WO2004090526A1 - 試料解析方法及び試料解析プログラム - Google Patents

試料解析方法及び試料解析プログラム Download PDF

Info

Publication number
WO2004090526A1
WO2004090526A1 PCT/JP2004/004621 JP2004004621W WO2004090526A1 WO 2004090526 A1 WO2004090526 A1 WO 2004090526A1 JP 2004004621 W JP2004004621 W JP 2004004621W WO 2004090526 A1 WO2004090526 A1 WO 2004090526A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
data
sample analysis
profiles
corrected
Prior art date
Application number
PCT/JP2004/004621
Other languages
English (en)
French (fr)
Inventor
Atsushi Ogiwara
Takao Kawakami
Toshihide Nishimura
Original Assignee
Medical Proteoscope Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Proteoscope Co., Ltd. filed Critical Medical Proteoscope Co., Ltd.
Priority to JP2005505220A priority Critical patent/JP4185933B2/ja
Priority to US10/551,148 priority patent/US20060194329A1/en
Priority to EP04724777A priority patent/EP1626274A4/en
Priority to CA002521108A priority patent/CA2521108A1/en
Publication of WO2004090526A1 publication Critical patent/WO2004090526A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/20Identification of molecular entities, parts thereof or of chemical compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8641Baseline
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8665Signal analysis for calibrating the measuring apparatus

Definitions

  • the present invention relates to a sample analysis method and a sample analysis program using multidimensional data obtained as a result of sample analysis.
  • LC-MS liquid chromatography mass spectrometry
  • MS mass spectrometry
  • the mass Z charge is plotted on the horizontal axis.
  • the spectrum data can be obtained in two dimensions as a graph with the ratio (hereinafter abbreviated as m / z) and the ion intensity on the vertical axis.
  • the role of the LC is to simply fractionate the sample to adapt to the throughput of the MS.
  • the time axis is corrected and superimposed so that multiple chromatographic results can be compared with each other in order to use the chromatographic information not only as a fraction but also as information indicating the characteristics of the sample ( align) methods have been proposed.
  • Typical examples are Dynamic Time Warping (hereinafter abbreviated as DTW) and Correlation Optimized Warping (hereinafter abbreviated as COW). Both are one implementation based on the dynamic programming algorithm.
  • the Euclidean distance or correlation is used as an indicator of the distance or similarity of two chromatographies (V. Pravdova, B. Walczak, DL Massart, A comparison of two algorithms for warping of analytical signals, Anal. Chim. Acta 456: 77-92 (2002)).
  • these methods are applied to chromatograms represented in two dimensions, the time axis of the chromatography and the signal intensity, they correct at least one-dimensional parameters in multidimensional data. is not.
  • Such a superposition method is based on the premise that the chromatograms to be compared are similar to each other in the spectrum graphs. In fact, whether DTW or COW, overlaying is performed with the aim of minimizing the distance or maximizing the correlation between the profiles to be compared. There is a good possibility that no match can be obtained.
  • a method based on such high commonality is expected to have many factors that are expected to fluctuate, as in actual disease state analysis and drug responsiveness analysis, and the amount of each fluctuation is minute, and individual differences Inappropriate when it is likely to be mixed with measurement errors.
  • an object of the present invention is to provide a sample analysis method and a sample analysis program capable of achieving excellent analytical performance when analyzing components contained in a sample in view of the above-described situation. I do. Disclosure of the invention
  • the present invention that has achieved the above objects includes the following.
  • the multidimensional data is three-dimensional data obtained from the results of chromatography mass analysis, which consists of a parameter indicating the mass / charge ratio, a parameter indicating the ionic strength, and a parameter indicating the retention time. Can be mentioned. At this time, it is preferable to correct the parameter indicating the holding time in the step a.
  • a profile related to parameters excluding the parameter to be corrected is defined as a reference profile, and an evaluation function serving as a measure of arrangement similarity regarding a plurality of reference profiles among a plurality of samples can be given.
  • the allocation of each profile is performed as an optimal search problem that optimizes the value of the evaluation function. Can be requested.
  • the evaluation function is defined by one or more terms selected from the group consisting of:
  • A term about the degree of agreement or disagreement of the signal derived from the reference material between the profiles to be compared
  • a dynamic programming algorithm can be used when optimizing the value of the evaluation function as an optimal solution search problem for the parameter to be corrected.
  • the correspondence between the data points derived from the reference material is determined. Is preferably set to improve the score. Furthermore, in this case, it is preferable that the constraint on the correspondence between the data points derived from the reference material be that they always correspond at specified points.
  • the constraint on the correspondence between the data points derived from the reference material be that they always correspond at specified points.
  • the sample analysis method according to the above (1) in particular, in the above-mentioned step a, by using information derived from the standard substance added in advance, the accuracy of the analysis can be further improved, and the ability of the correction processing can be improved. .
  • a method having such features is named an internal standard guided optimal profile alignment (z-OPAL) method.
  • the above-described sample analysis method includes an input unit having a function of inputting various data, an arithmetic processing unit having a function of executing arithmetic processing according to a program, and a function of displaying a result of the arithmetic processing and the like.
  • This can be realized as a program to be executed by a computer including a display unit having
  • the sample analysis method can detect and identify substances having different amounts between different types of samples. Specifically, multi-dimensional data for multiple samples 3D data consisting of a parameter indicating the mass / charge ratio obtained as a result of chromatography-mass spectrometry, a parameter indicating the ionic strength, and a parameter indicating the retention time were measured. By comparing dimensional data, signals with significantly different ionic strengths can be detected and identified. Further analysis is performed on a substance that has generated a signal having characteristics of these signals, that is, properties that are sufficiently close to the mass-to-charge ratio and the retention time, so that the substance can be identified. .
  • a substance having a significantly different abundance between the disease group and the healthy group can be detected and identified.
  • the substances identified in this way can be used as biomass resources.
  • the results of biomarker detection and identification can be used to diagnose diseases and select treatment methods.
  • FIG. 1 is a diagram showing an example of three-dimensional spectrum data obtained by a sample analysis method and a sample analysis program according to the present invention.
  • FIG. 2 is a diagram illustrating an example of three-dimensional data.
  • FIG. 3 is a diagram showing an example of another three-dimensional data set for searching for a correspondence relationship with the three-dimensional data shown in FIG.
  • FIG. 4 is a diagram showing an optimal correspondence arrangement between the three-dimensional data shown in FIG. 2 and the three-dimensional data shown in FIG.
  • FIG. 5 is a diagram showing a concept of searching for an optimal correspondence arrangement between the three-dimensional data shown in FIG. 2 and the three-dimensional data shown in FIG. Fig. 6 is a diagram showing that if the route is limited using information from the reference material in the optimal arrangement search shown in Fig. 5, the gray part of the search space no longer needs to be searched.
  • FIG. 7 is a diagram showing that if more information from the reference material is used to increase the constraint conditions on the route, the space that does not need to be searched increases, and the search efficiency is further improved.
  • FIG. 8 is a diagram illustrating a result obtained by superimposing waveforms that are different on the time axis in five measurement results of the same type and adding signals by using the sample analysis program according to the present invention. .
  • FIG. 9 shows that the sample analysis program according to the present invention superimposes profiles obtained from seven different types of sample measurements on the same time axis so that different samples can be compared with each other at each time point.
  • FIG. 10 is a diagram showing a calculated difference spectrum between two different types of samples by the sample analysis program according to the present invention.
  • FIG. 11 is a diagram showing signals selected by the sample analysis program according to the present invention as signals having a significant quantitative change between sample groups.
  • FIG. 12 is a diagram showing that a sample analysis program according to the present invention is applied to a marker search using an actual clinical specimen, and that signals can be classified according to grooving based on different pathological diagnosis results.
  • FIG. 13 is a diagram showing a signal obtained by performing a statistical test on the results shown in FIG. 12 and picking up signals that change quantitatively according to different pathological diagnosis results.
  • FIG. 14 is a diagram showing the results of associating each signal of the results shown in FIG. 13 with protein identification by MSZMS.
  • FIG. 15 shows that among the proteins associated with known proteins in the form shown in FIG. 14, in particular, those proteins known to be associated with cancer metastasis were found by the sample analysis system according to the present invention.
  • 6 is a table showing some of the results obtained.
  • a sample to be analyzed is collected.
  • the sample to be analyzed is not particularly limited, and examples thereof include a tissue section of an organ derived from an animal individual, a body fluid component such as plasma and lymph, an organ such as a green leaf and a petal of a plant, an environmental soil and a water component.
  • the analytes contained in these samples are not particularly limited to, but include, for example, organic compounds, inorganic compounds, organometallic compounds, metal ions, peptides, proteins, metalloproteins, and post-translational modifications including phosphorylation.
  • Examples include a peptide that has undergone post-translational modification including phosphorylation, a nucleic acid, a carbohydrate, a lipid, and the like. Particularly preferred are a peptide, a protein, a metalloprotein, and a peptide or protein that has undergone post-translational modification.
  • the collected sample is preferably subjected to various treatments as necessary according to the purpose of the analysis and the characteristics of the collected sample. For example, (a) separation or fractionation of a group of proteins, (ii) enzymatic and Z- or chemical cleavage of a group of proteins, (ii) separation or fractionation of a peptide mixture generated by cleavage, and (D) It is preferable to perform a pre-analytical preparation in which all or some of the components of the standard are added.
  • (a) separation or fractionation of proteins refers to one-dimensional sodium dodecyl sulfate (SDS) electrophoresis, two-dimensional electrophoresis, capillary electrophoresis, ion-exchange chromatography, It can be carried out by gel filtration chromatography, normal phase chromatography, reverse phase chromatography, affinity chromatography, or multidimensional separation and fractionation by a combination thereof.
  • “(i) enzymatic and / or chemical cleavage of proteins” refers to trypsin digestion, chymotrypsin digestion, Lys-C digestion, Asp-N digestion, Glu-C digestion, cyanogen bromide digestion or any of these. The cutting can be performed by a combination or the like.
  • ( ⁇ ) Separation or fractionation of the peptide mixture generated by cleavage refers to one-dimensional sodium dodecyl sulfate (SDS) electrophoresis, two-dimensional electrophoresis, capillary electrophoresis, ion-exchange chromatography, Gel filtration chromatography 1. Normal phase chromatography, reverse phase chromatography, affinity chromatography, or multidimensional separation and fractionation using a combination thereof. be able to.
  • SDS sodium dodecyl sulfate
  • the standard substance is one that can be ionized by the selected ionization method and elutes within the LC retention time of the measurement. It is preferable to select one having high reproducibility of the ion intensity.
  • preferred standards include, for example, organic compounds, inorganic compounds, organometallic compounds, metal ions, peptides, proteins, metalloproteins, post-translationally modified peptides including phosphorylation, and phosphorylation Examples include proteins, nucleic acids, carbohydrates, lipids, and the like containing post-translational modifications, and more preferably, commercially available peptides, proteins, naturally occurring substances, or synthesized substances.
  • the various processes before the analysis shown in (a) to (e) are, for example, “in order of ⁇ , e, i, ⁇ ”, “in order of e, i, ⁇ ”, “i, e, ⁇ ”.
  • the order can be performed in the order of, in the order of e and a, in the order of e and a, in the order of a and e, or only e.
  • multidimensional data on the sample is obtained by analyzing the sample. Specifically, a sample is analyzed by LC-MS, and multidimensional data consisting of m / " ⁇ ionic strength and retention time is measured.
  • analysis by LC-MS means that the sample is Separation or fractionation according to the principle, and then the components contained in the separated or fractionated sample are measured by the principle of mass spectrometry.
  • the retention time means that the sample is separated or fractionated according to the principle of chromatography. MZz and ionic strength are measured as a result of mass spectrometry.
  • chromatography is not particularly limited, but various types of chromatography such as reverse phase chromatography, capillary electrophoresis, affinity chromatography, chromatofocusing, isoelectric focusing, gel filtration chromatography, etc. Principle can be applied.
  • LC in the present specification means not only liquid chromatography but also broad and general chromatography.
  • LC-MS chromatography provides reproducible elution profiles, high resolution, and MS It is preferable that a molecular ion can be directly introduced into the polymer.
  • preferable conditions in liquid chromatography are as follows.
  • reverse phase liquid chromatography using a C18 column using an eluent containing a strong acid such as formic acid at a low concentration in a water-acetonitrile solution is preferable.
  • reverse-phase liquid chromatography using a C4 column using an eluent containing a strong acid such as formic acid at a low concentration in a water-acetonitrile solution is preferred.
  • the mass spectrometry is not particularly limited, but includes a magnetic field mass spectrometer, a time-of-flight mass spectrometer, a quadrupole mass spectrometer, an ion trap mass spectrometer, a Fourier transform mass spectrometer, or a hybrid or tandem mass spectrometer thereof. Can be performed.
  • a magnetic field mass spectrometer More preferably, a magnetic field mass spectrometer, a time-of-flight mass spectrometer, a quadrupole mass spectrometer, an ion trap mass spectrometer, a Fourier transform mass spectrometer, or a combination thereof that can be combined with electrospray ionization or nanoelectrospray ionization It is preferable to perform mass spectrometry using a hybrid or tandem mass spectrometer.
  • the analysis result of the sample can be obtained as three-dimensional data.
  • data on retention time, signal on mZz and data on ionic strength are input to a computer via input means, and are processed by arithmetic processing means in accordance with the algorithm described in detail below.
  • arithmetic processing means in accordance with the algorithm described in detail below.
  • This algorithm can be installed in computer software. By installing the software on a computer, the algorithm can be realized on a computer by arithmetic processing means such as a CPU. Therefore, the three-dimensional data as shown in FIG. 1 can be displayed on a display device of a computer.
  • the analysis result of the sample can be obtained as a profile plotted in a three-dimensional space, so that the analysis capability of the sample can be dramatically improved. Cut off.
  • data can be acquired as a superposition of a large number of spectra having a spread in the direction of the axis indicating the retention time, and the data can be obtained by comparing with the conventional analysis method.
  • spectrum-based identification can be performed. For this reason, for example, the component analysis of each sample can be performed more strictly by comparing the multidimensional data obtained for a plurality of samples.
  • the holding time measured as described above can be corrected by the algorithm according to the present invention under the control of the arithmetic processing means.
  • the retention time often fluctuates non-linearly because factors such as the composition of the mobile phase in LC, the flow rate, and the column temperature cause minute changes with time. Therefore, regarding the three-dimensional data obtained by the analysis method according to the present invention, when the analysis is performed on a plurality of samples, the axis indicating the retention time between the samples may vary non-linearly. Conceivable. Therefore, in the algorithm according to the present invention, the holding time is corrected (hereinafter also referred to as time axis correction).
  • the time axis correction targeted by the algorithm according to the present invention is expressed in a two-dimensional space having a holding time and one signal strength, such as the time axis correction of a chromatogram by the DTW algorithm or the like in the conventional method. It is not a one-dimensional profile correction.
  • the data targeted by the present invention is one in which the profile to be corrected with respect to the time axis is expressed in at least two or more dimensions.
  • the algorithm is not limited to the correction of the retention time, and can be widely applied to the case where at least one-dimensional parameter is corrected when a multi-dimensional parameter is obtained.
  • the algorithm is based on the multidimensional parameters (eg, cubic This can be applied when correcting at least one-dimensional parameters in (original parameters). Therefore, in the following description, an algorithm in the case of acquiring + 9- dimensional measurement data will be described.
  • x and y are column vectors having the dimension N of the number of data points.
  • a data point is a + 9-dimensional vector that constitutes one row of the profile matrix (Z), and represents a set of measurement parameters and values for one element to be measured.
  • Z profile matrix
  • s means IDS is the number of reference points.
  • any value of Z () must fall within a range in which the value taken by each reference point can be estimated.
  • each data point of x “> and ⁇ 2) ie, ie ⁇ l, ..., p ⁇
  • Z (1) and Z (2) can be different, not all data points correspond one-to-one, but also include data points that have no corresponding partner.
  • the evaluation score E of the association in the entire profile is calculated using the following evaluation function, and the evaluation score is a higher score as a measure of similarity. It is also possible to define it as a measure of distance, or as a “score” if it is smaller. In the following, Explained in the definition,
  • x represents the value of the r-th parameter at the i-th data point
  • NN 2 is the total number of data points in the first and second profiles, respectively.
  • the function / is a function that gives a distance of the degree of similarity of a corresponding point, and examples thereof include the following functions.
  • the first item on the right side is the parameter to be corrected.
  • the second item is how much the measured parameter to be adjusted is shifted after correction. Is the penalty according to the distance on the parameter measure
  • the third item is a score given as a bonus that two points match in all parameters by parameter correction, and conversely the fourth item is on the parameter axis to be corrected This is equivalent to the penalty score for the two points not matching.
  • the fifth item is a section for evaluating a signal match with the reference material as a bonus, as described later.
  • ⁇ , ⁇ ⁇ and ⁇ are coefficients in terms including each of them, and are values that can be set as appropriate.
  • can be set to 1.0
  • ] 3 can be set to 0.1
  • can be set to 0 if the points match by parameter correction
  • can be set to 100 if they do not match.
  • the function ', zo is a function that gives 1 if the value of the parameter r of interest corresponds to the data point specified by /, zo, and 0 if it does not, and conversely, (, _ /) Is a function that corresponds to 0 if it corresponds and 1 if it does not.
  • the second item indicates a measure of the arrangement similarity between the samples with respect to the profile (reference profile) excluding the correction symmetry parameter.
