JP2001300273A - Ceramic filter - Google Patents

Ceramic filter

Info

Publication number
JP2001300273A
JP2001300273A JP2000127157A JP2000127157A JP2001300273A JP 2001300273 A JP2001300273 A JP 2001300273A JP 2000127157 A JP2000127157 A JP 2000127157A JP 2000127157 A JP2000127157 A JP 2000127157A JP 2001300273 A JP2001300273 A JP 2001300273A
Authority
JP
Japan
Prior art keywords
base material
thermal expansion
filtration membrane
substrate
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000127157A
Other languages
Japanese (ja)
Other versions
JP4367678B2 (en
Inventor
Tadanori Komoda
忠典 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000127157A priority Critical patent/JP4367678B2/en
Publication of JP2001300273A publication Critical patent/JP2001300273A/en
Application granted granted Critical
Publication of JP4367678B2 publication Critical patent/JP4367678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic filter having a high strength and comprising respective constituent members in which cracks are hardly formed. SOLUTION: The ceramic filter comprises a substrate 2 of a porous body having single or a large number of through holes in parallel, a filtration membrane 3 formed on the surface of the substrate 2 and having the average fine pore diameter smaller than that of the substrate 2, and a seal member 5 for covering at least the end part of the substrate 2 and the filtration membrane 3 in the periphery of the end part of the substrate 2. The seal member 5 is made of a material having a thermal expansion coefficient smaller by a degree within a prescribed range than that of the substrate or that of the filtration membrane 3 and different from those of substrate and the filtration membrane 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明はセラミック多孔体
からなる基材の表面に、基材に比して平均細孔径が小さ
い濾過膜を形成したセラミックフィルタに関し、詳しく
は高強度で、かつ、フィルタの構成部材にクラックが発
生し難いセラミックフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic filter in which a filtration membrane having a smaller average pore diameter than a substrate is formed on the surface of a substrate made of a porous ceramic body, and more particularly, to a filter having high strength and high filter strength. The present invention relates to a ceramic filter in which cracks are unlikely to occur in the constituent members of (1).

【0002】[0002]

【従来の技術】 セラミックフィルタは、セラミック多
孔体を利用したフィルタであり、物理的強度、耐久性、
耐食性等に優れるため、例えば水処理や排ガス処理、或
いは医薬・食品分野などの広範な分野において、液体や
ガス中の懸濁物質、細菌、粉塵等の除去に用いられてい
る。
2. Description of the Related Art A ceramic filter is a filter using a ceramic porous body, and has physical strength, durability,
Because of its excellent corrosion resistance and the like, it is used for removing suspended substances, bacteria, dust, and the like in liquids and gases in a wide range of fields such as water treatment and exhaust gas treatment, or pharmaceutical and food fields.

【0003】 セラミックフィルタにおいては、セラミ
ック多孔体をそのまま濾材として用いる場合もあるが、
濾過性能、流体透過量(即ち処理能力)の双方を向上さ
せるため、セラミック多孔体を基材(支持体)として、
その表面にセラミックからなる濾過膜を形成することが
一般的である。例えば、濾過膜の平均細孔径を0.01
〜1.0μm程度と小さく構成して濾過性能を確保する
一方、基材の平均細孔径を1〜数100μm程度に大き
く構成して、基材内部の流動抵抗を低下させ、流体透過
量(即ち処理能力)を向上させることが行われている。
In a ceramic filter, a porous ceramic body may be used as it is as a filter medium.
In order to improve both filtration performance and fluid permeation amount (that is, processing capacity), a ceramic porous body is used as a substrate (support).
It is common to form a filtration membrane made of ceramic on the surface. For example, the average pore size of the filtration membrane is 0.01
While the filter is configured to be as small as about 1.0 μm to ensure filtration performance, the average pore diameter of the base is configured to be large to about 1 to several hundreds μm to reduce the flow resistance inside the base and increase the fluid permeation (that is, (Processing capacity) is being improved.

【0004】 また、セラミックフィルタは、基材を濾
過目的に応じて種々の形状に加工したものが用いられる
が、基材を単一の貫通孔を有するチューブ状、或いは並
行する多数の貫通孔を有するハニカム状(モノリス状も
含む)としたものが汎用されている。チューブ状、或い
はハニカム状基材の表面、例えば貫通孔の内周面に濾過
膜を形成したフィルタは、ハウジング内に収容し、基材
外周面側と貫通孔が開口する基材端面側とをO−リング
等で気密的に隔離する構造とすることにより、クロスフ
ロー型のフィルタとして利用されている。
[0004] Furthermore, as the ceramic filter, one obtained by processing a base material into various shapes according to the purpose of filtration is used, and the base material is formed in a tubular shape having a single through-hole or a plurality of parallel through-holes. Honeycomb-shaped (including monolith-shaped) has been widely used. A filter in which a filter membrane is formed on the surface of a tube-shaped or honeycomb-shaped substrate, for example, an inner peripheral surface of a through-hole, is housed in a housing, and the outer peripheral surface side of the substrate and the end surface of the substrate where the through-hole is opened. With a structure that is air-tightly isolated by an O-ring or the like, it is used as a cross-flow type filter.

【0005】 クロスフロー型のフィルタによれば、気
体、液体等の被処理流体を、基材の一方の端面側から貫
通孔内に供給することにより、貫通孔内周面の濾過膜を
透過した濾過流体が基材外周面側から回収する一方、濾
過されなかった被処理流体については基材の他方の端面
側から回収することが可能となる。
According to the cross-flow type filter, the fluid to be treated, such as a gas or a liquid, is supplied into the through-hole from one end face side of the base material, so that the fluid permeates through the filtration membrane on the inner peripheral surface of the through-hole. While the filtered fluid is collected from the outer peripheral surface side of the substrate, the unfiltered fluid to be processed can be collected from the other end surface side of the substrate.

【0006】 しかしながら、図1(b)に示すよう
に、単に基材12端面近傍をO−リング14で隔離する
のみでは、濾過膜13が形成されていない基材12端面
から被処理流体が基材12内部に侵入してしまうため、
目的とする濾過を行うことができず、また、既に濾過さ
れた濾過流体をも汚染することになる。
However, as shown in FIG. 1B, simply by isolating the vicinity of the end face of the base material 12 with the O-ring 14, the fluid to be treated is formed from the end face of the base material 12 where the filtration membrane 13 is not formed. Because it invades the inside of the material 12
The intended filtration cannot be performed, and the already filtered filtration fluid is contaminated.

【0007】 そこで、図1(a)に示すように、セラ
ミック等からなるシール材5により、少なくとも基材2
端部及び基材2端部近傍の濾過膜3を被覆した膜分離装
置が提案されている(特開昭61−8106号公報)。
このような構造は、基材2端面から被処理流体が侵入す
る事態を防止でき、被処理流体が必ず濾過膜3を透過す
るため、目的とする濾過を行うことができ、また、既に
濾過された濾過流体の汚染も防止可能である点において
有用である。
Therefore, as shown in FIG. 1A, at least the base material 2 is formed by a sealing material 5 made of ceramic or the like.
There has been proposed a membrane separation device in which a filtration membrane 3 is coated at the end and near the end of the substrate 2 (Japanese Patent Application Laid-Open No. 61-8106).
Such a structure can prevent the fluid to be treated from intruding from the end face of the base material 2, and since the fluid to be treated always passes through the filtration membrane 3, the intended filtration can be performed, and the already filtered fluid can be obtained. This is useful in that contamination of the filtered fluid can also be prevented.

【0008】[0008]

【発明が解決しようとする課題】 ところで、上記膜分
離装置のように、基材、濾過膜、シール材という複数の
部材で構成されるセラミックフィルタにおいては、各構
成部材をその機能に適合する物理的、化学的特性の材質
とするために、或いはコスト面での要請から、各々を異
なる材質とすることを要求される場合も多い。しかしな
がら、このような場合において各構成部材の熱膨張係数
が極端に異なると、相互に引張応力や圧縮応力が発生す
るため、各構成部材にクラックが発生したり、或いはフ
ィルタの機械的強度が発現できないという問題があっ
た。
By the way, in a ceramic filter composed of a plurality of members such as a base material, a filtration membrane, and a sealing material, as in the above-described membrane separation device, each component is made to be a physical filter adapted to its function. In many cases, it is required to use different materials in order to obtain materials having proper and chemical characteristics or in view of cost. However, in such a case, if the thermal expansion coefficients of the respective components are extremely different from each other, a tensile stress and a compressive stress are generated mutually, so that cracks are generated in the respective components or the mechanical strength of the filter is developed. There was a problem that it was not possible.

