JP2005118771A - Cylindrical ceramic porous body, method for manufacturing the same, and ceramic filter using the same - Google Patents

Cylindrical ceramic porous body, method for manufacturing the same, and ceramic filter using the same Download PDF

Info

Publication number
JP2005118771A
JP2005118771A JP2004243909A JP2004243909A JP2005118771A JP 2005118771 A JP2005118771 A JP 2005118771A JP 2004243909 A JP2004243909 A JP 2004243909A JP 2004243909 A JP2004243909 A JP 2004243909A JP 2005118771 A JP2005118771 A JP 2005118771A
Authority
JP
Japan
Prior art keywords
separation membrane
porous body
ceramic
cylindrical
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004243909A
Other languages
Japanese (ja)
Other versions
JP4514560B2 (en
Inventor
Reisuke Tanihara
令祐 谷原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004243909A priority Critical patent/JP4514560B2/en
Publication of JP2005118771A publication Critical patent/JP2005118771A/en
Application granted granted Critical
Publication of JP4514560B2 publication Critical patent/JP4514560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a ceramic porous body which is provided with a highly reliable separation membrane and has high separability and permeability and strength. <P>SOLUTION: This ceramic porous body has 1.5-2.5 mm thickness and ≥40 MPa flexural strength and is provided with the porous separation membrane having 0.04-0.3 μm average pore size and 30-50% porosity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セラミック多孔質体とこれを用いたセラミックフィルター、さらにはその製造方法に関するものである。   The present invention relates to a ceramic porous body, a ceramic filter using the same, and a manufacturing method thereof.

濾過フィルター等に用いられるセラミック多孔質体は、同様の用途に使用される有機高分子膜と比較して、耐熱性、耐食性、耐久性、物理的強度に優れている一方で、フィルターのろ過性能で重要な特性である、分離性能と透過性能を単層で同時に満足させる孔径制御が必要となる。   Ceramic porous bodies used for filtration filters, etc. are superior in heat resistance, corrosion resistance, durability and physical strength compared to organic polymer membranes used for similar applications, while filter filtration performance Therefore, it is necessary to control the pore size so that the separation performance and the permeation performance, which are important characteristics, can be satisfied simultaneously in a single layer.

その孔径制御の技術としては、セラミック原料に気孔形成剤を添加し、焼成時に焼失させて気孔を形成することにより気孔率および気孔径を制御した、均質でかさのある多孔質セラミック材料が開示されている(特許文献1)。しかしながら、特許文献1に示される多孔質セラミック材料では、気孔形成剤により気孔率および気孔径が制御されているため、焼成の段階で気孔形成剤を焼失させるために、通常より脱バインダー時間を多くとる必要があり、さらには、その条件が適切でなければクラック等の欠陥につながる問題を有している。また、濾過対象となる液体や気体の圧力損失の影響が大きいため、透過性能を優先させると、必要な分離性能及び強度が得られないという問題を有している。   As a technique for controlling the pore diameter, a porous ceramic material having a uniform and bulky structure is disclosed in which the porosity and the pore diameter are controlled by adding a pore-forming agent to the ceramic raw material, and then burning away during firing to form pores. (Patent Document 1). However, in the porous ceramic material disclosed in Patent Document 1, since the porosity and the pore diameter are controlled by the pore forming agent, the debinding time is longer than usual in order to burn out the pore forming agent at the firing stage. In addition, there is a problem that leads to defects such as cracks if the conditions are not appropriate. Moreover, since the influence of the pressure loss of the liquid or gas to be filtered is large, there is a problem that the required separation performance and strength cannot be obtained if priority is given to the permeation performance.

そのため、分離性能、透過性能、及び強度を満足させる手段として、比較的細孔径の大きい多孔体からなる基材の外周面などに、分離層として更に細孔径の小さい多孔質薄膜を複数層形成する方法が一般に用いられている。そのような複数層構造の膜技術は多数開示されているが、多孔質支持体の一側面に無機物粒子を含む懸濁液をコーティングして分離層を形成し、乾燥、焼成する無機多孔質膜の製造方法が開示されている(特許文献2)。   Therefore, as a means for satisfying separation performance, permeation performance, and strength, a plurality of porous thin films having smaller pore diameters are formed as separation layers on the outer peripheral surface of a substrate made of a porous body having a relatively large pore diameter. The method is commonly used. A number of such multi-layer membrane technologies have been disclosed, but an inorganic porous membrane is formed by coating a suspension containing inorganic particles on one side of a porous support to form a separation layer, and drying and firing. Is disclosed (Patent Document 2).

また、フィルターの清掃は逆流洗浄によることが多いが、一部には水蒸気洗浄や加熱洗浄による場合もあり、前記の支持体の一側面に懸濁液をコーティングすることにより分離層を形成する方法は、上記のようなヒートショックがかかるような環境下におかれた場合に上記支持体と分離層の界面の剥離やクラックが生じやすいという問題があり、その改善策として、たとえば、図4(a)に示すように金型111を用いた二層押出成形方法が開示されている(特許文献3)。   In addition, the filter is often cleaned by backflow cleaning, but in some cases, it may be by steam cleaning or heat cleaning, and a method of forming a separation layer by coating a suspension on one side of the support. However, there is a problem that peeling or cracking at the interface between the support and the separation layer is likely to occur when placed in an environment where heat shock is applied as described above. As an improvement measure, for example, FIG. As shown in a), a two-layer extrusion method using a mold 111 is disclosed (Patent Document 3).

これによると、電極用の杯土115とセパレータ用の杯土116をプランジャー117により口金112から押出しすることにより、図4(b)に示すようなグリーン積層成形体118を作製し、得られた上記グリーン積層成形体118を焼成することにより積層焼結体を作製することが示されている。   According to this, a green laminated molded body 118 as shown in FIG. 4B is obtained by extruding the electrode filling 115 and the separator filling 116 from the base 112 by the plunger 117, and obtained. Further, it is shown that a laminated sintered body is produced by firing the green laminated molded body 118.

また、支持体の細孔径が1〜50μm、分離膜の細孔径が0.01〜10μmの二層多孔質体も開示されていて、円板、シート、管、押し出された柱状物の形が示され、上記多孔質体をフィルターに用いることが好適であるとされている(特許文献4)。
特開平11−322465号公報 特開平7−163848号公報 特開平9−259905号公報 特開平2−95423号公報
In addition, a two-layered porous material having a pore size of 1 to 50 μm of the support and a pore size of 0.01 to 10 μm of the separation membrane is also disclosed, and the shape of a disk, a sheet, a tube, and an extruded columnar material is disclosed. It is shown that it is preferable to use the porous body for a filter (Patent Document 4).
JP 11-322465 A JP-A-7-163848 Japanese Patent Laid-Open No. 9-259905 JP-A-2-95423

しかしながら、上記特許文献2のものは、多孔質支持体上に形成される分離層は薄膜であるために、クラックやピンホール等の致命的な欠陥が発生しやすいという問題を秘めている。また、分離性能を満足するためには、懸濁液に含まれる無機物粒子を微細なものにする必要があることから、分離層の気孔率が低く、透過性能が低くなるという課題があった。   However, the thing of the said patent document 2 has the problem that a fatal defect, such as a crack and a pinhole, is easy to generate | occur | produce since the separation layer formed on a porous support body is a thin film. Further, in order to satisfy the separation performance, it is necessary to make the inorganic particles contained in the suspension finer, so that there is a problem that the porosity of the separation layer is low and the permeation performance is lowered.

また、特許文献3に示す押出成形により作製される積層体は板状体であり、グリーン積層成形体118を形成する電極用の杯土115とセパレータ用の杯土116をひとつの口金112に連続的に供給することにより、上記積層体118を押出成形し該積層体118を一体焼結することにより積層焼結体を作製する製造方法である。また、積層体118の曲がりを防止し、かつ、双方の成形体界面の位置がずれるのを防止するために、電極用の杯土115とセパレータ用の杯土116の硬度を10〜14とし、かつ、その差を2以下とすることも開示されているが、これらの方法によれば、各層同士を密着させるために界面に接合材層を設ける、或いは成形後に加圧するといった工程が必要となる。このため、積層体形状は板状に限定され、複数層の筒状セラミック多孔質体への適用は困難であった。   Further, the laminate produced by extrusion molding shown in Patent Document 3 is a plate-like body, and the electrode fill soil 115 and the separator fill soil 116 that form the green laminate molded body 118 are continuously connected to one base 112. The laminated body 118 is extruded and the laminated body 118 is integrally sintered to produce a laminated sintered body. Further, in order to prevent the bending of the laminated body 118 and to prevent the positions of both molded body interfaces from deviating, the hardness of the electrode filling earth 115 and the separator filling earth 116 is set to 10 to 14, And although it is also disclosed that the difference is 2 or less, according to these methods, a step of providing a bonding material layer at the interface or pressurizing after molding is necessary in order to bring the layers into close contact with each other. . For this reason, the laminate shape is limited to a plate shape, and it has been difficult to apply to a multi-layered cylindrical ceramic porous body.