  • the expression that gives the penalty for two points of disagreement is Although an example has been shown in which a constant is obtained depending on the response, a value calculated by a predetermined function may be used.
  • the fourth item can be calculated by a function that considers whether adjacent data points correspond, the length of a column in which uncorresponding data points appear, and the like.
  • represents a distance in a general vector space, and is not necessarily limited to the Euclidean distance.
  • the value shall be replaced with 0 (or an appropriate alternative to missing value).
  • the evaluation function is not limited to the function represented by the above formula (I).
  • the evaluation function is not limited to the function represented by the above formula (I).
  • the evaluation function is not limited to the above formula (I), and it is also possible to define a function that can be a measure of the arrangement similarity of the reference profile between samples.
  • the following special score is given, for example, depending on whether the corresponding point is a reference point derived from a reference material or not.
  • the evaluation function in this case, the distance, ie, Definition
  • 6 /, b) -.
  • the parameter indicating the retention time is corrected for the three-dimensional data acquired in “2. I can.
  • the optimization algorithm is applied to the three-dimensional data obtained in “2. Sample analysis” above, it can be explained according to the following procedures (a) to (d).
  • the operation to correct the retention time is realized by comparing two three-dimensional parameter sets, rather than targeting a single three-dimensional parameter set consisting of mZz, ionic strength, and correction time.
  • the three-dimensional parameter aggregate is such that in a matrix in which mZz and retention time are taken in rows and columns, respectively, the ion intensity enters the matrix element at the position corresponding to m / z and retention time. It is expressed in a simple form.
  • the operation of correcting the retention time is two matrices in Z (1) and Z (2) : This is nothing more than an operation to determine the correspondence between columns corresponding to the retention time axis (hereinafter referred to as “search for corresponding arrangement”).
  • search for corresponding arrangement an operation to determine the correspondence between columns corresponding to the retention time axis.
  • FIG. 5 shows all possible correspondences of the retention time with respect to the three-dimensional parameter aggregates Z (1) and Z (2) shown in FIGS. 2 and 3.
  • the retention time of z (1) is indicated in the horizontal direction and the retention time of z (2) is indicated in the vertical direction.
  • A There are cases where there are corresponding retention times in z (1) and z (2) , respectively.
  • the score for judging the quality of the corresponding arrangement with respect to the holding time can be defined as follows, for example.
  • the score at the top left point of iL that is, the score at the point where the correspondence is not yet determined at all, is set to 0.
  • a score can be set for each of (a), (mouth) and (c) as follows.
  • the score to be added is set to a value that reflects how similar or apart the raZz parameter and the ion intensity parameter are between z (1) and z (2). can do.
  • a score is defined as the similarity. For example, if the ion intensity is detected under the specified mZz in Z (1) but the ion intensity is not detected under the same mZz in Z (2) , or vice versa
  • the score can be set to reduce a certain value (penalty score).
  • a value calculated by multiplying the absolute value of the difference between the two ion intensities by a predetermined coefficient (Penalty score) can be set.
  • the score may be calculated by a function such that the greater the difference between the two ion intensities, the smaller the score.
  • the deviation of the retention time in z (1) and z (2) can also be reflected in the score.
  • the score can be set so as to reduce the value (penalty score) calculated by multiplying the absolute value of the difference between the retention times in Z (1) and Z (2) by a predetermined coefficient.
  • the score may be calculated by a function such that the larger the difference between the retention times in (1) and (2), the smaller the score.
  • the signals derived from the reference material correspond to Z (1) and Z (2) . It is preferable to take special measures in calculating the score in addition to devising the calculation method. In particular, since it is strongly desired that these points are matched between z (1) ⁇ Pi z (2), when associated with z (1) and z (2) as a monitor reference material derived signal A big score is given, and a big score is given when only one signal derived from the standard is found.
  • the score is calculated stepwise from the upper left corner to the lower right corner of the grid in FIG. 5, and the score at the time when the grid finally reaches the lower right corner is obtained. Will be the score corresponding to.
  • the method described as the procedures (a) to (d) can be rephrased as the optimal solution search method based on the dynamic programming, but the algorithm applicable in the present invention is limited to the dynamic programming. It is not done. In other words, it can be implemented using other optimal search algorithms by treating it as a more general search problem that optimizes the objective evaluation function.
  • Such an algorithm can be implemented by, for example, an A * algorithm, a genetic algorithm (GA), a simulated annealing (SA), a non-linear programming method using a steepest descent method, or the like.
  • the method described as steps (d) is a method based on so-called dynamic programming, and is similar to the DTW and COW methods in that it is based on dynamic programming.
  • DTW and COW use the Euclidean distance or correlation as the evaluation function for the form and calculation method of the evaluation function, and compare the time-series data point sequence as it is or segment it at time intervals at fixed intervals, and compare each section.
  • the method is limited to a method in which the search is performed under the same global constraint, starting at time 0 of two profiles and using the end time of each profile as the goal.
  • the method using COW or COW is basically a non-linear time axis for a time series profile represented as two-dimensional data, that is, a data set represented by the time axis and signal intensity axis. Those Conform superimposed profile of the intensity by performing contraction.
  • methods using DTW or COW require (1) one or more cutting planes that take specific values for a particular axis, or (2) all values along a particular axis. Making the superposition operation by aggregation is easily considered as a natural extension of these methods.
  • three-dimensional data consisting of the retention time, mZ z, and ionic strength obtained by LC-MS analysis can also be limited to some specific m / z.
  • the time axis can be corrected by adding all the ion intensities along the retention time axis, such as a total ion chromatogram (TIC).
  • TIC total ion chromatogram
  • steps (a) to (d) differs from the method in which DTW and C ⁇ W are expanded, in that the multidimensional profile excluding the dimension to be corrected (retention time axis) is used.
  • the dimensions of the correction target can be expanded or contracted to achieve superposition of multidimensional profiles.
  • the methods that extend D TW and C OW are as follows: (1) There is no guarantee that the same result as overlaying the entire profile while maintaining accuracy will be obtained if the method limited to specific sections is used.
  • Some reference materials can be used as landmarks when adjusting parameters to be corrected (time axis, etc.)
  • the calculation method can be modified as follows. That is, in the above-described algorithm, it can be modified so that the peak portion of the signal derived from the standard substance is treated as a point that must pass.
  • the path that can be the solution is always this point.
  • There is a constraint that you must pass through By setting such a constraint condition, the path passing through the lower left and upper right subspaces of the search space divided by the line passing through the column 15 and the row 13 is excluded. The space that would otherwise be required can be reduced (Figure 6).
  • the sample analysis program according to the present invention can more accurately perform the superposition of profiles, Processing efficiency can be greatly improved.
  • the search space becomes more limited, so that the accuracy of overlaying the profiles can be improved and the efficiency can be improved.
  • the search space becomes more limited, so that the accuracy of overlaying the profiles can be improved and the efficiency can be improved.
  • the search space is reduced to a maximum of 1 if the division is performed at equal intervals in the best case.
  • the search space can be maximized by selecting the standard material so that the signal derived from the reference material is evenly and widely distributed. .
  • the method for modifying the algorithm for limiting the search space to increase the search efficiency is as follows: before and after the diagonal line from the upper left starting point to the lower right destination point in the search space shown in Fig. 5, If it is limited to a space with a width, any constraint condition can be considered. However, in this case, certain prerequisite knowledge of how much should be limited May not generally be obtained. Furthermore, in this case, if the starting point and the arrival point are greatly shifted for each multidimensional data to be compared, there is a possibility that the optimum route to be obtained may protrude from the limited space. For example, the elution start time of chromatography can fluctuate greatly, so if it is not possible to reliably observe this time, it is not appropriate to limit the search to a space with a predetermined width before and after the diagonal line. I want to.
  • the search space can be reduced to a maximum of close to ⁇ ", which is excellent both in terms of reliability and efficiency.
  • the optimal route search by performing the optimal route search only in one or several subspaces limited by the signal derived from the reference material, it is possible to obtain a partial optimal profile superposition.
  • the similarity (or distance) between the profiles can be measured by using the value of the aforementioned evaluation function as an index of the degree of the profile superposition.
  • the main signals appear intensively in a limited time domain, so the optimal path search is performed only in the subspace and the value of the evaluation function is obtained, so that the files and their profiles are obtained.
  • the similarity (or distance) between the samples that caused the turbulence can be determined efficiently.
  • a new corrected value is generated for the corrected parameter.
  • the retention time of the chromatogram determines the retention time after collection.
  • one of two superimposed two-dimensional data is set as reference data, and the retention time of the other multidimensional data is made to coincide with the retention time of the reference data. (Asymmetric type) and a method of correcting both two superimposed multidimensional data (symmetric type). In particular, it is preferable to obtain the holding time after correction in a symmetric type.
  • the retention time of the reference data is used as it is for the coincident point in order to match the retention time axis of the reference data. If the corresponding point in the data is not obtained, the retention time after correction can be determined by interpolation using the points that match before and after that point.
  • the corrected retention time is obtained by interpolation from the set of the corrected retention times of the closest corresponding points before and after that. If it is not possible to perform the correction using the internal data, the corrected retention time is calculated by extrapolation using the average time scale of the entire data set as a coefficient, based on the corrected retention time of the nearest corresponding point. It is possible to obtain
  • Which output method is selected can be appropriately selected according to the purpose of use of the sample analysis method according to the present invention. For example, if the purpose is to obtain an average from the results of multiple measurements of the same sample to offset measurement errors, or to obtain a representative profile from measurements of multiple samples under very similar conditions If you want, the output method of (2) above is effective. According to the output method (2), the output profile is limited to the common part, so that the data size can be reduced and the processing efficiency can be increased.
  • the output method (1) when detecting a difference between groups of different sample groups, the output method (1) must be used.
  • the data size generally increases, but no information loss occurs.
  • the output method (1) it is also possible to superimpose the common profile with a higher weight.
  • a new point is to correspond to the corresponding point in the previous superposition process, a new term to improve the score of the evaluation function is provided in the evaluation function, and the same point is set as much as possible. It is also possible to adjust so that they overlap. That is, for example, the evaluation score is calculated using a new evaluation function in which a new term such as-,) is added to the end of the evaluation function given by the above equation (I).
  • ⁇ , __ / is set to 1 if the previous superimposed point can be handled, and set to 0 otherwise.
  • the output of the sample analysis program according to the present invention has the following format. ⁇ Information on points newly obtained by superposition processing
  • the output is such that this information is repeated as many times as the number of data points obtained as a result of the superposition process. However, if there is no corresponding point, There is no information for tuset 1 or 2. In this way, the output also includes information on the points of the corresponding input data set, so that each point of the finally obtained overlay profile is converted to the original multidimensional It is possible to determine which of the data comes from. In addition to the above information, additional information can be added and output if necessary.
  • Aggregation or quantization processing may be performed on some of the parameters obtained from the superimposed profiles obtained as described above, if necessary. For example, especially when all points are output as described in (1) above, the time axis resolution may be too detailed beyond the required level. In this case, it is better to further consolidate points that are extremely close on the time axis into a single point for later processing.
  • the intensity of the aggregated points can be replaced by the sum of the individual point intensities before aggregation. Similarly, points that are closer than the required resolution on the m / Z axis can be aggregated. However, this operation may be performed each time the overlay processing is performed, or may be performed only once after performing the required overlay first.
  • the sample analysis method it is preferable to normalize the measured ionic strength prior to the above “3. Data analysis”.
  • the normalization of ionic strength will be described below, but the method of normalizing ionic strength is not limited at all. Specifically, first, the RAW file obtained as a result of the LC-MS analysis is converted into a text file using, for example, Xcalibur TM utility software. Next, the following series of data processing is applied by a program written in C language and Perl language.
  • ionic strength predetermined value e.g. 10 2 or less
  • the mZz value and the retention time value of the original data are rounded so that m / z is in increments of 1 and the retention time is in increments of 0.2, and have the same value (mZz, retention time Data points in) are added and counted.
  • signals having mZz values near 715 and 877 can be used as standard signals.
  • m / z was within ⁇ 1 range, and for the retention time, the signal of ra / z 715 (715 ⁇ 1) was obtained from the early elution signal group.
  • the signal derived from the standard substance can be searched.
  • further correction is performed when the signal intensity derived from the standard is corrected to 10 7 .
  • the peptide itself for example, peptide T (Ala- Ser- Thr -When Thr-Asn-Tyr-Thr) and j3 force somorphin ⁇ (Tyr-Pro-Phe-Pro-Gly-Prolie) were used as standard substances, signals with mZz values around 859 and around 791 respectively It can be a signal.
  • the former peptide is relatively hydrophilic, and the latter is hydrophobic.
  • the former has a lower retention time value and the latter has a higher retention time value.
  • the retention time of peptides from most samples lies between the retention times of the two peptides.
  • the value of m-noz is in the range of ⁇ 1 and the retention time can be roughly estimated from the chromatogram obtained by measuring only the reference material in advance. Therefore, by searching within a certain range before and after that, a signal derived from the reference material can be found.
  • the intensity of peptide ion signals other than those used as the standard substance among peptide ion signals derived from the protein can be obtained. It is desirable to be as low as possible.
  • the measured ionic strength values can be normalized, and quantitative comparison of ionic strength among a plurality of samples can be performed. Note that normalization of the measured ion intensity value should be performed prior to the above-described correction of the retention time.
  • the sample analysis method uses a three-dimensional data consisting of mZz, normalized ionic strength, and corrected retention time by the sample analysis method according to the present invention.
  • analysis of various components such as a protein group contained in the sample is performed on a computer. It can be carried out.
  • the component analysis includes (a) an addition method and (b) a subtraction method.
  • the correspondence between data points can be accurately obtained in a plurality of three-dimensional data obtained by the sample analysis method according to the present invention. Therefore, the difference between the normalized ionic strength values of the data points can be obtained.
  • the correspondence between data points can be accurately obtained among a plurality of acquired three-dimensional data. Can be. Therefore, all the three-dimensional data can be added according to the above-described addition method. Then, the arithmetic mean can be obtained by dividing the obtained sum of the three-dimensional data by the number of samples. If necessary, a weight can be set for each sample, and a weighted average reflecting the weight can be calculated.
  • a representative value of the range can be obtained.
  • the component analysis approaches described in (1) to (3) above may use a database storing a plurality of three-dimensional spectrum data obtained by the sample analysis method according to the present invention, or may use the database. This may be performed using the stored data and the data actually obtained. In any case, the component analysis approaches described in (1) to (3) above can be easily realized using a computer.
  • the protein group from which the signal is derived is determined by tandem MS analysis in which the range is limited to the obtained signal region. Can be identified. That is, in the sample analysis method according to the present invention, when a peptide molecule ion having a specific mZz value is detected when the sample is analyzed by LC-MS, the
  • the CID spectrum can be measured.
  • the obtained CID vector is input to a computer, and a database search software is used to search for a protein sequence obtained from a primary protein structure database, a genomic sequence database, or a cDNA sequence database.
  • a database search software is used to search for a protein sequence obtained from a primary protein structure database, a genomic sequence database, or a cDNA sequence database.
  • information such as protein or amino acid sequence registered in the database can be obtained, and the obtained information is applied to the obtained CID spectrum. Can be associated.
  • Example 1 a peptide sample obtained by mixing a protease digest of a protein whose amino acid sequence is already known was measured by LC-MS, and the retention time, ra / The algorithm according to the present invention was applied to a three-dimensional profile consisting of the z-value and the ionic strength, and the measured peptide sample was quantitatively characterized.
  • Example 1 as a model experiment for comparative quantification, several peptide samples in which protease digests of proteins whose amino acid sequences were already known were mixed were each measured by LC-MS, and the sample analysis of the present invention was performed. By applying the method and comparing each 3D open file, it was shown that differences in the types of proteins contained in each peptide sample were detected.
  • Tryptic digests of the 24 proteins listed below were prepared as peptide samples in this example.
  • subtilis alfaamylase (17) maglutathione S-transferase, (18) sigglutamin Acid dehydrogenase, I. (19) ⁇ Shirak topoperoxidase, (20) Koji power Biamylo d'arcosidase, (21) ⁇ Sagi phosphoryla Ze 8, (22) Ushibetagara click Toshidaze, (23) Usagi lactate dehydrogenase, (24) Niwatori egg white Rizochi one arm. These digests were purchased from Michrom BioResources. Tryptic digests of each of these 24 proteins were mixed as shown below to prepare a total of three peptide samples (Groups A to C).
  • Group A Trypsin digest of 20 types of proteins (1), (2), (7) to (24). The proteins that characterize group A are (1) and (2).
  • Group B Trypsin digest of 20 types of proteins (3), (4), (7) to (24). The proteins that characterize group B are (3) and (4).
  • Group C Trypsin digests of 20 proteins from (5) to (24). The proteins that characterize group C are (5) and (6). Three samples of each group were prepared.
  • the peptide sample was analyzed by the following apparatus and operation (Kawakami, T. et al, Jpn. J. Electrophoresis 44: 185-190 (2000)).
  • the peptide sample concentrated under reduced pressure was dissolved in 45 ⁇ l of a solvent having a mixing ratio of trifluoroacetic acid, acetonitrile and water of 0.1: 2: 98. This is the solution.
  • the concentration of mobile phase B was increased linearly from 5% to 85%, and peptide fragments were eluted continuously.
  • the flow rate at this time was about 1 ⁇ 1 / min.
  • the LC eluate was directly introduced into the ion source of an LCQ TM ion trap mass spectrometer (ThermoQuest) through a New Objective PicoChip TM needle (20 m ID).
