JP3868391B2 - Ceramic honeycomb filter and manufacturing method thereof - Google Patents

Ceramic honeycomb filter and manufacturing method thereof Download PDF

Info

Publication number
JP3868391B2
JP3868391B2 JP2003106712A JP2003106712A JP3868391B2 JP 3868391 B2 JP3868391 B2 JP 3868391B2 JP 2003106712 A JP2003106712 A JP 2003106712A JP 2003106712 A JP2003106712 A JP 2003106712A JP 3868391 B2 JP3868391 B2 JP 3868391B2
Authority
JP
Japan
Prior art keywords
ceramic honeycomb
honeycomb filter
cell
filter
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003106712A
Other languages
Japanese (ja)
Other versions
JP2004305993A (en
Inventor
友紀 伊藤
龍夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003106712A priority Critical patent/JP3868391B2/en
Priority to PCT/JP2004/001763 priority patent/WO2004091756A1/en
Publication of JP2004305993A publication Critical patent/JP2004305993A/en
Application granted granted Critical
Publication of JP3868391B2 publication Critical patent/JP3868391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/003Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid
    • B01D46/0031Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid with collecting, draining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2496Circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックスハニカムフィルタ及びその製造方法に関する。さらに詳しくは、被濾過流体及び濾過流体が内部に滞留することを有効に防止し、清浄度の高い濾過流体を供給することが可能なセラミックスハニカムフィルタ及びその製造方法に関する。
【0002】
【従来の技術】
近年、固液分離あるいは気固分離用のフィルタとして、多孔質の隔壁によって区画されたセルを有するセラミックスハニカムフィルタが用いられている。このセラミックスハニカムフィルタは、同様の用途に用いられる有機高分子膜等と比較して、物理的強度、耐久性、耐蝕性等に優れるため、水処理や排ガス処理、あるいは医薬・食品分野等の広範な分野において、液体やガス中の懸濁物質、細菌、粉塵等の除去に好適に用いられている。
【0003】
このようなセラミックスハニカムフィルタにおいては、通水量を増加させるとともに、濾過性能を向上させる観点から、図3に示すように、筒状の多孔体の長手方向に形成された、多数の平行な流通路(セル)21の内周面に、多孔体の孔に比してさらに孔径の小さい濾過膜22を形成するとともに、多孔体中心近傍の流通路からの通水量を増加するために、多孔体の長手方向にスリット状の空隙部(集水スリット)23を設け、かつ空隙部(集水スリット)23に連通する流通路(集水セル)21aの縁端部を目詰部材24により封止し、濾過膜22を形成した流通路(膜濾過セル)21bに供給した被濾過流体を濾過膜22で濾過し、濾過した濾過流体を、縁端部を目詰部材24により封止した流通路(集水セル)21aから空隙部(集水スリット)23を経由して外部に流出することが可能なセラミックスハニカムフィルタ20が提案されている(例えば、特許文献1参照)。
【0004】
上述したセラミックスハニカムフィルタ20においては、濾過膜22を形成することで濾過性能を向上させ、かつ空隙部(集水スリット)23を設けることで通水量を増加させている。
【0005】
【特許文献1】
特開2000−153117号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述したセラミックスハニカムフィルタにおいては、流通路(集水セル)21aの縁端部を封止する目詰部材24は、単に被濾過流体が流通路(集水セル)21a内に侵入することを防止することができればよいという程度の認識しかされていなかったため、また、余りにも深くまで目詰部材24を充填すると、流通路(集水セル)21aに充填した目詰部材24が空隙部(集水スリット)23からはみ出して欠陥の原因や修正の手間が掛かるため、被濾過流体の侵入を防止することができる必要最低限の位置までにしか充填されていなかった。このため、流通路(集水セル)21a内の、目詰部材24端部から空隙部(集水スリット)23までの間に、流出されるべき濾過流体が滞留する部分(液溜まり)25が形成されていた。
【0007】
このため、前述した液溜まり25に、濾過流体の一部が滞留して雑菌等が繁殖し、濾過流体全体を汚染することが問題となっていた。また、セラミックスハニカムフィルタ20は、定期的に薬液を用いて洗浄を行うことがあるが、この洗浄に使用した薬液が前述した液溜まり25に滞留してセラミックスハニカムフィルタ20から完全に取り除くことができず、滞留した薬液が徐々に拡散して濾過流体を汚染することが問題となっていた。また、図4に示すように、セラミックスハニカムフィルタ20を構成する濾過膜22の成膜工程は、減圧下において、濾過膜22となる固形成分を含んだ濾過膜スラリーを所定の流通路(膜濾過セル)21bに流し込み、流し込んだ濾過膜スラリーに含まれる固形成分22aを流通路(膜濾過セル)21bの内面に付着させた後に、大気圧下において乾燥することによって行われるが、固形成分22aが除去された後の濾過膜スラリーの水分22bが前述した液溜まり25に滞留し、成膜終了後の大気圧への復元に伴い濾過膜スラリーの水分22bが隔壁26を透過して移動し、流通路(膜濾過セル)21bの内面に付着させたばかりの濾過膜22を浮き上がらせて剥離させてしまうという問題があった。
【0008】
本発明は、上述の問題に鑑みなされたもので、被濾過流体及び濾過流体が内部に滞留することを有効に防止し、清浄度の高い濾過流体を供給することが可能なセラミックスハニカムフィルタ及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するため、本発明は、以下のセラミックスハニカムフィルタ及びその製造方法を提供するものである。
【0010】
[1] セラミックスからなる多孔質の隔壁によって区画され、その内部に濾過膜が配設された、被濾過流体の流路となる複数の膜濾過セルと、前記隔壁によって区画されるとともに前記隔壁を挟んで所定の前記膜濾過セルに隣接し、前記被濾過流体が前記濾過膜によって濾過された濾過流体の流路となる複数の集水セルと、前記膜濾過セル及び前記集水セルを取り囲む外壁と、前記集水セルを通過した前記濾過流体を外部に流出するための、前記外壁の前記集水セルのそれぞれの両端部から所定の長さ離れた箇所で、前記外壁の一の部位から前記集水セルを貫通して前記外壁の他の部位まで連通する集水スリットと、前記集水セルのそれぞれの端面から前記集水スリットに達するまでの空間内に充填された多孔質の目詰部材とを備えてなることを特徴とするセラミックスハニカムフィルタ。
【0011】
[2] 記目詰部材が、複数の連通孔が形成された多孔質体から構成された前記[1]に記載のセラミックスハニカムフィルタ。
【0012】
[3] 前記目詰部材が、アルミナ、ムライト、セルベン、及びコージェライトからなる群から選ばれる少なくとも一つの材料を含む多孔質材料から形成された前記[1]又は[2]に記載のセラミックスハニカムフィルタ。
【0013】
[4] 前記目詰部材に形成された複数の前記連通孔のそれぞれが、孔径が20μm以下の部位を有する前記[2]又は[3]に記載のセラミックスハニカムフィルタ。
【0014】
[5] 前記目詰部材の気孔率が、25〜50%である前記[1]〜[4]のいずれかに記載のセラミックスハニカムフィルタ。
【0015】
[6] 前記目詰部材の熱膨張率が、前記隔壁の熱膨張率より低いか又は同一である前記[1]〜[5]のいずれかに記載のセラミックスハニカムフィルタ。
【0016】
[7] 複数の前記膜濾過セルの、前記被濾過流体の流れ方向に垂直な断面のそれぞれの形状が、円形、楕円形、長円形、三角形、四角形、五角形、六角形及び七角形からなる群から選ばれる少なくとも一つの形状である前記[1]〜[6]のいずれかに記載のセラミックスハニカムフィルタ。
【0017】
[8] 複数の前記集水セルの、前記濾過流体の流れ方向に垂直な断面のそれぞれの形状が、円形、楕円形、長円形、三角形、四角形、五角形、六角形及び七角形からなる群から選ばれる少なくとも一つの形状である前記[1]〜[7]のいずれかに記載のセラミックスハニカムフィルタ。
【0018】
[9] 原材料を押出し成形して被濾過流体及び濾過流体の流路となるセルを有する所定形状の未焼成フィルタ成形体を得、得られた前記未焼成フィルタ成形体に、その側面の一の部位から所定の前記セルを貫通して他の部位まで連通する集水スリットを形成して集水スリット付き未焼成フィルタ成形体を得、得られた前記集水スリット付き未焼成フィルタ成形体に、所定の前記セルのそれぞれの端面から、所定の前記セルを貫通する前記集水スリットに達するまでの空間内に目詰材を充填して目詰材充填未焼成フィルタ成形体を得、得られた前記目詰材充填未焼成フィルタ成形体を焼成して目詰材充填フィルタ成形体を得、得られた前記目詰材充填フィルタ成形体を構成する所定の前記セルの内周面に濾過膜を成膜した後に焼成することを特徴とするセラミックスハニカムフィルタの製造方法。
【0019】
[10] 前記目詰材が、骨材粒子、無機結合材、バインダー、増粘剤及び保水剤を含んだものである前記[9]に記載のセラミックスハニカムフィルタの製造方法。
【0020】
[11] 前記目詰材を構成する前記バインダーが、前記骨材粒子100質量部に対して、0.08〜0.12質量部含まれる前記[10]に記載のセラミックスハニカムフィルタの製造方法。
【0021】
[12] 前記目詰材を構成する前記増粘剤が、前記骨材粒子100質量部に対して、0.04〜0.1質量部含まれる前記[10]又は[11]に記載のセラミックスハニカムフィルタの製造方法。
【0022】
[13] 前記目詰材を構成する前記保水剤が、前記骨材粒子100質量部に対して、5〜6質量部含まれる前記[10]〜[12]のいずれかに記載のセラミックスハニカムフィルタの製造方法。
【0023】
[14] 前記目詰材充填フィルタ成形体に前記濾過膜を成膜した後に、その両端面を所定の長さ切断する前記[9]〜[13]のいずれかに記載のセラミックスハニカムフィルタの製造方法。
【0024】
[15] 前記目詰材を構成する前記骨材粒子が、アルミナ、ムライト、セルベン、及びコージェライトからなる群から選ばれる少なくとも一つの化合物である前記[10]〜[14]のいずれかに記載のセラミックスハニカムフィルタの製造方法。
【0025】
[16] 前記目詰材を構成する前記無機結合材が、アルミナ、シリカ、ジルコニア、ガラスフリット、長石、及びコージェライトからなる群から選ばれる少なくとも一つの化合物である前記[10]〜[15]のいずれかに記載のセラミックスハニカムフィルタの製造方法。
【0026】
[17] 前記目詰材を構成する前記バインダーが、ポリビニルアルコール、ポリエチレングリコール、澱粉、及び粘土からなる群から選ばれる少なくとも一つの化合物である前記[10]〜[16]のいずれかに記載のセラミックスハニカムフィルタの製造方法。
【0027】
【発明の実施の形態】
以下、本発明のセラミックスハニカムフィルタ及びその製造方法の実施の形態を、図面を参照しつつ具体的に説明する。
【0028】
図1(a)及び図1(b)は、本発明のセラミックスハニカムフィルタの一の実施の形態を模式的に示す説明図であって、図1(a)は一部を切り欠いた斜視図、図1(b)は中心軸を含む平面で切断した断面図である。図1(a)及び図1(b)に示すように、本実施の形態のセラミックスハニカムフィルタ1は、セラミックスからなる多孔質の隔壁2によって区画され、その内部に濾過膜3が配設された、被濾過流体の流路となる複数の膜濾過セル4と、隔壁2によって区画されるとともに隔壁2を挟んで所定の膜濾過セル4に隣接し、被濾過流体が濾過膜3によって濾過された濾過流体の流路となる複数の集水セル5と、膜濾過セル4及び集水セル5を取り囲む外壁6と、集水セル5を通過した濾過流体を外部に流出するための、外壁6の集水セル5のそれぞれの両端部から所定の長さ離れた箇所で、外壁6の一の部位から集水セル5を貫通して外壁6の他の部位まで連通する集水スリット7と、集水セルのそれぞれの端面から集水スリット7に達するまでの空間内に充填された多孔質の目詰部材8とを備えてなることを特徴とする。図1(a)においては、円柱状のセラミックスハニカムフィルタ1を示しているが、本実施の形態のセラミックスハニカムフィルタ1の形状は、円柱状に限定されることはなく、中心軸に垂直な平面における断面の形状が四角形等の柱状等の形状であってもよい。
【0029】
本実施の形態のセラミックスハニカムフィルタ1においては、被濾過流体が、端面から膜濾過セル4の内部に流入し、膜濾過セル4の内部に配設された濾過膜3を通過することによって被濾過流体が濾過され、濾過膜3によって濾過された濾過流体が、多孔質の隔壁2を経由して集水セル5に流入し、集水セル5から集水セル5を貫通する集水スリット7に流入し、そして、外壁6に形成された集水スリット7の開口部から外部に流出するものである。また、濾過膜3によって濾過された濾過流体の一部が、隔壁2から集水セル5に流入することなく、そのまま外壁6を経由して外部に流出する構成としてもよい。このように本実施の形態のセラミックスハニカムフィルタ1は、集水スリット7を備えた構成とすることで通水抵抗が軽減されており、優れた通水性を有している。また、従来の集水セルを備えたセラミックスハニカムフィルタにおいては、集水セル内の、目詰部材の端部から集水スリットまでの間に、流出すべき濾過流体が滞留する部分(液溜まり)が形成され、この液溜まりに一部の濾過流体が滞留することによって雑菌等が繁殖して濾過流体全体を汚染することや、セラミックスハニカムフィルタを洗浄する際に使用する薬液が液溜まりに滞留し、滞留した薬液が徐々に拡散して濾過流体を汚染すること等が問題となっていたが、本実施の形態のセラミックスハニカムフィルタ1においては、目詰部材8が、集水セル5のそれぞれの端面から集水スリット7に達するまでの空間内に充填されているために、濾過流体や薬液等が滞留する部分が形成されず、濾過流体が汚染されることがない。