そして、特許文献4では、筒状体を含む二層多孔質体の担持体(支持体)の細孔径を1〜50μm、これに接合する無機膜(分離膜)の細孔径を0.01〜10μmとすることが記載されているが、上記無機膜の細孔径範囲を達成するには平均粒径0.1〜5μm程度の原料粉末を使用しなければならず、担持体細孔内に無機膜粒子が浸入し、透過性能が著しく低下するという課題があった。また、細孔径20μm以上の担持体を使用すると、フィルター用途としての充分な強度が得られず、さらに無機膜の均一な膜付けが難しいことから、膜に欠陥が生じやすいという課題があった。また、上記特許文献4では、担持体、無機膜の細孔径の適切な範囲限定の理由ならびに押出成形による製造方法も明示されておらず、利用しうるものではなかった。   And in patent document 4, the pore diameter of the support body (support body) of the two-layer porous body containing a cylindrical body is 1-50 micrometers, and the pore diameter of the inorganic membrane (separation membrane) joined to this is 0.01- Although it is described that it is 10 μm, in order to achieve the pore size range of the inorganic membrane, a raw material powder having an average particle size of about 0.1 to 5 μm must be used, and inorganic particles are contained in the support pores. There was a problem that the membrane particles permeated and the permeation performance was remarkably lowered. Further, when a carrier having a pore diameter of 20 μm or more is used, there is a problem that a sufficient strength as a filter application cannot be obtained and a uniform film formation of an inorganic film is difficult, so that the film is likely to be defective. Moreover, in the said patent document 4, the reason for limitation of the suitable range of the pore diameter of a support body and an inorganic membrane and the manufacturing method by extrusion molding are not specified, and it was not usable.

そこで、本発明では、信頼性の高い厚膜の分離層を有し、かつ高い分離性能と透過性能、高強度という特徴を持った、高性能の筒状セラミック多孔質体及びこれを用いたセラミックフィルターを提供することを目的とする。   Therefore, in the present invention, a high-performance cylindrical ceramic porous body having a highly reliable separation layer of a thick film and having characteristics of high separation performance, permeation performance, and high strength, and a ceramic using the same The purpose is to provide a filter.

本発明者は、上記課題に対し、検討を重ねた結果、特に支持体および分離膜として使用する原料の粒度及び粒度分布、分離膜及び多孔質体全体の厚み、およびその成型方法、焼成温度などが、これら特性に大きく寄与することを見いだし、これら特定の条件を満足するように制御することによって、セラミック多孔質体としての分離性能、透過性能,強度が達成されることを見いだし、本発明に至った。   As a result of repeated investigations on the above problems, the present inventor, in particular, the particle size and particle size distribution of raw materials used as a support and a separation membrane, the thickness of the separation membrane and the entire porous body, the molding method, the firing temperature, etc. However, it has been found that the separation performance, permeation performance, and strength as a ceramic porous body are achieved by controlling to satisfy these specific conditions. It came.

本発明の筒状セラミック多孔質体は、筒状をした支持体の表面に分離膜を備えてなる筒状セラミック多孔質体であって、上記分離膜は、膜厚0.05mm〜0.5mm、平均細孔径0.04μm〜0.3μm、最大細孔径0.4μm以下、気孔率30〜50%の一層或いは複数層の無機多孔質分離膜からなることを特徴とする。   The cylindrical ceramic porous body of the present invention is a cylindrical ceramic porous body comprising a separation membrane on the surface of a cylindrical support, and the separation membrane has a thickness of 0.05 mm to 0.5 mm. It is characterized by comprising one or more inorganic porous separation membranes having an average pore size of 0.04 μm to 0.3 μm, a maximum pore size of 0.4 μm or less, and a porosity of 30 to 50%.

また、上記筒状セラミック多孔質体は厚みが1.5〜2.5mm、曲げ強度が40MPa以上、500KPa加圧時の空気透過量が1.0L/分/cm2以上であることを特徴とする。 Further, the cylindrical ceramic porous body has a thickness of 1.5 to 2.5 mm, a bending strength of 40 MPa or more, and an air permeation amount at a pressure of 500 KPa of 1.0 L / min / cm 2 or more. To do.

本発明の筒状セラミック多孔質体の製造方法は、該筒状セラミック多孔質体が筒状をした支持体の表面に分離膜を備えてなり、上記支持体は平均粒径が3.0μm〜9.0μmのセラミックス粉末からなる原料を用い、上記分離膜は平均粒径が0.4μm〜2.5μmのセラミックス粉末からなる原料を用い、両原料を押出成形にて同時に一体成形することにより筒状セラミック成形体を作製し、該筒状セミック成形体を1200℃〜1600℃の温度で焼成することを特徴とする。   In the method for producing a cylindrical ceramic porous body of the present invention, the cylindrical ceramic porous body comprises a separation membrane on the surface of a cylindrical support, and the average particle diameter of the support is 3.0 μm to A raw material made of 9.0 μm ceramic powder was used, and the separation membrane was made of ceramic powder having an average particle size of 0.4 μm to 2.5 μm. A cylindrical ceramic molded body is prepared, and the cylindrical ceramic molded body is fired at a temperature of 1200 ° C to 1600 ° C.

さらに、前記分離膜を成すセラミックス粉末は、粒度分布の小径側から累積10%、累積90%に相当する粒径をそれぞれD10、D90としたとき、D90/D10比が3以下であることを特徴とする。   Further, the ceramic powder constituting the separation membrane has a D90 / D10 ratio of 3 or less, where D10 and D90 are the particle sizes corresponding to 10% cumulative and 90% cumulative from the small diameter side of the particle size distribution, respectively. And

さらに、前記押出成形は、支持体となるセラミック粉末の杯土の吐出量をV1、分離膜となるセラミック粉末の杯土の吐出量をV2としたとき、V1/V2比が1.5〜40の範囲で成形することを特徴とする。   Further, in the extrusion molding, when the discharge amount of the ceramic powder as the support is V1, and the discharge amount of the ceramic powder as the separation membrane is V2, the V1 / V2 ratio is 1.5-40. It is characterized by being molded in the range of

そして、本発明のセラミックフィルターは前記セラミック多孔質体を用いたことを特徴とする。   The ceramic filter of the present invention is characterized by using the ceramic porous body.

本発明の筒状セラミック多孔質体は、筒状をした支持体の表面に備えた分離膜が0.05mm〜0.5mmと厚膜であることからピンホールやクラックといった膜欠陥に対する信頼性が高く、長期間に亘って安定した使用が可能となる。また、厚い分離膜を有しながらも、上記のような構成にすることによって、フィルターとして優れた分離性能と透過性能を有する。   The cylindrical ceramic porous body of the present invention is reliable against membrane defects such as pinholes and cracks because the separation membrane provided on the surface of the cylindrical support is 0.05 mm to 0.5 mm thick. It can be used stably for a long period of time. Moreover, although it has a thick separation membrane, it has the separation performance and permeation performance which were excellent as a filter by setting it as the above structures.

