1 is composed of a porous body having a plurality of cells 9 serving as a flow path for the stock solution, and purifies the stock solution to be purified taken in from one end 3a by permeating the inside thereof from the outer peripheral surface 2 side. A filter element 1 having a predetermined shape to be taken out as a cleaning liquid, having one end 3a having a predetermined depth from the one end face 6a side toward the inside, and one of the cells 9 along a predetermined cell 9 At least one groove 4 extending substantially linearly so as to maintain a circular diameter or a chordal shape from one part of the edge of the end face 6a to another part is formed. The sealing material 5 is embedded in a portion from the one end face 6a side to a depth not reaching the predetermined depth of the groove 4, and the groove 4 and the sealing material 5 make it possible to A predetermined distance away from the end face 6a side Formed by forming a through hole 7 which penetrates substantially linearly from the site to other sitesIs a thing.
[0023]
  thisThe filter element 1 is a filter in which the porous partition walls 8 partitioning the cells 9 substantially filter the stock solution.
[0024]
The stock solution flowing in from one end face 6a of the filter element 1 passes through the cell 9 and is filtered by passing through the partition wall 8 of the porous body. Thereafter, the stock solution is discharged from the outer peripheral face 2 side as a purification liquid. In addition, since the cell 9 corresponding to the portion where the groove 4 is formed is connected to the through hole 7, the cleaning liquid that has passed through the partition wall 8 and has flowed into the cell 9 connected to the through hole 7 also passes through the through hole 7. Discharged.
[0025]
By comprising in this way, it can be made excellent in the water permeability of a purification liquid, for example, when used for a household water purifier etc., even if the shape is reduced in size, the conventional filter element The amount of water flow can be maintained or improved as compared with.
[0026]
  thisThe material of the porous body used for the filter element 1 is not particularly limited as long as it is a porous body that can be used as a filter, but ceramic is preferable from the viewpoint of strength and durability. Moreover, although there is no restriction | limiting in particular in the kind and manufacturing method of ceramics, It is preferable that it was formed from the aggregate and the sintering aid for base | substrates. Aggregates are particles made of ceramics that constitute the main component of the substrate. For example, one or more particles such as alumina, mullite, cordierite, silicon carbide, silicon nitride, aluminum nitride, and ceramic waste are preferable, It is appropriately selected so as to meet the purpose of filtration. The average particle diameter of the aggregate is preferably about 5 to 200 μm. The content of the aggregate in the substrate is preferably 65 to 99.5% by mass based on the total of the aggregate and the sintering aid for the substrate. Moreover, you may use what added shaping | molding binders, such as methylcellulose and polyethyleneglycol oleate, to the aggregate and the sintering aid for base | substrates.
[0027]
Further, the pore diameter of the porous body can be appropriately selected according to the purpose and application of the filter element 1.
[0028]
The sintering aid for the substrate is used to reinforce the bond between the aggregates by firing together with the aggregates and form a strong porous body. Although the material is not particularly limited, for example, one or more of alumina, silica, zirconia, titania, glass frit, feldspar, cordierite, talc, gyrome clay, etc. can be used. Depending on the material, it can be appropriately selected. The average particle size of the sintering aid for the substrate is not particularly limited, but an average particle size of 5 μm or less is preferable. The content of the sintering aid for the substrate is preferably 0.5 to 35 mass% based on the total of the aggregate and the sintering aid for the substrate. Although the manufacturing method will be described in detail later, the porous filter element 1 can be formed by forming a clay containing such an aggregate and a sintering aid into an arbitrary shape and then firing it.
[0029]
Moreover, although the width | variety of the groove | channel 4 mentioned above also depends on the magnitude | size of the filter element 1, in the case of the filter element 1 whose volume is 0.283L, it is preferable that it is 0.3-3 mm, for example. If the width of the groove 4 is less than 0.3 mm, the effect of increasing the water flow rate may not be obtained. If the width exceeds 3 mm, the mechanical strength of the filter element 1 is reduced, and the filter is removed from the groove 4. The element 1 may be damaged.
[0030]
Similarly, the depth of the groove 4 varies depending on the size of the filter element 1. For example, in the case of the filter element 1 having a volume of 0.283 L, the depth is preferably 2 to 40 mm. If the depth of the groove 4 is less than 2 mm, the effect of increasing the water flow rate may not be obtained, and sealing is performed from the one end surface 6a side to a depth that does not reach the predetermined depth of the groove 4. It may be difficult to embed a material, and when it exceeds 40 mm, the mechanical strength of the filter element 1 may be reduced, and the filter element 1 may be damaged from the groove 4.