  • the position of the NanoESI needle allows for fine adjustment of the distance to the heating capillary.
  • the spray voltage was not $ 21, and the eluent was charged directly. No gas was used for the mist and the spray current was 3.0 mA.
  • the file containing the three-dimensional parameter aggregate was converted to a text file using the Xcal ibur TM utility software.
  • the following data processing (1) to (4) were executed by a program written in C language and Perl language.
  • signals with m / z values near 715 and 877 derived from chicken egg white lysozyme are used as standard signals.
  • m / z In the range of soil 1 before and after the search, the retention time was searched in the range of 6 to 16 minutes for the signal of mZz 715, and in the range of 13 to 23 minutes for the signal of mZz 877.
  • the retention time axis was linearly transformed so that the peak positions of the mZz 715 signal and the mZz 877 signal were 10 minutes and 20 minutes, respectively, with respect to the retention time.
  • the representative points of three-dimensional profiles obtained from a sample of each of the three groups A, B and C were determined. That is, as described above, samples belonging to the same group were aggregated. The ion intensity at the point where m / z and the retention time overlap was added and tabulated. The higher the score used in this example, the better the score.
  • the coefficients in the formula are as follows. The ionic strength difference is calculated as the absolute value of the difference between the common logarithms. The coefficient multiplied by 1 was used. The difference between the retention times was obtained by multiplying the absolute value of the difference by a factor of 1000. When the signals at the corresponding data points in each group were both derived from the standard substance, the addition point was set to 50,000. If there was no corresponding retention time point in one group, the score was 5000 points. In the present embodiment, these are simply added to obtain a score.
  • Group A 495, 524, 546, 560, 671, 696, 779, 845, 871, 908, 962, etc.
  • Group B 451, 464, 509, 513, 546, 555, 583, 585, 626, 635, 649, 653, 701, 720, 723, 740, 741, 753, 768, 789, 819, 821, 847, 873 , 886, 922, 928, 952, 966, 973, 978, 1057, 1230, etc.
  • Group C 636, —670, 674, 679, 683, 718, 734, 735, 770, 824, 870, 918, etc.
  • each sample was subjected to LC-MSZMS analysis in order to obtain a CID spectrum of a peptide molecule ion detected as a specific signal.
  • the analysis conditions were as described above, except for the following operations. In other words, when performing LC-MSZMS analysis, the measurement conditions of the ion trap mass spectrometer are changed, and when a peptide molecular ion having the m / z value listed above is detected, the CID of the ion must be performed.
  • the sample was measured with the measurement conditions set as follows.
  • Example 2 a sample obtained by mixing another protein sample having a different concentration in a protein mixture having a predetermined concentration composition was subjected to protease digestion, and measurement was performed by LC-MS.
  • the method according to the present invention to the three-dimensional data consisting of the retention time, m / z value, and ionic strength, and comparing the three-dimensional data obtained by measuring samples with different concentrations, Signal was detected. This demonstrates that the method can detect substances that change quantitatively.
  • Tryptic digests of the six proteins listed below were prepared as peptide samples in this example.
  • These proteins were purchased from Sigma.
  • Tryptic digests of each of these six types of proteins were mixed as shown below to prepare a total of seven types of peptide samples.
  • peptidyl Bok sample analyzed by the device and the following procedures (Kawakarai, T. et al, Jpn J. Electrophoresi s 44:. 185-190 (2000)) 0 first, the peptide sample was concentrated under reduced pressure, Torifuruoro acetate, mixing ratio of ⁇ Se Tonitoriru and water 0.1: 2: dissolved in a solvent 45 mu 1 of 98. This is used as the lysis solution.
  • the peptide fragment was continuously eluted at a flow rate of about 1 ⁇ l / min.
  • the eluate of the LC was passed through a New Objective Pi coChip TM needle (20 ⁇ inside diameter).
  • the position of the dollar allows fine adjustment of the distance to the heating capillary
  • the spray voltage is charged directly to the eluent instead of the needle
  • the gas is not used for spraying and the spray current was set to 3.0 mA
  • the Turbo Scan method was applied to reduce the number of scans in the mass spectrometer, and this measurement was performed five times in each group to determine the three-dimensional parameters corresponding to each sample. A total of 35 groups were obtained in 7 groups, and Fig. 1 shows an example of the profile obtained.
  • Files containing 3D data were converted to text files using Xcal ibur TM utility software.
  • the following data processing (1) to (4) was executed using programs written in C, C ++ and Perl languages. To remove the data of 1 noise level, ionic strength was removed by dividing the 10 2 following signals.
  • the standard-derived signals used were mZ z 858.9, retention time 9 minutes, and two signals near m / z 791.0, retention time 25 minutes.
  • all the signal intensities derived from the standard substance were added together, and the value was normalized to be 10 9 .
  • two points were selected from the two standard substance signals described above, one point each giving an intensity peak.
  • Fig. 8 shows the chromatogram of the profile obtained from five measurements of a sample with a BSA concentration of 500 fmol, near m / z 620.0 and a residence time of 15 to 19 minutes. Five gray waveforms that are slightly shifted on the time axis
  • the output options of the superimposition profile were all points including mismatch.
  • the points that satisfy the following conditions have been consolidated into one. That is, all data points in the above range are checked in order of signal intensity, and those that are determined to fall within the range approximated by a Gaussian distribution with the peak signal at the top are aggregated. .
  • Figure 9 shows an example of a port file after time axis correction and aggregation for each of the seven samples with different BSA concentrations.
  • a section cut at a specific mZz value (752 in this example) is shown as a chromatogram in which intensity is plotted along the time axis.
  • the aggregated signal around 17 minutes and ⁇ 19 minutes shows the highest peak for the 06 sample with the highest BSA concentration (shown as “DS: Spl 06-Ave” in the figure; 5 pmoles of BSA). , Spl 04, ..., these signals can be determined to be BSA-derived signals.
  • the gentle peak around 25 minutes appears in all samples, it can be determined that the peak is derived from a common substance other than BSA or the background.
  • Figure 10 shows a sample with a BSA concentration of 500 4 shows a difference profile of femtomoles with sample 1. The line extending above the mZz-retention time plane is sample 5, and the line extending below is the signal strongly observed in sample 1.
  • Fig. 11 The signals selected under the above conditions are shown in Fig. 11 for the case of sample I.
  • 127 signals remained as meeting the above conditions.
  • the size of the plot mark indicates the signal intensity in the profile of Sample II.
  • those with the plot mark ⁇ indicate those that were associated with the BSA signal in the process described below, and those with X did not.
  • the signals selected under the same conditions described above were matched with BSA-derived signals. , 75, 81 (described above), 76, and 48% of the signals were determined to be BSA-derived signals. Note that the correct answer rate of the last sample (BSA concentration: 5 picomoles) decreased, but this was due to a change in the profile threshold due to the presence of many strong signals derived from high concentrations of BSA. This is probably due to the increase in signals. In fact, about the same as samples of other concentrations Adjusting the selection condition (2) to 3 ⁇ 10 6 so that a number of signals were selected, the correct answer rate was 75%.
  • One of the ideas according to the present invention is to save the search space of the dynamic programming.
  • the effect was evaluated by measuring the CPU time. For example, a 43-45% reduction in CPU time was obtained.
  • two kinds of signals derived from the standard are used, so if the signals are completely evenly distributed, the time reduction of lZ3 can be expected.However, many signals are actually between the two standard signals. ,
  • the search space is divided unevenly. Taking this into account, the reduction of about 45% is almost as expected, and is considered to be sufficiently effective for practical use.
  • Example 3 using a real patient-derived tissue sample, a signal derived from a protein that significantly fluctuated among several disease state groups was determined, and based on that signal, MS ZMS analysis was performed. By identifying such a protein, it was shown that the method was effective, especially in search of biomarkers.
  • lung adenocarcinoma using surgically excised tissue, protein was extracted from the tissue by the method described below and measured. The obtained profiles were divided into groups that were determined to have lymph node metastasis and those that were not determined by pathological diagnosis at a later date.Signals that fluctuated significantly between the two groups were detected, and MS ZM S Analysis was performed to identify the protein.
  • the samples used were surgically resected lung sections from 36 different lung cancer patients. Pathological diagnosis divides these patients into four groups: a group with large and small tumors, and a group with or without metastasis to regional lymph nodes.
  • sample buffer for sodium dodecyl sulfate (SDS) -polyacryl / reamide gel electrophoresis (PAGE).
  • SDS sodium dodecyl sulfate
  • PAGE reamide gel electrophoresis
  • the composition of the sample buffer is as follows. 62.5 mM Tris-HCl (pH 6.8), 2% w / v SDS, 5% v / v 2 -Mercaptoethanol, 10% v / v glycerin, 0.0025 ° /. w / v bromophenol blue. This suspension was shaken at room temperature for 30 minutes, and then centrifuged into a supernatant and a precipitate. The protein concentration of the supernatant was determined by a modification of the Lowry method.
  • a sample buffer solution of the same composition was added to the sample supernatant for 100 g of the protein to reduce the total volume to 50 mL.
  • a 1 M aqueous Tris solution was added to adjust the pH to 8.8.
  • 2 L of 400 mM dithiothreitol was applied and the mixture was incubated at 60 ° C. for 30 minutes.
  • 10 L of a 400 mM odoacetamide solution was added, and the mixture was allowed to stand at room temperature in the dark for 60 minutes.
  • About 5 ⁇ 5 of 1.0N hydrochloric acid was added to return the pH to 6.8. This solution was subjected to Laemmli SDS-PAGE.
  • the polyacrylamide gel used in this case consisted of a discontinuous buffer system, ie, concentrated gel (pH 6.8) at the top and separation gel (pH 8.8) at the bottom.
  • the polyacrylamide gel concentrations were 4% and 12.5%, respectively, and the overall size was 14 cm wide, 14 cm high, and lmm thick.
  • the current during electrophoresis was a constant 10 mA.
  • the electrophoresis was stopped when the swimming front of the dye promophenol reached from the interface between the concentrated gel and the separation gel to 48 flats of the separation gel.
  • the polyacrylamide gel was shaken in an aqueous solution of 40% methanol and 10% acetic acid to fix the proteins separated in the polyacrylamide gel. Thereafter, the polyacrylamide gel was washed twice with water.
  • the washed polyacryl midgel was cut into 24 gel pieces per sample and fractionated. That is, the sample was cut out in a ladder shape at an equal width of 2 mm in the direction perpendicular to the electrophoresis direction, and each section was further divided into dice having a side of about lmm.
  • the internal standard protein was added to each sample gel fraction while immobilized in the gel.
  • a cut-out section of the gel containing a fixed amount of the standard protein shown above was added to each sample gel fraction.
  • the gel pieces were washed with a sufficient amount of water and then dehydrated with acetonitrile.
  • the water and acetonitrile remaining in the gel pieces were distilled off under reduced pressure, and then an aqueous trypsin solution was added to such an extent that all the gel pieces were immersed, and the mixture was left on ice for 45 minutes.
  • An aqueous solution that did not permeate into the gel was removed, and a 50 mM aqueous solution of ammonium bicarbonate was added to such an extent that all the gel pieces were immersed.
  • the mixture was kept at 37 ° C for 16 hours to perform a digestion reaction.
  • the peptide samples were separated by the following equipment and operation (Kawakami, T. et al, Jpn. J. Electrophoresis 44: 185-190 (2000 )).
  • the peptide sample concentrated under reduced pressure was dissolved in 45 ⁇ l of a solvent having a mixing ratio of trifluoroacetic acid, acetonitrile and water of 0.1: 2: 98. This is used as the solution.
  • a MAGICMS TM C18 capillary column 20 ⁇ l of the lysis solution was introduced into a MAGICMS TM C18 capillary column (0.2 mm ID, 50 mm length, 5 ⁇ particle size, 200 ⁇ pore size) manufactured by BioResources. Elution of the peptides was performed using a MAGIC 2002 TM HPLC system (Michrom BioResources).
  • the HPLC mobile phase A was a solvent in which formic acid, acetonitrile and water were mixed at a volume ratio of 0.1: 2: 98, while the mixing ratio of the mobile phase B was 0.1: 90: 10.
  • the concentration of mobile phase B was increased linearly from 5% to 85%, and peptide fragments were eluted continuously.
  • the flow rate at this time was about 1 ⁇ 1 / min.
  • the eluate of the LC is passed through a New Objective PicoChip TM needle (20 im inner diameter), and the LCQ TM ion trap mass spectrometer is used. (ThermoQuest) was introduced directly into the ion source. The position of the anoESI needle allows for fine adjustment of the distance to the heating capillary.
  • the spray voltage was charged directly to the eluent instead of the needle. No gas was used for spraying, and the spray current was 3.0 mA.
  • the obtained LC-MS profile data consists of 36 samples x 24 bands, totaling 864.
  • analysis was performed using programs created in C, C ++ and Perl languages in the following procedure.
  • signals with m / z values near 715 and 877 derived from chicken egg white lysozyme are used as standard signals, and when searching for signals derived from these standard substances from sample measurement data, m / z The search was performed in the range of ⁇ 1; the retention time was searched in the range of 10 minutes ⁇ 5 minutes for the signal of m / z 715; and the signal of m / z 877 was searched in the range of 18 minutes ⁇ 5 minutes.
  • the absolute intensity of the obtained signal derived from the standard the relative intensity among all signals, and If one of the intensity ratios of the two standard-derived signals is far from that of the other, check the profile plot individually and search for the peak of the signal group that is considered to be the standard-derived signal. After adjusting it to be at the center point of the time parameter, it was taken again.
  • the signal intensity derived from the standard substance was corrected to 10 7 by dividing the ionic strength of each signal by the obtained total ion intensity value of the signal derived from the standard substance and multiplying the obtained value by 10 7 .
  • the retention time axis was linearly transformed so that the peak positions of the 111 / ⁇ 715 signal and the ⁇ 877 signal were 10 minutes and 20 minutes, respectively, with respect to the retention time.
  • the profiles superimposed on all bands were treated as the profile of each sample. Specifically, the profiles between adjacent bands were sequentially superimposed and added and counted using the profile superimposition function of the sample analysis program according to the present invention. That is, the band first
  • the penalty of the difference (absolute value) on the time axis ⁇ 1.0
  • the penalty of the difference of signal intensity i3 1.0 (however, the absolute value of the difference after converting the signal intensity into a common logarithm) )
  • a bonus point ⁇ 100 for a point match
  • a penalty ⁇ 10 for a mismatch point
  • a bonus point ⁇ (i, J) S m 1000 for a signal from a standard.
  • the output options of the superimposition profile were all points including mismatch. Each time the overlaying process was completed, data points were aggregated so that the retention time and m / z were 1.0 and 1.0, respectively.
  • the profiles are superimposed within the group and aggregated.
  • a file was obtained, and then a profile overlapping operation was similarly performed between the groups.
  • the parameters for the superimposition process at this time were the same as in the above-mentioned inter-band superposition process.
  • the order of superposition within the group, superposition was performed sequentially from the closest one based on the evaluation function score of the superposition processing under the same parameters that was previously performed by brute force.
  • the two groups, the difference in tumor size within the group with lymph node metastasis, and the difference in the tumor size within the group without lymph node metastasis were overlapped. Groups with and without metastases were overlapped.
  • Fig. 12 shows the final superposition profile, with the signal appearing in the lymph node metastasis positive group plotted upward and the signal present in the negative group negative plotted downward.
  • FIG. 13 shows the same plot as in FIG. 12 at the point where the p-value was less than 0.005 in the above test. At this stage, 5,889 signals were obtained.
  • sample analysis method and the sample analysis program according to the present invention when analyzing components contained in a sample, excellent analytical performance can be achieved. Therefore, according to the present invention, it is possible to provide a sample analysis method and a sample analysis program which are very effective and useful when comprehensively analyzing a large number of components contained in a sample to be analyzed.