また、本発明の多孔質体の製造方法によれば、筒状をした支持体の表面に分離膜を備えてなる筒状セラミック多孔質体を、押出成形により同時に一体成形し焼成することから、膜付けの工程を追加する必要がなく工数の削減につながる。また、分離膜、支持体ともに坏土で供給されるため、分離膜粒子が支持体細孔内に入り込むといった問題を防止できる。さらに、支持体となるセラミック粉末の吐出量V1と分離膜となるセラミック粉末の吐出量V2の比V1/V2を1.5〜40としたことから、高性能で信頼性の高い膜を得ることができる。すなわち、V1/V2を1.5以上としたことから、過度の厚膜による圧力損失の増大、透過性能の低下を防止することができ、また上記比V1/V2を40以下としたことから、分離膜が支持体にひきずられて形成されることによる膜の破れやクラックといった欠陥の発生を防止することができる。   Further, according to the method for producing a porous body of the present invention, a cylindrical ceramic porous body comprising a separation membrane on the surface of a cylindrical support is integrally molded and fired simultaneously by extrusion, There is no need to add a filming process, leading to a reduction in man-hours. Moreover, since both the separation membrane and the support are supplied as clay, the problem that the separation membrane particles enter the pores of the support can be prevented. Further, since the ratio V1 / V2 of the discharge amount V1 of the ceramic powder serving as the support and the discharge amount V2 of the ceramic powder serving as the separation membrane is set to 1.5 to 40, a high performance and highly reliable membrane can be obtained. Can do. That is, since V1 / V2 was set to 1.5 or more, an increase in pressure loss due to an excessively thick film and a decrease in permeation performance can be prevented, and the ratio V1 / V2 was set to 40 or less. Occurrence of defects such as membrane breakage and cracks due to the separation membrane being formed on the support can be prevented.

以下、本発明による筒状セラミック多孔質体について、詳細に説明する。   Hereinafter, the cylindrical ceramic porous body according to the present invention will be described in detail.

図1は本発明の筒状セラミック多孔質体1の一例を示す斜視図である。   FIG. 1 is a perspective view showing an example of a cylindrical ceramic porous body 1 of the present invention.

本発明の筒状セラミック多孔質体1は、筒状をしたセラミック多孔質支持体2の表面に厚みt1の無機多孔質分離膜(以下、単に分離膜と称す)3を担持(積層)し、その合計の厚みがtからなり、前記分離膜3側から前記支持体2側に向かって流体を透過することで濾過する事が出来るようにしてある。   The cylindrical ceramic porous body 1 of the present invention carries (stacks) an inorganic porous separation membrane (hereinafter simply referred to as a separation membrane) 3 having a thickness t1 on the surface of a cylindrical ceramic porous support 2; The total thickness is t, and filtration is possible by allowing fluid to permeate from the separation membrane 3 side toward the support 2 side.

そして、本発明の特徴として、筒状セラミック多孔質体1の分離膜3は、厚みt1が0.05mm〜0.5mm、平均細孔径0.04μm〜0.3μm、最大細孔径0.4μm以下、気率30〜50%の一層或いは複数層の無機多孔質からなるものである。   As a feature of the present invention, the separation membrane 3 of the cylindrical ceramic porous body 1 has a thickness t1 of 0.05 mm to 0.5 mm, an average pore diameter of 0.04 μm to 0.3 μm, and a maximum pore diameter of 0.4 μm or less. The layer is composed of a single layer or a plurality of layers of an inorganic porous material having a porosity of 30 to 50%.

ここで、上記分離膜3の厚みt1を0.05mm〜0.5mmとしたのは、厚みt1が0.05mm未満であれば膜厚が薄いため、破れやクラックなどの欠陥を生じ、信頼性を低下させるためであり、0.5mmを越える場合には、圧力損失が大きくなり、セラミック多孔質体全体としての透過性能が低下してしまうからである。   Here, the reason why the thickness t1 of the separation membrane 3 is set to 0.05 mm to 0.5 mm is that if the thickness t1 is less than 0.05 mm, the film thickness is thin, which causes defects such as tears and cracks, and reliability. This is because if the thickness exceeds 0.5 mm, the pressure loss increases, and the permeation performance of the entire ceramic porous body decreases.

また、分離膜3の平均細孔径を0.04μm〜0.3μmとしたのは、0.04μm未満の場合には、細孔径が小さすぎて透過性能が低下するので好ましくないためであり、平均細孔径が0.3μmを上回る場合には、分離性能が低下してしまうためである。また、このようにすることで、例えばウィルス、粘土類、細菌類そして藻類、に対する優れた分離性能を発揮することができる。   Moreover, the reason why the average pore diameter of the separation membrane 3 is set to 0.04 μm to 0.3 μm is that, when the average pore diameter is less than 0.04 μm, the pore diameter is too small and the permeation performance is deteriorated. This is because when the pore diameter exceeds 0.3 μm, the separation performance is degraded. Moreover, the separation performance with respect to viruses, clays, bacteria, and algae can be exhibited by doing in this way.

そして、最大細孔径を0.4μm以下にすることで、特に産業用水・廃水処理用に本発明のセラミック多孔質体をセラミックフィルターとして用いる場合において、優れた分離性能を発揮し、大きさが約0.5μmのシュードモナス(細菌の一種)などを適確に除去することが可能となる。   And by making the maximum pore diameter 0.4 μm or less, particularly when the ceramic porous body of the present invention is used as a ceramic filter for industrial water / wastewater treatment, it exhibits excellent separation performance and has a size of about 0.5 μm pseudomonas (a kind of bacteria) and the like can be accurately removed.

さらに、気孔率を30%〜50%としたのは、30%未満の場合には、透過性能が低下するので好ましくないためであり、50%を越える場合には、強度が低下し、欠陥につながるからである。   Furthermore, the porosity is set to 30% to 50% because it is not preferable because the permeation performance is lowered when the porosity is less than 30%, and when it exceeds 50%, the strength is lowered and defects are caused. Because it is connected.

また、上記筒状セラミック多孔質体1は厚みが1.5〜2.5mm,曲げ強度が40MPa以上,500KPa加圧時の空気透過量が1.0L/分/cm2以上であることを特徴とする。 The cylindrical ceramic porous body 1 has a thickness of 1.5 to 2.5 mm, a flexural strength of 40 MPa or more, and an air permeation amount of 1.0 L / min / cm 2 or more when pressurized at 500 KPa. And

本発明において、筒状セラミック多孔質体1の厚みtを1.5mm〜2.5mmとしたのは、上記厚みtが1.5mm未満の場合には、多孔質体の透過性能が確保できる焼成温度で焼成すると、厚みが薄いために多孔質体の強度が満足できず好ましくないためであり、また2.5mmを超える場合には、多孔質体の分離性能が確保できる焼成温度で焼成すると焼結が進み、厚みによる圧力損失が大きくなることから、多孔質体全体としての透過性能が低下してしまうため好ましくないためである。   In the present invention, the thickness t of the cylindrical ceramic porous body 1 is set to 1.5 mm to 2.5 mm. When the thickness t is less than 1.5 mm, the porous body can be ensured in permeation performance. This is because if the thickness is too small, the strength of the porous body cannot be satisfied because the thickness is thin, and if the thickness exceeds 2.5 mm, the firing temperature is sufficient to ensure the separation performance of the porous body. This is because the pressure loss due to the thickness is increased and the pressure loss due to the thickness is increased, which is not preferable because the permeation performance of the entire porous body is deteriorated.

そして、前記筒状セラミック多孔質体1の曲げ強度を40MPa以上としたのは、40MPa未満では、セラミックフィルターの特徴である耐久性や物理的強度が活かせないためである。   The reason why the bending strength of the cylindrical ceramic porous body 1 is 40 MPa or more is that if it is less than 40 MPa, the durability and physical strength, which are the characteristics of the ceramic filter, cannot be utilized.

このような前記の要素を制御することにより、500KPaの加圧時の空気透過量が1.0L/分/cm以上とすることができるが、これによって、分離性能・強度を有した上で十分な濾過処理能力を確保することができる。 By controlling the above-mentioned elements, the air permeation amount at the time of pressurization of 500 KPa can be set to 1.0 L / min / cm 2 or more. Sufficient filtration capacity can be secured.

次に、本発明の別の実施形態を図2に示す。図2(a)は、筒状をしたセラミック多孔質支持体2の一方の側面に分離膜3を備えた断面図、図2(b)は、筒状をしたセラミック多孔質支持体2の一方の側面に分離膜31,32の二層を備えた断面図、図2(c)は、筒状をしたセラミック多孔質支持体2の両側面に分離膜31,32を備えた断面図である。   Next, another embodiment of the present invention is shown in FIG. 2A is a cross-sectional view including a separation membrane 3 on one side of a cylindrical ceramic porous support 2, and FIG. 2B is one of the cylindrical ceramic porous support 2. FIG. 2C is a cross-sectional view including the separation membranes 31 and 32 on both side surfaces of the cylindrical ceramic porous support 2. .