[0031]
  The sealing material 5 is embedded so as to form a gap of 1.0 to 20 mm from the bottom surface of the groove 4.thisIn the filter element 1, the opening area of the outer peripheral surface of the through hole 7 is 0.3 to 117 mm.2It is preferable that
[0032]
Although there is no restriction | limiting in particular in the material of the sealing material 5, When the partition 8 grade | etc., Is formed from ceramics, it is preferable that it is ceramic from a viewpoint of an intensity | strength and adhesiveness with a base | substrate, and is contained in the partition 8 grade | etc.,. More preferably, it is a ceramic containing the same component as a part of the components. Further, the material of the sealing material 5 is preferably a material with small shrinkage because cracks are likely to occur when the shrinkage is too large.
[0033]
  This filter element 1In this case, filtration may be performed only with the porous body constituting the partition wall 8, but from the viewpoint of improving the separation performance while ensuring the processing speed, the partition wall 8 having a relatively large pore diameter is used as the porous substrate, It is preferable to form a filtration membrane 10 having a pore size smaller than this on the surface of the porous substrate. By setting it as such a structure, even if the average pore diameter of the filtration membrane 10 is made small, the pressure loss at the time of a raw | natural solution permeate | transmitting the inside of the filter element 1 can be suppressed. In this case, as shown in FIG. 2, it is preferable to form a filtration membrane 10 on the surface of the partition wall 8 that partitions the cell 9 in that the above object can be achieved efficiently. The average pore diameter of the filter membrane 10 can be appropriately selected depending on the use and purpose of the filter element 1, that is, the particle diameter of foreign matter contained in the stock solution to be purified.TheWhen the filter element 1 is used in a water purifier, the average pore diameter of the filtration membrane 10 is preferably about 0.1 to 2.0 μm, and more preferably about 0.2 to 0.7 μm.
[0034]
The material of the filtration membrane 10 is not particularly limited, but preferably contains ceramic particles and a filtration membrane sintering aid. The ceramic particles are preferably used by selecting from the above-mentioned materials listed as preferable for the aggregate, and the average particle diameter is preferably about 0.1 to 10 μm. By selecting a smaller particle size, the pore size after calcination becomes smaller, so the particle size can be appropriately selected according to the purpose of filtration, for example, for use in a water purifier. In order to obtain a pore diameter in such a range, the average particle diameter of the ceramic particles is preferably about 0.2 to 5.0 μm, and more preferably about 0.4 to 2.5 μm. The filtration membrane sintering aid is also preferably selected from the materials listed as preferred for the substrate sintering aid. The ratio of the ceramic particles and the sintering aid for the filtration membrane is preferably 85 to 99.5% by mass of the ceramic particles based on the total of the ceramic particles and the sintering aid for the filtration membrane. The agent is preferably contained in an amount of 0.5 to 15% by mass. The filtration membrane 10 can be formed by applying these ceramic particles and a filtration membrane sintering aid in the form of a slurry to the substrate surface and then firing. Further, the filtration membrane 10 may be one layer, but may be two or more layers. In that case, the average pore diameter of the outermost filtration membrane 10 is minimized, and the pore diameters are increased in order toward the partition wall 8. It is preferable to enlarge it.
[0035]
  Also,This filter element 1In the other end portion 3 b of the filter element 1, the clogging material 11 made of the same material as that of the sealing material 5 is provided at a portion corresponding to the groove 4 in which the sealing material 5 is embedded in the one end portion 3 a. Is preferably provided. By comprising in this way, it can prevent that stock solution is discharged | emitted from the through-hole 7 without filtering.
[0036]
Further, as shown in FIGS. 1A and 2, it is preferable that a seal layer 12 is formed on the surface including the end face 6 of at least one end 3 of the filter element 1. By comprising in this way, when the filter element 1 has the filtration membrane 10 as mentioned above, it can prevent that the stock solution from the edge part 3 of the filter element in which the filtration membrane 10 is not formed permeate | transmits. Moreover, as shown in FIG. 3, when fixing the filter element 1 to a water purifier or the like, the end surface 6 where the stock solution flows or stays and the outer peripheral surface 2 where the purified water flows out are bonded with a packing 13 such as silicon or fluorine resin. When it is used and fixed in a liquid-tight manner, its certainty can be increased.
[0037]
The material of the seal layer 12 is not particularly limited. However, when the filter element 1 is ceramic, it is preferably ceramic from the viewpoints of strength and adhesiveness to the substrate, and the partition wall 8 (see FIG. 2). It is more preferable that the ceramic contains a component similar to a part of the components included. However, since it is required that the undiluted solution is not substantially permeated, it is necessary to make a glitz made of ceramics, such as a glitz, especially silica and alumina as main components, and a fritted glaze containing 10% by mass or less of zirconia. Etc., and may contain methylcellulose as a binder.