【0030】
また、本実施の形態のセラミックスハニカムフィルタ1は、濾過されるべき被濾過流体が、セラミックスハニカムフィルタ1の端面の隔壁2部分から直接流入し膜濾過セル4の内面の濾過膜3で濾過されることなく外部に流出することを防止するために、セラミックスハニカムフィルタ1の端面の隔壁2を覆うようにシール部9が形成されている。このシール部9は、セラミックスハニカムフィルタ1の端面にシリカガラス等の釉薬を塗布し、焼成して形成されたものである。
【0031】
本実施の形態においては、集水スリット7を形成する位置及びその開口部の形状については、セラミックスハニカムフィルタ1の大きさにより適宜設定することが好ましく、例えば、セラミックスハニカムフィルタ1の形状が円柱状で、その端面の直径180mm、軸方向の長さが1000mmの場合には、外壁6に形成される集水スリット7の開口部の形状は、一辺の長さが20〜80mmの長円形、正方形又は長方形であることが好ましい。
【0032】
本実施の形態のセラミックスハニカムフィルタ1は、目詰部材8が、集水セル5のそれぞれの端面から集水スリット7に達するまでの空間内に充填されたものであるが、本実施の形態にいう、「集水セル5のそれぞれの端面から集水スリット7に達するまでの空間内に充填される」とは、目詰部材8を充填する際の精度上の観点から、集水セル5のそれぞれの端面から集水スリット7に達するまでの空間内の、集水セル5のそれぞれの端面から80〜100%の範囲に目詰部材8が充填されることをいう。このように構成することによって、被濾過流体及び濾過流体が内部に滞留することを有効に防止し、清浄度の高い濾過流体を供給することができるセラミックスハニカムフィルタ1となる。
【0033】
本実施の形態のセラミックスハニカムフィルタ1の隔壁2は、例えば、骨材粒子と無機結合材とに、メチルセルロース等の有機バインダー、分散材及び水を加えて混錬した坏土を、公知のハニカム成形機で押出し成形することで形成することができる。骨材粒子としては、アルミナ、ムライト、セルベン、及びコージェライトからなる群から選ばれる少なくとも一の化合物を好適に用いることができる。無機結合材としては、アルミナ、シリカ、ジルコニア、チタニア、ガラスフリット、長石、及びコージェライトからなる群から選ばれる少なくとも一の化合物を好適に用いることができる。
【0034】
本実施の形態に用いられる目詰部材8は、上述した隔壁2と同様の材料を好適に用いることができ、例えば、アルミナ、ムライト、セルベン、及びコージェライトからなる群から選ばれる少なくとも一つの材料を含む多孔質材料から形成されたものであることが好ましい。なお、製造過程に用いられる目詰材(目詰材スラリー)には、得られるセラミックスハニカムフィルタ1において、集水セル5のそれぞれの端面から集水スリット7に達するまで目詰部材8が充填されているように、バインダー、増粘剤及び保水剤がさらに加えられたものを用いることが好ましい。目詰材(目詰材スラリー)の構成については、セラミックスハニカムフィルタの製造方法を説明する際に具体的に説明する。
【0035】
また、この目詰部材8は、濾過膜3を成膜する際に用いられる濾過膜スラリーに含まれる水分が排出される程度に粗であることが好ましく、具体的には、複数の連通孔が形成された多孔質体から構成されていることが好ましい。さらに、目詰部材8が、複数の連通孔が形成された多孔質体から構成されている場合には、複数の連通孔のそれぞれが、孔径が20μm以下の部位を有することが好ましい。また、本実施の形態においては、目詰部材8の気孔率が25〜50%であることが好ましい。複数の連通孔のそれぞれが、孔径が20μm以下の部位を有していない場合及び/又は目詰部材8の気孔率が50%を超える場合には、濾過膜3を成膜するために用いられる濾過膜スラリーに含まれる固形成分が目詰部材8を通過して集水セル5に侵入してしまうことがある。また、気孔率が25%未満の場合には、濾過膜3を成膜する際に用いられる濾過膜スラリーに含まれる水分の排出が困難となることがある。なお、本実施の形態における連通孔とは、目詰部材8の表面の一の部位から他の部位に連通する細孔のことである。また、目詰部材8は、その内部に体積が0.065mm3を超える空隙がないように、均一に充填されていることが好ましい。体積が0.065mm3を超える空隙がある場合には、セラミックスハニカムフィルタ1の端部における不良部分を切断した際に、その切断面に凹凸が形成されることがある。セラミックスハニカムフィルタ1の端面に凹凸が形成された場合、シール部9を形成する際に、釉薬等を均一に塗布することが困難となることがある。なお、気孔率は水銀圧入法によって測定することができる。
【0036】
また、目詰部材8の熱膨張率は、隔壁2の熱膨張率より低いか又は同一であることが好ましい。目詰部材8の熱膨張率が隔壁2の熱膨張率よりも大きいと焼成の際に目詰部材8が膨張して、隔壁2を破損することがある。
【0037】
また、本実施の形態においては、複数の膜濾過セル4の、被濾過流体の流れ方向に垂直な断面のそれぞれの形状が円である場合を示しているが、膜濾過セル4の形状はこれに限定されることはなく、例えば、円形、楕円形、長円形、三角形、四角形、五角形、六角形及び七角形からなる群から選ばれる少なくとも一つの形状であることが好ましい。また、複数の集水セル5の、被濾過流体の流れ方向に垂直な断面のそれぞれの形状が円である場合を示している、集水セルの形状もこれに限定されることはなく、例えば、円形、楕円形、長円形、三角形、四角形、五角形、六角形及び七角形からなる群から選ばれる少なくとも一つの形状であることが好ましい。
【0038】
また、膜濾過セル4の内部に配設された濾過膜3は、チタニア、アルミナ、又はその両方を含むものであることが好ましい。この濾過膜3は、隔壁2の平均気孔径よりも小さい平均気孔径を有してなるものであり、例えば、その平均気孔径が0.1〜1.0μmであることが好ましい。また、図示は省略するが、本実施の形態においては、濾過膜が、上述した濾過膜を上層濾過膜とし、隔壁と上層濾過膜との間に、その中間にあたる平均気孔径を有する中間膜をさらに備えた構成であってもよい。
【0039】
次に、本実施の形態のセラミックスハニカムフィルタの製造方法について説明する。まず、原材料を、例えば、真空押出し成形機を用いて押出し成形して被濾過流体及び濾過流体の流路となるセルを有する所定形状の未焼成フィルタ成形体を得る。原材料は、図1(a)に示したセラミックスハニカムフィルタ1の隔壁2の好ましい材料として説明した、骨材粒子と無機結合材とに、メチルセルロース等の有機バインダー、分散材及び水を加えて、ニーダー混練機等を用いて混錬した坏土を好適に用いることができる。
【0040】
次に、得られた未焼成フィルタ成形体に、その側面の一の部位から所定のセルを貫通して他の部位まで連通する集水スリットを形成して集水スリット付き未焼成フィルタ成形体を得る。この集水スリットは、例えば、成形時に集水スリット形成部の外壁に溝加工を施し、砥石等で外周部集水セル壁を破り、その後先端が鋭角な治具で集水セルを突き破り集水スリットを形成することができる。集水スリットは、最終製品であるセラミックスハニカムフィルタを浄水設備等に設置する際に、その端部に被濾過流体と濾過流体とを隔離するシール部材を配設するための部位として25mm程度確保することができ、さらに、後述する濾過膜の成膜工程において、その端面を把持する把持部分に不良が発生し、不良が発生した部分を最大で30mm程度除去する必要が生じることを考慮して、集水スリット付き未焼成フィルタ成形体の、その端面から55mm程度離れた側面に形成することが好ましい。これまでの工程は、従来のセラミックスハニカムフィルタの製造方法に準じて行うことができる。
【0041】
次に、図2(a)及び図2(b)に示すように、得られた集水スリット付き未焼成フィルタ成形体10に、所定のセル12のそれぞれの端面から、所定のセル12を貫通する集水スリット7に達するまでの空間内に目詰材(目詰材スラリー)13を充填して目詰材充填未焼成フィルタ成形体を得る。具体的には、集水スリット付き未焼成フィルタ成形体10の両端面にポリエステル等のフィルム11(マスキング)を添付し、所定のセル12に対応する部分に孔を穿設する。その後に、集水スリット付き未焼成フィルタ成形体10のフィルム11を添付した端面を、目詰材13が満たされた容器14内に押し付け、さらに、エアシリンダー等で、例えば、200kgで加圧して、所定のセル12に目詰材を充填する。
【0042】
本実施の形態に用いられる目詰材13としては、目詰材13は、集水スリットに達するまで、所定のセル12に充填することができるように、骨材粒子、無機結合材、バインダー、増粘剤及び保水剤を含んだものであることが好ましい。骨材粒子及び無機結合材は、未焼成フィルタ成形体を製作する際に用いられる骨材粒子及び無機結合材と同様のものを好適に用いることができる。
【0043】
目詰材13を構成するバインダーは、目詰材13の乾燥時点での乾燥強度を持たせ、乾燥時にクラックの発生を防止する働きがあり、ポリビニルアルコール、ポリエチレングリコール、澱粉、及び粘土からなる群から選ばれる少なくとも一つの化合物であることが好ましい。また、目詰材13には、このバインダーが、骨材粒子100質量部に対して0.08〜0.12質量部含まれることが好ましい。バインダーが0.08質量部未満であると、目詰材13の乾燥時にクラックが発生することがある。また、バインダーが0.12質量部を超えると、目詰材13の強度が高くなり集水スリット付き未焼成フィルタ成形体10にクラックが発生することがある。
【0044】
目詰材13を構成する増粘剤は、集水スリット付き未焼成フィルタ成形体10の所定のセル12の内部に目詰材13を入り込ませ易いように、目詰材13に適正な粘度を発現させる働きがあり、メチルセルロースやカルボキシルメチルセルロース等を好適に用いることができる。また、目詰材13には、この増粘剤が、骨材粒子100質量部に対して、0.04〜0.1質量部含まれることが好ましい。増粘剤が0.04質量部未満であると、目詰材13が所定のセル12の内部にスムーズに入らず、所定の深さまで目詰材13を充填することが困難になることがある。また、増粘剤が0.1質量部を超えると、それぞれのセル12に充填した目詰材13の深さが異なり、所定の深さまで目詰材13を均等に充填することが困難になることがある。
【0045】
目詰材13を構成する保水剤は、目詰材13を充填する際に、目詰材13の水分が、乾燥した集水スリット付き未焼成フィルタ成形体10に吸収されて固化するのを防止し、目詰材13を均一に所定の深さまで入り込ませる働きがある。この保水剤としては、でんぷん、グリセリン等を好適に用いることができる。また、目詰材13には、この保水剤が、骨材粒子100質量部に対して、5〜6質量部含まれることが好ましい。保水剤が5質量部未満であると、目詰材13を充填する際に、目詰材13の水分が集水スリット付き未焼成フィルタ成形体10に瞬時に吸収されて、目詰材13を所定の深さまで充填することができないことがある。また、保水剤が6質量部を超えると、焼成前の乾燥にて、目詰材13が十分に乾燥せず、焼成時にクラックが発生することがある。
【0046】
次に、得られた目詰材充填未焼成フィルタ成形体を、例えば、900〜1400℃で焼成して目詰材充填フィルタ成形体を得る。
【0047】
次に、得られた目詰材充填フィルタ成形体を構成する所定のセルの内周面に濾過膜を成膜した後に焼成する。濾過膜を成膜する方法としては、例えば、中間膜と、中間膜より気孔径の小さい上層濾過膜とから構成された濾過膜を形成する場合には、まず、中間膜を成膜するための中間膜スラリーを形成する。中間膜スラリーは、未焼成フィルタ成形体と同材質の、例えば、平均粒径3.2μmの、アルミナ、ムライト、チタニア、コージェライト等のセラミックス原料100質量部に、400質量部の水を加えて形成することができる。また、この中間膜スラリーには、焼成後の膜強度を上げるために膜用無機結合材を添加してもよい。膜用無機結合材は粘土、カオリン、チタニアゾル、シリカゾル、ガラスフリット等を用いることができ、添加量は膜強度の点から5〜20質量部添加することが好ましい。また、セラミックス原料のみで焼結し膜強度が得られる場合は、膜用無機結合材を添加しなくてもよい。この中間膜スラリーを特開昭61−238315号公報において開示される装置を用いて各セルの表面に成膜し、乾燥した後、所定の焼成温度、例えば、900〜1050℃で焼結させ、目詰材充填フィルタ成形体に固着させて中間膜を形成することができる。
【0048】
次に、上層濾過膜を成膜するための上層濾過膜スラリーを形成する。上層濾過膜スラリーは、例えば、平均粒径0.4μmの、未焼成フィルタ成形体と同材質の、例えば、アルミナ、ムライト、チタニア、コージェライト等のセラミックス原料、又はこれらのセラミックス原料よりも熱膨脹率が小さい材料100質量部に、1000質量部の水を加えて形成することができる。また、この上層濾過膜スラリーには、焼成後の膜強度を上げるために膜用無機結合材を添加してもよい。膜用無機結合材は粘土、カオリン、チタニアゾル、シリカゾル、ガラスフリット等を用いることができ、添加量は膜強度の点から5〜20質量部添加することが好ましい。この上層濾過膜スラリーを特開昭61−238315号公報において開示される装置を用いて、中間膜の表面に成膜し、乾燥した後、所定の焼成温度900〜1050℃で焼結させ、目詰材充填フィルタ成形体に成膜した中間膜に固着させて濾過膜を形成することができる。本実施の形態においては、上述したように構成された目詰材が、集水スリットに達するまでの空間内に充填されているために、濾過膜スラリー(中間膜スラリー及び上層濾過膜スラリー)に含まれる水分等が液溜まりに滞留して付着させたばかりの濾過膜を浮き上がらせて剥離させることがなく、所定のセルの全域にわたって濾過膜を正常に成膜することができる。
【0049】
また、濾過膜を成膜する際は、上述したように、その端面を把持する把持部分に不良が発生することがあるために、成膜した目詰材充填フィルタ成形体の端面を30mm程度切断する。次に、目詰材充填フィルタ成形体の、切断して新たに形成された端面にガラスフリット等の釉薬を塗布し、一旦乾燥した後に、900〜1400℃で焼成してセラミックスハニカムフィルタを製造する。釉薬の塗布及び焼成の条件等は、従来行われているセラミックスハニカムフィルタの製造方法に準じて行うことが可能である。