このように、本発明の筒状セラミック多孔質体1は、図2(a)に示すように支持体と分離膜の二層構造とすることにより前述した優れた分離性能と透過性能を奉することができ、さらに膜厚のバラツキが問題になる場合は、図2(b)(c)に示すように分離膜31,32を二層以上の複数層構造にすることで、さらに濾過性能のバラツキを低減できる。また、本発明の筒状セラミック多孔質体1の形状は、(以下不図示)楕円を含む略円筒状、多角形筒状のいずれであってもよい。   As described above, the cylindrical ceramic porous body 1 of the present invention has the above-described excellent separation performance and permeation performance by adopting a two-layer structure of the support and the separation membrane as shown in FIG. If the variation in film thickness becomes a problem, the separation membranes 31 and 32 can be made into a multi-layer structure of two or more layers as shown in FIGS. Variations can be reduced. Further, the shape of the cylindrical ceramic porous body 1 of the present invention may be either a substantially cylindrical shape including an ellipse (hereinafter not shown) or a polygonal cylindrical shape.

また、前述の筒状セラミック多孔質体1を用いてセラミックフィルターとすることによって、上水用フィルターのみならず、産業用水・廃水処理用のフィルターとして、強度に優れ、透過性能や分離性能に優れたセラミックフィルターとして用いることができる。   Moreover, by using the above-mentioned cylindrical ceramic porous body 1 as a ceramic filter, it is excellent in strength, permeability and separation performance as a filter for industrial water and wastewater treatment as well as a filter for water supply. It can be used as a ceramic filter.

次に、本発明の製造方法を説明する。   Next, the manufacturing method of this invention is demonstrated.

本発明のセラミック多孔質体の製造方法は、図3(a)の断面図に示すように、ともに筒状の外芯13,内芯14、口金12からなる金型11に、支持体2用のセラミック粉末の坏土15、分離膜3用のセラミック粉末の杯土16を投入し、両原料を押出成形にて同時に一体成形することにより複数層の筒状成形体を得る。ここで、坏土15、16が一体となる分離膜吐出口19は口金部12に設け、口金12の長さLは10〜15mmのものを使用する。このように分離膜坏土16を口金部12まで単独で供給し、口金部12にて支持体坏土15と一体化させることによって、金型11の内面と分離膜3の杯土16との摩擦を低減することができ、摩擦による分離膜3の剥離を防止することができる。さらに、分離膜の杯土16の吐出口19は円周上に均等間隔で複数設けることで、分離膜3の厚みt1の円周方向の厚みt1のバラツキを抑止している。   As shown in the cross-sectional view of FIG. 3 (a), the method for producing a ceramic porous body according to the present invention is applied to a mold 11 consisting of a cylindrical outer core 13, an inner core 14, and a base 12 for supporting body 2. The ceramic powder kneaded material 15 and the ceramic powder kneaded material 16 for the separation membrane 3 are charged, and both raw materials are simultaneously integrally formed by extrusion to obtain a multi-layered cylindrical molded body. Here, the separation membrane discharge port 19 in which the clays 15 and 16 are integrated is provided in the base part 12, and the length L of the base 12 is 10 to 15 mm. In this way, the separation membrane clay 16 is supplied alone to the base part 12 and is integrated with the support body clay 15 at the base part 12, whereby the inner surface of the mold 11 and the filling soil 16 of the separation membrane 3 are separated. Friction can be reduced, and separation of the separation membrane 3 due to friction can be prevented. Further, a plurality of discharge ports 19 of the separation membrane filling 16 are provided at equal intervals on the circumference, thereby suppressing variations in the thickness t1 of the separation membrane 3 in the circumferential direction.

このようにして得られた筒状成形体を1200℃〜1600℃の温度で焼成することにより前記筒状セラミック多孔質体1を作製する。   The cylindrical ceramic porous body 1 is produced by firing the cylindrical molded body thus obtained at a temperature of 1200 ° C to 1600 ° C.

ここで、図3(a)は支持体2、分離膜3の筒状二層構造のセラミック多孔質体1を作製する金型11の一例を示したが、図2(b)(c)に示す二層以上の複数層の構造でも同様に製造することができる。すなわち、図3(b)に示すように、金型11の外芯部13に、分離膜31を形成する坏土22、分離膜32を形成する坏土23の各流路を設け、坏土22の吐出口19の前方に坏土23の吐出口25を配置すればよい。   Here, FIG. 3A shows an example of a mold 11 for producing the ceramic porous body 1 having a cylindrical two-layer structure of the support 2 and the separation membrane 3, and FIG. 2B and FIG. The structure of two or more layers shown can also be manufactured in the same manner. That is, as shown in FIG. 3 (b), the outer core portion 13 of the mold 11 is provided with the respective channels of the clay 22 for forming the separation membrane 31 and the clay 23 for forming the separation membrane 32. What is necessary is just to arrange the discharge port 25 of the clay 23 in front of the 22 discharge ports 19.

このように、筒状セラミック多孔質体1を押出成形にて一体成形するようにしたことから、別途の膜付け工程を必要とせず、また、分離膜3、支持体2ともに坏土で供給されるため、膜粒子が支持体細孔内に入り込むといった問題を防止できる。   Thus, since the cylindrical ceramic porous body 1 is integrally formed by extrusion molding, no separate membrane attaching process is required, and both the separation membrane 3 and the support 2 are supplied as clay. Therefore, it is possible to prevent a problem that the membrane particles enter the pores of the support.

前記筒状セラミック多孔質支持体2を形成するセラミック粉末の坏土15は、平均粒径が3.0μm〜9.0μmのセラミックス粉末からなる原料を用い、前記分離膜3を形成するセラミック粉末の坏土16は、平均粒径が0.4μm〜2.5μm、粒度分布の小径側から累積10%、累積90%に相当する粒径をそれぞれD10、D90としたとき、D90/D10比が3以下であるセラミック粉末からなる原料を用いる。   The ceramic powder clay 15 forming the cylindrical ceramic porous support 2 is made of a ceramic powder having an average particle size of 3.0 μm to 9.0 μm, and the ceramic powder forming the separation membrane 3 is made of a ceramic powder. The clay 16 has an average particle size of 0.4 μm to 2.5 μm, a particle size distribution corresponding to 10% from the small diameter side and a particle size corresponding to 90% accumulated as D10 and D90, respectively, and the D90 / D10 ratio is 3. The raw material consisting of the following ceramic powder is used.

すなわち、前記分離膜をなすセラミック粉末は平均粒径が0.4μm〜2.5μmであって、前記セラミック粉末の粒度分布において、小径側から累積10%、および累積90%に相当するセラミック粉末の粒径をそれぞれD10、D90としたとき、D90/D10の比が3以下となるように設定することによって、前記分離膜をセラミック多孔質支持体に担持させて、1200℃〜1600℃の範囲で焼成することによって、前述の平均細孔径を0.04μm〜0.3μm、最大細孔径を0.4μm以下、気孔率を30〜50%とすることができることを知見したのである。   That is, the ceramic powder forming the separation membrane has an average particle size of 0.4 μm to 2.5 μm, and in the particle size distribution of the ceramic powder, the ceramic powder corresponding to 10% cumulative and 90% cumulative from the small diameter side. By setting the ratio of D90 / D10 to be 3 or less when the particle diameters are D10 and D90, respectively, the separation membrane is supported on a ceramic porous support, and in the range of 1200 ° C to 1600 ° C. It has been found that by firing, the aforementioned average pore diameter can be 0.04 μm to 0.3 μm, the maximum pore diameter is 0.4 μm or less, and the porosity is 30 to 50%.

そして、前記筒状成形体の焼成温度を1200℃〜1600℃としたのは、その範囲を超える場合には、セラミック多孔質体の平均細孔径、最大細孔径、透過性能、曲げ強度の内、少なくとも1つが満足できなくなるため好ましくないからである。   And when the firing temperature of the cylindrical molded body is set to 1200 ° C. to 1600 ° C., when the range is exceeded, the average pore diameter, the maximum pore diameter, the permeation performance, the bending strength of the ceramic porous body, This is because at least one of them is not satisfactory.