  • sample analysis method and sample analysis program according to the present invention are very effective for the purpose of searching for substances related to a difference in the state of any disease using actual clinical specimens. Its usefulness is extremely high in that it can be used to search for and develop diagnostic methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

試料に含まれる成分を分析するに際して、優れた分析能を達成することができる試料解析方法及び試料解析プログラムを提供する。 本発明に係る試料解析方法は、試料の分析の結果として得られた多次元データにおける、少なくとも1次元のパラメータを補正する工程aと、上記工程aにより得られる補正後のデータを複数の試料について比較する工程bとを含む。

Description

明 細 書 試料解析方法及び試料解析プログラム 技術分野
本発明は、 試料の分析の結果として得られた多次元データを用いた試料解析方 法及ぴ試料解析プログラムに関する。 背景技術
例えば、 液体クロマトグラフィー (以下 LC と略記する) と質量分析 (以下 MS と略記する) を連結した液体クロマトグラフィー質量分析(以下 LC— MSと略記す る) の結果として、 横軸に質量 Z電荷比 (以下 m/zと略記する)、 縦軸にイオン 強度をとつたグラフとして 2次元上にスぺク トルデータを得ることができる。 こ こで、 LCの役割は、 MSの処理能力に適応させるために、試料を単に分画すること にある。
すなわち、 LCによって分画された試料を MSで分析することによって、 上述し たような 2次元のスぺクトルデータを得ることができ、 試料中の成分分析を行う ことができる。 ところが、 LCの役割を単に分画に限定することにより、従来の LC 一 MSでは、 検体中から検出 ·識別できるタンパク質の種類が網羅的でなく、 分析 能 ·解析能が低いといった問題がある。
一方で、 ク口マトグラフィーを単に分画だけでなく試料の特性を現す情報とし て利用する目的で、 複数のクロマトグラフィー結果を比較できるようにするため に、時間軸を補正して重ね合わせる(align)方法がいくつか提案されている。その 代表的なものとして、 Dynamic Time Warping (以下、 DTW と略記する)および Correlation Optimized Warping ( (以下、 COWと略記する)がある。 いずれも動的 計画法アルゴリズムに基づいた 1つの実装形態として、 それぞれユークリッド距 離、 あるいは相関を 2つのクロマトグラフィ一の距離もしくは類似性の指標とす るものである (V. Pravdova, B. Walczak, D. L. Massart, A comparison of two algorithms for warping of analytical signals , Anal. Chim. Acta 456 : 77-92 (2002) )。 しかしながら、 これらの方法は、 クロマトグラフィーの時間軸と信号強 度との 2次元で表されるクロマトグラムに適用されるものであるため、 多次元デ ータにおける少なくとも 1次元のパラメータを補正するものではない。
さらに、 このような重ね合わせ方法は、 比較対象となるクロマトグラムあるレ、 はスぺクト口グラムがある程度類似していることが前提となる。 実際、 DTW にせ よ COWにせよ、 比較対象のプロファイル間における距離の最小化あるいは相関の 最大化を目指した重ねあわせを行うため、 比較対象のプロフアイルの共通性が乏 しい場合には適切な重ねあわせが得られない可能性が十分にある。 このように高 い共通性を前提とした方法は、 例えば、 実際の疾患病態解析や薬剤応答性解析の ように、 多くの因子の変動が予想され、 しかもそれぞれの変動量が微細で、 個体 差や測定誤差などに紛れそうな場合には不適切である。
そこで、 本発明は、 上述したような実状に鑑み、 試料に含まれる成分を分析す るに際して、 優れた分析能を達成することができる試料解析方法及び試料解析プ ログラムを提供することを目的とする。 発明の開示
上述した目的を達成した本発明は以下を包含する。
( 1 ) 試料の分析の結果として得られた多次元データにおける、 少なくとも 1 次元のパラメータを補正する工程 aと、 上記工程 aにより得られる捕正後のデー タを複数の試料について比較する工程 bとを含む試料解析方法。
本試料解析方法において、 多次元データとしては、 クロマトグラフィー質量分 析の結果として得られる、 質量/電荷比を示すパラメータと、 イオン強度を示す パラメータと、 保持時間を示すパラメータとからなる 3次元データを挙げること ができる。 また、 このとき、 工程 aでは保持時間を示すパラメータを補正するこ とが好ましい。
また、 ここで、 補正対象のパラメータを除いたパラメータに関するプロフアイ ルを参照プロファイルと定義し、 複数の試料間で複数の参照プロファイルに関す る配置類似性の尺度となる評価関数を与えることができる。 この場合、 工程 aで は、 当該評価関数の値を最適化する最適解搮索問題として各プロファイルの配置 を求めることができる。
このとき、 評価関数は、 以下の①〜⑤からなる群から選ばれる 1以上の項で定 義されることが好ましい。
①補正対象のパラメータに関するプロファイル間の類似性及び/又は距離に関す る項
②参照プロファイルに関するプロファイル間の類似性及び/又は距離に関する項
③比較対象となるプロファイル間でのデータ点の一致の程度に関する項
④比較対象となるプロファイル間でのデータ点の不一致の程度に関する項
⑤比較対象となるプロファイル間での標準物質由来シグナルの一致又は不一致の 程度に関する項
⑥比較操作を繰り返す際に、 過去の比較における一致の程度に関する項
また、 工程 aでは、 補正対象のパラメータについて最適解探索問題として評価 関数の値を最適化する際に動的計画法のアルゴリズムを用いることができる。 こ の動的計画法のアルゴリズムでは、 補正の対象となるパラメータに含まれるデー タ点の最適な対応関係を、 スコアを算出して評価する際に、 標準物質に由来する データ点に関する対応関係については、 当該スコアを良くする設定とすることが 好ましい。 さらに、 この場合、 標準物質に由来するデータ点に関する対応関係に ついては、 必ず指定された点で対応することを拘束条件とすることが好ましい。 上記 (1 ) に係る試料解析方法は、 特に上記工程 aにおいて、 あらかじめ添加 された標準物質に由来する情報を用いることによって、 解析の精度をより向上で きるとともに、 補正処理の能力をも向上させる。 本発明に係る試料解析方法のな かでも、 このような特 [を備える方法を internal standard guided optimal profile alignment (z-OPAL) 法と命名する。
また、 上述した本発明に係る試料解析方法は、 各種データを入力する機能を有 する入力手段、 プログラムに従って演算処理を実行する機能を有する演算処理手 段、 当該演算処理の結果等を表示する機能を有する表示手段を備えるコンビユー タに実行させるためのプログラムとして実現することができる。
一方、 本発明に係る試料解析方法は、 異なった種類の試料の間で量の異なる物 質を検出 ·同定することができる。 具体的には、 複数の試料において多次元デー タとして、 クロマトグラフィー質量分析の結果として得られる質量/電荷比を示 すパラメータと、 イオン強度を示すパラメータと、 保持時間を示すパラメータと からなる 3次元データを測定し、 複数の試料間で 3次元データを比較し、 イオン 強度が有意に異なるシグナルを検出 ·同定することができる。 これらのシグナル の特性、 即ち、 質量ノ電荷比および保持時間に十分近接した特性を持つシグナル を生じさせた物質に対して、 更なる解析を施すことで、 当該物質を同定すること が可能である。
さらに、 検出 ·同定工程を、 例えば疾患由来試料と、 健常者あるいは健常組織 由来試料とに適用することにより、 疾患群と健常群で有意に異なる存在量を示す 物質を検出 '同定することができる。 これによつて同定された物質は、 バイオマ 一力一として利用することができる。バイオマーカー検出'同定結果を利用して、 疾患の診断や治療法の選択へ利用することが可能である。
さらにまた、 検出 ·同定工程を、 例えば特定の治療法あるいは薬物への応答性 の差異、 あるいは副作用の差異を示す患者集団由来の試料へ適用することで、 治 療法 Z薬剤応答性あるいは副作用のマーカーとなる物質の検出 ·同定へ利用可能 である。
本明細書は本願の優先権の基礎である日本国特許出願 2003-95732 号の明細書 及び/又は図面に記載される内容を包含する。 図面の簡単な説明
図 1は、 本発明に係る試料解析方法及ぴ試料解析プログラムにより取得された 3次元のスぺクトルデータの一例を示す図である。
図 2は、 3次元データの一例を示す図である。
図 3は、 図 2に示した 3次元データとの対応関係を検索するために設定したも う一つの 3次元データの一例を示す図である。
図 4は、 図 2に示した 3次元データと図 3に示した 3次元データとの最適な対 応配置を示した図である。
図 5は、 図 2に示した 3次元データと図 3に示した 3次元データとの最適な対 応配置を検索する際の概念を示す図である。 図 6は、 図 5に示した最適配置探索において、 標準物質由来の情報を利用して 経路を限定すると、 探索空間のうちの灰色部分はもはや探索する必要がないこと を示した図である。
図 7は、 標準物質由来の情報をより多く利用して経路の拘束条件を増やすと、 探索不要な空間が増えて、 探索効率がいっそう向上することを示した図である。 図 8は、 本発明に係る試料解析プログラムによって、 同一種類の 5つの測定結 果で時間軸上摇らいでいる波形を、 1 つに重ね合わせてシグナルを足し合わせた 結果を示した図である。
図 9は、 本発明に係る試料解析プログラムによって、 異なる 7種類の試料測定 から得られたプロファイルを時間軸をそろえて重ね合わせることにより、 時点ご とに異なった試料間での相互比較が行えるようになったことを示した図である。 図 10は、本発明に係る試料解析プログラムによって、異なった 2種類の試料間 の差スぺクトルを計算して示した図である。
図 11は、本発明に係る試料解析プログラムによって、試料群間に有意な量的変 動があるシグナルとして選別されたものを示した図である。
図 12は、本発明に係る試料解析プログラムを、実際の臨床検体を用いたマーカ 一探索に応用し、 異なった病理診断結果によるグルービングに応じてシグナルを 分類できることを示した図である。
図 13は、 図 12に示した結果に対し、 さらに統計検定を行うことで、 異なった 病理診断結果に応じて量的に変化しているシグナルを拾い出したものを示した図 である。
図 14は、図 13に示した結果の各シグナルに対し、 さらに MSZMSによる蛋白質 同定との関連付けを行つた結果を示した図である。
図 15は、図 14に示したような形で既知の蛋白質と関連付けられたもののうち、 特に癌の転移に関連することが知られている蛋白について、 本発明に係る試料解 析システムで見出された結果の一部を示した表である。 発明を実施するための形態
以下、 図面を参照して本発明を詳細に説明する。 試料の調整
本発明に係る試料解析方法では、 先ず、 解析対象の試料を採取する。 解析対象 の試料としては、 特に限定されないが、 例えば、 動物個体由来の臓器の組織切片 や血漿 ·リンパ液などの体液成分、植物の緑葉や花弁などの器官、環境中の土壌 · 水成分などがあげられる。 これらの試料に含まれる分析対象物質としては、 特に 以下に限定されないが、 例えば、 有機化合物、 無機化合物、 有機金属化合物、 金 属イオン、 ペプチド、 蛋白質、 金属蛋白質、 リン酸化を含む翻訳後修飾を受けた ペプチド、 リン酸化を含む翻訳後修飾を受けた蛋白質、 核酸、 糖質、 脂質などが あげられるが、 特に望ましくはペプチド、 蛋白質、 金属蛋白質、 翻訳後修飾を受 けたペプチドもしくは蛋白質である。
また、 採取した試料は、 分析の目的及び採取した試料の特性に合わせて、 必要 であれば各種処理を施すことが好ましい。 例えば、 (ァ) タンパク質群の分離ある いは分画、 (ィ) タンパク質群の酵素的及ぴ Z又は化学的切断、 (ゥ) 切断によつ て生じたペプチド混合物の分離あるいは分画、 および (ェ) 標準物質の添加、 の 全ての要素あるいは一部の要素の組み合わせて行う分析前調製を施すことが好ま しレ、。
より具体的に'、 「(ァ) タンパク質群の分離あるいは分画」 は、 一次元のドデシ ル硫酸ナトリゥム (SDS) 電気泳動法、 二次元電気泳動法、 キヤピラリー電気泳動 法、 イオン交換クロマトグラフィー、 ゲルろ過クロマトグラフィー、 順相クロマ トグラフィー、 逆相クロマトグラフィー、 ァフィユティークロマトグラフィー、 或いはこれらの組み合わせによる多次元分離 ·分画等によって行うことができる。 また、 「(ィ) タンパク質群の酵素的及び/又は化学的切断」 は、 トリプシン消 ィ匕、 キモトリブシン消化、 Lys- C消化、 Asp- N消化、 Glu- C消化、 臭化シアン分解 或いはこれらの組み合わせによる切断等によつて行うことができる。
さらに、 「(ゥ) 切断によって生じたペプチド混合物の分離あるいは分画」 は、 一次元のドデシル硫酸ナトリゥム (SDS) 電気泳動法、 二次元電気泳動法、 キヤピ ラリー電気泳動法、 イオン交換クロマトグラフィー、 ゲルろ過クロマトグラフィ 一、 順相クロマトグラフィー、 逆相クロマトグラフィー、 ァフィ二ティークロマ トゲラフィー或いはこれらの組み合わせによる多次元分離 ·分画等によって行う ことができる。
さらにまた、 「(ェ) 標準物質の添加」 において標準物質は、 選択したイオン化 法にてイオン化できるものであって、測定の L C保持時間の範囲内に溶出するもの であって、 溶出時間および分子ィオン強度の再現性が高いものを選択することが 好ましい。 このような好ましい標準物質としては、 例えば、 有機化合物、 無機化 合物、 有機金属化合物、 金属イオン、 ペプチド、 蛋白質、 金属蛋白質、 リン酸化 を含む翻訳後修飾を受けたぺプチド、 リン酸化を含む翻訳後修飾を含む蛋白質、 核酸、 糖質、 脂質など、 より好ましくは、 ペプチド ·蛋白質で市販品、 天然に存 在する物質あるいは合成された物質を挙げることができる。
以上、 (ァ) 〜 (ェ) に示した分析前における各種処理は、 例えば、 「ァ、 ェ、 ィ、 ゥの順」、 「ェ、 ィ、 ゥの順」、 「ィ、 ェ、 ゥの順」、 「ェ、 ァの順」、 「ェ、 ィの 順」 「ィ、 ェの順」 又は 「ェのみ」 で行うことができる。
2 . 試料分析
次に、 試料を分析することによって、 試料に関する多次元データを取得する。 具体的には、 試料を LC-MSにより分析し、 m/"^ イオン強度及び保持時間からな る多次元データを測定する。 ここで、 LC一 MSにより分析するとは、 試料をクロマ トグラフィ一の原理に従って分離又は分画し、 その後、 分離又は分画された試料 に含まれる成分を質量分析の原理で測定することを意味する。なお、保持時間は、 試料をクロマトグラフィーの原理に従って分離又は分画する際の時間として測定 される。 また、 mZz及ぴイオン強度は、 質量分析の結果として測定される。
また、 クロマトグラフィーの原理としては、 特に限定されないが、 逆相クロマ トグラフィー、 キヤピラリー電気泳動、 ァフィ二ティークロマトグラフィー、 ク ロマトフオーカシング、 等電点フォーカシング、 ゲルろ過クロマトグラフィ一等 の各種クロマトグラフィーの原理を適用することができる。 特に、 本明細書にお いて LCと表記する場合、液体クロマトグラフィーのみを意味するのではなく、広 く一般的なクロマトグラフィーを意味する。
LC -MSにおけるクロマトグラフィーでは、再現性の高い溶出プロファイルが得 られること、 分離能が高いこと、適当なイオン化のインターフェースを介して MS に直接分子イオンを導入することが可能であることが好ましい。
より具体的に、 液体クロマトグラフィーにおける好ましい条件としては次の通 りである。 試料中のぺプチド群を分析対称とする場合には、 水 ·ァセトニトリル 溶液に低濃度の蟻酸などの強酸を含む溶離液を用いた C18カラムによる逆相液体 クロマトグラフィーが好ましい。 また蛋白質群を分析対称とする場合には、 水 - ァセトニトリル溶液に低濃度の蟻酸などの強酸を含む溶離液を用いた C4 カラム による逆相液体クロマトグラフィ一が好ましい。
質量分析は、特に限定されないが、磁場型質量分析計、飛行時間型質量分析計、 四重極質量分析計、 イオントラップ質量分析計、 フーリエ変換質量分析計または これらのハイブリッド及びタンデム質量分析計等により行うことができる。 より 好ましくは、 エレク トロスプレーイオン化またはナノエレク トロスプレーイオン 化と結合できる磁場型質量分析計、 飛行時間型質量分析計、 四重極質量分析計、 イオントラップ質量分析計、 フーリエ変換質量分析計またはこれらのハイプリッ ド若しくはタンデム質量分析計を用いて質量分析を行うことが好ましい。
LC-MS における質量分析では、 再現性の高い質量スペク トルが得られること、 500ppm以下の高い質量精度を有すること、 一定範囲の mZzの分子イオンに対し て衝突誘起解離(CID) をかけ、 当該分子イオンのフラグメントイオンの質量スぺ ク トルが得られることが好ましい。