【0009】 また、基材は、主として粒径5〜200
μm程度の骨材と、骨材同士の結合を強化するための添
加材である、粒径5μm未満の焼結助剤とから構成され
るが、骨材と焼結助剤は異なる材質である場合が多い。
従って、基材の構成材料間においても、フィルタの構成
部材間と同様にその熱膨張係数が極端に異なる場合に
は、相互に引張応力や圧縮応力が発生し、フィルタの強
度が低下するという問題があった。
The base material mainly has a particle size of 5 to 200.
It is composed of an aggregate of about μm and a sintering aid having a particle size of less than 5 μm, which is an additive for strengthening the bond between the aggregates, but the aggregate and the sintering aid are different materials. Often.
Therefore, when the coefficients of thermal expansion are extremely different between the constituent materials of the base material as in the case of the constituent members of the filter, tensile stress and compressive stress are generated mutually, and the strength of the filter is reduced. was there.

【0010】 これらの問題点を解決するために、フィ
ルタの各構成部材、或いは基材の構成材料を、可能な限
り熱膨張係数が近い材質とする方法も考えられる。しか
しながら、本発明者らが検討した結果、各構成部材間
の、或いは基材の構成材料間の熱膨張係数を単に近づけ
るのみではこれらの事態を防止できないことが判明し
た。
In order to solve these problems, a method may be conceived in which each constituent member of the filter or the constituent material of the substrate is made of a material having a thermal expansion coefficient as close as possible. However, as a result of the study by the present inventors, it has been found that these situations cannot be prevented by merely making the thermal expansion coefficients between the constituent members or between the constituent materials of the base material close to each other.

【0011】 本発明は、このような従来技術の問題点
に鑑みてなされたものであって、本発明の目的とすると
ころは、フィルタの各構成部材、或いは基材の構成材料
を異なる材質とした場合においても、高強度で、かつ、
フィルタの各構成部材にクラックが発生し難いセラミッ
クフィルタを提供することにある。
The present invention has been made in view of such problems of the related art, and an object of the present invention is to make each constituent member of a filter or a constituent material of a base material different from each other. High strength, and
An object of the present invention is to provide a ceramic filter in which cracks do not easily occur in each component of the filter.

【0012】[0012]

【課題を解決するための手段】 本発明者らが上記従来
技術の問題点について鋭意検討した結果、フィルタの構
成部材間、或いは基材の構成材料間に所定の熱膨張係数
差を与え、これらの間に内在応力を発生せしめることに
より、上記問題点を解決できることを見出して本発明を
完成した。
Means for Solving the Problems As a result of intensive studies on the problems of the above-mentioned prior arts by the present inventors, a predetermined thermal expansion coefficient difference is provided between the constituent members of the filter or between the constituent materials of the base material. The present inventors have found that the above problems can be solved by generating an internal stress during the present invention, and completed the present invention.

【0013】 即ち、本発明によれば、単一の又は並行
する多数の貫通孔を有する多孔体からなる基材と、当該
基材の表面に形成される、基材に比して平均細孔径が小
さい濾過膜と、少なくとも基材端部及び基材端部近傍の
濾過膜を被覆するシール材と、を備えたセラミックフィ
ルタであって、シール材を、基材に対し0〜4×10-6
/℃の範囲内で熱膨張係数が小さい、基材とは異なる材
質により構成したことを特徴とするセラミックフィルタ
が提供される(以下「第1の発明」と記す。)。
[0013] That is, according to the present invention, a base material made of a porous body having a single or a plurality of parallel through holes, and an average pore diameter formed on the surface of the base material as compared with the base material Is a ceramic filter comprising: a filtration membrane having a small diameter, and a sealing material covering at least the base membrane end portion and the filtration membrane in the vicinity of the base membrane end portion, wherein the sealing material is 0 to 4 × 10 − 6
A ceramic filter characterized by being formed of a material different from the base material and having a small coefficient of thermal expansion in the range of / ° C. (hereinafter referred to as “first invention”).

【0014】 第1の発明においては、シール材を、濾
過膜に対し0〜3×10 -6/℃の範囲内で熱膨張係数が
小さい、濾過膜とは異なる材質により構成したものが好
ましく、基材に含まれる焼結助剤を、基材を構成する骨
材に対し0〜3×10-6/℃の範囲内で熱膨張係数が小
さい、骨材とは異なる材質により構成したものが更に好
ましい。
[0014] In the first invention, the sealing material is filtered.
0-3 × 10 for over membrane -6Thermal expansion coefficient within the range of
It is preferable to use a small material composed of a material different from that of the filtration membrane.
More preferably, the sintering aid contained in the base material is replaced with the bone constituting the base material.
0-3 × 10 for wood-6Low coefficient of thermal expansion within the range of / ° C
Furthermore, it is more preferable to use a material that is different from the aggregate.
Good.

【0015】 また、本発明によれば、単一の又は並行
する多数の貫通孔を有する多孔体からなる基材と、当該
基材の表面に形成される、基材に比して平均細孔径が小
さい濾過膜と、少なくとも基材端部及び基材端部近傍の
濾過膜を被覆するシール材と、を備えたセラミックフィ
ルタであって、シール材を、濾過膜に対し0〜3×10
-6/℃の範囲内で熱膨張係数が小さい、濾過膜とは異な
る材質により構成したことを特徴とするセラミックフィ
ルタが提供される(以下「第2の発明」と記す。)。
Further, according to the present invention, a base material formed of a porous body having a single or a plurality of parallel through holes, and an average pore diameter formed on the surface of the base material as compared with the base material Is small, and a sealing material that covers at least the substrate membrane and the filtration membrane in the vicinity of the substrate membrane, wherein the sealing material is 0 to 3 × 10
There is provided a ceramic filter having a small coefficient of thermal expansion in the range of -6 / ° C. and made of a material different from that of the filtration membrane (hereinafter referred to as “second invention”).

【0016】 第2の発明においては、基材に含まれる
焼結助剤を、基材を構成する骨材に対し0〜3×10-6
/℃の範囲内で熱膨張係数が小さい、骨材とは異なる材
質により構成したものが好ましい。
In the second invention, the sintering aid contained in the base material is added to the aggregate constituting the base material by 0 to 3 × 10 −6.
It is preferable to use a material having a small coefficient of thermal expansion in the range of / ° C and different from the aggregate.

【0017】 更に、本発明によれば、単一の又は並行
する多数の貫通孔を有する多孔体からなる基材と、当該
基材の表面に形成される、基材に比して平均細孔径が小
さい濾過膜と、少なくとも基材端部及び基材端部近傍の
濾過膜を被覆するシール材と、を備えたセラミックフィ
ルタであって、基材に含まれる焼結助剤を、基材を構成
する骨材に対し0〜3×10-6/℃の範囲内で熱膨張係
数が小さい、骨材とは異なる材質により構成したことを
特徴とするセラミックフィルタが提供される(以下「第
3の発明」と記す。)。
Further, according to the present invention, a base material composed of a porous body having a single or a plurality of parallel through holes, and an average pore diameter formed on the surface of the base material as compared with the base material A small filtration membrane, and a sealing material that covers the filtration membrane at least in the vicinity of the base end and the base end, and a sintering aid contained in the base, There is provided a ceramic filter characterized by having a small coefficient of thermal expansion within a range of 0 to 3 × 10 −6 / ° C. with respect to the constituent aggregate and made of a material different from the aggregate (hereinafter referred to as “third filter”). Invention ").)

【0018】[0018]

【発明の実施の形態】(1)フィルタの構成 本発明のセラミックフィルタは、少なくとも基材、濾過
膜、及びシール材を構成部材として備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) Structure of Filter The ceramic filter of the present invention comprises at least a base material, a filtration membrane, and a sealing material as constituent members.

【0019】基材 本発明にいう「基材」とは、濾過膜の支持体としての機
能を有する部材であって、主として骨材と焼結助剤とか
ら構成されるセラミックの多孔体である。基材の形状と
しては、単一の貫通孔を有するチューブ状、或いは並行
する多数の貫通孔を有するハニカム状(モノリス状も含
む)のいずれかが用いられる。
Substrate The “substrate” in the present invention is a member having a function as a support for a filtration membrane, and is a porous ceramic body mainly composed of an aggregate and a sintering aid. . As the shape of the substrate, either a tube shape having a single through hole or a honeycomb shape (including a monolith shape) having a large number of parallel through holes is used.