【0050】
このようにして得られたセラミックスハニカムフィルタは、被濾過流体及び濾過流体が内部に滞留することを有効に防止し、清浄度の高い濾過流体を供給することができる。
【0051】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0052】
(実施例1〜17)
全実施例を通じて、骨材粒子としての所定の大きさの平均粒径のアルミナと、無機結合材としてガラスフリットとを9:1の質量比で混合し、得られた混合粉末100質量部に対して、水15質量部、有機バインダーとしてメチルセルロース4.5質量部、及び分散材1質量部を加えて混練して坏土を得、得られた坏土をハニカム成形機で押出し成形した後乾燥して、外径φ180mm、長さ1000mm、その内部に内径φ2.3mmセルを2070個有する未焼成フィルタ成形体を得た。本実施例においては、原料粒度が0.2〜0.5mmでアルミナ純度99.8%の電融アルミナを乾式で所定の時間粉砕し、平均粒径がそれぞれ30μm、50μm、100μmのものをアルミナA、アルミナB、アルミナCとした。
【0053】
次に、各未焼成フィルタ成形体の、その側面の一の部位から所定のセルを貫通して他の部位まで連通する集水スリットを形成して集水スリット付き未焼成フィルタ成形体を得た。集水スリットの形状は長方形とした。
【0054】
次に、得られた各集水スリット付き未焼成フィルタ成形体に、所定のセルのそれぞれの端面から、所定のセルを貫通する集水スリットに達するまでの空間内に目詰材を充填して目詰材充填未焼成フィルタ成形体を得た。各実施例においては、目詰材として、骨材粒子、無機結合材、バインダー、増粘剤及び保水剤を、表1及び表2に示す割合で混合したものを用いた。
【0055】
【表1】

Figure 0003868391
【0056】
【表2】
Figure 0003868391
【0057】
各実施例におけにおける、目詰材充填未焼成フィルタ成形体を乾燥した状態での目詰材の引け欠陥の割合(%)を測定した。目詰材の引け欠陥とは、目詰材を充填した部分を乾燥した後、充填部分に水分が供給された際の目詰材充填部分の中央部の凹みの欠陥のことである。目詰材の引け欠陥の割合(%)は、目詰材を充填したセルの数に対する目詰材の引け欠陥の数の割合(%)を算出した値である。結果を表3及び表4に示す。
【0058】
【表3】
Figure 0003868391
【0059】
【表4】
Figure 0003868391
【0060】
次に、得られた目詰材充填未焼成フィルタ成形体を焼成して目詰材充填フィルタ成形体を得、得られた目詰材充填フィルタ成形体を構成する所定のセルの内周面に濾過膜を成膜して乾燥した後に焼成し、その端面を所定の長さ切断した。この際、焼成した目詰材充填フィルタ成形体の乾式加工性について、各目詰材充填フィルタ成形体を切断する断刃から火花が飛ぶかを確認して評価した。結果を表3及び表4に示す。目詰材に含まれる無機結合材の量が多いと、焼成した目詰材充填フィルタ成形体の強度が上がり切断時に切断刃から火花が飛び切削性が悪くなることがあり、火花が飛ぶことがなく切断加工を良好に行うことができたものについては○とし、多少火花が飛ぶことがあったが切断加工を良好に行うことができたものについては△とし、火花が飛び散り切断加工が困難となったものについては×とした。結果を表3及び表4に示す。
【0061】
実施例1〜17のセラミックスハニカムフィルタの、目詰材を充填した部位における、クラックの発生率(%)を測定した。クラックの発生率(%)は、目詰材を充填したセルの数に対するクラックの発生したセルの数の割合(%)を算出した値である。結果を表3及び表4に示す。
【0062】
また、目詰材を焼成することで形成された目詰部材の気孔径(μm)及び気孔率(%)を測定した。結果を表3及び表4に示す。
【0063】
また、各セラミックスハニカムフィルタを形成する際に用いた目詰材をブロック状に鋳込み成形を行い、幅10mm、厚さ5mm、長さ50mmの試験片を切り出し、支持間距離が30mmの3点曲げ強度測定を行った。結果を表3及び表4に示す。
【0064】
各セラミックスハニカムフィルタを水中に浸漬させ、各セラミックスハニカムフィルタの一方の端面近傍に設けられた集水スリットを塞ぎ、他方の集水スリットから空気を送り込み、各セラミックスハニカムフィルタから発泡する際の圧力を計測して発泡検査を行った。結果を表3及び表4に示す。発泡検査の評価としては、8kPaで加圧した際に目詰部材及び外壁から発泡が見られない場合は○とし、6kPaで加圧した際に発泡が見られない場合は△とし、3kPaで加圧した際に発泡が見られる場合は×とした。結果を表3及び表4に示す。
【0065】
また、各セラミックスハニカムフィルタの一方の端面から被濾過流体を流入して浄化を行った際の、集水スリットと目詰部材との間に濾過流体が滞留するかについて測定した。滞留がない場合には○とし、滞留があった場合には×とした。結果を表3及び表4に示す。
【0066】
(比較例1及び2)
集水スリット付き未焼成フィルタ成形体に、所定のセルのそれぞれの端面から、所定のセルを貫通する集水スリットに達するまでの空間内の所定の位置、比較例1においては、端面から40mmの位置(所定のセルの端面から集水スリットに達するまでの空間内の、所定のセルの端面から73%の位置)まで、また、比較例2においては、端面から35mmの位置(所定のセルの端面から集水スリットに達するまでの空間内の、所定のセルの端面から64%までの位置)まで、目詰材を充填して目詰材充填未焼成フィルタ成形体を得た以外は、上述した実施例と同様にしてセラミックスハニカムフィルタを製造し、同様の測定を行った。目詰材の構成及び各測定の結果を表5及び表6に示す。
【0067】
【表5】
Figure 0003868391
【0068】
【表6】
Figure 0003868391
【0069】
表3、表4及び表6に示すように、実施例1〜17のセラミックスハニカムフィルタは、所定のセルのそれぞれの端面から、所定のセルを貫通する集水スリットに達するまでの空間内に目詰材が充填されているために、上述した空間に濾過流体の滞留がなく、清浄度の高い濾過流体を供給することができるものであった。また、実施例1〜17のセラミックスハニカムフィルタにおいては、目詰材の引け欠陥の割合(%)、乾式加工性、クラック発生率(%)及び発泡検査においていずれも優れた値を示すものであり、また、気孔径(μm)及び気孔率(%)についてもフィルタとして好適に用いることができるものであった。比較例1及び2のセラミックスハニカムフィルタは、集水スリットと目詰部材との間に液溜まりが形成されていることから、濾過流体の滞留があり、濾過流体の汚染を引き起こすものであった。また、発泡検査において、どちらも3kPaで加圧した際に発泡が見られ、フィルタとして用いた場合には、被濾過流体が、発泡を生じた隙間を通過して濾過膜で濾過させることなく濾過流体に流入することとなり、フィルタとして用いることができないものであった。
【0070】
【発明の効果】
以上説明したように、本発明によって、被濾過流体及び濾過流体が内部に滞留することを有効に防止し、清浄度の高い濾過流体を供給することが可能なセラミックスハニカムフィルタ及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】 図1(a)及び図1(b)は、本発明のセラミックスハニカムフィルタの一の実施の形態を模式的に示す説明図であって、図1(a)はセラミックスハニカムフィルタの一部を切り欠いた斜視図、図1(b)は中心軸を含む平面で切断した断面図である。
【図2】 図2(a)及び図2(b)は、本発明のセラミックスハニカムフィルタの製造方法の一の実施の形態における、所定のセルに目詰材を充填する工程を工程順に示す断面図である。
【図3】 従来のセラミックスハニカムフィルタを模式的に示す断面図である。
【図4】 従来のセラミックスハニカムフィルタの製造方法における、所定のセルに目詰材を充填する工程を示す断面図である。
【符号の説明】
1…セラミックスハニカムフィルタ、2…隔壁、3…濾過膜、4…膜濾過セル、5…集水セル、6…外壁、7…集水スリット、8…目詰部材、9…シール部、10…集水スリット付き未焼成フィルタ成形体、11…フィルム、12…所定のセル、13…目詰材(目詰材スラリー)、14…容器、20…セラミックスハニカムフィルタ、21…流通路(セル)、21a…流通路(集水セル)、21b…流通路(膜濾過セル)、22…濾過膜、22a…固形成分、22b…水分、23…空隙部(集水スリット)、24…目詰部材、25…濾過流体が滞留する部分(液溜まり)、26…隔壁。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic honeycomb filter and a manufacturing method thereof. More specifically, the present invention relates to a ceramic honeycomb filter that can effectively prevent the fluid to be filtered and the filtration fluid from staying in the interior and supply a filtered fluid having a high cleanliness, and a method for manufacturing the ceramic honeycomb filter.
[0002]
[Prior art]
In recent years, a ceramic honeycomb filter having cells partitioned by porous partition walls has been used as a filter for solid-liquid separation or gas-solid separation. This ceramic honeycomb filter is superior in physical strength, durability, corrosion resistance, etc. compared to organic polymer membranes used in similar applications, and therefore has a wide range of applications in water treatment, exhaust gas treatment, pharmaceutical and food fields, etc. In such fields, it is suitably used for removing suspended substances, bacteria, dust, and the like in liquids and gases.
[0003]
In such a ceramic honeycomb filter, from the viewpoint of increasing the water flow rate and improving the filtration performance, as shown in FIG. 3, a large number of parallel flow passages formed in the longitudinal direction of the cylindrical porous body In order to form a filtration membrane 22 having a smaller pore diameter than the pores of the porous body on the inner peripheral surface of the (cell) 21 and to increase the amount of water flow from the flow passage near the center of the porous body, A slit-shaped gap (collection slit) 23 is provided in the longitudinal direction, and the edge of the flow passage (collection cell) 21 a communicating with the gap (collection slit) 23 is sealed with a clogging member 24. The fluid to be filtered supplied to the flow passage (membrane filtration cell) 21 b in which the filtration membrane 22 is formed is filtered by the filtration membrane 22, and the filtered fluid is flow passage (with the edge portion sealed by the clogging member 24 ( Cavity part (collection cell) 21a Ceramic honeycomb filter 20 capable of flowing out through the slit) 23 is proposed (e.g., see Patent Document 1).
[0004]
In the above-described ceramic honeycomb filter 20, the filtration performance is improved by forming the filtration membrane 22, and the water flow rate is increased by providing the gap portion (water collecting slit) 23.
[0005]
[Patent Document 1]
JP 2000-153117 A
[0006]
[Problems to be solved by the invention]