このように、試料を LC一 MSにより分析し、 m/z、 イオン強度及び保持時間を測 定することによって、 試料の分析結果を 3次元データとして取得することができ る。 なお、 LC一 MSによる分析は、 保持時間に関するデータ、 mZzに関するシグ ナル及びイオン強度に関するデータを、入力手段を介してコンピュータに入力し、 詳細を後述するアルゴリズムに従って演算処理手段によって処理を行うことによ り図 1に示すような 3次元データとして取得することができる。 本アルゴリズム は、 コンピュータソフトウェアに搭載することができる。 当該ソフトウェアをコ ンピュータにィンストールすることによって、 CPU等の演算処理手段により本ァ ルゴリズムをコンピュータ上で実現することができる。 従って、 図 1に示すよう な 3次元データは、 コンピュータの表示装置に表示することができる。
従前の LC一 MSによる解析方法においては、 単に試料の分画のために LCを行つ ているため、 保持時間は解析対象パラメータとして使われておらず、 試料の分析 結果として横軸に m/z、縦軸にイオン強度をとった 2次元データが解析対象とな りうるに過ぎなかった。 これに対して本発明に係る解析方法によれば、 試料の分 析結果を 3次元空間上にプロットされるプロファイルとして取得することができ るため、 試料の分析能を飛躍的に向上させることがでぎる。 具体的には、 本発明 に係る解析方法によれば、 保持時間を示す軸の方向に広がりを持った多数のスぺ クトルの重ね合わせとしてデータを取得でき、 従前の解析方法と比較してより多 数の成分に関して、 スぺク トルに基づく同定を行うことができる。 このため、 例 えば、 複数の試料について得られた多次元データを比較することで各試料の成分 分析をより厳密に行うことができる。
3 . データ解析
次に、 本発明に係る解析方法においては、 以上のように測定した保持時間を、 演算処理手段の制御のもとに本発明に係るアルゴリズムによって補正することも できる。 ここで、 一般に保持時間は、 LCにおける移動相の組成、 流速、 カラム温 度等のファクターが時間的に微小な変化を生じることから、 非線形的に変動する ことが多い。 したがって、 本発明に係る解析方法で取得された 3次元データに関 しても、 複数の試料について解析を行った場合に試料間の保持時間を示す軸が非 線形的に変動していることが考えられる。 そこで、 本発明に係るアルゴリズムに おいては、 保持時間の補正 (以下、 時間軸補正とも言う) を行う。
伹し、本発明に係るアルゴリズムが対象とする時間軸補正は、従前の方法で DTW アルゴリズム等によるクロマトグラムの時間軸捕正のような、 保持時間一信号強 度の 2次元空間で表現される単一次元プロファイルの補正ではない。 本発明が対 象とするデータは、 時間軸に対して補正されるべきプロファイルが少なくとも 2 次元以上の多次元で表現されるものである。
以下、 当該アルゴリズムについて説明するが、 当該アルゴリズムは保持時間の 補正に限定されず、 多次元のパラメータが得られた場合に少なくとも 1次元のパ ラメータを捕正する場合に広く適用することができる。 言い換えると、 当該アル ゴリズムは、 試料の分析の結果として得られた多次元のパラメータ (例えば 3次 元のパラメータ) における、 少なくとも 1次元のパラメータを補正する際に適用 することができる。 従って、 以下の説明においては、 + 9次元の測定データを取 得した場合のアルゴリズムについて説明する。
先ず、 補正対象とするパラメータを含む;?次元の測定値を (X1 ... )とし、 補 正の際に参照する g次元の測定値を (y ... y )とすると、 データの集合 (プロフ アイル) zは ζ = (χ ... χ y ... v )となる。 ここで、 x及び yは、 データ点の 個数 Nの次元を持つ列べク トルである。
なお、 データ点とは、 上記プロファイル行列 (Z ) の 1つの行を構成する + 9 次元のベク トルであり、 測定対象の 1つの要素について、 測定パラメータと値の 組 を 表 し て い る 。 特 に 、 " e {l,... , N} 番 目 の デ ー タ 点 を
= - xp(n) yx (n) ■■■ ^(" のようにも表す。
また、 補正の基準となる測定値を^ = … xp(*s) (* … yq(*s)) とする。 ここで、 sは I D S は基準点の数) を意味する。 また、 Z( )は、 いず れも各基準点のとる値が推定可能な範囲に収まらなくてはならない。
さらに、 本アルゴリズムにおいてネ霜正を行うためには 2つ以上のプロファイル データ Z(1)
Figure imgf000012_0001
… y > … y 2) )が 必要となる。
以上のような定義の下で、 本アルゴリズムにおいては先ず、 個のパラメータ 軸 … xpそれぞれにおいて取り うる値を量子化する。 但し、 量子化プロセス は、 計算精度と計算時間との兼ね合いで行うものであり、 値のとり うる場合の数 が十分計算可能な範囲にあるならば、 必ずしもこの段階で行わなくてもよい。 次 いで、 個のパラメータ軸: ^ … xpそれぞれにおいて x「>及び^ 2) (但し i e {l,... , p} ) の各データ点を、 順列を保って対応付けを行う。 なお、 一般に、 Z(1) 及び Z(2)に含まれるデータ点の個数は異なりうるので、 全てのデータ点が 1 対 1 に対応するわけではなく、 対応する相手のないデータ点も含むことに留意する。 このとき、 例えば、 以下のような評価関数を用いてプロファイル全体での対応 付けの評価得点 Eを算出する。 なおこの評価得点は、 類似性を表す尺度として、 大きいほどよい 「得点」 として定義することも、 逆に距離を表す尺度として、 小 さければよい 「失点」 として定義することも可能である。 以下では失点としての 定義で説明する,
Figure imgf000013_0001
ここで x;:は、 i番目のデータ点における r番目のパラメータの値を表し、 N N2 はそれぞれ 1番目と 2番目のプロファイルにおけるデータ点の総数である。また、 上記評価関数において関数/は、対応する点の類似度合いの距離を与える関数で、 例えば以下のような関数を挙げることができる。
Figure imgf000013_0002
ここで上記式(I)における、 右辺第 1項目は補正すベきパラメータ こおいて 当該パラメータの測度における差異の程度に応じたペナルティ、 第 2項目は合わ せるべき測定パラメータ が補正後どれだけずれたかを当該パラメータ測度上 の距離に応じたペナルティ、 第 3項目はパラメータ補正によって 2つの点が全て のパラメータにおいて一致したことのボーナスとして与えられるスコア、 逆に第 4項目は補正対象パラメータ軸上での 2つの点が一致しなかったことによるペナ ルティスコアに相当する。 また第 5項目は、 後述するように、 標準物質によるシ グナルの一致をボーナスとして評価するための項である。
また、 上記式 (I) における、 α、 β σ及ぴ πは、 それぞれを含む項における 係数であり、 適宜設定できる値である。 一例としては、 αを 1. 0 とし、 ]3を 0. 1 とし、 パラメータ補正によって点が一致した場合には σを 0とし、 一致しなかつ た場合には πを 100とすることができる。
なお、 関数 ',ゾ)は、 着目するパラメータ rの値が/,ゾによって指定されるデー タ点において対応した場合は 1、しなかった場合は 0を与える関数、逆に ( ,_/)は 対応した場合が 0、 非対応の場合が 1となる関数である。
上記式(I)において、第 2項目は、補正対称のパラメータを除いたパラメータに 関するプロファイル (参照プロファイル) について、 試料間での配置類似性の尺 度を示している。
また、 ここでは 2点の不一致によるペナルティを与える式として、 対応 ·非対 応によって定数となる例を示したが、 所定の関数によって算出される値であって も良い。 例えば、 隣接するデータ点が対応するか否か、 対応しないデータ点が出 現した列の長さ等を考慮した関数によって第 4項目を算出することができる。 また、上記式(I)において、ノルム ||χ||は一般的なベタ トル空間上の距離を表し、 必ずしもユークリッド距離に限定するものではない。 さらに | - Iのように 2 点間の値の差を計算する際に、 対応する点がない場合は、 値を 0 (または適当な 欠損値の代替値) に置き換えて計算するものとする。
なお、本発明において評価関数は、上記式(I)に示す関数に限定されるものでは ない。 例えば、 このようなデータ点 ·,_ )間の補正対象パラメータ或いは参照パラ メータの距離の線形結合だけではなく、 両者の距離に応じた任意の関数、 更には 直前若しくはそれまでに連続して対応したデータ点列におけるパラメータ間の距 離も勘案した関数を定義することも可能である。 また、 評価関数としては、 上記 式(I)に限定されず、試料間において参照プロフアイの配置類似性の尺度となるよ うな関数を定義することも可能である。
あるいは、 ここでは失点としての例を示したが、上記式(I)における右辺各項の 符号を逆転させた上で、 距離の部分を相関などに置き換えることにより、 逆に類 似性を表す指標として、 大きければ大きいほどよい得点としての評価関数を定義 することも容易に可能であり、 そのような評価関数も本アルゴリズムに適用する ことができる。
上記式(I)の第 5項で例示したように、対応する点が標準物質由来の基準点か否 かで、 例えば次のような特別な得点を与えるものとする。 即ち、 対応するデータ 点がいずれも標準物質由来のものであった場合は、 ^>',ゾ)= として、 はるかに 大きな得点を設定することで、評価関数(この場合は距離即ち失点としての定義) が大きな負の値をとりうることで結果的にこのような対応関係が望ましいことを 定義する。 さらに、 一方が標準物質由来であるのに他方がそうでない場合は、 逆 に 6 / ,ブ) = - としてはるかに大きな距離となるように定義することも可能であ る。
以上で説明した評価関数を最適化するアルゴリズムによって、 上記 「2 . 試料 分析」 で取得した 3次元データに関して、 保持時間を示すパラメータの補正を行 うことができる。 上記 「2 . 試料分析」 で取得した 3次元データに関して、 最適 化アルゴリズムを適用する場合、 以下の (a) 〜 (d) の手順に従って説明するこ とができる。
(a) 保持時間補正の概念
保持時間を補正する操作は、 mZz、 イオン強度及び補正時間からなる単一の三 次元パラメータ集合体を対象とするのではなく、 2 つの三次元パラメータ集合体 の比較によって実現される。 三次元パラメータ集合体は、 図 2に示すように、 m Zzと保持時間とをそれぞれ行と列にとった行列において、 m/z及び保持時間が 対応する位置の行列要素にイオン強度が入るような形で表される。 保持時間を捕 正する対象の三次元パラメータ集合体をそれぞれ z(1)及ぴ z(2)とすると、保持時間 の補正操作は、 Z(1)及び Z(2)における 2つの行列で、 保持時間軸に相当する列の対 応関係を決める操作 (以下、 「対応配置の検索」 と呼ぶ) に他ならない。 例えば、 図 2に示す行列を Z(1)の行列とし、 図 3に示す行列を Z(2)の行列とすると、 図 4の ような配置が望ましい対応配置 (重ね合わせ配置) である。
(b) 2つの 3次元データにおけるパラメータ集合体間の対応配置の探索 図 4に示すような対応配置を探索するためには、 可能なすべての保持時間の対 応付けを考える。この際、配置の対応関係の良し悪しを評価するスコアを定義し、 配置毎にスコアを計算し、 その中でもっともスコアがよいものを採用することで 目的とする最適な対応配置を得ることができる。 図 5は、 図 2と図 3に示した三 次元パラメータ集合体 Z(1)及ぴ Z(2)に関して、保持時間の可能なすべての対応付け を示したものである。 横方向に z(1)の保持時間、 縦方向に z(2)の保持時間が記され ているが、 (ィ) z(1)及び z(2)でそれぞれ対応する保持時間のある場合が斜線、 (口) z(1)の所定の保持時間に対して z(2)の方に対応するものがない場合が横線、 (ハ) z(2)の所定の保持時間に対して z(1)の方に対応するものがない場合が縦線で示さ れている。 Z(1)及ぴ Z(2)の全体的な保持時間の対応付けは、 図 5の格子の最左上角 から最右下角にいたる経路を、 これら斜線 ·横線 ·縦線をなぞることで求めるこ とに相当する。 但し、 一度下がったり右に進んだら、 進んだ点から逆に上や左に 戻るような経路は許されない。 なお、 図 5において太線で示された経路は、 図 4 の対応対置に相当する。 (c) 保持時間対応配置の良否を判断するためのスコア
保持時間に関する対応配置の良否を判断するスコアは、 例えば、 次のようにし て定義することができる。
iL最左上点におけるスコア、すなわちまだ対応関係がまったく決まっていない点 でのスコアを 0とする。
ii) 前述の (ィ) (口) 及び (ハ) のうちいずれかの場合をとることにより、 対応 関係が 1段階進んだ場合は、 その直前のスコアに対して、 (ィ) (口) 及ぴ (ハ) 毎に決められたスコアを加算することで、 新たな対応関係の点におけるスコアと なる。 例えば、 以下のように (ィ) (口) 及び (ハ) 毎にスコアを設定することが できる。
(ィ) の場合 (図 5において斜線方向に進む場合) :
この場合、 所定の保持時間に関して、 Z(1)及ぴ Z(2)が互いに対応付けられるわけ である。 したがって、 この場合、 加算されるスコアとしては、 raZzパラメータと ィオン強度パラメータが z(1)及ぴ z(2)間でどれだけ類似或 ヽは離れてレ、るかを反 映した値を設定することができる。 以下の説明では類似度としてスコアを定義し た場合について説明する。 例えば、 Z(1)において所定の mZzの元でイオン強度が 検出されているのに Z(2)には同 mZzの元でイオン強度が検出されなかったケース、 あるいはその逆のケースであれば、 一定の値 (ペナルティスコア) を減じるよう にスコアを設定することができる。 また、 所定の mZz において Z(1)及ぴ Z(2)それ ぞれにイオン強度が得られている場合、 例えば両イオン強度の差の絶対値に所定 の係数を乗じて算出される値 (ペナルティスコア) を減じるようにスコアを設定 することができる。 さらに、 スコアとしては、 両イオン強度の違いが大きければ 大きいほど、 得点が小さくなるような関数で算出されるものであっても良い。 一方、 z(1)及び z(2)における保持時間のずれもスコアに反映させることもできる。 例えば、 Z(1)及び Z(2)における保持時間の差の絶対値に所定の係数を乗じて算出さ れた値 (ペナルティスコア) を減じるようにスコアを設定することができる。 ス コアとしては、 及ぴ Z(2)における保持時間の違いが大きければ大きいほど、 得 点が小さくなるような関数で算出されるものであっても良い。
なお、 標準物質由来のシグナルが Z(1)及び Z(2)で対応する場合には、 後述する計 算方法の工夫に加えて、スコア算定上も特別な措置を施すことが好ましい。特に、 これらの点が z(1)及ぴ z(2)間で一致することは強く求められるので、 z(1)及び z(2)と もに標準物質由来シグナルとして対応付けられる場合には大きな得点を、 逆に一 方だけしか標準物質由来シグナルが見つからない場合には大きな失点を与える。
(口) 及ぴ (ハ) の場合 (図 5において縦又は横方向に進む場合) :
この場合、 所定の保持時間に関して、 及び Z(2)において対応する保持時間を 見出せなかったわけである。 したがって、 この場合、 所定の値 (ペナルティスコ ァ) を減じるようなスコアを設定する。
i i i) このようにして図 5の格子の最左上角から最右下角にいたるまで、段階的に スコアを求めてゆき、 最後に最右下角までいたった時点でのスコアが、 得られた 対応配置に対応するスコアになる。
(d) 保持時間に関する最適な対応配置を求める手順
基本的には、 可能なすべての対応配置を列挙し、 それぞれについてスコアを計 算し、 その中で最大のスコアを示す対応配置を選択すればよいわけであるが、 上 述したように、 スコアは漸化式で与えられるため、 「動的計画法」 に適している問 題である。 すなわち、 3次元データ Z(1)に含まれる J'番目の保持時間と Z(2)に含ま れる 番目の保持時間の対応関係を考える際には、 (ィ) Z(1)に含まれる ー 1番 目及び Z(2)に含まれる J一 1 番目に次いで Z(1)及ぴ Z(2)両者ともに対応付けられる 場合、 (口) Z(1)に含まれる J'一 1番目及ぴ Z(2)に含まれる j番目に次いで Z(1)の保 持時間に対応する Z(2)のパラメータがない場合、 (ハ) Z(1)に含まれる i番目と Z(2) に含まれる '一 1番目に次いで z(2)の保持時間に対応する z(1)のパラメータがない 場合、 の 3通りを考えることとなる。 いずれの場合も 1段階前の状態におけるス コアがわかっていれば Z(1)及び Z(2)の (ム J) 番目のスコアを算出することが可能 となる。
そこで (ィ) (口) 及び (ハ) の 3通りのうち、 最もよいスコアを与えた場合の スコアとそこに至るまでの経路のみを記録しておき、 このステップを図 5に示し た格子の最左上角の出発点から最右下角のゴールに達するまで続ける。 そして、 記録した経路を最右下角から出発点まで、 逆にたどることにより、 最適経路、 す なわち Z(1)及ぴ Z(2)における保持時間に関して、最適な対応配置を求めることがで さる。
以上、 (a)〜(d)の手順として説明した手法は、 動的計画法に基づいた最適解探 索手法と言い換えることができるが、 本発明において適用可能なアルゴリズムは 動的計画法に限定されるものではない。 すなわち、 目的の評価関数を最適化する より一般的な探索問題と捉えることで、 他の最適探索アルゴリズムを用いて実装 することも可能である。 このようなアルゴリズムとしては、 例えば A *アルゴリ ズム、 遺伝的アルゴリズム (G A)、 シミュレ一テッドアニーリング (S A)、 最 急降下法等による非線形計画法等によって実装することもできる。