[0038]
  Also,thisThere is no restriction | limiting in particular in the magnitude | size of the filter element 1, Although it can be made into any shape according to a use, the objective, an installation place, etc., when using as the filter element 1 for household water purifiers, for example, it is an end surface The diameter is preferably 50 to 100 mm, and is preferably a cylindrical shape having an axial length of 50 to 150 mm. Also, the size can be appropriately selected according to the processing amount, installation location, and the like.
[0039]
  Moreover, the water flow rate of the filter element 1 is not particularly limited, but when used as the filter element 1 for a water purifier, the water flow rate at a water pressure of 0.1 MPa is preferably 3 to 30 L / min. Further, in the filter element 1 having an end face diameter of 62 mm, the axial length is preferably 7 to 13 L / min per 100 mm, and in the filter element 1 having an end face diameter of 90 mm, It is preferable that the axial length is 15 to 25 L / min per 100 mm. By configuring in this wayTheThe filter element 1 can sufficiently satisfy the general water flow specification of a domestic water purifier.
[0040]
  In addition, in FIG.InAlthough the cross-sectional shape of the cell 9 included in the filter element 1 is circular, the shape is not limited to this, and it is not limited to this, but any polygon such as a triangle, a quadrangle, a pentagon, and a hexagon, a circle, an ellipse However, it is preferably circular or substantially circular from the viewpoint of the strength of the partition wall 8 and the filtration membrane 10 and from the viewpoint of uniformly forming the filtration membrane 10. Here, the substantially circular shape includes an elliptical shape, an oval shape, an oval shape, and the like, as well as a shape in which a vertex of a polygon is rounded. The size of the cross section of the cell 9 is not particularly limited. However, if the cross section is too small, the resistance during inflow of the stock solution may become too large. It may disappear. The preferred range of the cross-sectional area of the cell 9 varies depending on the viscosity of the stock solution.TheWhen the filter element 1 is used for a water purifier, 0.2 to 20 mm2Preferably, 0.5 to 10 mm2More preferably. By setting it in such a range, it is easy to form a film even when forming the filtration membrane 10, and the area of the filtration membrane 10 per unit volume can be made relatively large, that is, the filter element 1 can be downsized. can do. Moreover, there is no restriction | limiting in particular in the number of cells 9, If it is an expert, it can select suitably from the relationship of intensity | strength, a magnitude | size, and a processing amount.
[0041]
  In addition, the arrangement state of the cells 9 included in the filter element 1 is not particularly limited. However, as the number of the cells 9 increases, the filtration membrane area can be increased, so that the water flow rate can be improved and the filter element 1 can be made more compact. Realized. As a preferred arrangement, the shape at the end face of the cells 9 is a circle, the centers of the cells 9 are connected, and the cells are packed in a close triangle arrangement.TheIn this case, the thickness of the partition walls 8 between the cells 9 is preferably 5 to 30 times the average particle diameter constituting the porous body, or 0.1 to 1 times the diameter of the cells 9. If the thickness of the partition wall 8 is less than 5 times the average particle diameter constituting the porous body, the strength of the porous body may be too low to form the porous body. Close packing may not be possible. If the diameter of the cell 9 is less than 0.1 times, the strength of the porous body may be too low to be molded, and if it exceeds 1 time, the cell 9 may not be close-packed.
[0042]
Next, an embodiment of the filter element manufacturing method of the present invention will be specifically described with reference to the drawings.
[0043]
As shown in FIG. 4, the manufacturing method of the filter element manufacturing method according to the present embodiment is as follows. First, the raw material is extruded and formed into a predetermined shape unfired made of a porous body having cells 9 that serve as flow paths for the stock solution. A filter molded body 20 is obtained. This raw material is composed of, for example, the above-mentioned preferred ratio of the aggregate selected from the above-mentioned preferred aggregate and the preferred sintering aid for the substrate and the sintering aid for the substrate (aggregate: sintering aid for the substrate = 65). ~ 95 mass%: 35 to 5 mass%), and a dispersion medium, an organic binder, and a surfactant and a plasticizer as necessary are added thereto, and kneaded using a kneader kneader or the like to form a clay. . This is extruded into a desired shape, for example, a cylindrical shape in the present embodiment, using, for example, a vacuum extrusion molding machine.
[0044]
Next, the obtained unfired filter molded body 20 is dried and fired to obtain a fired filter molded body. As a drying method, for example, preliminary drying is performed for 15 minutes using a microwave oven or the like, and thereafter, drying is performed using a dryer so that the moisture of the green filter molded body 20 is 3% by mass or less.