なお、使用するセラミック粉末の平均粒径によって、適正な焼成温度範囲は変化するが、例えば、セラミック多孔質支持体に平均粒径が3.0μm以上6.0μm未満のセラミックス粉末からなる原料を用い、分離膜に平均粒径が0.4μm以上1.5μm未満のセラミックス粉末からなる原料を用いる場合には1200℃〜1500℃、セラミック多孔質支持体に平均粒径が6.0μm以上7.5μm未満のセラミックス粉末からなる原料を用い、分離膜用に平均粒径が1.5μm以上2.0μm未満のセラミックス粉末からなる原料を用いる場合には1400℃〜1550℃、セラミック多孔質支持体平均粒径が7.5μm以上9.0μm未満のセラミックス粉末からなる原料を用い、分離膜用に2.0m以上2.5μm未満のセラミックス粉末からなる原料を用いる場合は1450℃〜1600℃の範囲がより好ましい。   The appropriate firing temperature range varies depending on the average particle size of the ceramic powder used. For example, a raw material made of ceramic powder having an average particle size of 3.0 μm or more and less than 6.0 μm is used for the ceramic porous support. When a raw material made of ceramic powder having an average particle size of 0.4 μm or more and less than 1.5 μm is used for the separation membrane, the average particle size of the ceramic porous support is 6.0 μm or more and 7.5 μm. 1400 ° C to 1550 ° C, the average particle size of the ceramic porous support is used in the case of using a raw material consisting of ceramic powder of less than 1 μm and a ceramic powder having an average particle size of 1.5 μm or more and less than 2.0 μm for the separation membrane. A ceramic powder having a diameter of 7.5 μm or more and less than 9.0 μm is used, and the ceramic powder is 2.0 m or more and less than 2.5 μm for a separation membrane. When using the raw material which consists of, the range of 1450 to 1600 degreeC is more preferable.

前記押出成形は、支持体2となるセラミック粉末の杯土15の吐出量をV1、分離膜3となるセラミック粉末の杯土16の吐出量をV2としたとき、V1/V2比が1.5〜40の範囲で成形する。各坏土15,16,22,23の吐出量V1、V2は、図3(a)に示すように、支持体側プランジャー17、分離膜側プランジャー18の各速度によって調整することができ、上記V1/V2比が1.5〜40の範囲となるように設定した。   The extrusion molding has a V1 / V2 ratio of 1.5 when a discharge amount of the ceramic powder filling 15 serving as the support 2 is V1, and a discharge amount of the ceramic powder filling 16 serving as the separation membrane 3 is V2. Molding in the range of ~ 40. As shown in FIG. 3A, the discharge amounts V1, V2 of the clays 15, 16, 22, 23 can be adjusted by the speeds of the support side plunger 17 and the separation membrane side plunger 18, The V1 / V2 ratio was set to be in the range of 1.5-40.

ここで、支持体2となるセラミック粉末の杯土15の吐出量をV1、分離膜3となるセラミック粉末の杯土16の吐出量をV2としたとき、V1/V2比が1.5〜40としたのは、上記V1/V2比が1.5未満であると、過度の厚膜による透過性能の低下の問題が発生し、また、上記V1/V2比が40を越えると、分離膜が支持体にひきずられて形成されることにより膜破れやクラック等の分離膜の欠陥が生ずるためである。   Here, when the discharge amount of the ceramic powder filling 15 serving as the support 2 is V1, and the discharge amount of the ceramic powder filling 16 serving as the separation membrane 3 is V2, the V1 / V2 ratio is 1.5 to 40. When the V1 / V2 ratio is less than 1.5, there is a problem of deterioration in permeation performance due to excessive thick film. When the V1 / V2 ratio exceeds 40, the separation membrane is This is because separation of the support causes defects in the separation membrane such as membrane breakage and cracks.

尚、V1/V2比のより好ましい範囲は5〜25である。   In addition, the more preferable range of V1 / V2 ratio is 5-25.

また、図2(b)(c)に示すような分離膜が二層以上の複数層の構造においては、支持体2となるセラミック粉末の坏土15の吐出量をV1とし、分離膜31となる坏土22の吐出量と、分離膜32となる坏土23の吐出量のトータルをV2として、上記V1/V2比の範囲と同様となるように設定すればよい。   2 (b) and 2 (c), the discharge amount of the ceramic powder clay 15 used as the support 2 is V1, and the separation membrane 31 What is necessary is just to set it so that it may become the same as the range of the said V1 / V2 ratio by making the total of the discharge amount of the clay 22 and the discharge amount of the clay 23 used as the separation membrane 32 into V2.

そして、本発明のセラミック多孔質支持体、分離膜に使用する原料は特に指定しないが、例えば、アルミナ、ジルコニア、チタニア、シリカ、コージェライト、ムライト等や、これらの2種以上を適宜混合してなる原料が例示されるが、耐食性や耐久性、耐熱性の点から、α―アルミナが好ましく、その中でも、焼成温度に対して、粒成長しにくく、多孔質体の細孔制御がし易い電融アルミナが好ましい。   The raw material used for the ceramic porous support and separation membrane of the present invention is not particularly specified. For example, alumina, zirconia, titania, silica, cordierite, mullite, etc., or a mixture of two or more of these may be used as appropriate. However, α-alumina is preferable from the viewpoint of corrosion resistance, durability, and heat resistance. Among these, α-alumina is preferable. Fused alumina is preferred.

さらに、前記セラミック多孔質支持体と分離膜に使用する原料は、異なった原料であっても良いが、互いに反応して特性の劣化した化合物を形成する組み合わせは避けた方がよく、収縮の違い等からくる反りやクラックを考慮するならば、同じ原料を組み合わせることが好ましいことはいうまでもないことである。   Furthermore, the raw materials used for the ceramic porous support and the separation membrane may be different raw materials, but it is better to avoid a combination that reacts with each other to form a compound with deteriorated characteristics, and a difference in shrinkage. Needless to say, it is preferable to combine the same raw materials in consideration of warpage and cracks coming from the same.

(実施例1)
まず、図1に示す筒状セラミック多孔質体1を得るために、セラミック多孔質支持体2用の原料として、平均粒径が6μmのα−アルミナを、また、分離膜3用の原料として、0.3〜3.0μmの平均粒径のα−アルミナを使用し、また分離膜3用のセラミック粉末の粒度分布を小径側から累積10%、累積90%に相当する粒径をそれぞれD10,D90としたときD90/D10比を1.5〜3.5とし、それぞれに成形用バインダーとしてメトローズなどの結合剤、マルレックスなどの潤滑剤およびセラミゾールなどの可塑剤を加えて混練し、押出成形用の原料を得た。
(Example 1)
First, in order to obtain the cylindrical ceramic porous body 1 shown in FIG. 1, α-alumina having an average particle diameter of 6 μm as a raw material for the ceramic porous support 2, and as a raw material for the separation membrane 3, Α-alumina having an average particle size of 0.3 to 3.0 μm is used, and the particle size distribution of the ceramic powder for the separation membrane 3 is 10% cumulative from the small diameter side, and the particle size corresponding to 90% cumulative is D10, D90 / D10 ratio is set to D90 when D90 is set, and a binder such as Metroise, a lubricant such as Marrex, and a plasticizer such as ceramisole are added to each as a molding binder, kneaded, and extrusion molding The raw material for was obtained.

上記セラミック粉末の原料を用い、前述した図3(a)の押出成型用の金型11を用い、外芯13側に筒状セラミック多孔質体1の分離膜3の杯土16を、また、内芯14側に支持体2の杯土15を口金12から押出すことにより、二層の筒状セラミック成形体を作製した。その後、焼成することにより外径φが13mm、厚みtは1.8mm、分離膜3の厚みt1は0.04〜0.6mmとなる筒状セラミック多孔質体1を作製した。   Using the above ceramic powder raw material, the mold 11 for extrusion molding shown in FIG. 3 (a) described above, the clay 16 of the separation membrane 3 of the cylindrical ceramic porous body 1 on the outer core 13 side, A two-layered cylindrical ceramic molded body was produced by extruding the clay 15 of the support 2 from the base 12 on the inner core 14 side. Thereafter, by firing, a cylindrical ceramic porous body 1 having an outer diameter φ of 13 mm, a thickness t of 1.8 mm, and a separation membrane 3 having a thickness t1 of 0.04 to 0.6 mm was produced.