( 〜(d)の手順として説明した手法は、 いわゆる動的計画法に基づく手法であ り、 動的計画法に基づいている点では、 D TW法や C O W法と類似する部分があ る。 しかしながら、 D TWや C OWは、 評価関数の形や計算手法もユークリッド 距離あるいは相関を評価関数として、 時系列データ点列そのままあるいは一定間 隔の時間区切りでセグメント化した上での区間ごとの比較として、 さらに 2つの プロファイルの時刻 0を出発点とし、 それぞれのプロファイルの終了時刻をゴー ルとする同じ大域的制約条件の下に探索を実施する方式に限定されたものである。 さらに、 D TWや C OWを用いる手法は、 基本的に 2次元データとして表される 時系列プロファイル、 即ち時間軸とシグナル強度軸で表されるようなデータセッ トに対し、 時間軸の非線形伸縮を行うことによって強度のプロファイルを重ね合 わせるものである。
したがって、 D T Wや C OWを用いる手法では、 (1 ) 特定の軸について特定の 値をとる 1つないし複数個の切断面を用いて、 あるいは、 (2 ) 特定の軸に沿って 全ての値を集約することによって、 重ねあわせ操作を行わせることは、 これらの 方法の自然な拡張として容易に考えられる。 例えば、 D T Wや C OWを用いる手 法では、 LC- MS 分析で得られた保持時間、 mZ z、 イオン強度からなる 3次元デ ータについても、 いくつか特定の m/ zに限定することにより、 あるいは、 全ィ オンクロマトグラム (T I C ) のように保持時間軸に沿って全てのイオン強度を 足し合わせることによって、 時間軸補正が可能である。
しかしながら、 (a)〜(d)の手順として説明した手法では、 D TWや C〇Wを拡 張した方法とは異なり、 補正対象の次元 (保持時間軸) を除いた多次元プロファ ィルはそのままの形で直接比較することで、補正対象の次元を伸縮させることで、 多次元プロファイルの重ねあわせを実現している。 D TWや C OWを拡張した方 法では、 ( 1 ) 特定の切片に限った手法をとると、 精度を保ちつつプロフアイル全 体を重ね合わせるのと同じ結果が得られる保証がないこと、 特定の切片を選択す るための汎用性のある有効な手段がないこと、 そのような保障なしに限定した重 ね合わせ処理を行うことで、結果が恣意的になり うる危険があること、 (2 ) T I Cのように情報を集約することで、 せっかく次元を多くしてより分解能を向上さ せているメリットが得られなくなってしまう、 といった問題がある。 これに対し て、 (a)〜( の手順として説明した手法では、 上記 (1 ) 及び (2 ) の問題が全 くなく、 高精度にプロファイルの重ね合わせが可能となり、 且つ、 多次元データ という高分解能を維持したままプロフアイルの重ね合わせが可能となる。
4 . データ解析における標準物質の役割
また、 本発明に係る試料測定方法においては、 以下に述べるような標準物質由 来の情報を、 本アルゴリズムを用いた計算手法に取り入れることで高い精度及ぴ 計算効率を達成することができる。
上記 「2 . 試料の分析」 に先立って又は 「2 . 試料の分析」 の途中で標準物質 を入れることにより、 測定及び解析の過程で生じる可能性のあるバイアスを補正 すると同時に、 これらの情報を用いることによって、 上述した最適な対応配置、 すなわち、 プロファイル同士の重ねあわせをより正確にかつより効率的に行うこ とが可能となる。 すなわち、 標準物質を用いることによって以下のメリットを得 ることができる。
( 1 ) あらかじめ既知の量の標準物質を入れることで、 全体のシグナル強度を捕 正し、 定量的な比較が可能となること
( 2 ) いくつかの標準物質を、 補正すべきパラメータ (時間軸等) を合わせる際 のランドマークとして使用できること
( 3 ) プロファイル重ねあわせにおいて、 ある程度のプロファイル形状の共通性 を与えることにより、 重ねあわせが容易になること
これらメリットを上記 「3 . データの解析」 において最大限発揮させるベく、 計算手法を以下のように改変することができる。 すなわち、 上述したァルゴリズ ムにおいて、 標準物質に由来するシグナルのピーク部分を必ず通らなくてはいけ ない点として扱うように改変することができる。 より詳しく説明すると、 上述し たアルゴリズムによる最適解探索では、 図 5に示したような格子状の探索空間上 で、 左上の出発点から右下の到着点に至る最適経路 (太線) を探索するものであ るが、 いまここで仮に縦列上の保持時間 1 5の点と、 横の行で保持時間 1 3の点 がそれぞれ標準物質由来であつたと仮定すると、 解となり うる経路は必ずこの点 を通らなければいけないというように拘束条件を設ける。 そして、 このような拘 束条件を設定することによって、 列 1 5と行 1 3を通る線で区分される探索空間 のうちの左下と右上の部分空間を通る経路は排除されるため、 探索しなければい けない空間を削減することができる (図 6 )。
このように、 標準物質由来のシグナルについて拘束条件を設定するようにアル ゴリズムを改変することによって、 本発明に係る試料解析プログラムは、 プロフ アイル同士の重ねあわせをより正確に行うことができるとともに、 処理の能率を 大幅に向上させることができる。
さらに、 標準物質由来のシグナルの数が増えるにつれて、 検索空間はより限定 されることになるため、 プロファイル同士の重ねあわせ精度はより向上するとと もに、 より能率向上が期待できる。 実際、 図 7に示すように、 丸印で示した点を 標準物質由来シグナルの一致点として拘束条件を設定すると、 灰色でマスクした 領域は探索空間から削除される。 《種類の標準物質由来シグナルで時間軸が《 +1 個に分割されたとすると、 最良のケースとして分割が等間隔で行われたならば、 探索空間は最大 1まで減少する。 なお、 標準物質由来のシグナルを拘束条件に n + \ 設定する場合、 標準物質由来シグナルが均等に広く分布するように標準物質を選 択することで、 探索空間削減効果を最も発揮することができる。
なお、 探索空間を限定して探索効率を上げるためのアルゴリズムに対する改変 方法としては、 図 5に示した探索空間の左上の出発点から右下の到達点に至る対 角線の前後に、 所定の幅を持った空間に限定するといつた拘束条件も考え得る。 しかしながら、 この場合、 どの程度限定すれば良いのかといった確実な前提知識 は一般に得られない虞がある。 さらに、 この場合、 出発点や到達点が比較すべき 多次元データ毎に大きくずれた場合には、 求めるべき最適経路が限定された空間 からはみ出す虞がある。 例えば、 クロマトグラフィーの溶出開始時刻は、 大きく 変動しうるので、 この時刻を確実に観測できなければ、 上記対角線の前後に所定 の幅を持った空間に探索を限定する方法は適切とは言いがたい。
それに比べて、 標準物質由来のシグナルを拘束条件に設定するようにアルゴリ ズムを改変する方法では、 検体内部に添加した標準物質の出現した時点を揃えて おり、 標準物質に由来するシグナルは最も確証のある参照点となる。 その上、 探 索空間は最大^ "近くまで減らせるため、 確実性及び効率性の両面から見ても優
n + 1 れているといえる。
さらに、 標準物質由来シグナルで限定される 1つないしいくつかの部分空間に 限って最適経路探索を行うことで、 部分的な最適プロファイル重ね合わせを求め ることができる。 この際に、 前述の評価関数の値を、 プロファイル重ね合わせの 程度の指標とすることで、 プロファイル同士の類似性 (あるいは距離) を測るこ とができる。 多くの場合、 主要なシグナルは限られた時間領域に集中的に現れる ため、 部分空間に限って最適経路探索を行って評価関数の値を求めることで、 プ 口ファイル同士、 さらにはそれらのプロファイルを生じさせた試料同士の類似性 (あるいは距離) を効率よく求めることができる。
数多くの試料由来のプロファイルを重ね合わせて平均プロファイルを求めなけ ればいけない場合や、 あらかじめ試料の属性に関する情報が十分に得られていな い場合は、 まず部分空間に限って最適経路探索を行って試料間の類似性 (または 距離) を求めておき、 その順番で逐次プロファイル重ねあわせを行い、 あるいは 試料同士のグルーピングを行うことが可能である。 殊に、 プロファイルの重ね合 わせ処理を行う場合は、 重ね合わせる順番に依存して結果が変化しうるので、 で きるだけ近いものから重ね合わせることが望ましいが、 そのような処理を行う際 にこの手法は有効である。
5 . データ解析後の処理 2つの多次元データについて、 最適な重ね合わせが得られたならば、 補正され たパラメータについて、 新たな補正後の値を生成する。 特に、 クロマトグラムの 保持時間を補正した場合は、 捕正後の保持時間を求める。 補正後の保持時間を求 める方法としては、 重ね合わせる 2つの多次元データのうち一方を参照用データ とし、 他方の多次元データにおける保持時間を当該参照用データにおける保持時 間に一致させる方法 (非対称型) と、 重ね合わせる 2つの多次元データの両方を 補正する方法 (対称型) とを挙げることができる。 特に対称型で補正後の保持時 間を求めることが好ましい。
補正後の保持時間を求めて非対称型で 2つの多次元データを重ね合わせる場合 には、 参照用データの保持時間軸にあわせるべく、 一致した点に関しては参照用 データの保持時間をそのまま用い、 参照データの対応する点が得られなかつた場 合は、 その前後で一致した点を用いて内挿によって補正後の保持時間を決めるこ とができる。
しかしながら、 非対称型で 2つの多次元データを重ね合わせるには、 いずれの 多次元データを参照用とすべきかが予め決まっている必要がある。 例えば、 標準 物質のみを含むブランクを参照用データとすることも考えられるが、 この場合は 最初に重ね合わせに用いられた多次元データのプロフアイルの影響がかなり大き くなる可能性が高い。
これに対して、 補正後の保持時間を求めて対称型で 2つの多次元データを重ね 合わせる場合には、 2つの多次元データ間で対応する点が得られたところについ ては、 それぞれの保持時間の算術平均とする。 2つの多次元データのいずれか一 方だけのデータ点しか得られなかった場合は、 その前後の最も近い対応点の補正 後の保持時間の組から、 内挿によって補正後の保持時間を得る。 内揷による捕正 が不可能な場合は、 最も近くにある対応した点の補正後の保持時間をベースにし て、 データセット全体での平均時間スケールを係数とした外挿によって補正後の 保持時間を得ることが可能である。
なお、 この場合、 前述のようにあらかじめ全ての多次元データ間の類似性 (距 離) を事前に計算した上で、 近いものから順次重ね合わせても良い。 6 . 出力処理
上記「5 .データ解析後の処理」で得られたプロファイルの出力方法としては、 以下の ( 1 ) 及び ( 2 ) を挙げることができる。
( 1 ) 対応する点が得られなかった箇所も含めて、 全て出力する。
( 2 ) 対応する点に限って出力する。
いずれの出力方法を選択するかは、 本発明に係る試料解析方法の使用目的に応 じて適宜選択することができる。 例えば、 測定誤差を相殺するため同一試料を複 数回に亘つて測定した結果から平均を求めることを目的とする場合、 又はきわめ て類似した条件での複数試料の測定から代表的なプロファイルを得たい場合には 上記 (2 ) の出力方法が有効である。 上記 (2 ) の出力方法によれば、 出力され るプロファイルは共通部分に限られるため、 データの大きさを軽減して処理効率 を上げることができる。
また、 例えば異なった試料群の群間差を検出する場合には、 上記 (1 ) の出力 方法を使用しなくてはならない。 上記 (1 ) の出力方法では、 データの大きさは 一般に増大するが、 情報の損失は起こらない。
また、 上記 (1 ) の出力方法を選択する場合、 さらに共通するプロファイルに 重きを置いた重ね合わせを行うこともできる。 この場合、 以前の重ね合わせプロ セスで対応する点に対して新たな点を対応させる場合は、 評価関数のスコアを良 くするような新たな項を当該評価関数に設けて、 できるだけ同じ点に重なるよう に調整することも可能である。 すなわち、 例えば、 上記式 (I) で与えられる評価 関数の最後に - , )のような新たな項を付与した新たな評価関数を用いて評 価得点を算出する。 そして、 このような評価関数を用いる場合、 以前の重ね合わ せ点に対して対応が取れた場合には ·,_/)を 1、 それ以外は 0とする。
一方、本発明に係る試料解析プログラムの出力は次のような形式となっている。 ·重ね合わせ処理で新たに得られた点の情報
•対応する入力データセット 1 (一方の多次元データ) の点の情報
•対応する入力データセット 2 (他方の多次元データ) の点の情報
出力は、 これらの情報が重ね合わせ処理の結果として得られたデータ点の数だ け繰り返された形をとる。 但し、 対応する点がない場合には、 それぞれ入力デー タセット 1あるいは 2の情報は存在しない。 このように、 出力には、 対応する入 力データセットの点の情報も含まれることにより、 後述する例のように、 最終的 に得られた、 重ね合わせプロファイルの各点が、 元の多次元データのどれに由来 するかを求めることが可能となる。 なお、 以上の情報の他にも必要であれば付加 的情報をつけて出力することも可能である。
このようにして得られた重ね合わせ後のプロファイルについて、 必要に応じて さらにいくつかのパラメータに関して集約あるいは量子化処理を行つてもよい。 例えば、 特に上記 (1 ) のように全ての点を出力した場合は、 時間軸分解能が求 めるレベル以上に詳細になりすぎることもある。 この場合は時間軸上きわめて近 接した点同士はさらに集約して 1つにした方が、 後の処理上得策である。 集約さ れた点の強度は、 集約前の個々の点の強度の加算で置き換えることができる。 同 様にして、 m/ Z軸においても必要分解能以上に近接した点は集約することがで きる。 但しこの操作は重ね合わせ処理を行う都度実行してもよいし、 必要な重ね 合わせをまず行ってから、 最後に 1回だけ行ってもよい。
7 . イオン化強度の規格化と標準物質
本発明に係る試料解析方法においては、測定したイオン強度について、上記「 3 . データ解析」 に先立って規格化を行うことが好ましい。 以下にイオン強度の規格 化について説明するが、イオン強度の規格化手法は何ら限定されるものではない。 具体的には、 先ず、 LC一 MS分析に結果として得られた RAWファイルを、 例えば Xcalibur™のユーティリティソフトウエアを用いてテキストファイルに変換する。 次に、 C言語および Perl言語で作成されたプログラムにより、 以下の一連のデー タ処理を適用する。
(1) ノイズレベルのデータを除去するため、イオン強度が所定の値(例えば、 102 以下) 以下のシグナルを除去する。
(2) 必要ならば、 処理時間の節約のためにデータ点を集約する。 具体的に、 例え ば、 m/zは 1刻みに、 保持時間は 0. 2刻みになるよう、 元データの mZz値およ び保持時間の値を丸め、 同じ値を持つ (mZz、 保持時間) のデータ点は加算集計 する。 (3)あらかじめ調べた ni/z値と保持時間から標準物質由来のシグナルを同定し、 そのイオン強度値をもって測定値全体を除算することで規格化する。 この際、 1 つないし複数の標準物質由来の複数のシグナルの平均値などの代表値を標準物質 イオン強度値として用いる方法、 予備実験などでシグナルの安定性を事前に検討 したうえでもっとも安定なシグナルの値を用いる方法、 などがある。
より具体的に、 例えばニヮトリ卵白リゾチームを標準物質とした場合、 mZz値 715近傍及び 877近傍のシグナルを標準シグナルとすることができる。 サンプル の測定データに対しては、 m/zについては前後 ± 1の範囲で、 保持時間に関して は ra/z 715 (715 ± 1) のシグナルについては早期溶出シグナル群より、 m/z 877
(877± 1) のシグナルについては後期溶出シグナル群より探索することで、 標準 物質由来シグナルを探索することができる。 なお、 得られた値に 107を乗じるこ とで、 標準物質由来のシグナル強度を 107に捕正するといつた更なる補正を行つ また、 ペプチドそのもの、 例えばペプチド T (Ala- Ser - Thr - Thr- Asn- Tyr - Thr) および j3力ソモルフィン Ί (Tyr- Pro - Phe- Pro - Gly- Pro- lie)を標準物質として用 いた場合、それぞれ mZz値 859近傍及ぴ 791近傍のシグナルを標準シグナルとす ることができる。 前者のぺプチドは比較的親水性であり、 後者は疎水性である。 本解析方法で保持時間による分離のために用いられている逆相クロマトグラフィ 一では、 前者の保持時間の値は低く、 後者のそれはより高い。 大部分のサンプル 由来のぺプチドの保持時間はこの 2種類のぺプチドの保持時間の間にある。 サン プルの測定データに対しては、 mノ zについては前後 ± 1の範囲で、 保持時間に関 してはあらかじめ標準物質のみを測定して得られたクロマトグラムからおおよそ の値を見積もつてから、その前後一定の範囲で探索することで、標準物質由来シグ ナルを見出すことができる。
本解析方法において標準物質としてべプチドを用いる場合、 当該ぺプチド以外 の物質 (例えば、 夾雑物) を含まないことがシグナルノィズの検出を最小限に抑 えるために重要である。 したがって、 天然物から抽出 ·精製して得られるものよ りも、 化学的に合成されたペプチド分子の方が、 望ましい。 また、 ペプチド分子 の性質については、あらかじめ設定された測定条件下で構造が安定なことゃ不溶 ィ匕しないことが重要である。 ぺプチド分子を構成するアミノ酸残基については、 メチォニン、 トリブトファン、 ヒスチジンなど容易に酸化されうるアミノ酸残基 を含まないこと、 および塩基性の官能基を 2つ以上含まないことが望ましい。 と くに後者については、測定手段の MSで原理的に多価イオンを生じるエレク トロス プレ一^ オン化法を用いた場合、 ひとつの標準物質から価数の異なる複数のィォ ンシダナルが検出されることを避けるためである。