[0045]
Firing is performed after finishing the drying. When the filter element 1 to be manufactured (see FIG. 2) has the above-described filtration membrane 10 (see FIG. 2), the unfired filter molded body 20 is formed. Before firing, as shown in FIG. 5, in the step of forming the filtration membrane 10 (see FIG. 2), the filtration membrane 10 (see FIG. 2) is formed at the center and the outer periphery of the unfired filter molded body 20. In order to form a uniform film, it has a predetermined depth from the end surface side to the inside, and extends from one part of the edge of one end surface to the other part along the predetermined cell 9. At least one temporary groove 21 extending in a substantially straight line is formed so as to maintain the diameter or the string shape in a circle. In the present embodiment, two temporary grooves 21 having a depth of 15 mm are formed. The temporary groove 21 can be easily formed using a disk-shaped cutter 22 or a metal saw (not shown). Moreover, when manufacturing the filter element which does not have the filtration membrane 10 (refer FIG. 2), you may abbreviate | omit this process.
[0046]
Next, as shown in FIG. 6, a temporary sealing material 23 substantially the same as the raw material described above is embedded in the temporary groove 21 of the green filter molded body 20. At this time, a plate-like member having a thickness approximately equal to the width of the temporary groove 21 so that the temporary sealing material 23 is embedded in a portion from one end face side to a depth not reaching the predetermined depth of the temporary groove 21. 24 is disposed in the temporary groove 21, and the temporary sealing material 23 is preferably pushed into one end face of the green filter molded body 20 using a spatula 25 or the like. Moreover, when the process of forming the temporary groove 21 is omitted as described above, this process may be omitted.
[0047]
Next, the dried unfired filter molded body 20 is fired at a maximum temperature of 1000 to 1600 ° C. for 0.1 to 3 hours using, for example, alumina having an average particle diameter of 80 μm as the mesh sand, and the fired filter molded body is obtained. obtain.
[0048]
Next, the filtration membrane 10 is formed on the obtained fired filter molded body. As described above, when manufacturing a filter element that does not have the filtration membrane 10 (see FIG. 2), this step may be omitted. The film forming process for forming the filtration membrane 10 (see FIG. 2) can be performed using a film forming apparatus using a dynamic pressure vacuum method as shown in FIG. 7, for example. Ceramic particles selected from among the above-mentioned preferred ceramic particles alone, or a sintering aid selected from the ceramic particles and the above-mentioned preferred sintering aid for filtration membranes may be used as a sintering aid for ceramic particles / filtration membranes. The film-forming slurry 27 mixed at a mass ratio of preferably 75 to 99.5 / 25 to 0.5, more preferably 80 to 95/20 to 5 is prepared, and the fired filter molded body 28 is used as a filter. By filtering the film-forming slurry 27, the solid content of the film-forming slurry 27 is formed as a filtration film 10 (see FIG. 2) on the surface of the partition wall 8 (see FIG. 2). The film forming slurry 27 is caused to flow and circulate through the monolithic cell 9 (see FIG. 2), and the filtration membrane 10 (see FIG. 2) is formed on the surface of the partition wall 8 (see FIG. 2) with a predetermined thickness. The filtered water 29 is discharged in an amount equivalent to (surface area of the partition wall 8 (see FIG. 2) of the fired filter molded body 28 × thickness of the filtration membrane 10 (see FIG. 2) × density of the film-forming slurry 27). In addition, after the filtered water 29 is recovered, the fired filter molded body 28 is vacuum dehydrated from the filtered water side so that the shape of the formed filtration membrane 10 (see FIG. 2) is maintained. Thereafter, after drying the fired filter formed body 28 on which the filtration membrane 10 (see FIG. 2) is formed at 30 to 60 ° C., a predetermined temperature and time corresponding to the selected ceramic particles and sintering aid, For example, it is held at a maximum temperature of 900 to 1450 ° C. for about 0.1 to 3 hours and fired.
[0049]
Next, the fired filter molded body 28 on which the filter membrane 10 (see FIG. 2) is formed is used with a diamond cutter or the like so that the predetermined length, in this embodiment, the length is 100 mm. As shown in FIG. 8, one end portion of the cut fired filter molded body 28 having a cut has a predetermined depth from the end face side toward the inside, and one end along the sequence of the predetermined cells 9. The grooved filter molded body 30 is obtained by forming two grooves 4 extending substantially linearly so as to maintain a circular diameter or a chordal shape from one part of the edge of the end face to another part. . The groove 4 can be easily formed using, for example, a groove processing machine 32 having a rotary blade 36 having a thickness of 0.6 mm. In addition, for example, when a V-shaped positioning jig 33 is used in the groove processing, positioning becomes easy.