However, in the ceramic honeycomb filter described above, the clogging member 24 that seals the edge of the flow passage (water collection cell) 21a simply allows the fluid to be filtered to enter the flow passage (water collection cell) 21a. In other words, if the clogging member 24 is filled too deeply, the clogging member 24 filled in the flow passage (water collecting cell) 21a becomes the gap ( Since it protrudes from the (water collecting slit) 23 and causes a defect or troublesome correction, it has been filled only to the minimum necessary position that can prevent the infiltration of the fluid to be filtered. For this reason, in the flow passage (water collection cell) 21a, there is a portion (liquid reservoir) 25 in which the filtered fluid to be discharged is retained between the end of the clogging member 24 and the gap portion (water collection slit) 23. Was formed.
[0007]
For this reason, it has been a problem that a part of the filtration fluid stays in the liquid reservoir 25 described above, so that germs and the like propagate and contaminate the entire filtration fluid. In addition, the ceramic honeycomb filter 20 may be periodically cleaned with a chemical solution, but the chemical solution used for the cleaning stays in the liquid reservoir 25 and can be completely removed from the ceramic honeycomb filter 20. However, the accumulated chemical solution gradually diffuses and contaminates the filtered fluid. In addition, as shown in FIG. 4, in the film forming step of the filter membrane 22 constituting the ceramic honeycomb filter 20, the filter membrane slurry containing the solid component that becomes the filter membrane 22 is passed through a predetermined flow path (membrane filtration) under reduced pressure. Cell) 21b, and the solid component 22a contained in the poured filtration membrane slurry is attached to the inner surface of the flow passage (membrane filtration cell) 21b and then dried under atmospheric pressure. After the removal, the moisture 22b of the filtration membrane slurry stays in the liquid reservoir 25, and the moisture 22b of the filtration membrane slurry moves through the partition wall 26 along with the restoration to the atmospheric pressure after the film formation is completed. There has been a problem that the filtration membrane 22 just adhered to the inner surface of the passage (membrane filtration cell) 21b is lifted and peeled off.
[0008]
The present invention has been made in view of the above-described problems. A ceramic honeycomb filter capable of effectively preventing a fluid to be filtered and a filtering fluid from staying inside and supplying a filtering fluid having a high cleanliness, and a ceramic honeycomb filter therefor An object is to provide a manufacturing method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following ceramic honeycomb filter and a method for manufacturing the same.
[0010]
[1] A plurality of membrane filtration cells, which are partitioned by a porous partition wall made of ceramics and in which a filtration membrane is disposed, and which serve as a flow path for a fluid to be filtered; A plurality of water collection cells that are adjacent to the predetermined membrane filtration cell and serve as a flow path for the filtered fluid in which the fluid to be filtered is filtered by the filtration membrane, and an outer wall that surrounds the membrane filtration cell and the water collection cell And a portion of the outer wall at a predetermined length away from each end of the water collecting cell for flowing out the filtered fluid that has passed through the water collecting cell to the outside. A water collecting slit that passes through the water collecting cell and communicates with the other part of the outer wall, and a porous clogging member filled in a space from each end surface of the water collecting cell to the water collecting slit With this A ceramic honeycomb filter characterized by the above.
[0011]
[2] The ceramic honeycomb filter according to [1], wherein the plugging member is formed of a porous body in which a plurality of communication holes are formed.
[0012]
[3] The ceramic honeycomb according to [1] or [2], wherein the clogging member is formed of a porous material containing at least one material selected from the group consisting of alumina, mullite, selben, and cordierite. filter.
[0013]
[4] The ceramic honeycomb filter according to [2] or [3], wherein each of the plurality of communication holes formed in the clogging member has a portion having a hole diameter of 20 μm or less.
[0014]
[5] The ceramic honeycomb filter according to any one of [1] to [4], wherein the clogging member has a porosity of 25 to 50%.
[0015]
[6] The ceramic honeycomb filter according to any one of [1] to [5], wherein a thermal expansion coefficient of the plugging member is lower than or equal to a thermal expansion coefficient of the partition wall.
[0016]
[7] A group in which each of the cross-sections perpendicular to the flow direction of the fluid to be filtered of the plurality of membrane filtration cells is a circle, an ellipse, an oval, a triangle, a quadrangle, a pentagon, a hexagon, and a heptagon The ceramic honeycomb filter according to any one of [1] to [6], wherein the ceramic honeycomb filter has at least one shape selected from.
[0017]
[8] Each of the cross-sections perpendicular to the flow direction of the filtration fluid of the plurality of water collection cells is a group consisting of a circle, an ellipse, an oval, a triangle, a quadrangle, a pentagon, a hexagon, and a heptagon. The ceramic honeycomb filter according to any one of [1] to [7], which is at least one selected shape.
[0018]
[9] The raw material is extruded to obtain a green filter molded body having a predetermined shape having cells to be filtered and flow paths for the filtered fluid, and the obtained green filter molded body has one side surface of the green filter molded body. Forming a water collecting slit that penetrates the predetermined cell from the site to the other site to obtain a green filter molded body with a water collecting slit, to the obtained green filter molded body with the water collecting slit, A clogging material is filled into a space from each end face of the predetermined cell to reach the water collecting slit penetrating the predetermined cell to obtain a clogging material-filled unfired filter molded body. The clogging material-filled green filter molded body is fired to obtain a clogging material-filled filter molded body, and a filter membrane is formed on the inner peripheral surface of the predetermined cell constituting the obtained clogging material-filled filter molded body. It is characterized by firing after film formation A method for manufacturing a ceramic honeycomb filter.