標準物質として蛋白質から加水分解あるいは化学的切断によって生じるぺプチ ド断片を用いる場合、 当該蛋白質に由来するぺプチドイオンシグナルのうちで標 準物質として採用したもの以外のぺプチドイオンシグナルの強度は出来る限り低 いことが望ましい。
以上(1)〜(3) によって、測定されたイオン強度値を規格化することができ、 複数の試料間におけるイオン強度の量的な比較を行うことができる。 なお、 測定 されたイオン強度値の規格化は、 上述した保持時間の補正に先立って行われるベ きである。
8 . 試料間の比較分折
本発明に係る試料解析方法によって mZz、規格化されたイオン強度及び補正し た保持時間からなる 3次元デ'ータを用いて、 試料中に含まれるタンパク質群等の 各種成分分析をコンピュータ上で行うことができる。 具体的に、 成分分析として は、 (a) 加算の方法、 (b) 減算の方法を挙げることができる。
a . 加算の方法
上述したように、 本発明に係る試料解析方法によって取得された複数の 3次元 データにおいては、 保持時間のパラメータをそれぞれ適切に補正しているため、 データ点間の対応関係を正確に取ることができる。 したがって、 複数の 3次元デ ータにおいて、 データ点同士の規格化されたィオン強度値同士を足し合わせるこ とができる。
b . 減算の方法
「a. 加算の方法」 と同様に、 本発明に係る試料解析方法によって取得された複 数の 3次元データにおいてはデータ点間の対応関係を正確に取ることができるた め、 データ点同士の規格化されたイオン強度値の差を求めることができる。
このように、 本発明に係る試料解析方法によって取得された複数の 3次元デー タについて、 加算或いは減算することができるため、 以下のような、 成分分析の アプローチをコンピュータ上で実現することができる。
(1) 実験データを集計する際への応用 :
1 つのサンプル由来の試料を、 測定の便宜上、 複数の分画に分割して測定した 場合であっても、 当該複数の分画それぞれから取得された 3次元データにおいて は、 データ点間の対応関係を正確に取ることができる。 したがって、 上述した加 算の方法に従って、 全ての 3次元データを足し合わせることができる。 これによ り元のサンプル全体に含まれる成分の解析等を行うことが可能となる。
なお、 このような集計を行う際には、 複数の分画全てに!:つて足し合わせ、 全 体で 1つのプロファイルにまとめる方法のほかに、 あらかじめ指示された個数に より、近接する数個のプロファイル毎に集約する方法もある。 この場合、全体が" 個に分画され、 そのうち近接する w個ずつを集約した場合は"-《 +1個のプロフ アイルが得られることになるが、 その場合は得られたプロファイルについては、 対応する分画同士以外はそれぞれ別個に扱って以下の操作を行うことになる。 い ずれにせよ、 多次元分画法で複数の分画を得た場合も、 そのおのおのが完全に重 なりなくなることはまれで、 多くの場合複数分画に亘るキヤリ一オーバーがあり うるので、 このような集計操作は必要である。
(2) 複数のサンプルの測定結果の代表値を求める際への応用 :
異なるサンプルに由来する複数の試料について測定した場合であっても、 本発 明に係る解析方法によれば、 取得された複数の 3次元データ間において、 データ 点間の対応関係を正確に取ることができる。 したがって、 上述した加算の方法に 従って、 全ての 3次元データを足し合わせることができる。 そして、 得られた 3 次元データの総和をサンプル数で除算することで相加平均を求めることができる。 なお、 必要に応じて、 各サンプルに重みを設定し、 当該重みを反映させた重みつ き平均を算出することもできる。
これによれば、 例えば、 同じ範暗に属すると考えられる複数のサンプルについ て、 当該範暗の代表値を求めることができる。 (3) 2つのサンプル間での測定結果の差分を求める際への応用 : 例えば、 同一のサンプル由来であるが状態の異なるときに採取した試料について 測定した場合であっても、 取得された 2つの 3次元データ間において、 データ点 間の対応関係を正確に取ることができる。 したがって、 上述した減算の方法に従 つて、 2つの 3次元データ間の差分を求めることができる。 これにより、 状態の 変化に起因する試料中の成分変化を解析することができる。
また、 例えば、 上述した (1) に準じて、 複数のサンプルを含む 2群についてそ れぞれ相加平均等の代表値を求めた上で、 これら 2群の代表値の差を求めること ができる。 得られた差については、 統計的な検定などによって有意性を検討する ことで、 各群に特異的な成分を同定することができる。
以上の (1) 〜 (3) に示す成分分析アプローチは、 本発明に係る試料解析方法 によって得られた複数の 3次元スぺク トルデータを格納したデータベースを用い ても良いし、 当該データベースに格納されたデータと現実に得られたデータとを 用いて行っても良い。 いずれの場合であっても、 上述した (1) 〜 (3) に示す成 分分析アプローチは、 コンピュータを用いて容易に実現することができる。
このようにして、 本発明に係る試料解析方法によって得られた、 例えば群特異 的シグナル成分については、得られたシグナル領域に範囲を限定したタンデム MS 分析などにより、 当該シグナルが由来する蛋白質群を同定することができる。 す なわち、本発明に係る試料解析方法においては、試料を LC一 MSにより分析したと きに、特定の mZz値を持つペプチド分子イオンが検出された場合、当該イオンの
CIDスぺク トルを測定することができる。
そして、 得られた CIDスぺク トルをコンピュータに入力し、 データベース検索 ソフトウヱァを用いて蛋白質一次構造データベース、 ゲノム配列データベースや cDNA配列データベースから得られる蛋白質配列に対して検索する。 このデータべ ース検索によって有意なヒットスコアを示した場合には、 データベースに登録さ れたタンパク質或いはアミノ酸配列等の情報を得ることができ、 得られた CIDス ぺクトルに対して当該情報を関連付けることができる。
例えば、 上述した (3) の成分分析アプローチにおいて、 各群に特異的な成分と して同定されたシグナルに関する CIDスぺクトルを測定することで、 当該シグナ ルが示すタンパク質群を同定することができる。 〔実施例〕
以下、 実施例を用いて本発明をより詳細に説明するが、 本発明の技術的範囲は 以下の実施例に限定されるものではない。
〔実施例 1〕
実施例 1では、 アミノ酸酉己列が既に知られているタンパク質のプロテアーゼ消 化物を混合して得られるペプチド試料を LC - MSによって測定し、 この測定によつ て得られた保持時間、 ra/z値およびイオン強度からなる三次元プロフアイルに対 して本発明に係るアルゴリズムを適用し、 測定されたペプチド試料を定量的に特 性づけた。 また、 実施例 1では、 比較定量のためのモデル実験としてアミノ酸配 列が既に知られているタンパク質のプロテアーゼ消化物を混合したペプチド試料 数種を各々 LC一 MSによって測定し、本発明の試料解析方法を適用して各三次元プ 口ファイルを比較することによって、 各ぺプチド試料に含まれるタンパク質の種 類の違いが検出されることを示した。
ぺプチド試料の調製
以下に列挙する 24種類のタンパク質のトリプシン消化物を、本実施例における ペプチド試料として調製した。 (1) ゥシキモトリプシノーゲン、 (2) ゥシカタラ ーゼ、 (3) ゥシカルボニックアンヒ ドラーゼ、 (4) ゥシアポトランスフェリン、 (5) ゥシカルボキシぺプチダーゼ A、 (6) ゥシ血清アルブミン、 (7) ゥマシトク ロム (8) ブタガンマ免疫グロブリン、 (9) ゥシヘモグロビン、 (10) ゥマミオ グロビン、 (11) ゥシベータラク トグロブリン、 (12) ゥシデォキシリポヌクレア ーゼ、 (13) ゥサギダリセルアルデヒ ド 3 リン酸デヒ ドロゲナーゼ、 (14) トリコ ンアルブミン、 ( 15) セィヨウヮサビペルォキシダーゼ、 (16) 枯草菌ァルファア ミラーゼ、 (17) ゥマグルタチオン S—トランスフェラーゼ、 (18) ゥシグルタミ ン酸デヒ ドロゲナーゼ、 一. (19) ゥシラク トペルォキシダーゼ、 (20) コウジ力 ビアミロダルコシダーゼ、 (21) ゥサギホスホリラーゼ8、 (22) ゥシベータガラ ク トシダーゼ、 (23) ゥサギ乳酸デヒ ドロゲナーゼ、 (24) ニヮトリ卵白リゾチ一 ム。 これらの消化物は Michrom BioResources社より購入した。 これら 24種類の各タンパク質の トリプシン消化物を以下に示すように混合し、 合計 3種類 (A群〜 C群) のペプチド試料を用意した。
A群: (1)、 (2)、 (7) 〜 (24) の 20種類のタンパク質のトリプシン消化物。 A 群を特徴付けるタンパク質は (1) 及ぴ (2) である。 B群: (3)、 (4)、 (7) 〜 (24) の 20種類のタンパク質のトリプシン消化物。 B群を特徴付けるタンパク質は (3) 及ぴ (4) である。 C群: (5) 〜 (24) の 20種類の蛋白質のトリプシン消化物。 C 群を特徴付ける蛋白質は (5) 及ぴ (6) である。 各群のサンプルは 3つずつ調製 した。
LC-MS角军析
各ペプチド試料の三次元プロファイルを得るために、 以下に示す装置と操作に よってペプチド試料を分析しに (Kawakami, T. et al, Jpn. J. Electrophoresis 44: 185-190 (2000))。 まず、 減圧濃縮したペプチド試料を、 トリフルォロ酢酸、 ァセトニトリルおよび水の混合比が 0. 1:2:98の溶媒 45μ 1に溶解した。これを溶 解液とする。
次に、 CTC Analytics 社製のオートサンプラー PAL LC- 1™を用い、 Michrom BioResources社製の MAGIC MS™ C18キヤビラリーカラム(内径 0.2mm、長さ 50ram、 粒径 5μ πι、 孔径 200オングス トローム) に溶解液 20 を導入した。 ペプチドの 溶出は MAGIC 2002™ HPLCシステム (Michrom BioResources社) を用いて行った。 このときの HPLC移動相 Aは蟻酸、 ァセトニトリル及び水を 0. 1:2:98の容積比で 混合した溶媒であり、 対して移動相 Bの混合比は 0. 1 :90 :10であった。 そして移 動相 Bの濃度を 5%から 85%まで直線勾配で上げ、 ぺプチド断片を連続的に溶出し た。 このときの流速は約 1 μ 1/minとした。 LCの溶出液は、 New Objective社製 の PicoChip™ニードル (内径 20 m) を介し、 LCQ™イオントラップ型質量分析計 (ThermoQuest社)のイオン源に直接導入した。 NanoESIニードルの位置は加熱キ ャピラリーとの距離を微調整できるようになつている。 また、 スプレー電圧は二 一ドルではなく、 溶離液に直接荷電するようにした。 嘖霧のためにガスは使用せ ず、 スプレー電流は 3.0mA とした。 これを各群 3回ずつ行うことによって、 各試 料に対応する三次元パラメータの集合体、 3群計 9通りを得た。 このデータセッ トをそれぞれ Al、 A2、 A3 (A群)、 Bl、 B2、 B3 (B群)、 Cl、 C2、 C3 (C群) とした。 三次元パラメータ集合体を含むファイルは Xcal ibur™のユーティリティソフ ト ウェアを用いてテキストファイルに変換した。 C言語及ぴ Perl言語で作成された プログラムにより、 以下の①〜⑤のデータ処理を実行した。
①ノイズレベルのデータを除去するため、 イオン強度が 102以下のシグナルを除 去した。
②処理時間の節約のためにデータ点を集約した。 具体的には、 mZzは 1刻みに、 保持時間は 0. 2刻みになるよう、 元データの m/z値および保持時間の値を丸め、 同じ値を持つ πιΖζと保持時間の 2つ組みで指定されるデータ点は加算集計した。
③標準物質であるニヮトリ卵白リゾチーム由来のシグナルを同定した。すなわち、 予備実験で実測した標準物質の mZz値および保持時間の値の前後ある範囲内で、 最も高いイオン強度を与えるデータ点を探し、 次いでそのデータ点を中心に、 ィ オン強度値が単調減少しかつ 0より大きな範囲にあるデータ点を拾い、 これらを 標準物質由来のシグナルによるデータ点であると見なした。 標準物質由来のシグ ナルの総イオン強度値としては、 標準物質由来シグナルと見なされたデータ点の イオン強度の総和をもって当てた。 具体的には、 ニヮトリ卵白リゾチーム由来の m/z値が 715近傍及び 877近傍のシグナルを標準シグナルとし、サンプルの測定 データからこれらの標準物質由来シグナルを探索する際には、 m/Zについては前 後土 1の範囲で、 保持時間に関しては mZz 715のシグナルについては 6〜16分の 範囲で、 mZz 877のシグナルについては 13〜23分の範囲で探索した。
④得られた標準物質由来シグナルの総イオン強度値をもって、 各シグナルのィォ ン強度を除算し、 得られた値に 107を乗じることで、 標準物質由来のシグナル強 度を 107に補正した。
⑤便宜上、 mZz 715 のシグナルと mZz 877 のシグナルのピーク位置がそれぞれ 保持時間に関して 10分、 20分となるよう、 保持時間軸を線型変換した。
次に、 A、 B及び C群それぞれ 3例ずつあるサンプルから得られた三次元プロフ アイルの代表点を求めた。 すなわち上述したように、 同じ群に属するサンプルを 集約した。 m/zおよび保持時間の重なる点のイオン強度は加算して集計した。 また本例で使用したスコアは高いほどよいとする得点として計算し、 算出式の 係数は次の通り。 イオン強度差については、 それぞれの常用対数の差の絶対値に 対して係数一 1 をかけたものを使用した。 保持時間の差については、 差の絶対値 に対して係数一 1000をかけたものを使用した。また各群間で対応するデータ点の シグナルがともに標準物質由来であった場合の加算点は 50000点とした。 一方の 群において対応する保持時間の点がなかった場合の失点は 5000点とした。本実施 例ではこれらを単純に加算してスコアとした。
次いで、 上述したように、 A— B群間、 B— C群聞及び C一 A群間で差を求めた。 得られた差の有意性は t検定によって有意水準 0. 1 %の両側検定で検討した。 その結果、 保持時間を捕正した三次元データを比較することによって、 A、 B及 び Cの各群から以下に列挙する mZz値を持つぺプチド分子イオンが各群に特異的 なシグナルとして検出された。
A群: 495, 524, 546, 560, 671, 696, 779, 845, 871, 908, 962等。
B群: 451, 464, 509, 513, 546, 555, 583, 585, 626, 635, 649, 653, 701 , 720, 723, 740, 741, 753, 768, 789, 819, 821, 847, 873, 886, 922, 928, 952, 966, 973, 978, 1057, 1230等。
C群: 636,— 670, 674, 679, 683, 718, 734, 735, 770, 824, 870, 918等。
また、 本実施例では、 特異的なシグナルとして検出されたペプチド分子イオン の CIDスぺクトルを得るため、各試科を LC一 MSZMS分析にかけた。分析条件は以 下に示す操作以外は、 上述した通りとした。 すなわち、 LC一 MSZMS分析に際して は、イオントラップ型質量分析計の測定条件を変更し、上に列挙した m/z値を持 っぺプチド分子イオンが検出された場合に当該イオンの CIDを必ず行うように測 定条件を設定して試料の測定を行った。
その結果、 各ペプチド分子イオンから得られた CID スぺク トルを、 Matrix Science 社のデータベース検索ソフトウェアである MASCOT™を用いて、 SWISS— PR0T蛋白質配列データベースに対して検索したところ、各群において特異的なタ ンパク質由来ペプチドとして添加した各群 2種類 (すなわち、 A群においては上 記 (1) 及び (2) のタンパク質、 B群においては (3) 及び (4) のタンパク質、 C 群においては (5) 及ぴ (6) のタンパク質)、 合計 6種類はいずれも有意なヒット スコアをもって同定された。 このことから、 本実施例で行った試料解析方法の妥 当性が示された。 〔実施例 2〕
実施例 2では、 所定の濃度組成の蛋白質混合物中に、 濃度を変化させた別の蛋 白質標品を混合して得られた試料をプロテアーゼ消化し、 LC- MS によって測定す ることで得られた保持時間、 m/ z値、 イオン強度からなる 3次元データに対し て本発明に係る方法を適用し、 異なる濃度の試料の測定で得られた 3次元データ 同士を比較することで、 定量的に変動するシグナルを検出した。 これによつて、 本手法で定量的に変化する物質を検出できることを示したものである。
試料とその調製
以下に列挙する 6種類のタンパク質のトリプシン消化物を、 本実施例における ペプチド試料として調製した。 (1) ゥシカタラーゼ、 (2) ゥシベータラタトグロ ブリン、 (3) ゥシラクトペルォキシダーゼ、 (4) ゥマグルタチオン S—トランス フェラーゼ、 (5) セィヨウヮサビペルォキシダーゼ、 (6) ゥシ血清ァノレブミン。 これらのタンパク質はシグマ社より購入した。
これらのタンパク質は水溶液中でブタトリブシン (プロメガ社より購入) と反 応させることにより、 トリプシン消化物とした。
これら 6種類の各タンパク質のトリプシン消化物を以下に示すように混合し、 合計 7種類のぺプチド試料を用意した。
①:(1) 〜(5) はそれぞれがー測定当り 500フェム トモル、(6)は 0フェム トモル。
②: (1) ' (5) はそれぞれがー測定当り 500フェム トモル、 (6)は 10フェム トモ ル。