[0050]
The width of the groove 4 depends on the size of the filter element 1 to be manufactured (see FIG. 1A). For example, the width of the groove 4 is 0.283L (see FIG. 1A). When manufacturing, it is preferable that it is 0.3-3.0 mm. If the width of the groove 4 is less than 0.3 mm, the effect of increasing the water flow rate may not be obtained. If the width exceeds 3 mm, the mechanical strength of the filter element 1 (see FIG. 1A) is increased. The filter element 1 (see FIG. 1A) may be damaged from the groove 4 due to the lowering.
[0051]
  Similarly, the depth of the groove 4 varies depending on the size of the filter element 1 (see FIG. 1A).Is 0. When manufacturing the 283L filter element 1 (refer FIG. 1A), it is preferable that it is 2-40 mm. If the depth of the groove 4 is less than 2 mm, the effect of increasing the amount of water flow may not be obtained, and the sealing material is applied from one end face side to a depth that does not reach the predetermined depth of the groove 4. 5 (see FIG. 1 (a)) may be difficult to embed, and if it exceeds 40 mm, the mechanical strength of the filter element 1 (see FIG. 1 (a)) is reduced. The filter element 1 (see FIG. 1A) may be damaged.
[0052]
  Next, as shown in FIG. 9, only a portion from one end face side to a depth not reaching the predetermined depth of the groove 4 in the groove 4 of the obtained grooved filter molded body 30 (see FIG. 8). A through hole that embeds the sealing material 5 in the groove and substantially linearly penetrates from one part of the outer peripheral surface of the grooved filter molded body 30 (see FIG. 8), which is a predetermined distance away from one end face side, to the other part. A filter molded body 31 with through holes having 7 is obtained. The method for embedding the sealing material 5 is the same as the method for embedding the temporary sealing material 23 shown in FIG.. That is, in the step of obtaining the filter molded body with a through hole, the grooved filter is so arranged that the sealing material is embedded in a portion from one end face side of the grooved filter molded body to a depth not reaching the predetermined depth of the groove. A plate-like member is disposed in the groove of the molded body, and a sealing material is embedded only in a portion of the groove up to a depth not reaching the predetermined depth to form a through hole.
[0053]
The sealing material 5 is preferably embedded so as to have a gap of 1.0 to 20 mm from the bottom surface of the groove 4. Moreover, there is no restriction | limiting in particular as a material of the sealing material 5, However, The substantially same thing as the raw material of the unbaking filter molded object 20 (refer FIG. 4) mentioned above can be used suitably.
[0054]
At this time, the clogging material 11 made of the same material as that of the sealing material 5 (see FIG. 2) is provided at a portion corresponding to the groove 4 in which the sealing material at one end is embedded at the other end. May be provided.
[0055]
Furthermore, as shown in FIG. 10, the seal layer 12 may be formed on the surface including the end face of at least one end of the filter molded body 31 with such a through hole. As the material of the seal layer 12, the above-described glaze and the like can be suitably used. As a method of forming the seal layer 12, a rotating jig 34 for rotating the filter molded body 31 with a through hole is used. Then, a liquid glaze or the like is applied in the form of a mist using the spray gun 25 while being rotated, and the applied glaze or the like is naturally dried to form the seal layer 12.
[0056]
Next, the obtained filter-molded body 31 with through holes is fired again by firing for 0.1 to 3 hours at a maximum temperature of 900 to 1600 ° C. using alumina having an average particle diameter of 80 μm as the mesh sand, for example. Thus, the filter element 1 (see FIG. 1A) is obtained.
[0057]
By comprising in this way, it is small and excellent in water permeability, and manufactures the filter element used suitably for the process apparatus in households, such as chemical industry and the food industry, and a water purifier for home, etc. simply and at low cost. be able to.
[0058]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
[0059]
Example 1
As a raw material, 10% by mass of talc / gallome clay was added as a sintering aid to 90% by mass of alumina having an average particle size of 80 μm and a purity of 98% or more. 1 part by weight of polyethylene glycol oleate as a lubricant and 10 parts by weight of water as a lubricant were added and kneaded with a kneader to prepare a clay for extrusion.
[0060]
Next, using a vacuum extrusion molding machine, a monolith-shaped green filter molded body having 499 cells having a diameter of 2 mm, an end face having a shape of φ62 mm, and a length of 1000 mm was extruded. After molding, preliminarily dry using a microwave oven for 15 minutes for the purpose of curing the methylcellulose and maintaining the shape, and then using a dryer so that the water content of the green filter molded body is 3% by mass or less. And dried at 80 ° C. for 16 hours.
[0061]
Next, as shown in FIG. 5, one end edge of one end face is arranged along a predetermined cell sequence so that the filtration membrane is uniformly formed at the center and the outer periphery of the green filter molded body. A temporary groove having a width of 1 mm and a depth of 15 mm extending substantially linearly so as to maintain a circular diameter or string shape from one part to another was formed.