[0019]
[10] The method for manufacturing a ceramic honeycomb filter according to [9], wherein the plugging material includes aggregate particles, an inorganic binder, a binder, a thickener, and a water retention agent.
[0020]
[11] The method for manufacturing a ceramic honeycomb filter according to [10], wherein the binder constituting the plugging material is included in an amount of 0.08 to 0.12 parts by mass with respect to 100 parts by mass of the aggregate particles.
[0021]
[12] The ceramic according to [10] or [11], wherein the thickener constituting the plugging material is included in an amount of 0.04 to 0.1 parts by mass with respect to 100 parts by mass of the aggregate particles. Manufacturing method of honeycomb filter.
[0022]
[13] The ceramic honeycomb filter according to any one of [10] to [12], wherein the water retention agent constituting the plugging material is included in 5 to 6 parts by mass with respect to 100 parts by mass of the aggregate particles. Manufacturing method.
[0023]
[14] Manufacturing the ceramic honeycomb filter according to any one of [9] to [13], wherein the filter membrane is formed on the plugging material-filled filter molded body, and then both end surfaces thereof are cut to a predetermined length. Method.
[0024]
[15] The above [10] to [14], wherein the aggregate particles constituting the plugging material are at least one compound selected from the group consisting of alumina, mullite, selben, and cordierite. Manufacturing method for ceramic honeycomb filter.
[0025]
[16] The above [10] to [15], wherein the inorganic binder constituting the plugging material is at least one compound selected from the group consisting of alumina, silica, zirconia, glass frit, feldspar, and cordierite. A method for producing a ceramic honeycomb filter according to any one of the above.
[0026]
[17] The binder according to any one of [10] to [16], wherein the binder constituting the plugging material is at least one compound selected from the group consisting of polyvinyl alcohol, polyethylene glycol, starch, and clay. Manufacturing method of ceramic honeycomb filter.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a ceramic honeycomb filter and a manufacturing method thereof according to the present invention will be specifically described with reference to the drawings.
[0028]
FIG. 1 (a) and FIG. 1 (b) are explanatory views schematically showing an embodiment of a ceramic honeycomb filter of the present invention, and FIG. 1 (a) is a perspective view with a part cut away. FIG. 1B is a cross-sectional view taken along a plane including the central axis. As shown in FIGS. 1 (a) and 1 (b), a ceramic honeycomb filter 1 of the present embodiment is partitioned by porous partition walls 2 made of ceramics, and a filtration membrane 3 is disposed therein. A plurality of membrane filtration cells 4 serving as flow paths for the fluid to be filtered and the partition wall 2 and adjacent to the predetermined membrane filtration cell 4 with the partition wall 2 interposed therebetween, and the fluid to be filtered is filtered by the filtration membrane 3 A plurality of water collection cells 5 that serve as flow paths for the filtration fluid, an outer wall 6 that surrounds the membrane filtration cell 4 and the water collection cell 5, and an outer wall 6 that flows out the filtered fluid that has passed through the water collection cell 5 to the outside. A water collection slit 7 that penetrates the water collection cell 5 from one part of the outer wall 6 to another part of the outer wall 6 at a position away from each end of each of the water collection cells 5 by a predetermined length; From each end of the water cell until it reaches the water collection slit 7 Characterized by comprising a Metsume member 8 of the porous filled in the space. In FIG. 1A, a cylindrical ceramic honeycomb filter 1 is shown. However, the shape of the ceramic honeycomb filter 1 of the present embodiment is not limited to a cylindrical shape, and is a plane perpendicular to the central axis. The shape of the cross-section in FIG.
[0029]
In the ceramic honeycomb filter 1 of the present embodiment, the fluid to be filtered flows into the membrane filtration cell 4 from the end face and passes through the filtration membrane 3 disposed inside the membrane filtration cell 4 to be filtered. The fluid is filtered, and the filtered fluid filtered by the filter membrane 3 flows into the water collection cell 5 through the porous partition wall 2 and enters the water collection slit 7 penetrating the water collection cell 5 from the water collection cell 5. It flows in and flows out from the opening of the water collecting slit 7 formed in the outer wall 6. Alternatively, a part of the filtered fluid filtered by the filter membrane 3 may flow out to the outside via the outer wall 6 as it is without flowing into the water collecting cell 5 from the partition wall 2. As described above, the ceramic honeycomb filter 1 of the present embodiment is configured to include the water collecting slit 7 so that the water flow resistance is reduced and the water permeability is excellent. Moreover, in the ceramic honeycomb filter provided with the conventional water collection cell, the part (liquid pool) in which the filtered fluid to flow out stays in the water collection cell between the end of the clogging member and the water collection slit When a part of the filtration fluid stays in the liquid reservoir, germs and other bacteria propagate to contaminate the entire filtration fluid, and the chemical used for cleaning the ceramic honeycomb filter stays in the liquid reservoir. However, in the ceramic honeycomb filter 1 of the present embodiment, the clogging member 8 is provided in each of the water collecting cells 5, although the staying chemical solution gradually diffuses and contaminates the filtered fluid. Since the space from the end surface to the water collecting slit 7 is filled, a portion where the filtration fluid, the chemical solution, or the like stays is not formed, and the filtration fluid is not contaminated.
[0030]
In the ceramic honeycomb filter 1 of the present embodiment, the fluid to be filtered flows directly from the partition wall 2 portion on the end face of the ceramic honeycomb filter 1 and is filtered by the filtration membrane 3 on the inner surface of the membrane filtration cell 4. In order to prevent the liquid from flowing out to the outside, a seal portion 9 is formed so as to cover the partition wall 2 on the end face of the ceramic honeycomb filter 1. The seal portion 9 is formed by applying a glaze such as silica glass on the end face of the ceramic honeycomb filter 1 and firing it.
[0031]
In the present embodiment, the position where the water collecting slit 7 is formed and the shape of the opening thereof are preferably set as appropriate depending on the size of the ceramic honeycomb filter 1. For example, the shape of the ceramic honeycomb filter 1 is cylindrical. When the end face has a diameter of 180 mm and an axial length of 1000 mm, the shape of the opening of the water collecting slit 7 formed in the outer wall 6 is an oval or square with a side length of 20 to 80 mm. Or it is preferable that it is a rectangle.
[0032]
The ceramic honeycomb filter 1 of the present embodiment is such that the clogging member 8 is filled in the space from each end face of the water collection cell 5 to the water collection slit 7. From the viewpoint of accuracy when filling the clogging member 8, “filled in the space from each end face of the water collection cell 5 to the water collection slit 7” means It means that the clogging member 8 is filled in a range of 80 to 100% from each end face of the water collection cell 5 in the space from each end face to the water collection slit 7. By comprising in this way, it becomes the ceramic honeycomb filter 1 which can prevent effectively that a to-be-filtered fluid and a filtration fluid remain in an inside, and can supply the filtration fluid with a high cleanliness.
[0033]
The partition walls 2 of the ceramic honeycomb filter 1 according to the present embodiment are, for example, a known honeycomb molding made of kneaded clay obtained by kneading an aggregated particle and an inorganic binder with an organic binder such as methylcellulose, a dispersing agent and water. It can be formed by extrusion molding with a machine. As the aggregate particles, at least one compound selected from the group consisting of alumina, mullite, selben, and cordierite can be suitably used. As the inorganic binder, at least one compound selected from the group consisting of alumina, silica, zirconia, titania, glass frit, feldspar, and cordierite can be suitably used.
[0034]
The clogging member 8 used in the present embodiment can preferably use the same material as that of the partition wall 2 described above. For example, at least one material selected from the group consisting of alumina, mullite, selben, and cordierite. It is preferable that it is formed from the porous material containing this. The clogging material (clogging material slurry) used in the manufacturing process is filled with the clogging member 8 from the respective end faces of the water collection cell 5 to the water collection slit 7 in the obtained ceramic honeycomb filter 1. As shown, it is preferable to use a binder, a thickener and a water retention agent. The configuration of the clogging material (clogging material slurry) will be specifically described when the method for manufacturing the ceramic honeycomb filter is described.
[0035]
The clogging member 8 is preferably rough enough to drain water contained in the filtration membrane slurry used when the filtration membrane 3 is formed. Specifically, a plurality of communication holes are provided. It is preferable that it is comprised from the formed porous body. Furthermore, when the clogging member 8 is composed of a porous body in which a plurality of communication holes are formed, each of the plurality of communication holes preferably has a portion having a hole diameter of 20 μm or less. Moreover, in this Embodiment, it is preferable that the porosity of the clogging member 8 is 25 to 50%. Each of the plurality of communication holes is used for forming the filtration membrane 3 when the pore diameter does not have a portion of 20 μm or less and / or when the porosity of the clogging member 8 exceeds 50%. The solid component contained in the filtration membrane slurry may pass through the clogging member 8 and enter the water collection cell 5. Further, when the porosity is less than 25%, it may be difficult to discharge moisture contained in the filtration membrane slurry used when the filtration membrane 3 is formed. The communication hole in the present embodiment is a pore communicating from one part of the surface of the clogging member 8 to another part. The clogging member 8 has a volume of 0.065 mm inside. Three It is preferable that it is uniformly filled so that there are no voids exceeding. Volume is 0.065mm Three In the case where there is an air gap exceeding 1, when the defective portion at the end of the ceramic honeycomb filter 1 is cut, irregularities may be formed on the cut surface. When irregularities are formed on the end face of the ceramic honeycomb filter 1, it may be difficult to uniformly apply glaze or the like when forming the seal portion 9. The porosity can be measured by a mercury intrusion method.
[0036]
Moreover, it is preferable that the thermal expansion coefficient of the clogging member 8 is lower than or equal to the thermal expansion coefficient of the partition wall 2. If the thermal expansion coefficient of the clogging member 8 is larger than the thermal expansion coefficient of the partition wall 2, the clogging member 8 may expand during firing and damage the partition wall 2.
[0037]
Moreover, in this Embodiment, although the case where each shape of the cross section perpendicular | vertical to the flow direction of the to-be-filtered fluid of the some membrane filtration cell 4 is a circle is shown, the shape of the membrane filtration cell 4 is this. For example, it is preferably at least one shape selected from the group consisting of a circle, an ellipse, an oval, a triangle, a quadrangle, a pentagon, a hexagon, and a heptagon. Further, the shape of each of the water collecting cells 5 is not limited to this, and the shape of each of the cross sections perpendicular to the flow direction of the fluid to be filtered is a circle. It is preferably at least one shape selected from the group consisting of a circle, an ellipse, an oval, a triangle, a quadrangle, a pentagon, a hexagon, and a heptagon.