【0020】 骨材は、基材の主たる構成要素であっ
て、平均粒径5〜200μm程度のセラミック粒子から
なる。骨材を含む坏土を成形し、焼結せしめることによ
り、骨材の粒径に応じた細孔を有する多孔体、即ち基材
が形成される。骨材の材質は、濾過の目的に適合するよ
うに適宜選択すればよいが、例えばアルミナ、ムライ
ト、コージェライト、炭化珪素、陶磁器屑等を用いるこ
とができる。
The aggregate is a main component of the base material and is composed of ceramic particles having an average particle size of about 5 to 200 μm. By forming and sintering the clay containing the aggregate, a porous body having pores according to the particle size of the aggregate, that is, a base material is formed. The material of the aggregate may be appropriately selected so as to be suitable for the purpose of filtration, and for example, alumina, mullite, cordierite, silicon carbide, ceramic waste and the like can be used.

【0021】 焼結助剤は、骨材同士の結合を強化する
ための添加材であって、平均粒径5μm未満のセラミッ
ク粒子からなる。骨材とともに坏土に含有せしめること
により、骨材間の結合が強化され、強固な多孔体が形成
される。焼結助剤についても、その材質は特に限定され
ないが、例えばアルミナ、シリカ、ジルコニア、チタニ
ア、ガラスフリット、長石、コージェライト等を用いる
ことができる。通常は、骨材同士の結合強度を確保し、
多孔体の細孔閉塞を防止するため、骨材及び焼結助剤の
全質量に対し、10〜35質量%程度含有せしめる。
The sintering aid is an additive for strengthening the bond between aggregates, and is made of ceramic particles having an average particle size of less than 5 μm. By incorporating the kneaded material together with the aggregate, the bond between the aggregates is strengthened, and a strong porous body is formed. The material of the sintering aid is not particularly limited, but for example, alumina, silica, zirconia, titania, glass frit, feldspar, cordierite, and the like can be used. Normally, the joint strength between aggregates is secured,
In order to prevent the pores of the porous body from being blocked, about 10 to 35% by mass is contained with respect to the total mass of the aggregate and the sintering aid.

【0022】濾過膜 本発明にいう「濾過膜」とは、基材に比して平均細孔径
が小さい、薄膜状のセラミック多孔体であり、少なくと
も1層、場合によっては2層以上形成して複層とする。
通常、「濾過膜」とは、フィルタの濾過機能を確保する
ための部材を指すが、本発明にいう「濾過膜」には、濾
過膜を複層とした場合における中間層(複数の層のう
ち、最上層以外の層)も包含される。
Filtration membrane The "filtration membrane" in the present invention is a thin film-shaped ceramic porous body having an average pore diameter smaller than that of a substrate, and is formed by forming at least one layer, and in some cases two or more layers. Make multiple layers.
Usually, the “filtration membrane” refers to a member for securing the filtration function of the filter, but the “filtration membrane” in the present invention includes an intermediate layer (a plurality of layers) Of these, layers other than the uppermost layer) are also included.

【0023】 濾過膜は、基材を構成する骨材に比して
平均粒径の小さい、0.1〜5μm程度のセラミック粒
子を含むスラリーを基材表面に製膜した後、焼結せしめ
ることにより形成する。濾過膜を形成する「基材の表
面」には、基材の貫通孔内周面の他、場合によっては基
材外周面も含まれる。前記セラミック粒子の材質は、基
材を構成する骨材と同様のものを用いることができる。
The filtration membrane is formed by forming a slurry containing ceramic particles of about 0.1 to 5 μm having an average particle size smaller than that of the aggregate constituting the base material on the surface of the base material and then sintering the slurry. Is formed. The “surface of the substrate” forming the filtration membrane includes, in some cases, the outer peripheral surface of the substrate in addition to the inner peripheral surface of the through-hole of the substrate. The material of the ceramic particles may be the same as the aggregate constituting the base material.

【0024】シール材 本発明にいう「シール材」とは、基材端面から被処理流
体が基材内部に侵入することを防止するための部材であ
り、当該機能を確保するため少なくとも基材端部及び基
材端部近傍の濾過膜を被覆することが必要である。
Sealing material The term "sealing material" as used in the present invention is a member for preventing the fluid to be treated from entering the inside of the base material from the end face of the base material. It is necessary to cover the filtration membrane in the vicinity of the part and the end of the substrate.

【0025】 シール材は、例えばホウケイ酸ガラス、
長石質ガラス等のガラス状物質(ガラスフリット等)か
らなる釉薬を基材端部及び基材端部近傍の濾過膜を被覆
するように塗布した後、焼結せしめることにより、形成
することができる。但し、濾過膜と同等以下の細孔径を
有するものである限りにおいて、特に釉薬には限定され
ず、場合によっては濾過膜をシール材として用いること
も可能である。
As the sealing material, for example, borosilicate glass,
It can be formed by applying a glaze made of a glassy substance (glass frit or the like) such as feldspar glass so as to cover the base end and the filtration membrane near the base end, and then sintering. . However, the filter is not particularly limited to glaze as long as it has a pore diameter equal to or smaller than that of the filtration membrane, and in some cases, the filtration membrane can be used as a sealing material.

【0026】(2)本発明の実施態様 本発明は、上述のようなセラミックフィルタにおいて、
フィルタの構成部材間、或いは基材の構成材料間に所定
の熱膨張係数差を与え、これらの間に内在応力を発生せ
しめたものである。本発明のセラミックフィルタは、フ
ィルタの各構成部材、或いは基材の構成材料を異なる材
質とした場合においても、高強度で、かつ、フィルタの
各構成部材にクラックが発生し難い。以下、本発明のセ
ラミックフィルタについて詳細に説明する。
(2) Embodiment of the present invention The present invention relates to a ceramic filter as described above.
A predetermined thermal expansion coefficient difference is given between the constituent members of the filter or between the constituent materials of the base material, and intrinsic stress is generated between them. The ceramic filter of the present invention has high strength and does not easily cause cracks in each component of the filter, even when the components of the filter or the components of the substrate are made of different materials. Hereinafter, the ceramic filter of the present invention will be described in detail.

【0027】第1の発明 第1の発明は、シール材を、基材に対し0〜4×10-6
/℃の範囲内で熱膨張係数が小さい、基材とは異なる材
質により構成したものである。シール材−基材間に上記
範囲内の熱膨張係数差を与えることにより、シール材側
に圧縮応力、基材側に引張応力が発生するため、フィル
タの各構成部材におけるクラックの発生が防止される。
First Invention In the first invention, a sealing material is applied to a substrate at 0 to 4 × 10 -6.
It is made of a material having a small coefficient of thermal expansion in the range of / ° C and different from the base material. By giving a thermal expansion coefficient difference within the above range between the sealing material and the base material, a compressive stress is generated on the sealing material side and a tensile stress is generated on the base material side, so that the occurrence of cracks in each component of the filter is prevented. You.

【0028】 シール材の熱膨張係数が、基材の熱膨張
係数に対し上記範囲を超えて小さい場合にはシール材に
対して過大な圧縮応力が加わるため、図3に示すような
ジグザグ状のクラックが発生する一方、上記範囲を超え
て大きい場合にはシール材に対して引張応力が加わるた
め、図4に示すような直線状のクラックが発生する。な
お、シール材の熱膨張係数が基材の熱膨張係数に極めて
近い場合でも基材の熱膨張係数より少しでも高いと、シ
ール材のクラックを防止することができない点には留意
すべきである。
When the coefficient of thermal expansion of the sealing material is smaller than the above range with respect to the coefficient of thermal expansion of the base material, an excessive compressive stress is applied to the sealing material, so that a zigzag shape as shown in FIG. On the other hand, when the crack is generated and the crack is larger than the above range, a tensile stress is applied to the sealing material, so that a linear crack as shown in FIG. 4 is generated. It should be noted that even when the thermal expansion coefficient of the sealing material is extremely close to the thermal expansion coefficient of the base material, if the thermal expansion coefficient is slightly higher than the thermal expansion coefficient of the base material, cracks in the sealing material cannot be prevented. .

【0029】第2の発明 第2の発明は、第1の発明と同様の思想により、シール
材を、濾過膜に対し0〜3×10-6/℃の範囲内で熱膨
張係数が小さい、濾過膜とは異なる材質により構成した
ものである。
Second invention According to the second invention, the same idea as in the first invention is used, and the sealing material has a small coefficient of thermal expansion within a range of 0 to 3 × 10 −6 / ° C. with respect to the filtration membrane. It is made of a material different from the filtration membrane.