[0062]
Next, 20% by mass of alumina / zirconia-based glass as a sintering aid is added to the temporary groove of the fired filter molded body to 80% by mass of alumina having an average particle diameter of 80 μm and a purity of 98% or more. Then, a temporary sealing material kneaded by adding 10 parts by mass of polyvinyl alcohol externally was embedded. At this time, a plate-like member having a thickness approximately equal to the width of the temporary groove is provided so that the temporary sealing material is embedded in a portion from one end surface side to a depth not reaching the predetermined depth of the temporary groove. Arranged.
[0063]
Next, the dried unfired filter molded body was fired at a maximum temperature of 1250 ° C. for 1 hour using alumina having an average particle size of 80 μm as the mesh sand to obtain a fired filter molded body.
[0064]
Next, 10% by mass of alumina / zirconia glass as a sintering aid is added to 90% by mass of alumina having an average particle diameter of 2.5 μm and a purity of 98% or more. Add 1.0 parts by weight of ammonium acid, 5 parts by weight of polysaccharide as a shape-retaining agent, and 90 parts by weight of water, and stir using a stirrer to prepare a slurry for film formation. The film was formed on the surface of the partition wall of the fired filter molded body so as to have a thickness of about 200 μm using the film forming apparatus 26 using the pressure-vacuum method. After the filtration membrane was formed, the fired filter molded body was dried at 30 to 60 ° C., and then fired at 1000 ° C. for 1 hour using alumina having an average particle diameter of 80 μm as the mesh sand.
[0065]
Next, the end portion is cut so that the length of the fired filter molded body is 100 mm, and one end portion of the cut fired filter molded body has a predetermined depth from the end surface side toward the inside. Two grooves having a width of 1 mm and a depth of 15 mm are formed to extend substantially linearly so as to maintain a circular diameter or chordal shape from one part of the edge of one end surface to the other part. A grooved filter molded body was obtained.
[0066]
Next, among the grooves of the obtained grooved filter molded body, a sealing material is embedded only in a portion from one end surface side to a depth of 10 mm, and one end surface side of the outer peripheral surface of the grooved filter molded body A filter molded body with a through-hole having a through-hole having a width of 1 × 10 mm that penetrates substantially linearly from one part separated from the other part to another part was obtained. As the sealing material, 20% by mass of alumina / zirconia glass as a sintering aid is added to 80% by mass of alumina having an average particle diameter of 80 μm and a purity of 98% or more, and 10 to 20 polyvinyl alcohol is added to 100 parts by mass in total. What knead | mixed by adding a mass part was embedded using the method similar to a temporary sealing material. Further, a clogging material made of the same material as that of the sealing material was disposed at a portion corresponding to the groove portion in which the sealing material at one end portion was embedded in the other end portion of the filter molded body with the groove.
[0067]
Further, the glaze slurry mixed with the alumina / zirconia-based glass and the 2% by weight aqueous solution of methylcellulose as the binder so as to have the same mass ratio is formed on the surfaces including the end faces of the both ends of the grooved filter molded body. As shown in Fig. 1, the glaze slurry was applied in the form of a mist using a spray gun while rotating the grooved filter molded body, and the applied glaze and the like were naturally dried to form a seal layer.
[0068]
Next, the obtained filter molded body with through holes was fired again at a maximum temperature of 1000 ° C. for 1 hour, for example, using alumina having an average particle diameter of 80 μm as mesh sand to obtain a filter element.
[0069]
Pure water was allowed to flow for 1 minute from one end face side serving as the inlet of the obtained filter element (Example 1) under conditions of a water pressure of 0.1 MPa and a temperature of 20 ° C., and the water flow rate (L / min) was measured. . The measurement results are shown in Table 1.
[0070]
[Table 1]
Figure 0004040427
[0071]
(Examples 2 and 3)
A filter element (Example 2) configured in the same manner as in Example 1 except that three through holes are formed, and a filter element (Example in Example) configured in the same manner as in Example 1 except that four through holes are formed. 3) was prepared in the same manner as described above. From one end face side that becomes the inlet of the obtained filter element (Examples 2 and 3), pure water was allowed to flow for 1 minute under conditions of a water pressure of 0.1 MPa and a temperature of 20 ° C., and the water flow rate (L / min) was It was measured. The measurement results are shown in Table 1.
[0072]
(Comparative Example 1)
Using the same material as in Example 1, a filter element (Comparative Example 1) was manufactured without forming a through hole. Pure water was allowed to flow for 1 minute under the conditions of a water pressure of 0.1 MPa and a temperature of 20 ° C. from one end face side serving as an inlet of the obtained filter element (Comparative Example 1), and the water flow rate (L / min) was measured. . The measurement results are shown in Table 1.