[0038]
Moreover, it is preferable that the filtration membrane 3 arrange | positioned inside the membrane filtration cell 4 contains a titania, an alumina, or both. The filtration membrane 3 has an average pore size smaller than the average pore size of the partition wall 2, and for example, the average pore size is preferably 0.1 to 1.0 μm. Although not shown in the drawings, in the present embodiment, the filtration membrane is the above-described filtration membrane as an upper-layer filtration membrane, and an intermediate membrane having an average pore diameter in the middle between the partition wall and the upper-layer filtration membrane is provided. Furthermore, the structure provided may be sufficient.
[0039]
Next, a method for manufacturing the ceramic honeycomb filter of the present embodiment will be described. First, the raw material is extruded using, for example, a vacuum extrusion molding machine to obtain a green filter molded body having a predetermined shape having cells to be filtered and flow paths for the filtered fluid. The raw material is a kneader obtained by adding an organic binder such as methylcellulose, a dispersing agent and water to the aggregate particles and the inorganic binder described as a preferable material for the partition walls 2 of the ceramic honeycomb filter 1 shown in FIG. A clay kneaded using a kneader or the like can be suitably used.
[0040]
Next, on the obtained green filter molded body, a water collecting slit that penetrates a predetermined cell from one part of its side surface to communicate with another part is formed to form an unfired filter molded body with a water collecting slit. obtain. For example, the water collecting slit is formed by grooving the outer wall of the water collecting slit forming portion at the time of molding, breaking the outer water collecting cell wall with a grindstone or the like, and then breaking through the water collecting cell with a jig having a sharp tip. A slit can be formed. The water collecting slit secures about 25 mm as a part for disposing a sealing member that separates the fluid to be filtered and the filtering fluid at the end when the ceramic honeycomb filter as the final product is installed in a water purification facility or the like. In addition, in the film forming process of the filtration membrane described later, a failure occurs in the grip portion that grips the end face, and it is necessary to remove the portion where the failure has occurred by about 30 mm at the maximum, It is preferable to form it on the side surface of the unfired filter molded body with a water collecting slit that is about 55 mm away from the end surface. The process so far can be performed according to the conventional method for manufacturing a ceramic honeycomb filter.
[0041]
Next, as shown in FIGS. 2 (a) and 2 (b), the obtained unfired filter molded body 10 with water collecting slits penetrates the predetermined cell 12 from each end face of the predetermined cell 12. A clogging material (clogging material slurry) 13 is filled in the space up to the water collecting slit 7 to obtain a clogging material filled unfired filter molded body. Specifically, films 11 (masking) such as polyester are attached to both end faces of the unfired filter molded body 10 with water collecting slits, and holes are formed in portions corresponding to predetermined cells 12. After that, the end face to which the film 11 of the unfired filter molded body 10 with a water collecting slit is attached is pressed into the container 14 filled with the clogging material 13, and further pressurized with an air cylinder or the like, for example, 200 kg. A predetermined cell 12 is filled with a plugging material.
[0042]
As the clogging material 13 used in the present embodiment, the clogging material 13 can be filled in predetermined cells 12 until reaching the water collecting slit, so that the aggregate particles, the inorganic binder, the binder, It is preferable that it contains a thickener and a water retention agent. As the aggregate particles and the inorganic binder, those similar to the aggregate particles and the inorganic binder used when the green filter molded body is manufactured can be suitably used.
[0043]
The binder constituting the plugging material 13 has a function of giving dry strength at the time of drying the plugging material 13 and preventing the occurrence of cracks during drying, and is made of polyvinyl alcohol, polyethylene glycol, starch, and clay. It is preferably at least one compound selected from Moreover, it is preferable that 0.08-0.12 mass part of this binder is contained in the plugging material 13 with respect to 100 mass parts of aggregate particles. If the binder is less than 0.08 parts by mass, cracks may occur when the plugging material 13 is dried. Moreover, when a binder exceeds 0.12 mass part, the intensity | strength of the plugging material 13 will become high and a crack may generate | occur | produce in the unbaking filter molded object 10 with a water collection slit.
[0044]
The thickener constituting the plugging material 13 has an appropriate viscosity for the plugging material 13 so that the plugging material 13 can easily enter the predetermined cells 12 of the green filter molded body 10 with water collecting slits. It has a function of expression, and methylcellulose, carboxymethylcellulose and the like can be suitably used. Moreover, it is preferable that 0.04-0.1 mass part of this thickener is contained in the plugging material 13 with respect to 100 mass parts of aggregate particle | grains. If the thickener is less than 0.04 parts by mass, the clogging material 13 does not enter the predetermined cell 12 smoothly, and it may be difficult to fill the clogging material 13 to a predetermined depth. . Further, when the thickener exceeds 0.1 parts by mass, the depth of the plugging material 13 filled in each cell 12 is different, and it becomes difficult to uniformly fill the plugging material 13 to a predetermined depth. Sometimes.
[0045]
The water retention agent constituting the plugging material 13 prevents the moisture of the plugging material 13 from being absorbed and solidified by the dry green filter molded body 10 with a water collecting slit when the plugging material 13 is filled. In addition, the clogging material 13 has a function of uniformly entering the predetermined depth. As this water retention agent, starch, glycerin and the like can be suitably used. Moreover, it is preferable that 5-6 mass parts of this water retention agent is contained in the plugging material 13 with respect to 100 mass parts of aggregate particles. When the water retention agent is less than 5 parts by mass, when filling the plugging material 13, the moisture of the plugging material 13 is instantaneously absorbed by the unfired filter molded body 10 with a water collection slit, It may not be possible to fill to a predetermined depth. Moreover, when a water retention agent exceeds 6 mass parts, the clogging material 13 may not fully dry by drying before baking, and a crack may generate | occur | produce at the time of baking.
[0046]
Next, the obtained plug-filled unfired filter molded body is fired at, for example, 900 to 1400 ° C. to obtain a plug-filled filter molded body.
[0047]
Next, a filtration membrane is formed on the inner peripheral surface of a predetermined cell constituting the obtained plugging material-filled filter molded body, and then fired. As a method for forming a filtration membrane, for example, in the case of forming a filtration membrane composed of an intermediate membrane and an upper filtration membrane having a pore size smaller than that of the intermediate membrane, the first step is to form the intermediate membrane. An intermediate film slurry is formed. The intermediate film slurry is obtained by adding 400 parts by mass of water to 100 parts by mass of a ceramic raw material such as alumina, mullite, titania, cordierite, etc. having the same material as that of the unfired filter molded body, for example, having an average particle size of 3.2 μm Can be formed. In addition, an inorganic binder for a film may be added to the intermediate film slurry in order to increase the film strength after firing. As the inorganic binder for the film, clay, kaolin, titania sol, silica sol, glass frit and the like can be used, and the addition amount is preferably 5 to 20 parts by mass from the viewpoint of film strength. Further, when the film strength is obtained by sintering only with the ceramic raw material, it is not necessary to add the inorganic binder for the film. This intermediate film slurry is formed on the surface of each cell using the apparatus disclosed in JP-A-61-238315, dried, and then sintered at a predetermined firing temperature, for example, 900 to 1050 ° C. The intermediate film can be formed by being fixed to the clogging material-filled filter molded body.
[0048]
Next, an upper filtration membrane slurry for forming an upper filtration membrane is formed. The upper layer filtration membrane slurry is, for example, the same material as the green filter molded body having an average particle size of 0.4 μm, for example, a ceramic raw material such as alumina, mullite, titania, cordierite, or the thermal expansion coefficient of these ceramic raw materials. Can be formed by adding 1000 parts by mass of water to 100 parts by mass of a small material. In addition, an inorganic binder for membrane may be added to the upper filtration membrane slurry in order to increase the membrane strength after firing. As the inorganic binder for the film, clay, kaolin, titania sol, silica sol, glass frit and the like can be used, and the addition amount is preferably 5 to 20 parts by mass from the viewpoint of film strength. This upper layer filtration membrane slurry is formed on the surface of the intermediate film using an apparatus disclosed in JP-A-61-238315, dried and then sintered at a predetermined firing temperature of 900 to 1050 ° C. The filtration membrane can be formed by adhering to the intermediate film formed on the filler-filled filter molded body. In the present embodiment, since the clogging material configured as described above is filled in the space up to the water collection slit, the filtration membrane slurry (intermediate membrane slurry and upper filtration membrane slurry) It is possible to normally form the filtration membrane over the entire area of the predetermined cell without floating and peeling off the filtration membrane that has just been deposited and adhered to the liquid reservoir.
[0049]
In addition, as described above, when forming a filtration membrane, a defect may occur in the gripping portion that grips the end surface. Therefore, the end surface of the formed filter material-filled filter molded body is cut by about 30 mm. To do. Next, a glaze such as glass frit is applied to the end face of the clogging material-filled filter molded body that has been cut and newly formed, once dried, and then fired at 900 to 1400 ° C. to produce a ceramic honeycomb filter. . The glaze application and firing conditions and the like can be performed in accordance with conventional ceramic honeycomb filter manufacturing methods.
[0050]
The ceramic honeycomb filter thus obtained can effectively prevent the fluid to be filtered and the filtered fluid from staying inside, and can supply a filtered fluid with high cleanliness.
[0051]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0052]
(Examples 1-17)
Throughout all the examples, alumina having an average particle size of a predetermined size as aggregate particles and glass frit as an inorganic binder were mixed at a mass ratio of 9: 1, and with respect to 100 parts by mass of the obtained mixed powder Then, 15 parts by weight of water, 4.5 parts by weight of methylcellulose as an organic binder, and 1 part by weight of a dispersing agent were added and kneaded to obtain a clay. The obtained clay was extruded and formed by a honeycomb molding machine and then dried. Thus, an unfired filter molded body having an outer diameter of 180 mm, a length of 1000 mm, and 2070 inner diameter of 2.3 mm cells therein was obtained. In this embodiment, fused alumina having a raw material particle size of 0.2 to 0.5 mm and an alumina purity of 99.8% is pulverized in a dry process for a predetermined time, and those having an average particle size of 30 μm, 50 μm, and 100 μm are alumina. A, alumina B, and alumina C were used.
[0053]
Next, a water collecting slit that penetrates a predetermined cell from one part of the side surface of each green filter molded body and communicates with another part is formed to obtain a green filter molded body with a water collecting slit. . The shape of the water collecting slit was a rectangle.
[0054]
Next, the obtained unfired filter molded body with water collecting slits is filled with a clogging material in the space from each end face of the predetermined cell to the water collecting slit penetrating the predetermined cell. An unfired filter molded body filled with a plugging material was obtained. In each Example, what mixed aggregate particle | grains, the inorganic binder, the binder, the thickener, and the water retention agent in the ratio shown in Table 1 and Table 2 was used as a clogging material.
[0055]
[Table 1]
Figure 0003868391
[0056]
[Table 2]
Figure 0003868391
[0057]
In each Example, the ratio (%) of the closing defect of the clogging material in a state where the clogging material-filled unfired filter molded body was dried was measured. The closing defect of the clogging material is a defect in the dent at the center of the clogging material filling portion when moisture is supplied to the filling portion after the portion filled with the clogging material is dried. The ratio (%) of the closing defect of the plugging material is a value obtained by calculating the ratio (%) of the number of closing defects of the plugging material with respect to the number of cells filled with the plugging material. The results are shown in Tables 3 and 4.