【0030】 シール材の熱膨張係数が濾過膜の熱膨張
係数に対し上記範囲を超えて小さい場合にはシール材に
対して過大な圧縮応力が加わるため、大きい場合にはシ
ール材に対して引張応力が加わるため、いずれもシール
材にクラックが発生する。また、シール材の熱膨張係数
が濾過膜の熱膨張係数に極めて近い場合でも濾過膜の熱
膨張係数より少しでも高いと、シール材のクラックを防
止することができない点については第1の発明と同様で
ある。
If the coefficient of thermal expansion of the sealing material is smaller than the above range with respect to the coefficient of thermal expansion of the filtration membrane, excessive compressive stress is applied to the sealing material. Since stress is applied, cracks occur in the sealing material. Further, even when the thermal expansion coefficient of the sealing material is extremely close to the thermal expansion coefficient of the filtration membrane, if the thermal expansion coefficient is slightly higher than the thermal expansion coefficient of the filtration membrane, cracks in the sealing material cannot be prevented. The same is true.

【0031】第3の発明 第3の発明は、基材に含まれる焼結助剤を、基材を構成
する骨材に対し0〜3×10-6/℃の範囲内で熱膨張係
数が小さい、骨材とは異なる材質により構成したもので
ある。第1及び第2の発明が、フィルタの構成部材間の
熱膨張係数差に着目したものであるのに対し、第3の発
明は基材の構成材料間の熱膨張係数差に着目したもので
ある。
Third Invention The third invention is directed to a method wherein the sintering aid contained in the base material has a thermal expansion coefficient of 0 to 3 × 10 -6 / ° C. with respect to the aggregate constituting the base material. It is made of a small, different material from the aggregate. The first and second inventions focus on the difference in thermal expansion coefficient between the constituent members of the filter, while the third invention focuses on the difference in thermal expansion coefficient between the constituent materials of the base material. is there.

【0032】 具体的には、焼結助剤の熱膨張係数が骨
材の熱膨張係数に対し上記範囲を超えて小さい場合には
焼結助剤に対して圧縮応力が加わるため、大きい場合に
は焼結助剤に対して引張応力が加わるため、いずれの場
合にも基材の強度が低下する。
Specifically, when the coefficient of thermal expansion of the sintering aid is smaller than the above range with respect to the coefficient of thermal expansion of the aggregate, compressive stress is applied to the sintering aid. Since a tensile stress is applied to the sintering aid, the strength of the base material decreases in any case.

【0033】熱膨張係数差の算出 第1及び第2の発明における熱膨張係数差は、基材、濾
過膜、シール材の各評価サンプルの線熱膨張量ΔL1
ΔL3を測定し、下記式(1)〜(3)により規定され
る、各構成部材の線熱膨張係数K1〜K3から算出する。 K1=(ΔL1/ΔT1)/L …(1) K2=(ΔL2/ΔT1)/L …(2) K3=(ΔL3/ΔT1)/L …(3) (但し、K1:シール材の熱膨張係数(×10-6
℃)、K2:基材の熱膨張係数(×10-6/℃)、K3
濾過膜の熱膨張係数(×10-6/℃)、ΔL1:Ts1
らTt1の間のシール材サンプルの線熱膨張量(単位:
mm)、ΔL2:Ts1からTt1の間の基材サンプルの
線熱膨張量(単位:mm)、ΔL3:Ts1からTt1
間の濾過膜サンプルの線熱膨張量(単位:mm)、L:
室温における各評価サンプルの長さ(単位:mm))
Calculation of Thermal Expansion Coefficient Difference The thermal expansion coefficient difference in the first and second inventions is calculated based on the linear thermal expansion amount ΔL 1 of each evaluation sample of the substrate, the filtration membrane, and the sealing material.
ΔL 3 is measured, and is calculated from the linear thermal expansion coefficients K 1 to K 3 of the respective components defined by the following equations (1) to (3). K 1 = (ΔL 1 / ΔT 1 ) / L (1) K 2 = (ΔL 2 / ΔT 1 ) / L (2) K 3 = (ΔL 3 / ΔT 1 ) / L (3) (however, , K 1 : coefficient of thermal expansion of the sealing material (× 10 −6 /
° C), K 2 : coefficient of thermal expansion of substrate (× 10 -6 / ° C), K 3 :
Thermal expansion coefficient of filter membrane (× 10 −6 / ° C.), ΔL 1 : linear thermal expansion of sealing material sample between Ts 1 and Tt 1 (unit:
mm), ΔL 2 : linear thermal expansion of the substrate sample between Ts 1 and Tt 1 (unit: mm), ΔL 3 : linear thermal expansion of the filtration membrane sample between Ts 1 and Tt 1 (unit: mm), L:
Length of each evaluation sample at room temperature (unit: mm))

【0034】 具体的には、評価サンプルとして、基
材、濾過膜、シール材の単体焼結体を断面3mm×4m
m、長さLが20mm(室温で測定)の四角柱状に加工
したものを使用し、基準温度Ts1からシール材の転移
温度Tt1の間の温度差ΔT1における、各評価サンプル
の線熱膨張量ΔL1〜ΔL3を、高精度二試料熱分析装置
−TMA標準形(商品名:理学電機社製)により、標準
試料と評価サンプルとの伸びの差を差動トランスを用い
て検出することにより測定する。
Specifically, as an evaluation sample, a single sintered body of a base material, a filtration membrane, and a sealing material was cut into a cross section of 3 mm × 4 m
m and a length L of 20 mm (measured at room temperature) were processed into a rectangular column, and the linear heat of each evaluation sample at a temperature difference ΔT 1 between the reference temperature Ts 1 and the transition temperature Tt 1 of the sealing material. The expansion amounts ΔL 1 to ΔL 3 are detected by a differential transformer using a high-precision two-sample thermal analyzer-TMA standard type (trade name: manufactured by Rigaku Denki Co., Ltd.) using a differential transformer. Measurement.

【0035】 「基準温度Ts1」は、評価サンプルの
線熱膨張係数の変化が少ない温度に設定することが一般
的である。従って、本発明の評価サンプルがセラミック
であることを考慮して、上記式(1)〜(3)のいずれ
においても40℃と規定する。
The “reference temperature Ts 1 ” is generally set to a temperature at which a change in the coefficient of linear thermal expansion of the evaluation sample is small. Therefore, in consideration of the fact that the evaluation sample of the present invention is a ceramic, 40 ° C. is specified in any of the above formulas (1) to (3).

【0036】 また、「シール材の転移温度Tt1
は、上記の線熱膨張量測定において、図2に示すように
シール材サンプルがガラス状態から過冷却液体に転移す
ることにより線熱膨張量が急速に立ち上がる温度と規定
する。図2(b)は、クリストバライトのように結晶転
移がある場合の例であり、転移温度Tt1より低い温度
域で線熱膨張量が凸の屈曲を示しているが、この場合で
も同様に規定することができる。なお、後述する「シー
ル材の軟化点」とは、図2に示すようにシール材サンプ
ルの線熱膨張量が極大値を示し、収縮に転ずる温度をい
う。
The “transition temperature Tt 1 of the sealing material”
Is defined as a temperature at which the linear thermal expansion rapidly rises when the sealing material sample changes from a glassy state to a supercooled liquid in the above-described linear thermal expansion measurement. 2 (b) is an example of a case where there is a crystal transition as cristobalite, although linear thermal expansion amount at a temperature range lower than the transition temperature Tt 1 indicates a bending convex, as in this case provision can do. The “softening point of the sealing material” described later refers to a temperature at which the amount of linear thermal expansion of the sealing material sample shows a maximum value and starts to shrink as shown in FIG.