尚、ここで、支持体となるセラミック粉末の吐出量V1と分離膜となるセラミック粉末の吐出量V2のV1/V2比は15とした。ここで、支持体側、分離膜側の各プランジャー17、18により、それぞれ吐出量V1=339mm/sec、V2=22.5mm/secとなるよう調整した。また、金型11の口金の長さLは12mmとし、分離膜となる杯土16は外心13の円周方向内壁に等間隔で3つの流路で供給し上記口金12の入り口の分離膜3の吐出口19で合流し吐出する構造とした。 Here, the V1 / V2 ratio of the discharge amount V1 of the ceramic powder serving as the support and the discharge amount V2 of the ceramic powder serving as the separation membrane was set to 15. Here, the support side, the respective plungers 17, 18 of the separation membrane side was adjusted each discharge amount V1 = 339mm 3 /sec,V2=22.5mm 3 / sec and becomes like. Further, the length L of the die of the mold 11 is 12 mm, and the clay 16 serving as a separation membrane is supplied to the inner wall in the circumferential direction of the outer core 13 through three channels at equal intervals, and the separation membrane at the entrance of the die 12 is provided. The three discharge ports 19 join and discharge.

上記の二層押出成形で得られた成形体を200mmの長さになるように切断し、セラミック多孔質体の厚みが1.8mmとなるように設定したものを1400℃の温度で焼成し、得られた筒状セラミック多孔質体1の平均細孔径、最大細孔径、気孔率、空気透過量、曲げ強度の測定を行った。また、分離膜3の破れやクラックの有無についても観察した。尚、それぞれの測定方法は以下の通りである。   The molded body obtained by the above two-layer extrusion molding was cut to a length of 200 mm, and the ceramic porous body set to have a thickness of 1.8 mm was fired at a temperature of 1400 ° C., The obtained cylindrical ceramic porous body 1 was measured for average pore diameter, maximum pore diameter, porosity, air permeation amount, and bending strength. In addition, the separation membrane 3 was also observed for tears and cracks. In addition, each measuring method is as follows.

すなわち、セラミック粉末の平均粒径、粒度分布の測定は、セラミック粉末をレーザー回折法(マイクロトラック9320−X100)にて測定し、小径側から累積50%の粒径を平均粒径とし、累積10%、累積90%の粒径をそれぞれD10、D90として、D90/D10の比を求めた。   That is, the average particle size and particle size distribution of the ceramic powder were measured by measuring the ceramic powder with a laser diffraction method (Microtrack 9320-X100). %, And a 90% cumulative particle size was D10 and D90, respectively, and a ratio of D90 / D10 was determined.

また、平均細孔径、最大細孔径、気孔率の測定については、水銀圧入法を測定原理とする、micromeritics社製(ポアサイザー―9310型)を用いて測定し、平均細孔径と最大細孔径、気孔率を求めた。   The average pore size, maximum pore size, and porosity are measured using a micromeritics (pore sizer-9310 type) based on the mercury intrusion method, and the average pore size, maximum pore size, and porosity. The rate was determined.

また、空気透過量の測定には、Porous Materials社製バブルポイント法に基づく自動細孔測定装置(Perm Porometer)を用いて測定し、500kPa加圧時の空気透過量を求めた。   In addition, the air permeation amount was measured using an automatic pore measuring device (Perm Porometer) based on the bubble material method manufactured by Porous Materials, and the air permeation amount at a pressure of 500 kPa was obtained.

そして、曲げ強度の測定においては、アイコーエンジニアリング社製(デジタル式荷重測定機1840)を用いて、スパン80mm、クロスヘッドスピード0.5mm/分の条件で3点曲げ試験を行い、円筒形状の断面係数と曲げモーメントより曲げ強度を求めた。   In the measurement of bending strength, a three-point bending test was performed using a product of Aiko Engineering Co., Ltd. (digital load measuring machine 1840) under the conditions of a span of 80 mm and a crosshead speed of 0.5 mm / min. The bending strength was obtained from the coefficient and bending moment.

さらに、各々の試料を、双眼顕微鏡で観察し、分離膜のクラックや剥離等の欠陥について、検査し、クラックや剥離が無いものを○とし、有るものを×と評価した。   Furthermore, each sample was observed with a binocular microscope, and inspected for defects such as cracks and peeling of the separation membrane.

従来製法による比較例として、平均粒径6μmのα−アルミナを使用して支持体を作成し、平均粒径0.5μm、D90/D10比が3のα―アルミナ粒子を含む懸濁液を用いて一回のコーティングを行い、1500℃で焼成することによりセラミック多孔質体を得た。尚、比較例の多孔質体の厚みは2.0mmで分離膜の厚みは0.03mmとした。   As a comparative example by a conventional manufacturing method, a support is prepared using α-alumina having an average particle diameter of 6 μm, and a suspension containing α-alumina particles having an average particle diameter of 0.5 μm and a D90 / D10 ratio of 3 is used. The ceramic porous body was obtained by coating once and firing at 1500 ° C. In addition, the thickness of the porous body of the comparative example was 2.0 mm, and the thickness of the separation membrane was 0.03 mm.

以上の結果を表1に示す。

Figure 2005118771
The results are shown in Table 1.
Figure 2005118771

表1の結果から解るように、分離膜をコーティングにより形成した比較例である試料番号22では、細孔径、透過性能については良好であったが、分離膜にクラックが観察されたため、総合評価として×であった。   As can be seen from the results in Table 1, in Sample No. 22, which is a comparative example in which the separation membrane was formed by coating, the pore diameter and the permeation performance were good, but cracks were observed in the separation membrane. X.

本発明実施例においては、試料番号1〜21のいずれにおいても、分離膜の欠陥は見られなかったが、分離膜のセラミック粉末粒径が0.3μmで本発明の範囲外となる試料番号1〜3では、分離膜平均細孔径が0.014〜0.016μm、分離膜の気孔率が28.1〜28.3%となり、従って、空気透過性能も0.77〜0.86L/分/cmと充分な透過性能が得られず総合評価は×であった。また、上記分離膜のセラミック粉末粒径が3μmで本発明範囲外の試料番号19〜21では最大細孔径0.44〜0.47μmと大きく、分離性能が得られないという結果になり総合評価は×であった。 In the examples of the present invention, no defect of the separation membrane was observed in any of the sample numbers 1 to 21, but the ceramic powder particle size of the separation membrane was 0.3 μm, and the sample number 1 was outside the scope of the present invention. -3, the average pore diameter of the separation membrane is 0.014 to 0.016 μm, and the porosity of the separation membrane is 28.1 to 28.3%. Therefore, the air permeation performance is also 0.77 to 0.86 L / min / min. Since cm 3 and sufficient transmission performance could not be obtained, the overall evaluation was x. In addition, when the ceramic powder particle size of the separation membrane is 3 μm and the sample numbers 19 to 21 outside the range of the present invention are large, the maximum pore size is 0.44 to 0.47 μm, and the separation performance cannot be obtained. X.

一方で、分離膜のセラミック粉末粒度分布D90/D10比が本発明範囲外の3.5とした試料番号6,9,12,15,18の場合、いずれの粉末粒径を用いた試料においても、最大細孔径あるいは透過性能のどちらかが充分な性能を達成することができず、総合評価は×であった。   On the other hand, in the case of sample numbers 6, 9, 12, 15, and 18 in which the ceramic powder particle size distribution D90 / D10 ratio of the separation membrane is 3.5 outside the range of the present invention, the sample using any powder particle size is used. In addition, either the maximum pore diameter or the permeation performance could not achieve sufficient performance, and the overall evaluation was x.

これらに対して、本発明実施例の分離膜のセラミック粉末粒径0.4〜2.5μm、セラミック粉末粒度分布D90/D10比が3以下の条件で作製した試料番号4,5,7,8,10,11,13,14,16,17においては、最大細孔径と透過性能いずれにおいても良好な結果を得ることができ、剥離、クラック等の膜欠陥についても全く見られず総合評価は○であった。   On the other hand, sample numbers 4, 5, 7, and 8 produced under the conditions of the ceramic powder particle size of 0.4 to 2.5 μm and the ceramic powder particle size distribution D90 / D10 ratio of 3 or less of the separation membrane of the embodiment of the present invention. , 10, 11, 13, 14, 16 and 17, good results can be obtained in both the maximum pore diameter and the permeation performance, and no film defects such as peeling and cracks are observed at all. Met.