[0058]
[Table 3]
Figure 0003868391
[0059]
[Table 4]
Figure 0003868391
[0060]
Next, the obtained clogging material-filled unfired filter molded body is fired to obtain a clogging material-filled filter molded body, and on the inner peripheral surface of a predetermined cell constituting the obtained clogging material-filled filter molded body The filter membrane was formed, dried and fired, and the end face was cut to a predetermined length. At this time, the dry processability of the fired clogging material-filled filter molded body was evaluated by confirming whether or not a spark would fly from the cutting blade that cuts each clogging material-filled filter molded body. The results are shown in Tables 3 and 4. If the amount of the inorganic binder contained in the plugging material is large, the strength of the fired plugging material-filled filter molded body will increase, and a spark may fly from the cutting blade during cutting, resulting in poor cutting performance. If it was able to cut well, it was marked as ◯, and some sparks were scattered, but if it was able to be cut well, it was marked as △. For those that became, ×. The results are shown in Tables 3 and 4.
[0061]
The occurrence rate (%) of cracks in the portions filled with the plugging material of the ceramic honeycomb filters of Examples 1 to 17 was measured. The crack generation rate (%) is a value obtained by calculating the ratio (%) of the number of cells in which cracks occur to the number of cells filled with the plugging material. The results are shown in Tables 3 and 4.
[0062]
Further, the pore diameter (μm) and the porosity (%) of the clogging member formed by firing the clogging material were measured. The results are shown in Tables 3 and 4.
[0063]
Also, the clogging material used for forming each ceramic honeycomb filter was cast into a block shape, cut out a test piece having a width of 10 mm, a thickness of 5 mm, and a length of 50 mm, and a three-point bending with a support distance of 30 mm. Strength measurements were made. The results are shown in Tables 3 and 4.
[0064]
Each ceramic honeycomb filter is immersed in water, the water collecting slit provided in the vicinity of one end face of each ceramic honeycomb filter is closed, air is sent from the other water collecting slit, and the pressure when foaming from each ceramic honeycomb filter is set. Measurement and foaming inspection were performed. The results are shown in Tables 3 and 4. The evaluation of the foaming test is as follows: when foaming is not seen from the clogging member and the outer wall when pressurized at 8 kPa, △ when foaming is not seen when pressurized at 6 kPa, and adding at 3 kPa. When foaming was observed when pressed, it was marked as x. The results are shown in Tables 3 and 4.
[0065]
Further, it was measured whether the filtered fluid stayed between the water collecting slit and the clogging member when the filtered fluid was introduced from one end face of each ceramic honeycomb filter for purification. When there was no retention, it was marked with ◯, and when there was retention, it was marked with ×. The results are shown in Tables 3 and 4.
[0066]
(Comparative Examples 1 and 2)
A predetermined position in the space from each end face of the predetermined cell to the water collecting slit penetrating the predetermined cell in the green filter molded body with the water collecting slit, in Comparative Example 1, 40 mm from the end face Up to the position (73% of the end face of the predetermined cell in the space from the end face of the predetermined cell to the water collecting slit), and in Comparative Example 2, the position of 35 mm from the end face (of the predetermined cell) Except that the clogging material is filled up to 64% from the end surface of the predetermined cell in the space from the end surface to the water collecting slit to obtain a clogging material-filled unfired filter molded body. A ceramic honeycomb filter was manufactured in the same manner as in the above example, and the same measurement was performed. Table 5 and Table 6 show the configuration of the plugging material and the results of each measurement.
[0067]
[Table 5]
Figure 0003868391
[0068]
[Table 6]
Figure 0003868391
[0069]
As shown in Table 3, Table 4, and Table 6, the ceramic honeycomb filters of Examples 1 to 17 have eyes in the space from each end surface of the predetermined cell to the water collecting slit that penetrates the predetermined cell. Since the filling material is filled, the filtration fluid does not stay in the above-described space, and the filtration fluid with high cleanliness can be supplied. Moreover, in the ceramic honeycomb filters of Examples 1 to 17, all of the excellent values were obtained in the ratio (%) of the closing defect of the plugging material, the dry processability, the crack generation rate (%), and the foaming inspection. Also, the pore diameter (μm) and the porosity (%) can be suitably used as a filter. In the ceramic honeycomb filters of Comparative Examples 1 and 2, since a liquid pool is formed between the water collecting slit and the clogging member, there is a retention of the filtration fluid, which causes contamination of the filtration fluid. Also, in the foaming inspection, foaming is observed when both are pressurized at 3 kPa, and when used as a filter, the fluid to be filtered passes through the foamed gap without being filtered through the filtration membrane. It would flow into the fluid and could not be used as a filter.
[0070]
【The invention's effect】
As described above, according to the present invention, a ceramic honeycomb filter capable of effectively preventing the fluid to be filtered and the filtered fluid from staying in the interior and supplying a filtered fluid with high cleanliness and a method for manufacturing the ceramic honeycomb filter are provided. can do.
[Brief description of the drawings]
FIG. 1 (a) and FIG. 1 (b) are explanatory views schematically showing an embodiment of a ceramic honeycomb filter of the present invention. FIG. 1 (a) is a diagram of a ceramic honeycomb filter. FIG. 1B is a cross-sectional view cut along a plane including the central axis.
FIGS. 2 (a) and 2 (b) are cross-sectional views showing, in order of steps, a process of filling a predetermined cell with a plugging material in an embodiment of a method for manufacturing a ceramic honeycomb filter of the present invention. FIG.
FIG. 3 is a cross-sectional view schematically showing a conventional ceramic honeycomb filter.
FIG. 4 is a cross-sectional view showing a process of filling a predetermined cell with a plugging material in a conventional method for manufacturing a ceramic honeycomb filter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ceramic honeycomb filter, 2 ... Partition wall, 3 ... Filtration membrane, 4 ... Membrane filtration cell, 5 ... Water collection cell, 6 ... Outer wall, 7 ... Water collection slit, 8 ... Clogging member, 9 ... Sealing part, 10 ... Unfired filter molded body with water collecting slit, 11 ... film, 12 ... predetermined cell, 13 ... clogging material (clogging material slurry), 14 ... container, 20 ... ceramic honeycomb filter, 21 ... flow passage (cell), 21a ... flow passage (collection cell), 21b ... flow passage (membrane filtration cell), 22 ... filtration membrane, 22a ... solid component, 22b ... moisture, 23 ... void portion (collection slit), 24 ... clogging member, 25: A portion where the filtered fluid stays (liquid pool), 26: a partition wall.

Claims (17)

セラミックスからなる多孔質の隔壁によって区画され、その内部に濾過膜が配設された、被濾過流体の流路となる複数の膜濾過セルと、前記隔壁によって区画されるとともに前記隔壁を挟んで所定の前記膜濾過セルに隣接し、前記被濾過流体が前記濾過膜によって濾過された濾過流体の流路となる複数の集水セルと、前記膜濾過セル及び前記集水セルを取り囲む外壁と、前記集水セルを通過した前記濾過流体を外部に流出するための、前記外壁の前記集水セルのそれぞれの両端部から所定の長さ離れた箇所で、前記外壁の一の部位から前記集水セルを貫通して前記外壁の他の部位まで連通する集水スリットと、前記集水セルのそれぞれの端面から前記集水スリットに達するまでの空間内に充填された多孔質の目詰部材とを備えてなることを特徴とするセラミックスハニカムフィルタ。A plurality of membrane filtration cells that serve as a flow path for the fluid to be filtered, which are partitioned by a porous partition wall made of ceramics, and in which a filtration membrane is disposed, and are defined by the partition and sandwiching the partition A plurality of water collection cells which are adjacent to the membrane filtration cell and serve as a flow path for the filtered fluid in which the fluid to be filtered is filtered by the filtration membrane, an outer wall surrounding the membrane filtration cell and the water collection cell, and The water collection cell from one part of the outer wall at a location a predetermined length away from both ends of the water collection cell of the outer wall for flowing out the filtered fluid that has passed through the water collection cell to the outside A water collecting slit that penetrates through to the other part of the outer wall, and a porous clogging member filled in a space from each end face of the water collecting cell to the water collecting slit. Specially Ceramic honeycomb filter to. 前記目詰部材が、複数の連通孔が形成された多孔質体から構成された請求項1に記載のセラミックスハニカムフィルタ。The ceramic honeycomb filter according to claim 1, wherein the clogging member is composed of a porous body in which a plurality of communication holes are formed. 前記目詰部材が、アルミナ、ムライト、セルベン、及びコージェライトからなる群から選ばれる少なくとも一つの材料を含む多孔質材料から形成された請求項1又は2に記載のセラミックスハニカムフィルタ。The ceramic honeycomb filter according to claim 1 or 2, wherein the clogging member is formed of a porous material containing at least one material selected from the group consisting of alumina, mullite, selben, and cordierite. 前記目詰部材に形成された複数の前記連通孔のそれぞれが、孔径が20μm以下の部位を有する請求項2又は3に記載のセラミックスハニカムフィルタ。4. The ceramic honeycomb filter according to claim 2, wherein each of the plurality of communication holes formed in the clogging member has a portion having a hole diameter of 20 μm or less. 前記目詰部材の気孔率が、25〜50%である請求項2〜4のいずれかに記載のセラミックスハニカムフィルタ。The ceramic honeycomb filter according to any one of claims 2 to 4, wherein the clogging member has a porosity of 25 to 50%. 前記目詰部材の熱膨張率が、前記隔壁の熱膨張率より低いか又は同一である請求項1〜5のいずれかに記載のセラミックスハニカムフィルタ。The ceramic honeycomb filter according to any one of claims 1 to 5, wherein a thermal expansion coefficient of the clogging member is lower than or equal to a thermal expansion coefficient of the partition wall. 複数の前記膜濾過セルの、前記被濾過流体の流れ方向に垂直な断面のそれぞれの形状が、円形、楕円形、長円形、三角形、四角形、五角形、六角形及び七角形からなる群から選ばれる少なくとも一つの形状である請求項1〜6のいずれかに記載のセラミックスハニカムフィルタ。Each of the plurality of membrane filtration cells having a cross-sectional shape perpendicular to the flow direction of the fluid to be filtered is selected from the group consisting of a circle, an ellipse, an oval, a triangle, a quadrangle, a pentagon, a hexagon, and a heptagon. The ceramic honeycomb filter according to any one of claims 1 to 6, wherein the ceramic honeycomb filter has at least one shape. 複数の前記集水セルの、前記濾過流体の流れ方向に垂直な断面のそれぞれの形状が、円形、楕円形、長円形、三角形、四角形、五角形、六角形及び七角形からなる群から選ばれる少なくとも一つの形状である請求項1〜7のいずれかに記載のセラミックスハニカムフィルタ。Each of the cross-sections perpendicular to the flow direction of the filtration fluid of the plurality of water collection cells has at least a shape selected from the group consisting of a circle, an ellipse, an oval, a triangle, a quadrangle, a pentagon, a hexagon, and a heptagon. The ceramic honeycomb filter according to any one of claims 1 to 7, wherein the ceramic honeycomb filter has one shape. 原材料を押出し成形して被濾過流体及び濾過流体の流路となるセルを有する所定形状の未焼成フィルタ成形体を得、
得られた前記未焼成フィルタ成形体に、その側面の一の部位から所定の前記セルを貫通して他の部位まで連通する集水スリットを形成して集水スリット付き未焼成フィルタ成形体を得、
得られた前記集水スリット付き未焼成フィルタ成形体に、所定の前記セルのそれぞれの端面から、所定の前記セルを貫通する前記集水スリットに達するまでの空間内に目詰材を充填して目詰材充填未焼成フィルタ成形体を得、
得られた前記目詰材充填未焼成フィルタ成形体を焼成して目詰材充填フィルタ成形体を得、
得られた前記目詰材充填フィルタ成形体を構成する所定の前記セルの内周面に濾過膜を成膜した後に焼成することを特徴とするセラミックスハニカムフィルタの製造方法。
Extruding the raw material to obtain an unfired filter molded body having a predetermined shape having cells to be filtered and flow paths for the filtered fluid,
In the obtained green filter molded body, a water collecting slit that penetrates the predetermined cell from one part of its side surface to the other part is formed to obtain a green filter molded body with a water collecting slit. ,
Filling the obtained unfired filter molded body with the water collecting slit into a space from each end face of the predetermined cell to the water collecting slit penetrating the predetermined cell. Obtaining an unfired filter molded body filled with a clogging material,
Firing the obtained filler-filled green filter molded body to obtain a plug-filled filter molded body,
A method for producing a ceramic honeycomb filter, comprising: forming a filter membrane on an inner peripheral surface of a predetermined cell constituting the obtained filter material-filled filter molded body and firing the filter membrane.