【0037】 第3の発明における熱膨張係数差も第1
及び第2の発明と同様にして、焼結助剤、骨材の単体焼
結体からなる評価サンプルの線熱膨張量ΔL4〜ΔL5
測定し、下記式(4),(5)により規定される、各構
成材料の線熱膨張係数K4,K5から算出する。 K4=(ΔL4/ΔT2)/L …(4) K5=(ΔL5/ΔT2)/L …(5) (但し、K4:焼結助剤の線熱膨張係数(×10-6
℃)、K5:骨材の線熱膨張係数(×10-6/℃)、Δ
4:Ts2からTt2の間の焼結助剤サンプルの線熱膨
張量(単位:mm)、ΔL5:Ts2からTt2の間の骨
材サンプルの線熱膨張量(単位:mm)、L:室温にお
ける各評価サンプルの長さ(単位:mm))
The thermal expansion coefficient difference in the third invention is also the first.
In the same manner as in the second invention, the linear thermal expansion amounts ΔL 4 to ΔL 5 of the evaluation sample composed of a single sintered body of the sintering aid and the aggregate were measured, and were determined by the following equations (4) and (5). It is calculated from the specified linear thermal expansion coefficients K 4 and K 5 of the constituent materials. K 4 = (ΔL 4 / ΔT 2 ) / L (4) K 5 = (ΔL 5 / ΔT 2 ) / L (5) (where K 4 is the linear thermal expansion coefficient of the sintering aid (× 10) -6 /
° C), K 5 : coefficient of linear thermal expansion of the aggregate (× 10 -6 / ° C), Δ
L 4 : linear thermal expansion of sintering aid sample between Ts 2 and Tt 2 (unit: mm), ΔL 5 : linear thermal expansion of aggregate sample between Ts 2 and Tt 2 (unit: mm) ), L: length of each evaluation sample at room temperature (unit: mm))

【0038】 なお、「基準温度Ts2」は、上記式
(4),(5)のいずれにおいても40℃とする。ま
た、「焼結助剤の転移温度Tt2」は、上記の熱膨張量
測定において、焼結助剤サンプルがガラス状態から過冷
却液体に転移することにより線熱膨張量が急速に立ち上
がる温度と規定する。但し、基材の焼成温度以下の温度
域に上記転移温度が存在しない場合には、Tt2は65
0℃であるものとして線熱膨張係数を算出する。
The “reference temperature Ts 2 ” is set to 40 ° C. in each of the above equations (4) and (5). The “transition temperature Tt 2 of the sintering aid” is the temperature at which the linear thermal expansion rapidly rises due to the transition of the sintering aid sample from the glassy state to the supercooled liquid in the above thermal expansion measurement. Stipulate. However, when the above transition temperature does not exist in the temperature range below the firing temperature of the substrate, Tt 2 is 65.
The linear thermal expansion coefficient is calculated assuming that the temperature is 0 ° C.

【0039】製造方法 本発明のフィルタは、上記の方法により予め測定した熱
膨張係数に基づいて、所定の熱膨張係数差を有するフィ
ルタの構成部材(シール材、基材、濾過膜)、或いは基
材の構成材料(焼結助剤、骨材)の材質を選択すること
を除き、従来公知のセラミックフィルタの製造方法に準
じて製造することが可能である。
Manufacturing Method The filter of the present invention can be used as a component (sealant, base material, filtration membrane) or base material of a filter having a predetermined difference in thermal expansion coefficient based on the thermal expansion coefficient measured in advance by the above method. Except for selecting the material of the constituent materials of the material (sintering aid, aggregate), it is possible to manufacture according to a conventionally known method of manufacturing a ceramic filter.

【0040】 例えば、まず、骨材、焼結助剤の他、分
散媒、有機バインダ、必要により界面活性剤、可塑剤等
を添加し、混練してなる坏土を、押出成形してなる成形
体を乾燥・焼成して基材を製造し、次いで、セラミック
粒子を水等の分散媒中に分散し、必要に応じ有機バイン
ダ、pH調整剤、界面活性剤等を添加してなる製膜用ス
ラリーを当該基材の貫通孔内周面に製膜し、乾燥・焼成
して濾過膜を形成し、更に、基材端部にシール材である
ガラス状物質からなる釉薬を塗布した後、乾燥・焼成す
る方法によりフィルタを得ることができる。
For example, first, in addition to the aggregate and the sintering aid, a dispersion medium, an organic binder, a surfactant, a plasticizer, and the like are added as necessary, and the kneaded clay is extruded and formed. The substrate is dried and fired to produce a substrate, and then the ceramic particles are dispersed in a dispersion medium such as water, and a film is formed by adding an organic binder, a pH adjuster, a surfactant, and the like as necessary. The slurry is formed into a film on the inner peripheral surface of the through hole of the base material, dried and baked to form a filtration membrane, and further, a glaze made of a glassy material as a sealing material is applied to the end of the base material, and then dried. A filter can be obtained by a firing method.

【0041】[0041]

【実施例】 以下、本発明のフィルタを実施例により更
に詳細に説明するが、本発明は下記の実施例により限定
されるものではない。
EXAMPLES Hereinafter, the filter of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

【0042】 実施例1〜3で使用した基材は、以下の
ように製造した。基材を構成する骨材としては、平均粒
径が30〜100μmとなるように篩い分けしたアルミ
ナ質研磨剤(アルミナ純度95質量%、表中「アルミ
ナ」と記す。)、或いはムライト質磁器(ムライト純度
95質量%、表中「ムライト」と記す。)の粉砕物のい
ずれかを使用した。
The substrates used in Examples 1 to 3 were produced as follows. As an aggregate constituting the base material, an alumina abrasive (alumina purity: 95% by mass, referred to as “alumina” in the table) sieved so as to have an average particle size of 30 to 100 μm, or mullite porcelain ( Mullite purity: 95% by mass, and described as "mullite" in the table).

【0043】 上記骨材に、焼結助材として平均粒径
0.5〜5μmの長石質ガラス(表中「長石質」と記
す。)、コージェライト含有ガラス(表中「コージェラ
イト」と記す。)、或いはホウ酸ガラス(表中「ホウ
酸」と記す。)のいずれか一種、分散媒として水、有機
バインダとしてメチルセルロースを添加し混練した坏土
を押出成形し、押出成形体を得た。当該押出成形体を乾
燥し、焼成することにより外径(Lo)30mmφ、内
径(Li)22mmφ、長さ250mmのチューブ状の
基材を得た。水銀圧入法により測定した基材の平均細孔
径は5〜20μmであった。
In the above aggregate, feldspar glass having an average particle size of 0.5 to 5 μm (denoted as “feldspar” in the table) and cordierite-containing glass (denoted as “cordierite” in the table) as a sintering aid. ) Or borate glass (referred to as "boric acid" in the table), water was added as a dispersion medium, and methylcellulose was added as an organic binder, and the kneaded clay was extruded to obtain an extruded body. . The extruded product was dried and fired to obtain a tube-shaped substrate having an outer diameter (Lo) of 30 mmφ, an inner diameter (Li) of 22 mmφ, and a length of 250 mm. The average pore diameter of the substrate measured by the mercury intrusion method was 5 to 20 μm.

【0044】 実施例1においては、既述の基材の端部
及び端部近傍を被覆するように、実施例2においては、
上記基材の端部及び基材端部近傍の濾過膜を被覆するよ
うに、平均粒径0.5〜5μmの長石質ガラス、コージ
ェライト含有ガラス、或いはホウ酸ガラスのいずれか一
種をシール材として塗布した後、当該シール材の軟化温
度より150℃高い温度で焼成した。クラックの有無
は、焼成後において、染料水溶液に浸漬し、水洗した
後、シール材表面を目視観察することにより評価した。
In the first embodiment, in order to cover the end portion and the vicinity of the end portion of the base material described above, in the second embodiment,
Any one of feldspathic glass, cordierite-containing glass, or borate glass having an average particle size of 0.5 to 5 μm so as to cover the end portion of the base material and the filtration membrane near the base end portion is a sealing material. And then baked at a temperature 150 ° C. higher than the softening temperature of the sealing material. After the baking, the presence or absence of cracks was evaluated by immersing in a dye aqueous solution, washing with water, and visually observing the surface of the sealing material.

【0045】(実施例1)実施例1では、各種のシール
材及び基材を用い、シール材と基材に種々の熱膨張係数
差を与えた場合の効果について評価した。その結果を表
1及び図3〜4に示す。
Example 1 In Example 1, various sealing materials and base materials were used, and the effect of giving various thermal expansion coefficient differences between the sealing material and the base material was evaluated. The results are shown in Table 1 and FIGS.

【0046】[0046]

【表1】 [Table 1]

【0047】 表1から明らかなように、シール材と基
材との間に本発明に規定する範囲内で熱膨張係数差を与
えた場合にはいずれもシール材にクラックが発生しなか
った(実施例1−1〜1−5)。
As is clear from Table 1, no crack was generated in any of the seal materials when a difference in thermal expansion coefficient was given between the seal material and the substrate within the range specified in the present invention ( Examples 1-1 to 1-5).