[0073]
As shown in Table 1, the filter element having the through holes (Examples 1 to 3) had a larger water flow rate than the filter element having no through hole (Comparative Example 1).
[0074]
【The invention's effect】
  As described above, according to the present invention, the filter element is small and excellent in water permeability, and is particularly suitable for use in process equipment and household water purifiers in fields such as the chemical industry and the food industry.The filter element that can be manufacturedThe manufacturing method of can be provided.
[Brief description of the drawings]
FIG. 1 shows a filter element according to the present invention.Manufacturing methodOne embodimentFilter elements manufactured byFIG. 2A is a plan view schematically showing (a) is a plan view from the side surface side, and (b) is a plan view from one end surface side.
FIG. 2 shows the filter element of the present invention.Manufacturing methodOne embodimentFilter elements manufactured byIt is sectional drawing which shows this typically.
FIG. 3 shows a filter element according to the present invention.Manufacturing methodOne embodimentFilter elements manufactured byIt is a top view which shows typically.
FIG. 4 is a perspective view schematically showing an unfired filter molded body obtained in an embodiment of a method for producing a filter element of the present invention.
FIG. 5 is a perspective view showing a step of forming a temporary groove in an unfired filter molded body in one embodiment of the filter element manufacturing method of the present invention.
FIG. 6 is a perspective view showing a step of embedding a temporary sealing material in an unfired filter molded body in one embodiment of the filter element manufacturing method of the present invention.
FIG. 7 is an explanatory view schematically showing a configuration of a film forming apparatus used in one embodiment of a filter element manufacturing method of the present invention.
FIG. 8 is a perspective view showing a step of forming a groove in a fired filter molded body in one embodiment of the filter element manufacturing method of the present invention.
FIG. 9 is a perspective view schematically showing a filter molded body with through holes obtained in an embodiment of a method for producing a filter element of the present invention.
FIG. 10 is a perspective view showing a process of forming a seal layer on a filter molded body with through holes in one embodiment of a method for producing a filter element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Filter element, 2 ... Outer peripheral surface, 3 ... End part, 3a ... One end part, 3b ... Other end part, 4 ... Groove, 5 ... Sealing material, 6 ... End face, 6a ... One end face, 7 DESCRIPTION OF SYMBOLS ... Through-hole, 8 ... Partition, 9 ... Cell, 10 ... Filtration membrane, 11 ... Sealing material, 12 ... Sealing layer, 13 ... Packing, 20 ... Unbaked filter molded object, 21 ... Temporary groove, 22 ... Disc shape Cutter, 23 ... Temporary sealing material, 24 ... Plate-like member, 25 ... Spatula, 26 ... Film forming apparatus, 27 ... Film forming slurry, 28 ... Firing filter molded body, 29 ... Filter water, 30 ... Grooved filter molded body 31 ... Filter molded body with through-holes, 32 ... Groove processing machine, 33 ... Positioning jig, 34 ... Rotating jig, 35 ... Spray gun, 36 ... Rotating blade.

Claims (3)

原料を押出成形して原液の流路となるセルを有する多孔質体からなる所定形状の未焼成フィルタ成形体を得、A raw filter molded body having a predetermined shape made of a porous body having cells that serve as a flow path for the stock solution by extruding the raw material,
得られた前記未焼成フィルタ成形体を乾燥及び焼成して焼成フィルタ成形体を得、The obtained green filter molded body was dried and fired to obtain a fired filter molded body,
得られた前記焼成フィルタ成形体の一方の端部に、その端面側から内部に向かって所定の深さを有するとともに、所定の前記セルの並びに沿って前記一方の端面の端縁の一の部位から他の部位に渡って少なくとも1本の溝を形成して、溝付きフィルタ成形体を得、One end portion of the obtained fired filter molded body has a predetermined depth from the end surface side toward the inside, and one part of the edge of the one end surface along the predetermined cell array To form at least one groove over the other part to obtain a grooved filter molded body,
得られた前記溝付きフィルタ成形体の前記溝のうち、前記一方の端面側から前記溝の所定の深さに達しない深さまでの部分だけに封止材を埋め込んで、前記溝付きフィルタ成形体の外周面の、前記一方の端面側から所定距離離れた一の部位から他の部位までほぼ直線状に貫通する貫通孔を有する貫通孔付きフィルタ成形体を得、Of the groove of the obtained grooved filter molded body, a sealing material is embedded only in a portion from the one end surface side to a depth not reaching the predetermined depth of the groove, and the grooved filter molded body is formed. Obtaining a filter molded body with a through-hole having a through-hole penetrating substantially linearly from one part separated from the one end face side to the other part of the outer peripheral surface of
得られた前記貫通孔付きフィルタ成形体を再度焼成してフィルタエレメントを得るフィルタエレメントの製造方法であって、A filter element manufacturing method for obtaining a filter element by firing again the obtained filter molded body with a through-hole,
前記貫通孔付きフィルタ成形体を得る工程において、前記溝付きフィルタ成形体の前記一方の端面側から前記溝の前記所定の深さに達しない深さまでの部分に前記封止材が埋め込まれるように、前記溝付きフィルタ成形体の前記溝に板状部材を配設し、前記溝の前記所定の深さに達しない深さまでの部分だけに前記封止材を埋め込んで前記貫通孔を形成することを特徴とするフィルタエレメントの製造方法。In the step of obtaining the filter molded body with a through hole, the sealing material is embedded in a portion from the one end surface side of the grooved filter molded body to a depth not reaching the predetermined depth of the groove. A plate-like member is disposed in the groove of the grooved filter molded body, and the through hole is formed by embedding the sealing material only in a portion up to a depth not reaching the predetermined depth of the groove. A filter element manufacturing method characterized by the above.