前記目詰材が、骨材粒子、無機結合材、バインダー、増粘剤及び保水剤を含んだものである請求項9に記載のセラミックスハニカムフィルタの製造方法。The method for manufacturing a ceramic honeycomb filter according to claim 9, wherein the plugging material includes aggregate particles, an inorganic binder, a binder, a thickener, and a water retention agent. 前記目詰材を構成する前記バインダーが、前記骨材粒子100質量部に対して、0.08〜0.12質量部含まれる請求項10に記載のセラミックスハニカムフィルタの製造方法。The method for manufacturing a ceramic honeycomb filter according to claim 10, wherein the binder constituting the plugging material is included in an amount of 0.08 to 0.12 parts by mass with respect to 100 parts by mass of the aggregate particles. 前記目詰材を構成する前記増粘剤が、前記骨材粒子100質量部に対して、0.04〜0.1質量部含まれる請求項10又は11に記載のセラミックスハニカムフィルタの製造方法。The method for manufacturing a ceramic honeycomb filter according to claim 10 or 11, wherein the thickening agent constituting the plugging material is contained in an amount of 0.04 to 0.1 parts by mass with respect to 100 parts by mass of the aggregate particles. 前記目詰材を構成する前記保水剤が、前記骨材粒子100質量部に対して、5〜6質量部含まれる請求項10〜12のいずれかに記載のセラミックスハニカムフィルタの製造方法。The method for producing a ceramic honeycomb filter according to any one of claims 10 to 12, wherein the water retention agent constituting the plugging material is contained in an amount of 5 to 6 parts by mass with respect to 100 parts by mass of the aggregate particles. 前記目詰材充填フィルタ成形体に前記濾過膜を成膜した後に、その両端面を所定の長さ切断する請求項9〜13のいずれかに記載のセラミックスハニカムフィルタの製造方法。The method for manufacturing a ceramic honeycomb filter according to any one of claims 9 to 13, wherein both end surfaces of the filter membrane are cut to a predetermined length after the filter membrane is formed on the plugging material-filled filter molded body. 前記目詰材を構成する前記骨材粒子が、アルミナ、ムライト、セルベン、及びコージェライトからなる群から選ばれる少なくとも一つの化合物である請求項10〜14のいずれかに記載のセラミックスハニカムフィルタの製造方法。The ceramic honeycomb filter production according to any one of claims 10 to 14, wherein the aggregate particles constituting the plugging material are at least one compound selected from the group consisting of alumina, mullite, selben, and cordierite. Method. 前記目詰材を構成する前記無機結合材が、アルミナ、シリカ、ジルコニア、ガラスフリット、長石、及びコージェライトからなる群から選ばれる少なくとも一つの化合物である請求項10〜15のいずれかに記載のセラミックスハニカムフィルタの製造方法。The inorganic binder constituting the plugging material is at least one compound selected from the group consisting of alumina, silica, zirconia, glass frit, feldspar, and cordierite. Manufacturing method of ceramic honeycomb filter. 前記目詰材を構成する前記バインダーが、ポリビニルアルコール、ポリエチレングリコール、澱粉、及び粘土からなる群から選ばれる少なくとも一つの化合物である請求項10〜16のいずれかに記載のセラミックスハニカムフィルタの製造方法。The method for producing a ceramic honeycomb filter according to any one of claims 10 to 16, wherein the binder constituting the plugging material is at least one compound selected from the group consisting of polyvinyl alcohol, polyethylene glycol, starch, and clay. .
JP2003106712A 2003-04-10 2003-04-10 Ceramic honeycomb filter and manufacturing method thereof Expired - Lifetime JP3868391B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003106712A JP3868391B2 (en) 2003-04-10 2003-04-10 Ceramic honeycomb filter and manufacturing method thereof
PCT/JP2004/001763 WO2004091756A1 (en) 2003-04-10 2004-02-18 Ceramics honeycomb filter and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106712A JP3868391B2 (en) 2003-04-10 2003-04-10 Ceramic honeycomb filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004305993A JP2004305993A (en) 2004-11-04
JP3868391B2 true JP3868391B2 (en) 2007-01-17

Family

ID=33295846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106712A Expired - Lifetime JP3868391B2 (en) 2003-04-10 2003-04-10 Ceramic honeycomb filter and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP3868391B2 (en)
WO (1) WO2004091756A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465648B2 (en) 2009-05-18 2013-06-18 Ngk Insulators, Ltd. Ceramic pervaporation membrane and ceramic vapor-permeable membrane

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223340B2 (en) * 2006-01-27 2013-06-26 日立金属株式会社 Manufacturing method of ceramic honeycomb filter
JP5597579B2 (en) * 2011-02-28 2014-10-01 株式会社クボタ Membrane element, membrane module, and method for manufacturing membrane element
CN102172477B (en) * 2011-03-24 2013-04-17 景德镇陶瓷学院 Combined honeycomb ceramic membrane filtering element
JP6308943B2 (en) * 2011-09-27 2018-04-11 ダウ グローバル テクノロジーズ エルエルシー Cement and skin material for ceramic honeycomb structures
CN103874536B (en) 2011-10-11 2016-12-21 日本碍子株式会社 Ceramic filter
EP2832429B1 (en) * 2012-03-30 2019-02-20 NGK Insulators, Ltd. Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP6102114B2 (en) * 2012-07-31 2017-03-29 株式会社明電舎 Monolith type ceramic filter substrate and manufacturing method thereof
CN103657422B (en) * 2012-09-14 2016-05-11 浙江瑞普环境技术有限公司 A kind of film core and consisting of membrane module
CN104994939B (en) * 2013-02-01 2017-03-08 日本碍子株式会社 The using method of ceramic filter and filter for installation
CN103285736B (en) * 2013-06-20 2015-03-18 景德镇陶瓷学院 Preparation method of inorganic membrane element having high membrane area/volume ratio, and preparation method of membrane assembly of inorganic membrane element
JP6279891B2 (en) * 2013-11-27 2018-02-14 日本特殊陶業株式会社 Filter structure and manufacturing method thereof
WO2015146481A1 (en) * 2014-03-28 2015-10-01 日本碍子株式会社 Monolithic substrate, monolithic separation membrane structure, and method for producing monolithic substrate
FR3045398A1 (en) * 2015-12-18 2017-06-23 Saint-Gobain Centre De Rech Et D'Etudes Europeen MONOLITHIC FILTER
JP6687438B2 (en) * 2016-03-25 2020-04-22 日本碍子株式会社 Honeycomb filter
AU2022440526A1 (en) * 2022-02-08 2024-09-05 Ngk Insulators, Ltd. Mixed Gas Separation Apparatus, Mixed gas separation Method, and Membrane Reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501534A (en) * 1967-12-21 1989-06-01 セラメム コーポレーション cross flow filtration device
US4781831A (en) * 1986-12-19 1988-11-01 Goldsmith Robert L Cross-flow filtration device with filtrate flow conduits and method of forming same
JP3067740B2 (en) * 1997-08-20 2000-07-24 住友電気工業株式会社 Ceramic filter module
JP2000153117A (en) * 1998-11-18 2000-06-06 Ngk Insulators Ltd Ceramic filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465648B2 (en) 2009-05-18 2013-06-18 Ngk Insulators, Ltd. Ceramic pervaporation membrane and ceramic vapor-permeable membrane
EP2433703A4 (en) * 2009-05-18 2016-05-25 Ngk Insulators Ltd Ceramic pervaporation membrane and ceramic vapor-permeable membrane

Also Published As

Publication number Publication date
WO2004091756A1 (en) 2004-10-28
JP2004305993A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3868391B2 (en) Ceramic honeycomb filter and manufacturing method thereof
WO2009101682A1 (en) Honeycomb structure, exhaust gas purification apparatus and process for producing honeycomb structure
US11280237B2 (en) Honeycomb filter
JP5599747B2 (en) Honeycomb structure and manufacturing method thereof
JP2003269132A (en) Exhaust emission control filter
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
WO2007097000A1 (en) End-sealing device for honeycomb formed body, method of placing sealing-material paste, and method of producing honeycomb structure body
US10669906B2 (en) Honeycomb filter
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
JP5523871B2 (en) Manufacturing method of honeycomb filter
JP2012200649A (en) Honeycomb filter and method of manufacturing the same
JP2010221162A (en) Method of producing device for cleaning exhaust, and device for cleaning exhaust
JP4982776B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
JP2017159197A (en) Honeycomb structure
JP5234970B2 (en) Honeycomb structure, exhaust gas purification device, and method for manufacturing honeycomb structure
JP7097294B2 (en) Monolith type separation membrane structure
JP2010221163A (en) Device for cleaning exhaust
JP4358538B2 (en) Ceramic filter
JP5008407B2 (en) Sealing device for honeycomb molded body, sealing device for honeycomb fired body, filling method of sealing material paste, and manufacturing method of honeycomb structure
JP2000342920A (en) Ceramic filter
JP2004306020A (en) Ceramic filter
JP2021133283A (en) Honeycomb filter
EP1604718A1 (en) Ceramic filter
JP2011224538A (en) Honeycomb filter and apparatus for cleaning exhaust gas
JP4519376B2 (en) Method for producing porous filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Ref document number: 3868391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

EXPY Cancellation because of completion of term