【0048】 一方、シール材の熱膨張係数が基材の熱
膨張係数に対し本発明の範囲を超えて小さい場合には、
図3に示すようにシール材に圧縮応力によるジグザグ状
のクラックが発生し(比較例1−1)、逆に本発明の範
囲を超えて大きい場合には、シール材に引張応力に起因
するクラックが発生した(比較例1−2〜1−5)。こ
の場合のクラックは、図4に示すような直線状のクラッ
クであった(比較例1−3)。また、シール材の熱膨張
係数が基材の熱膨張係数に極めて近くても基材の熱膨張
係数より少しでも小さい場合には、シール材のクラック
を防止することができなかった(比較例1−2)。
On the other hand, when the coefficient of thermal expansion of the sealing material is smaller than the coefficient of thermal expansion of the base material beyond the scope of the present invention,
As shown in FIG. 3, zigzag cracks are generated in the sealing material due to the compressive stress (Comparative Example 1-1). On the contrary, when the cracks are larger than the scope of the present invention, the cracks caused by the tensile stress in the sealing material. Occurred (Comparative Examples 1-2 to 1-5). The crack in this case was a linear crack as shown in FIG. 4 (Comparative Example 1-3). Further, when the thermal expansion coefficient of the sealing material was very close to the thermal expansion coefficient of the base material or was slightly smaller than the thermal expansion coefficient of the base material, cracking of the sealing material could not be prevented (Comparative Example 1). -2).

【0049】(実施例2)実施例2では、各種のシール
材及び濾過膜を用い、シール材と濾過膜に種々の熱膨張
係数差を与えた場合の効果について評価した。
Example 2 In Example 2, various sealing materials and filtration membranes were used, and the effect of giving various thermal expansion coefficient differences between the sealing materials and the filtration membranes was evaluated.

【0050】 実施例2においては、濾過膜を構成する
セラミック粒子として平均粒径1〜3μmのアルミナ、
ムライト、コージェライトのいずれかを使用し、当該セ
ラミック粒子に、分散媒として水、有機バインダとして
カルボキシメチルセルロースを添加し調製したスラリー
を、既述の基材の内周面に従来公知の方法により製膜し
た後、乾燥し、焼成することにより、平均厚さ150μ
mの濾過膜を形成した。ASTM F316に記載のエ
アフロー法により測定した濾過膜の平均細孔径は0.8
〜1μmであった。
In Example 2, alumina having an average particle size of 1 to 3 μm was used as ceramic particles constituting the filtration membrane.
Using either mullite or cordierite, a slurry prepared by adding water as a dispersion medium and carboxymethylcellulose as an organic binder to the ceramic particles is produced on the inner peripheral surface of the above-described base material by a conventionally known method. After the film is dried and fired, the average thickness is 150 μm.
m of filtration membrane was formed. The average pore size of the filtration membrane measured by the air flow method described in ASTM F316 is 0.8.
11 μm.

【0051】 なお、実施例2においては、濾過膜上面
及び基材上面の双方におけるシール材表面を目視観察す
ることによりクラックの有無を評価した。その結果を表
2に示す。
In Example 2, the presence or absence of cracks was evaluated by visually observing the surface of the sealing material on both the upper surface of the filtration membrane and the upper surface of the substrate. Table 2 shows the results.

【0052】[0052]

【表2】 [Table 2]

【0053】 表2から明らかなように、シール材と濾
過膜、シール材と基材の間に本発明に規定する範囲内で
熱膨張係数差を与えた場合には濾過膜上面及び基材上面
ともシール材にクラックが発生しなかった(実施例2−
1〜2−5)。
As is apparent from Table 2, when a difference in thermal expansion coefficient between the sealing material and the filtration membrane, or between the sealing material and the substrate within the range specified in the present invention, is given, the upper surface of the filtration membrane and the upper surface of the substrate In both cases, no cracks occurred in the sealing material (Example 2-
1-2-5).

【0054】 一方、シール材の熱膨張係数が濾過膜の
熱膨張係数に対し本発明の範囲を超えて小さい場合に
は、シール材に圧縮応力によるジグザグ状のクラックが
発生し(比較例2−1)、逆に本発明の範囲を超えて大
きい場合には、シール材に引張応力に起因する直線状の
クラックが発生した(比較例2−2〜2−5)。また、
シール材の熱膨張係数が濾過膜の熱膨張係数に極めて近
くても濾過膜の熱膨張係数より少しでも小さい場合に
は、シール材のクラックを防止することができなかった
(比較例2−2)。
On the other hand, when the coefficient of thermal expansion of the sealing material is smaller than the coefficient of thermal expansion of the filtration membrane beyond the range of the present invention, zigzag cracks are generated in the sealing material due to compressive stress (Comparative Example 2). 1) Conversely, when the sealing material was larger than the range of the present invention, linear cracks occurred in the sealing material due to tensile stress (Comparative Examples 2-2 to 2-5). Also,
When the coefficient of thermal expansion of the sealing material was very close to the coefficient of thermal expansion of the filtration membrane or was slightly smaller than the coefficient of thermal expansion of the filtration membrane, cracking of the sealing material could not be prevented (Comparative Example 2-2). ).

【0055】(実施例3)実施例3では、各種の骨材及
び焼結助剤を用い、骨材と焼結助剤に種々の熱膨張係数
差を与えた場合の効果について評価した。
Example 3 In Example 3, various aggregates and sintering aids were used, and the effect of giving various thermal expansion coefficient differences between the aggregate and the sintering aid was evaluated.

【0056】 実施例3においては、まず、一端を封止
し、かつ、他端を水圧ポンプに接続した不透水性のゴム
チューブを、既述の方法により製造した基材の貫通孔に
挿入する。次いで、水圧ポンプにより徐々に水圧を加え
ることにより、貫通孔内でゴムチューブを膨張させ、基
材が破損した際の圧力計指示値Pを測定する。基材が破
損すると、ゴムチューブが破れ、圧力計指示値が瞬間的
に0に戻るので、その直前の圧力計指示値Pを用いて、
下記式(6)から内圧破壊強度Dを算出し、基材(即ち
フィルタ)の強度について評価した。本実施例の基材
は、外径Loが30mm、内径Liが22mmであるの
で、内圧破壊強度Dは圧力計指示値Pを約3.3倍した
値となる。 D=P×(Lo2+Li2)/(Lo2−Li2) …(6) (但し、D:内圧破壊強度(MPa)、P:圧力計指示
値(MPa)、Lo:基材外径(mm)、Li:基材内
径(mm))
In the third embodiment, first, a water-impermeable rubber tube having one end sealed and the other end connected to a hydraulic pump is inserted into the through-hole of the base material manufactured by the above-described method. . Then, the rubber tube is expanded in the through hole by gradually applying a water pressure by a water pressure pump, and a pressure gauge indication value P when the base material is broken is measured. When the base material is broken, the rubber tube is broken, and the pressure gauge indication value returns to 0 instantaneously.
The internal pressure breaking strength D was calculated from the following equation (6), and the strength of the substrate (that is, the filter) was evaluated. In the base material of this embodiment, the outer diameter Lo is 30 mm and the inner diameter Li is 22 mm, so that the internal pressure breaking strength D is a value obtained by multiplying the pressure gauge indication value P by about 3.3. D = P × (Lo 2 + Li 2 ) / (Lo 2 −Li 2 ) (6) (however, D: internal pressure breaking strength (MPa), P: pressure gauge indicated value (MPa), Lo: base material outer diameter (Mm), Li: substrate inner diameter (mm))

【0057】 本実施例においては、基材が破損した際
の圧力計指示値Pが2MPa以上である場合にフィルタ
が高強度であると評価した。一般に、セラミックフィル
タは、内圧0.2MPa程度の条件で濾過を行うが、濾
過圧力の急激な変動があった場合(例えばウォーターハ
ンマー現象等)の破損を防止するためには、10倍の安
全率、即ち、通常運転内圧である0.2MPaの10倍
以上の圧力計指示値Pを有していることが好ましいから
である。その結果を表3に示す。
In this example, the filter was evaluated as having high strength when the indicated pressure gauge value P when the substrate was broken was 2 MPa or more. Generally, a ceramic filter performs filtration at an internal pressure of about 0.2 MPa. In order to prevent breakage due to a sudden change in filtration pressure (for example, a water hammer phenomenon), a 10-fold safety factor is required. That is, it is preferable to have the pressure gauge indicating value P which is 10 times or more of the normal operation internal pressure of 0.2 MPa. Table 3 shows the results.