他方の端部の、前記一の端部における前記封止材が埋め込まれた前記溝の部分に対応する部位に、前記封止材と同一材質の目詰材を配設する工程を含む請求項1に記載のフィルタエレメントの製造方法。A step of disposing a clogging material of the same material as that of the sealing material in a portion corresponding to the groove portion in which the sealing material is embedded in the one end portion of the other end portion. 2. A method for producing a filter element according to 1. 少なくともいずれか一方の前記端部の、前記端面を含む表面にシール層を形成する工程を含む請求項1又は2に記載のフィルタエレメントの製造方法。The method for manufacturing a filter element according to claim 1, further comprising a step of forming a seal layer on a surface including the end face of at least one of the end portions.
JP2002307440A 2002-10-22 2002-10-22 Manufacturing method of filter element Expired - Lifetime JP4040427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307440A JP4040427B2 (en) 2002-10-22 2002-10-22 Manufacturing method of filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307440A JP4040427B2 (en) 2002-10-22 2002-10-22 Manufacturing method of filter element

Publications (2)

Publication Number Publication Date
JP2004141728A JP2004141728A (en) 2004-05-20
JP4040427B2 true JP4040427B2 (en) 2008-01-30

Family

ID=32453898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307440A Expired - Lifetime JP4040427B2 (en) 2002-10-22 2002-10-22 Manufacturing method of filter element

Country Status (1)

Country Link
JP (1) JP4040427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748730B2 (en) * 2007-01-22 2011-08-17 日本碍子株式会社 Ceramic filter and end face sealing method thereof
KR101827802B1 (en) * 2017-05-04 2018-02-09 장성국 The water purification ceramic filter using waste pottery and the method for manufacturing it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501534A (en) * 1967-12-21 1989-06-01 セラメム コーポレーション cross flow filtration device
JP2000153117A (en) * 1998-11-18 2000-06-06 Ngk Insulators Ltd Ceramic filter
JP2001259326A (en) * 2000-03-23 2001-09-25 Ngk Insulators Ltd Honeycomb filter
JP4471452B2 (en) * 2000-05-29 2010-06-02 日本碍子株式会社 Manufacturing method of filter element

Also Published As

Publication number Publication date
JP2004141728A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
KR101501792B1 (en) Method for Preparing a Porous Inorganic Coating on a Porous Support using certain Pore Formers
AU2007310056B2 (en) Ceramic porous membrane and ceramic filter
JP5005917B2 (en) Method for manufacturing plugged honeycomb structure
KR100707227B1 (en) Base for honeycomb filter, method for producing same and honeycomb filter
JP2001334114A (en) Filter element and its production process
JP2004231506A (en) Coating material, ceramics honeycomb structural body and its producing method
EP2236783B1 (en) Method of manufacturing exhaust gas purification device
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
JP2003176185A (en) Ceramic porous body and ceramic filter
JP2004305993A (en) Ceramic honeycomb filter and production method therefor
JP4040427B2 (en) Manufacturing method of filter element
JP6609547B2 (en) Monolith type separation membrane structure
KR100671867B1 (en) Ceramic filter
JP5409035B2 (en) Honeycomb structure
EP1607131A1 (en) Ceramic filter
KR100671380B1 (en) Ceramic filter
US10870607B2 (en) Inorganic membrane filtration articles and methods thereof
JP2000342920A (en) Ceramic filter
JP4519376B2 (en) Method for producing porous filter
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
JPWO2017169304A1 (en) Monolith type separation membrane structure
JP2007229564A (en) Manufacturing method of ceramic filter
EA004725B1 (en) Ceramic filtering element and method for producing said element
JP6417355B2 (en) Monolith type separation membrane structure
JP5006238B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4040427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

EXPY Cancellation because of completion of term