(実施例2)
つぎに、実施例1と同一のセラミック粉末を用いて、図1に示す筒状セラミック多孔質体1を得るために、支持体2となる杯土15と分離膜3となる杯土16を、金型11の口金12から押し出す吐出量の比V1/V2を、おのおの変え筒状セラミック多孔質体1を作製し、形成された分離膜3の評価をおこなった。
(Example 2)
Next, in order to obtain the cylindrical ceramic porous body 1 shown in FIG. 1 using the same ceramic powder as in Example 1, the clay 15 serving as the support 2 and the clay 16 serving as the separation membrane 3 are The cylindrical ceramic porous body 1 was produced by changing the ratio V1 / V2 of the discharge amount extruded from the die 12 of the mold 11, and the formed separation membrane 3 was evaluated.

試料の形状サイズは実施例1と同じで、支持体2となるセラミック粉末の粒径が6μm、分離膜3となるセラミック粉末は粒径が1.0μm、D90/D10比が3.0とし、支持体2となるセラミック粉末の杯土15の吐出量V1と分離膜3となるセラミック粉末の杯土16の吐出量V2のV1/V2比を1.0〜45の範囲で7水準の条件で杯土15,16を吐出することにより、セラミツク成形体を得、1400℃の温度で焼成することにより筒状セラミック多孔質体1を作製した。尚、吐出量については、実施例1の吐出量比を参考にして、各々プランジャー17、18によって吐出量の調整を行い、所定のV1/V2比となるように設定を行った。   The shape size of the sample is the same as in Example 1, the particle size of the ceramic powder that is the support 2 is 6 μm, the ceramic powder that is the separation membrane 3 is 1.0 μm, and the D90 / D10 ratio is 3.0, The ratio V1 / V2 of the discharge amount V1 of the ceramic powder filling 15 serving as the support 2 and the discharge amount V2 of the ceramic powder filling 16 serving as the separation membrane 3 is in the range of 1.0 to 45 under seven conditions. A ceramic molded body was obtained by discharging the clays 15 and 16, and was fired at a temperature of 1400 ° C. to produce a cylindrical ceramic porous body 1. In addition, about the discharge amount, with reference to the discharge amount ratio of Example 1, the discharge amount was adjusted by the plungers 17 and 18, respectively, and set so that it might become predetermined V1 / V2 ratio.

上記各試料について、分離膜3の厚みバラツキならびに、剥離やクラックの欠陥がないか、双眼顕微鏡を用いて観察した。厚みバラツキについては、1個の試料の任意の箇所5カ所を選び、破断し双眼顕微鏡で測定し、厚み平均値と最大値、最小値で表した。また剥離、クラックが有るものは×とし、無いものは○と評価した。   About each said sample, it observed using the binocular microscope whether there was any thickness variation of the separation membrane 3, and a defect of peeling or a crack. Regarding thickness variation, five arbitrary locations of one sample were selected, fractured, measured with a binocular microscope, and expressed as a thickness average value, a maximum value, and a minimum value. Moreover, the thing with peeling and a crack was set to x, and the thing which does not have was evaluated as (circle).

以上の結果を表2に示す。

Figure 2005118771
The results are shown in Table 2.
Figure 2005118771

表2から、本発明の範囲外である、吐出量比V1/V2比1の試料番号100は、分離膜の剥離、クラック等の欠陥はないが、分離膜の平均膜厚t1が0.5mmを超え、従って、圧力損失が大きく、充分な空気透過性能が得られず総合評価は×であった。さらに、上記吐出量比V1/V2が45で本発明範囲外の試料番号106は、空気透過性能は問題ないが、分離膜の剥離、クラックのいずれも発生し、総合評価は×であった。   From Table 2, sample number 100 with a discharge rate ratio V1 / V2 ratio of 1 which is outside the scope of the present invention has no defects such as separation and cracking of the separation membrane, but the average thickness t1 of the separation membrane is 0.5 mm. Therefore, the pressure loss was large and sufficient air permeation performance could not be obtained, and the overall evaluation was x. Further, the discharge amount ratio V1 / V2 was 45 and the sample number 106 outside the scope of the present invention had no problem with the air permeation performance, but both separation membrane separation and cracking occurred, and the overall evaluation was x.

これに対し、吐出量比V1/V2比が1.5〜40の本発明実施例の試料番号101〜105は、分離膜の平均膜厚は0.05〜0.5mmの範囲内でかつ、そのバラツキも小さく抑えられ、さらに、分離膜の剥離やクラックの欠陥も無く総合評価は○であった。   On the other hand, the sample numbers 101 to 105 of the examples of the present invention having the discharge amount ratio V1 / V2 ratio of 1.5 to 40 have an average film thickness of the separation membrane in the range of 0.05 to 0.5 mm, and The variation was also kept small, and there was no separation membrane separation or crack defect.

以上の結果から、吐出量比V1/V2比は1.5〜40の範囲とするのがよく、透過性能や膜厚のバラツキ、膜の欠陥の発生といったことを考慮すると、5〜25の範囲とすることがより好ましいことが分かる。   From the above results, the discharge rate ratio V1 / V2 ratio is preferably in the range of 1.5 to 40, and in the range of 5 to 25 in consideration of transmission performance, variations in film thickness, and occurrence of film defects. It turns out that it is more preferable.

本発明のセラミック多孔質体を用いたフィルターは、食品、医薬品、エレクトロニクス、バイオ産業などの工業分野において、ろ過、濃縮、分離の工程に用いられるが、前述したように、特に産業用水・廃水処理用のフィルターとして好適に用いることができる。   The filter using the ceramic porous body of the present invention is used for filtration, concentration and separation processes in industrial fields such as food, pharmaceuticals, electronics, and bio-industry. As described above, in particular, industrial water / waste water treatment It can be suitably used as a filter for use.

本発明のセラミック多孔質体の一例を示す斜視図である。It is a perspective view which shows an example of the ceramic porous body of this invention. (a)〜(c)は本発明のセラミック多孔質体の部分拡大断面図である。(A)-(c) is the partial expanded sectional view of the ceramic porous body of this invention. (a)(b)は本発明の製造方法の一例を示す金型の断面図である。(A) (b) is sectional drawing of the metal mold | die which shows an example of the manufacturing method of this invention. (a)は従来のセラミック積層体の製造方法を示す断面図、(b)はセラミック積層体の断面図である。(A) is sectional drawing which shows the manufacturing method of the conventional ceramic laminated body, (b) is sectional drawing of a ceramic laminated body.

符号の説明Explanation of symbols

1:筒状セラミック多孔質体
2:支持体
3、31,32:分離膜
11,111:金型
12,112:口金
13:外芯
14:内芯
15:支持体の杯土
16、22、23:分離膜の杯土
19、25:分離膜の吐出口
18:セラミック成形体
115:電極用の杯土
116:セパレータ用の杯土
17、18、24、117:プランジャー
118:グリーン積層成形体
1: cylindrical ceramic porous body 2: support bodies 3, 31, 32: separation membrane 11, 111: mold 12, 112: base 13: outer core 14: inner core 15: filling earth 16, 22, 23: Separation membrane filling 19, 25: Separation membrane outlet 18: Ceramic molded body 115: Electrode filling 116: Separator filling 17, 18, 24, 117: Plunger 118: Green laminate molding body

Claims (6)