【0058】[0058]

【表3】 [Table 3]

【0059】 表3から明らかなように、骨材と焼結助
剤との間に本発明に規定する範囲内で熱膨張係数差を与
えた場合には、いずれも圧力計指示値Pが2MPa以上
であり、フィルタが高強度であった(実施例3−1〜3
−5)。
As is clear from Table 3, when a difference in thermal expansion coefficient was given between the aggregate and the sintering aid within the range specified in the present invention, the pressure gauge indicated value P was 2 MPa in each case. As described above, the filter had high strength (Examples 3-1 to 3-3).
-5).

【0060】 一方、焼結助剤の熱膨張係数が骨材の熱
膨張係数に対し本発明の範囲を超えて小さい場合(比較
例3−1)、逆に本発明の範囲を超えて大きい場合(比
較例3−2〜3−3)のいずれの場合にも圧力計指示値
Pは2MPa未満となり、フィルタの強度が低下した。
また、焼結助剤の熱膨張係数が骨材の熱膨張係数に極め
て近くても骨材の熱膨張係数より少しでも小さい場合に
は、フィルタの強度が低下した(比較例3−2)。更
に、焼結助剤の熱膨張係数が骨材の熱膨張係数と等しい
場合は、圧力計指示値Pは2MPa以上ではあるものの
実施例中で最も低かった(実施例3−5)。
On the other hand, when the thermal expansion coefficient of the sintering aid is smaller than the thermal expansion coefficient of the aggregate beyond the range of the present invention (Comparative Example 3-1), and conversely, when the thermal expansion coefficient is larger than the range of the present invention. In any of Comparative Examples 2-2 to 3-3, the pressure gauge indication value P was less than 2 MPa, and the filter strength was reduced.
Also, when the coefficient of thermal expansion of the sintering aid was very close to or slightly smaller than the coefficient of thermal expansion of the aggregate, the strength of the filter decreased (Comparative Example 3-2). Further, when the coefficient of thermal expansion of the sintering aid was equal to the coefficient of thermal expansion of the aggregate, the pressure gauge indicated value P was 2 MPa or more, but was the lowest in the examples (Example 3-5).

【0061】[0061]

【発明の効果】 本発明は、フィルタの構成部材間(シ
ール材、基材、濾過膜)、或いは基材の構成材料(焼結
助剤、骨材)に所定の熱膨張係数差を与え、これらの間
に内在応力を発生せしめたので、フィルタの構成部材
間、基材の構成材料間に発生する引張応力や圧縮応力を
低減することができる。従って、本発明によれば、フィ
ルタの構成部材、或いは基材の構成材料を異なる材質と
した場合においても、高強度で、かつ、フィルタの各構
成部材にクラックが発生し難いセラミックフィルタを提
供することが可能となる。
The present invention provides a predetermined difference in the coefficient of thermal expansion between the constituent members of the filter (sealant, base material, filtration membrane) or the constituent materials of the base material (sintering aid, aggregate), Since the intrinsic stress is generated between them, the tensile stress and the compressive stress generated between the constituent members of the filter and between the constituent materials of the base material can be reduced. Therefore, according to the present invention, there is provided a ceramic filter which has high strength and is less likely to crack in each component of the filter even when the components of the filter or the components of the substrate are made of different materials. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ハウジングに装填されたフィルタの概略断面
図であって、(a)はシール材を備えたフィルタ、
(b)はシール材を備えないフィルタを示す。
FIG. 1 is a schematic cross-sectional view of a filter loaded in a housing, where (a) is a filter provided with a sealing material,
(B) shows a filter without a sealing material.

【図2】 シール材の熱膨張曲線を示すグラフであっ
て、(a)は通常の場合、(b)は結晶転移がある場合
を示す。
FIGS. 2A and 2B are graphs showing a thermal expansion curve of a sealing material, wherein FIG. 2A shows a normal case, and FIG.

【図3】 圧縮応力によりクラックを生じたセラミック
材料(シール材)の表面組織を示す写真である。
FIG. 3 is a photograph showing a surface texture of a ceramic material (sealant) in which a crack is generated by a compressive stress.

【図4】 引張応力によりクラックを生じたセラミック
材料(シール材)の表面組織を示す写真である。
FIG. 4 is a photograph showing a surface texture of a ceramic material (seal material) in which a crack is generated by a tensile stress.

【符号の説明】[Explanation of symbols]

1…ハウジング、2…基材、3…濾過膜、4…O−リン
グ、5…シール材、11…ハウジング、12…基材、1
3…濾過膜、14…O−リング。
DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... Base material, 3 ... Filtration membrane, 4 ... O-ring, 5 ... Sealing material, 11 ... Housing, 12 ... Base material, 1
3 ... filtration membrane, 14 ... O-ring.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単一の又は並行する多数の貫通孔を有す
る多孔体からなる基材と、当該基材の表面に形成され
る、基材に比して平均細孔径が小さい濾過膜と、少なく
とも基材端部及び基材端部近傍の濾過膜を被覆するシー
ル材と、を備えたセラミックフィルタであって、 シール材を、基材に対し0〜4×10-6/℃の範囲内で
熱膨張係数が小さい、基材とは異なる材質により構成し
たことを特徴とするセラミックフィルタ。
1. A base material comprising a porous body having a single or a plurality of parallel through holes, a filtration membrane formed on the surface of the base material and having a smaller average pore diameter than the base material, A ceramic filter comprising at least a base material end and a sealing material covering a filtration membrane near the base material end, wherein the sealing material is in a range of 0 to 4 × 10 −6 / ° C. with respect to the base material. A ceramic filter characterized by having a small coefficient of thermal expansion and made of a material different from a base material.
【請求項2】 単一の又は並行する多数の貫通孔を有す
る多孔体からなる基材と、当該基材の表面に形成され
る、基材に比して平均細孔径が小さい濾過膜と、少なく
とも基材端部及び基材端部近傍の濾過膜を被覆するシー
ル材と、を備えたセラミックフィルタであって、 シール材を、濾過膜に対し0〜3×10-6/℃の範囲内
で熱膨張係数が小さい、濾過膜とは異なる材質により構
成したことを特徴とするセラミックフィルタ。
2. A base material comprising a porous body having a single or a plurality of parallel through holes, and a filtration membrane formed on the surface of the base material and having a smaller average pore diameter than the base material, A ceramic filter having at least a base material end and a sealing material covering a filtration membrane near the base material end, wherein the sealing material is in a range of 0 to 3 × 10 −6 / ° C. with respect to the filtration membrane. A ceramic filter characterized by having a small thermal expansion coefficient and made of a material different from that of a filtration membrane.
【請求項3】 単一の又は並行する多数の貫通孔を有す
る多孔体からなる基材と、当該基材の表面に形成され
る、基材に比して平均細孔径が小さい濾過膜と、少なく
とも基材端部及び基材端部近傍の濾過膜を被覆するシー
ル材と、を備えたセラミックフィルタであって、 基材に含まれる焼結助剤を、基材を構成する骨材に対し
0〜3×10-6/℃の範囲内で熱膨張係数が小さい、骨
材とは異なる材質により構成したことを特徴とするセラ
ミックフィルタ。
3. A base material comprising a porous body having a single or a plurality of parallel through holes, and a filtration membrane formed on the surface of the base material and having a smaller average pore diameter than the base material, A sealing material covering at least a base end and a filtration membrane in the vicinity of the base end, and a sintering aid contained in the base material with respect to the aggregate constituting the base material. A ceramic filter characterized by having a small coefficient of thermal expansion within a range of 0 to 3 × 10 −6 / ° C. and made of a material different from an aggregate.
【請求項4】 シール材を、濾過膜に対し0〜3×10
-6/℃の範囲内で熱膨張係数が小さい、濾過膜とは異な
る材質により構成した請求項1に記載のセラミックフィ
ルタ。
4. A sealing material is provided in an amount of 0 to 3 × 10
2. The ceramic filter according to claim 1, wherein the ceramic filter is made of a material having a small coefficient of thermal expansion within a range of -6 / .degree.
【請求項5】 基材に含まれる焼結助剤を、基材を構成
する骨材に対し0〜3×10-6/℃の範囲内で熱膨張係
数が小さい、骨材とは異なる材質により構成した請求項
1,2若しくは4のいずれか一項に記載のセラミックフ
ィルタ。
5. A material different from the aggregate, which has a small thermal expansion coefficient within a range of 0 to 3 × 10 −6 / ° C. with respect to the aggregate constituting the substrate, using a sintering aid contained in the substrate. The ceramic filter according to claim 1, wherein the ceramic filter comprises:
JP2000127157A 2000-04-27 2000-04-27 Ceramic filter Expired - Lifetime JP4367678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127157A JP4367678B2 (en) 2000-04-27 2000-04-27 Ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127157A JP4367678B2 (en) 2000-04-27 2000-04-27 Ceramic filter

Publications (2)

Publication Number Publication Date
JP2001300273A true JP2001300273A (en) 2001-10-30
JP4367678B2 JP4367678B2 (en) 2009-11-18

Family

ID=18636798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127157A Expired - Lifetime JP4367678B2 (en) 2000-04-27 2000-04-27 Ceramic filter

Country Status (1)

Country Link
JP (1) JP4367678B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004262A1 (en) 2005-06-30 2007-01-11 Ngk Insulators, Ltd. Filtration device
JP2007237109A (en) * 2006-03-10 2007-09-20 Ngk Insulators Ltd Method for sealing ceramic filter
JP2011189335A (en) * 2010-02-22 2011-09-29 Ngk Insulators Ltd Method for using fixing structure of gas separation object and fixing structure of gas separation object
WO2012128217A1 (en) * 2011-03-22 2012-09-27 日本碍子株式会社 Honeycomb-shaped ceramic separation-membrane structure
JP2012528006A (en) * 2009-05-28 2012-11-12 コーニング インコーポレイテッド Gas separation module
WO2013054794A1 (en) * 2011-10-11 2013-04-18 日本碍子株式会社 Ceramic filter
JP2013529132A (en) * 2010-05-25 2013-07-18 コーニング インコーポレイテッド Cordierite membranes in cordierite monoliths
WO2013147271A1 (en) * 2012-03-30 2013-10-03 日本碍子株式会社 Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP2014046285A (en) * 2012-08-31 2014-03-17 Ngk Insulators Ltd Strength inspection apparatus of monolith type separation membrane structure
JP2014046286A (en) * 2012-08-31 2014-03-17 Ngk Insulators Ltd Strength inspection method of monolith type separation membrane structure
JP2016055252A (en) * 2014-09-10 2016-04-21 日本碍子株式会社 Seal layer repairing method, and ceramic filter manufacturing method
WO2016093192A1 (en) * 2014-12-09 2016-06-16 日本碍子株式会社 Separation membrane structure and method for manufacturing same
WO2018168820A1 (en) * 2017-03-17 2018-09-20 住友化学株式会社 Gas separation membrane element, gas separation membrane module, and gas separation device
CN109224885A (en) * 2018-09-27 2019-01-18 中设设计集团环境科技有限公司 A kind of small-bore narrow ditribution microporous teflon membran and preparation method thereof
EP3669975A4 (en) * 2017-08-18 2021-04-21 NGK Insulators, Ltd. Ceramic filter and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985171B (en) * 2010-07-14 2016-03-02 日本碍子株式会社 Ceramic filter
JP5226048B2 (en) * 2010-08-26 2013-07-03 株式会社ノリタケカンパニーリミテド Ceramic separation membrane

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004262A1 (en) 2005-06-30 2007-01-11 Ngk Insulators, Ltd. Filtration device
JP2007237109A (en) * 2006-03-10 2007-09-20 Ngk Insulators Ltd Method for sealing ceramic filter
JP2012528006A (en) * 2009-05-28 2012-11-12 コーニング インコーポレイテッド Gas separation module
JP2011189335A (en) * 2010-02-22 2011-09-29 Ngk Insulators Ltd Method for using fixing structure of gas separation object and fixing structure of gas separation object
JP2016196001A (en) * 2010-05-25 2016-11-24 コーニング インコーポレイテッド Cordierite membrane on cordierite monolith
JP2013529132A (en) * 2010-05-25 2013-07-18 コーニング インコーポレイテッド Cordierite membranes in cordierite monoliths
JPWO2012128217A1 (en) * 2011-03-22 2014-07-24 日本碍子株式会社 Separation membrane structure made of honeycomb-shaped ceramic
WO2012128217A1 (en) * 2011-03-22 2012-09-27 日本碍子株式会社 Honeycomb-shaped ceramic separation-membrane structure
JP5937569B2 (en) * 2011-03-22 2016-06-22 日本碍子株式会社 Separation membrane structure made of honeycomb-shaped ceramic
US9327246B2 (en) 2011-03-22 2016-05-03 Ngk Insulators, Ltd. Honeycomb-shaped ceramic separation-membrane structure
WO2013054794A1 (en) * 2011-10-11 2013-04-18 日本碍子株式会社 Ceramic filter
CN103874536A (en) * 2011-10-11 2014-06-18 日本碍子株式会社 Ceramic filter
JPWO2013054794A1 (en) * 2011-10-11 2015-03-30 日本碍子株式会社 Ceramic filter
US9427687B2 (en) 2011-10-11 2016-08-30 Ngk Insulators, Ltd. Ceramic filter
CN103874536B (en) * 2011-10-11 2016-12-21 日本碍子株式会社 Ceramic filter
JPWO2013147271A1 (en) * 2012-03-30 2015-12-14 日本碍子株式会社 Honeycomb-shaped ceramic porous body, manufacturing method thereof, and honeycomb-shaped ceramic separation membrane structure
US11278848B2 (en) 2012-03-30 2022-03-22 Ngk Insulators, Ltd. Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
WO2013147271A1 (en) * 2012-03-30 2013-10-03 日本碍子株式会社 Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP2014046286A (en) * 2012-08-31 2014-03-17 Ngk Insulators Ltd Strength inspection method of monolith type separation membrane structure
JP2014046285A (en) * 2012-08-31 2014-03-17 Ngk Insulators Ltd Strength inspection apparatus of monolith type separation membrane structure
JP2016055252A (en) * 2014-09-10 2016-04-21 日本碍子株式会社 Seal layer repairing method, and ceramic filter manufacturing method
CN106999864A (en) * 2014-12-09 2017-08-01 日本碍子株式会社 Separate film structure and its manufacture method
JPWO2016093192A1 (en) * 2014-12-09 2017-09-14 日本碍子株式会社 Separation membrane structure and manufacturing method thereof
US10213749B2 (en) 2014-12-09 2019-02-26 Ngk Insulators, Ltd. Separation membrane structure and method for manufacturing same
WO2016093192A1 (en) * 2014-12-09 2016-06-16 日本碍子株式会社 Separation membrane structure and method for manufacturing same
WO2018168820A1 (en) * 2017-03-17 2018-09-20 住友化学株式会社 Gas separation membrane element, gas separation membrane module, and gas separation device
CN109789369A (en) * 2017-03-17 2019-05-21 住友化学株式会社 Gas separation membrane element, gas separation membrane module and gas fractionation unit
US11691109B2 (en) 2017-03-17 2023-07-04 Sumitomo Chemical Company, Limited Gas separation membrane element, gas separation membrane module and gas separation apparatus
EP3669975A4 (en) * 2017-08-18 2021-04-21 NGK Insulators, Ltd. Ceramic filter and manufacturing method therefor
CN109224885A (en) * 2018-09-27 2019-01-18 中设设计集团环境科技有限公司 A kind of small-bore narrow ditribution microporous teflon membran and preparation method thereof

Also Published As

Publication number Publication date
JP4367678B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP2001300273A (en) Ceramic filter
JP4607634B2 (en) Ceramic filter
EP2594329B1 (en) Ceramic filter
JP3868391B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP4912702B2 (en) Ceramic filter sealing method
JP4514560B2 (en) Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same
JP2002210314A (en) Ceramic filter
KR100671867B1 (en) Ceramic filter
JP2002273129A (en) Ceramic film filter
JP2023021136A (en) ceramic filter
US20180312444A1 (en) Inorganic membrane filtration articles and methods thereof
EP1607131A1 (en) Ceramic filter
JP2005247605A (en) Porous ceramic body and method for manufacturing the same
KR100671380B1 (en) Ceramic filter
JP2007229564A (en) Manufacturing method of ceramic filter
JP6541644B2 (en) Monolith-type substrate, monolithic separation membrane structure and method for producing monolithic-type substrate
JP4933740B2 (en) Manufacturing method of ceramic filter
JPWO2020080225A1 (en) Porous ceramic laminate and its manufacturing method
JP5226048B2 (en) Ceramic separation membrane
WO2016051921A1 (en) Membrane structure and process for producing same
JP2008303118A (en) Ceramic porous body, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4367678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

EXPY Cancellation because of completion of term