筒状をした支持体の表面に分離膜を備えてなる筒状セラミック多孔質体であって、上記分離膜は、膜厚0.05mm〜0.5mm、平均細孔径0.04μm〜0.3μm、最大細孔径0.4μm以下、気孔率30〜50%の一層或いは複数層の無機多孔質分離膜からなることを特徴とする筒状セラミック多孔質体。 A cylindrical ceramic porous body comprising a separation membrane on the surface of a cylindrical support, the separation membrane having a thickness of 0.05 mm to 0.5 mm and an average pore diameter of 0.04 μm to 0.3 μm A cylindrical ceramic porous body comprising a single layer or a plurality of layers of an inorganic porous separation membrane having a maximum pore diameter of 0.4 μm or less and a porosity of 30 to 50%. 厚みが1.5〜2.5mm、曲げ強度が40MPa以上、500KPa加圧時の空気透過量が1.0L/分/cm2以上であることを特徴とする請求項1に記載の筒状セラミック多孔質体。 2. The cylindrical ceramic according to claim 1, wherein the thickness is 1.5 to 2.5 mm, the bending strength is 40 MPa or more, and the air permeation amount when pressurized to 500 KPa is 1.0 L / min / cm 2 or more. Porous body. 筒状をした支持体の表面に分離膜を備えてなる筒状セラミック多孔質体の製造方法であって、前記支持体は平均粒径が3.0μm〜9.0μmのセラミックス粉末からなる原料を用い、前記分離膜は平均粒径が0.4μm〜2.5μmのセラミックス粉末からなる原料を用い、両原料を押出成形にて同時に一体成形することにより筒状成形体を作製し、該筒状成形体を1200℃〜1600℃の温度で焼成することを特徴とする筒状セラミック多孔質体の製造方法。 A method of manufacturing a cylindrical ceramic porous body comprising a separation membrane on the surface of a cylindrical support, wherein the support is made of a raw material made of ceramic powder having an average particle size of 3.0 μm to 9.0 μm. The separation membrane uses a raw material made of ceramic powder having an average particle diameter of 0.4 μm to 2.5 μm, and forms a cylindrical molded body by simultaneously forming both raw materials by extrusion molding. A method for producing a cylindrical ceramic porous body, wherein the formed body is fired at a temperature of 1200 ° C to 1600 ° C. 前記分離膜を成すセラミックス粉末は、粒度分布の小径側から累積10%、累積90%に相当する粒径をそれぞれD10、D90としたとき、D90/D10比が3以下であることを特徴とする請求項3記載の筒状セラミック多孔質体の製造方法。 The ceramic powder constituting the separation membrane has a D90 / D10 ratio of 3 or less, where D10 and D90 are the particle sizes corresponding to 10% cumulative and 90% cumulative from the smaller diameter side of the particle size distribution, respectively. The manufacturing method of the cylindrical ceramic porous body of Claim 3. 前記押出成形は、支持体となるセラミック粉末の杯土の吐出量をV1、分離膜となるセラミック粉末の杯土の吐出量をV2としたとき、V1/V2比が1.5〜40の範囲で成形することを特徴とする請求項3または4に記載の筒状セラミック多孔質体の製造方法。 The extrusion molding has a V1 / V2 ratio in a range of 1.5 to 40, where V1 is a discharge amount of ceramic powder as a support and V2 is a discharge amount of ceramic powder as a separation membrane. The method for producing a cylindrical ceramic porous body according to claim 3 or 4, wherein the method is formed by. 請求項1乃至2の何れかに記載のセラミック多孔質体を用いたことを特徴とするセラミックフィルター。 A ceramic filter using the ceramic porous body according to claim 1.
JP2004243909A 2003-09-22 2004-08-24 Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same Expired - Fee Related JP4514560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243909A JP4514560B2 (en) 2003-09-22 2004-08-24 Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003330598 2003-09-22
JP2004243909A JP4514560B2 (en) 2003-09-22 2004-08-24 Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same

Publications (2)

Publication Number Publication Date
JP2005118771A true JP2005118771A (en) 2005-05-12
JP4514560B2 JP4514560B2 (en) 2010-07-28

Family

ID=34621891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243909A Expired - Fee Related JP4514560B2 (en) 2003-09-22 2004-08-24 Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same

Country Status (1)

Country Link
JP (1) JP4514560B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222865A (en) * 2006-01-27 2007-09-06 Kyocera Corp Ceramic filter
JP2007283219A (en) * 2006-04-17 2007-11-01 Nitsukatoo:Kk Ceramic filter and its manufacturing method
JP2008036499A (en) * 2006-08-03 2008-02-21 Noritake Co Ltd Support for oxygen separation membrane and oxygen separation membrane
KR101034869B1 (en) * 2008-11-12 2011-05-17 한국전기연구원 Tubular Nanoporous Oxide Ceramic Membranes and Filters Using the Same
JP2013202977A (en) * 2012-03-29 2013-10-07 Kmew Co Ltd Method for manufacturing extrusion molded body
KR101414937B1 (en) * 2010-06-08 2014-07-04 가부시키가이샤 마루코무 Vacuum kneading-and-defoaming device
JP2016055272A (en) * 2014-09-11 2016-04-21 株式会社ノリタケカンパニーリミテド One-end sealed type cylindrical ceramic
CN113398782A (en) * 2021-05-17 2021-09-17 四川凯歌微纳科技有限公司 Tubular ceramic membrane with high separation performance and preparation method thereof
EP3984626A1 (en) * 2020-10-16 2022-04-20 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Ceramic filtration element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022846A (en) * 1987-10-06 1990-01-08 Nok Corp Production of porous ceramic multilayer hollow yarn
JP2004255311A (en) * 2003-02-26 2004-09-16 Kyocera Corp Ceramic porous body, production method therefor, and ceramic filter using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022846A (en) * 1987-10-06 1990-01-08 Nok Corp Production of porous ceramic multilayer hollow yarn
JP2004255311A (en) * 2003-02-26 2004-09-16 Kyocera Corp Ceramic porous body, production method therefor, and ceramic filter using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222865A (en) * 2006-01-27 2007-09-06 Kyocera Corp Ceramic filter
JP2007283219A (en) * 2006-04-17 2007-11-01 Nitsukatoo:Kk Ceramic filter and its manufacturing method
JP2008036499A (en) * 2006-08-03 2008-02-21 Noritake Co Ltd Support for oxygen separation membrane and oxygen separation membrane
KR101034869B1 (en) * 2008-11-12 2011-05-17 한국전기연구원 Tubular Nanoporous Oxide Ceramic Membranes and Filters Using the Same
KR101414937B1 (en) * 2010-06-08 2014-07-04 가부시키가이샤 마루코무 Vacuum kneading-and-defoaming device
JP2013202977A (en) * 2012-03-29 2013-10-07 Kmew Co Ltd Method for manufacturing extrusion molded body
JP2016055272A (en) * 2014-09-11 2016-04-21 株式会社ノリタケカンパニーリミテド One-end sealed type cylindrical ceramic
EP3984626A1 (en) * 2020-10-16 2022-04-20 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Ceramic filtration element
WO2022079676A1 (en) * 2020-10-16 2022-04-21 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Ceramic filtration element
CN113398782A (en) * 2021-05-17 2021-09-17 四川凯歌微纳科技有限公司 Tubular ceramic membrane with high separation performance and preparation method thereof

Also Published As

Publication number Publication date
JP4514560B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
EP2066426B1 (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
EP3212313A1 (en) Inorganic membrane filter and methods thereof
JP4367678B2 (en) Ceramic filter
JP4514560B2 (en) Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
JP2023011761A (en) ceramic membrane filter
JP6436974B2 (en) Monolith type separation membrane structure and method for producing monolith type separation membrane structure
US20210107838A1 (en) Inorganic membrane filtration articles and methods thereof
JP6490665B2 (en) Monolithic separation membrane structure, method for producing monolithic separation membrane structure, and dehydration method
JP2001340718A (en) Base material for honeycomb filter and its manufacturing method
JP5110839B2 (en) Ceramic filter
JP2023021136A (en) ceramic filter
KR100671867B1 (en) Ceramic filter
US20080142432A1 (en) Bag tube shaped body with porous multilayer structure
JP6609547B2 (en) Monolith type separation membrane structure
JP6541644B2 (en) Monolith-type substrate, monolithic separation membrane structure and method for producing monolithic-type substrate
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
JP2004255311A (en) Ceramic porous body, production method therefor, and ceramic filter using the same
JP4933740B2 (en) Manufacturing method of ceramic filter
JP2004202399A (en) Ceramic porous member, production method thereof, and ceramic filter using the same
JP6417355B2 (en) Monolith type separation membrane structure
JP6577866B2 (en) Monolith type separation membrane structure and manufacturing method thereof
JP2020521634A (en) Integrated membrane filtration structure
JP2011083728A (en) Composite separation membrane and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Effective date: 20090706

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091022

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130521

LAPS Cancellation because of no payment of annual fees