③: (1) (5) はそれぞれが一測定当り 500フェム トモル、 (6)は 50フヱムトモ ル。
④:(1) (5) はそれぞれがー測定当り 500フエム トモル、 (6)は 100フェム トモ ル。
⑤:(1) (5) はそれぞれがー測定当り 500フエム トモル、 (6)は 500フェム トモ ル。
⑥: (1) (5) はそれぞれがー測定当り 500 フェム トモル、 (6)は 1 ピコモル。
⑦: (1) (5) はそれぞれがー測定当り 500フェム トモル、 (6)は 5 ピコモル。 各群のサンプルは 5測定分ずつ調整した。 上記各試料に対し、 さらにぺプチド Tおよび ]3カソモルフイン 7をそれぞれ 10 ピコモルおよび 1ピコモルずつ標準 物質として混入した。
LC-MS解析
各ぺプチド試料の三次元データを得るために、 以下に示す装置と操作によって ぺプチ卜試料 分析した (Kawakarai , T. et al , Jpn. J. Electrophoresi s 44: 185-190 (2000) ) 0 まず、 減圧濃縮したペプチド試料を、 トリフルォロ酢酸、 ァセ トニトリル及び水の混合比が 0. 1 : 2 : 98の溶媒 45 μ 1に溶解した。これを溶解液と する。
次に、 CTC Analytics 社製のオートサンプラー PAL LC - 11 "を用い、 Michrom BioResources社製の MAGIC MS™ C18キヤビラリーカラム(内径 0. 2mm、長さ 50mm、 粒径 5 ^ ιη、 孔径 200オングス トローム) に溶解液 20 1を導入した。 ペプチドの 溶出は MAGIC 2002™ HPLCシステム (Michrom BioResources社) を用いて行った。 このときの HPLC移動相 Aは蟻酸、 ァセトニトリル及び水を 0. 1 : 2 : 98の容積比で 混合した溶媒であり、 対して移動相 Bの混合比は 0. 1 : 90 : 10であった。 そして移 動相 Bの濃度を 5%から 85%まで直線勾配で上げ、 ぺプチド断片を連続的に溶出し た。 このときの流速は約 1 μ 1/minとした。 LCの溶出液は、 New Objective社製 の Pi coChip™ニードル (内径 20 μ ηι) を介し、 LCQ™イオントラップ型質量分析計 (ThermoQuest社)のイオン源に直接導入した。 NanoESI ニードルの位置は加熱キ ャピラリーとの距離を微調整できるようになつている。 スプレー電圧はニードル ではなく、 溶離液に直接荷電するようにした。 噴霧のためにガスは使用せず、 ス プレー電流は 3. 0mAとした。 また、 質量分析計でのスキャン回数を細かく取るた めに Turbo Scan方法を適用した。 この測定を各群 5回ずつ行うことによって、 各 試料に対応する三次元パラメータの集合体、 7群計 35通りを得た。図 1に得られ たプロフアイルの例を示す。
データ処理
三次元データを含むファイルは Xcal ibur™のユーティリティソフ トウェアを用 いてテキストファイルに変換した。 C、 C++言語及ぴ Perl言語で作成されたプログ ラムにより、 以下の①〜⑦のデータ処理を実行した。 ①ノイズレベルのデータを除去するため、 イオン強度が 102以下のシグナルを除 去した。
②標準物質であるペプチド Tおよび ]3カソモルフイン 7由来のシグナルを同定し た。すなわち、予備実験で実測した標準物質の ra/z値および保持時間の値の前後 ある範囲内で、 最も高いイオン強度を与えるデータ点を探し、 その周囲で規定の 範囲内にあるシグナルについて、 さらにその点を頂点とするガウス分布で近似さ れる強度範囲内に収まるシグナルを拾い上げ、 それらを全て標準物質由来シグナ ノレとみなした。 より具体的には、 m/ zは 858. 9 および 791. 0 を中心に前後 ± 2 を限度とし、 また保持時間は 9および 25分を中心に前後 ± 6を限度として、 上述 の手順により探索した。 従って使用した標準物質由来シグナルは mZ z 858. 9, 保持時間 9分、 および m/ z 791. 0, 保持時間 25分近傍に存在する 2つである。 なお、イオン強度補正を行う際には標準物質由来シグナル強度を全て足し合わせ、 その値が 109となるように規格化した。 また時間軸補正の際の動的計画法探索空 間上の拘束点としては、 上述 2つの標準物質シグナルのうち、 それぞれ強度ピー クを与える 1点ずつの計 2点を選定した。
③ BSAの濃度を変えた 7種類の試料それぞれにっき、 5回の測定結果得られたプロ フアイルを平均化するため、 本発明によるプロフアイル重ね合わせプログラムを 用い、 7 群の試料それぞれについての代表プロファイルを求めた。 重ね合わせの 際の評価関数のパラメータは以下のとおり :
上記 (I) において、 時間軸上の差 (絶対値) のペナルティひ =1. 0、 シグナル強 度の差のペナルティ 0 =0. 1 (但しシグナル強度さは常用対数に変換後の差の絶対 値とした)、 点の一致に対するボーナス点 σ =0、 不一致点に対するペナルティ π =100、 標準物質由来シグナルに対する一致のボーナス点 Θ ( Ϊ, j ) Sm : 1000。 また重ね合わせプロファイルの出カオプションは、 一致点のみとした。
図 8に、 BSA濃度が 500 フヱム トモルの試料⑤の 5回の測定結果から得られた プロファイルのうち、 m/z 620. 0 近傍、残留時間 15から 19分の間のクロマトグ ラムを示す。 時間軸上少しずつずれた灰色の 5本の波形が、 重ね合わせ処理前の
5回の測定結果であり、 実線がこれら 5つに重ね合わせ処理を施してすべてのシ グナルを足し合わせた結果である。 図に示したように時間軸上の揺らぎが補正さ れて 1つの大きなピークとして扱えるようになった。
④次に、 群間で有意に変動しているシグナルを拾い出すため、 前述のプロセスで 得た 7群の代表プロファイルを、 さらに重ね合わせ処理によってァライメントを とり、 最終的に 1つの集約プロフアイルを得た。 このときの評価関数のパラメ一 タは以下のとおり :
上記式(I)において、 時間軸上の差 (絶対値) のペナルティ α =1. 0、 シグナル強 度の差のペナルティ β =0. 1 (但しシグナル強度を常用対数に変換後の差の絶対値 とした)、点の一致に対するボ一ナス点 σ =0、不一致点に対するペナルティ π =100、 標準物質由来シグナルに対する一致のボーナス点 0 ( i, J ) = Sm = 1000。 また 重ね合わせプロファイルの出力オプションは、 不一致を含む全ての点とした。
⑤試料間の相互比較に必要十分な分解能を保ちつつデータ点を集約するため、 m Zz範囲 ± 0. 75 (絶対範囲 ± 2)、 保持時間範囲 ± 1. 25 (絶対範囲 ± 4) の範囲内に ある点について、 次の条件を満たしている点については 1つに集約した。 即ち、 シグナル強度の高い順に前述範囲内の全てのデータ点をチェックし、 これらがピ 一クシグナルを頂点とするガウス分布で近似される範囲内に入ると判定されたも のについてはそれらを集約した。
図 9に、 BSA濃度が異なる 7種類の試料ごとの、 時間軸補正おょぴ集約後のプ 口ファイルの例を示す。図では特定の mZz値(この例では 752)で切った断面を、 時間軸に沿って強度をプロットしたクロマトグラムとして示している。 17分およ ぴ 19分近傍の集約シグナルは、 BSA濃度が最も高い 06 の試料 (図中、 "DS : Spl 06 - Ave" として示す。 BSA 5ピコモル) が最も高いピークを示し、 順次 Spl 05、 Spl 04,…と続いているため、 これらは BSA由来のシグナルと判定できる。 一方、 25分近傍の緩やかなピークはどの試料でも同様に出ているため、 BSA以外の共通 物質あるいはバックグラウンド由来と判定できる。
⑥前述の集約プロファイルを出発点として、 順次⑤,④,③のプロセスを逆にたど ることにより、最終的に得られた集約プロフアイル上の点が、測定結果の 7群 X 5 測定のいずれに由来するかをたどることができる。 集約プロフアイル上の各点に ついて、 測定結果データに戻ることで、 群ごとのプロファイルや群間の差プロフ アイルを得ることができる。 図 1 0に BSA濃度が 500フヱムトモルの試料⑤と、 0 フエムトモルの試料①との差プロファイルを示す。 mZz—保持時間平面より上に 伸ぴている線は試料⑤で、 逆に下に伸びている線は試料①で強く観測されたシグ ナルである。
⑦ BSA を入れていない試料①から得られた集約プロファイルを基準とし (基準プ 口ファイル)、残りの②から⑦までの BSA濃度が異なる 6種類の試料から得られた 集約プロファイルそれぞれに関して (対象プロファイル)、次のような条件を満た すデータ点を求めた。 即ち、 (1 ) 対象プロファイル上の点は、 5回の測定すベて よりデータが得られていること。 ( 2 )集約した対象プロフアイル上の点のシグナ ル強度は 106以上であること。 (3 ) 対象プロファイル上の各点について、 基準プ 口ファイル上の対応する点の強度を引いた差が 0以上であること。 (4 )対象プロ ファイルの各点について、 基準プロファイル上の対応する点とのシグナル強度の 差が 10000未満であるという帰無仮説が、片側 t検定結果によつて有意水準 0. 5% で棄却されること。
上記の条件で選別されたシグナルを、 試料⑤の場合について図 1 1に示す。 こ こでは 127個のシグナルが前述条件に合致したものとして残った。 プロットマー クの大きさは、 試料⑤のプロファイルにおけるシグナル強度を表す。 このうち、 プロットマーク〇のものは、 後述するプロセスで BSAシグナルと対応付けられた もの、 Xのものはそうでなかったものを示している。
これら 127個のシグナルについて、別途行った BSA消化物の MS/MS実験とつき 合 せたところ、 このうち 103個が BSA由来シグナルと一致した。 即ち、 検出さ れた 127個のシグナルのうちの少なく とも 81 %が真に求めたいものであったとい る。
同様にして、 他の BSA濃度の試料から検出されたシグナルについて、 前述の同 じ条件で選別されたシグナルを BSA由来シグナルと付き合わせたところ、 対象プ 口ファイル②から⑦について、 それぞれ 65、 64、 75、 81 (既述)、 76、 48%のシ グナルが BSA由来シグナルと判定された。 なお最後の⑦試料 (BSA濃度 5 ピコモ ル) の正答率が落ちているが、 これは高濃度 BSAに由来する強度の強いシグナル が多数存在することによるプロファイルの閾値が変わったことで、 偽陽性シグナ ルが増大したことに起因すると考えられる。 実際、 他の濃度の試料とほぼ同程度 の数のシグナルが選ばれるよう、 選定条件の (2 ) を 3 X 106に調整すると、 正答 率は 75%になった。
なお、 本発明に係る工夫の 1つに、 動的計画法の探索空間節減があるが、 その 効果を CPU時間の実測によつて評価したところ、 試料⑤の 5つの測定結果を重ね 合わせる場合を例とすると、 CPU時間の比にして 43〜45%の削減効果が得られた。 ここでは 2種類の標準物質由来シグナルを用いているので、 もし完全に均等に シグナルが分布していれば lZ 3の時間短縮が期待できるが、 実際多くのシグナ ルは 2つの標準物質シグナルの間に存在するので、 探索空間の分割は不均等であ る。 このことを勘案すると、 45%程度の削減はおよそ期待通りであり、 実用上も 十分効果があると考えられる。
以上により、 本発明に係る試料解析方法が、 試料中で量的に変化するシグナル を実用上有用な確度で検出できることを示し、 また本発明における計算手法のェ 夫が有用であることを示した。 〔実施例 3〕
実施例 3では、 実際の患者由来組織サンプルを用いて、 いくつかの病態群間で 有意に変動している蛋白質由来シグナルを求め、 それを元にさらに M S ZM S解 析を行ってそのうちのいくつかの蛋白質を同定することにより、本方法の有効性、 特にバイオマーカーの探索等にも有効であることを示したものである。
具体的には、 肺の腺癌を対象として、 外科的に切除された組織を用い、 組織よ り後述する手法で蛋白質を抽出し、 測定した。 得られたプロファイルを、 後日病 理診断によってリンパ節転移ありと判定された群となしと判定された群にわけ、 両群間で有意に変動しているシグナルを拾い出し、 それらについて M S ZM S解 析を行って蛋白質を同定した。 試料は、 36名の異なった肺癌患者より、 外科的に切除された肺の組織片を用い た。 病理診断により、 これらの患者は腫瘍径の大きな群と小さな群、 および所属 リンパ節への転移が認められる群と認められない群の合計 4群に分けられる。 腫瘍径小でリンパ節転移なしの群には 10例、腫瘍径大でリンパ節転移なしの群 には 11例、 腫瘍径小でリンパ節転移ありの群には 12例、 腫瘍径大でリンパ節転 移ありの群には 3例にそれぞれ分類された。
試料調製および蛋白質分画
ドデシル硫酸ナトリウム (SDS) -ポリアクリ /レアミ ドゲル電気泳動(PAGE)用の試 料緩衝液中にて各組織片を破枠した。 試料緩衝液の組成は以下のとおりである。 62. 5mM トリス-塩酸(pH6. 8)、 2%w/v SDS、 5%v/v 2 -メルカプトェタノール、 10%v/v グリセリン、 0. 0025°/。w/vブロモフエノールブルー。 この懸濁液を室温にて 30分 間振とうしたのち、 上清と沈殿に遠心分離した。 上清の蛋白質の濃度を Lowry法 の変法によって測定した。蛋白質 100 g分の試料上清に対して同じ組成の試科緩 衝液を加え、 総液量を 50 しにした。 この溶液に対して 1M トリス水溶液を加え、 pHを 8. 8にした。 システィン残基の還元アルキル化のため、 2 Lの 400mMジチォ トレイ トールを力 Bえ、 60°Cにて 30分間保温した。つぎに 10 Lの 400mMョードア セトアミ ド溶液を加え、 室温 ·暗条件下で 60分間放置した。 約 5 μ ίの 1. 0N塩酸 を加え、 pHを 6. 8に戻した。 この溶液を Laemmliの SDS - PAGEにかけた。 このと きに用いたポリアクリルアミ ドゲルは不連続の緩衝液系、 すなわち上部の濃縮ゲ ノレ (pH6. 8)と下部の分離ゲル(pH8. 8)から成った。 ポリアクリルアミ ドゲルの濃度 は各々 4%と 12· 5%であり、 全体の大きさは幅 14cm、 高さ 14cm、 および厚さ lmm であった。電気泳動時の電流は一定の 10mAであった。色素プロモフヱノールの泳 動フロントが濃縮ゲルと分離ゲルの界面から分離ゲルの 48扁 まで達したところ で泳動を停止した。 ポリアクリルアミ ドゲルを 40%メタノール、 10%酢酸水溶液 中で振とうし、 ポリアクリルアミ ドゲル内で分離されている蛋白質を固定した。 このあと、 ポリアクリルァミ ドゲルを水で 2回洗浄した。 洗浄したポリアクリル ミ ドゲルを試料当たり 24個のゲル片に切り出し分画した。すなわち、泳動方向に 対して垂直の向きに 2mmの等幅で梯子状に切り出し、各切片をさらに一辺約 lmm のサイコロ状に分割した。
標準蛋白質の調製
内部標準蛋白質はゲル中に固定された状態で各試料ゲル分画に加えた。 最初に
12. 5%のァクリルァミ ド、 0. 1 %SDS、 375mM トリス塩酸(ρΗ8· 8)よりなる水溶液に 対して卵白リゾチーム水溶液を混合し、 さらに Λ/,Λ/,Λ/',Λ/ '-テトラメチルエチレン ジァミンと過硫酸アンモニゥムを加えてガラス板にはさまれた 1mm幅の間でァク リルアミ ドを重合した。 この内部標準蛋白質を含むゲルを直径 1.5讓の円形に繰 り抜いた。 ゲル切片当たり 2.5pmolの卵白リゾチームが含まれるように、 重合前 の水溶液の蛋白質濃度をあらかじめ計算しておいた。
プロテアーゼ消化
上に示した一定量の標準蛋白質を含むゲルの繰り抜き切片を各試料ゲル分画に 1 個ずつ加えた。 つぎに各分画ごとにゲル片を十分量の水で洗浄してからァセト 二トリルで脱水した。 ゲル片に残った水とァセトニトリルを減圧留去してからト リプシン水溶液をゲル片全部が浸かる程度に加え氷中で 45分間放置した。ゲル中 に染み込まなかった水溶液を除き、 50mM重炭酸アンモニゥム水溶液をゲル片全部 が浸かる程度に加え、 37°Cにて 16時間保温し消化反応を行った。 ゲル片に含まれ るペプチド断片の抽出は 25mM重炭酸アンモニゥム /50%ァセトニトリル水溶液で 1 回、 続いて 5%蟻酸/ 50%ァセトニトリル水溶液で 2回行い、 抽出溶液は 1個の容器 にまとめて減圧濃縮した。
LC-MS解析
各ぺプチド試料の三次元プロファイルを得るために、 以下に示す装置と操作に よってぺフチド試料を分ネ; Tした (Kawakami, T. et al, Jpn. J. Electrophoresis 44: 185-190 (2000))。 まず、 減圧濃縮したペプチド試料を、 トリフルォロ酢酸、 ァセトニトリル及ぴ水の混合比が 0.1:2:98の溶媒 45μ 1に溶解した。これを溶解 液とする。
次に、 CTC Analytics 社製のオートサンプラー PAL LC- Μを用い、 Michrom
BioResources社製の MAGICMS™ C18キヤピラリーカラム(内径 0.2mm、長さ 50mm、 粒径 5μπι、 孔径 200オングストローム) に溶解液 20 μ 1を導入した。 ペプチドの 溶出は MAGIC 2002™ HPLCシステム (Michrom BioResources社) を用いて行った。 このときの HPLC移動相 Aは蟻酸、 ァセトニトリル及び水を 0.1:2:98の容積比で 混合した溶媒であり、 対して移動相 Bの混合比は 0.1:90:10であった。 そして移 動相 Bの濃度を 5%から 85%まで直線勾配で上げ、 ぺプチド断片を連続的に溶出し た。 このときの流速は約 1 μ 1/minとした。 LCの溶出液は、 New Objective社製 の PicoChip™ニードル (内径 20 im) を介し、 LCQ™イオントラップ型質量分析計 (ThermoQuest社) のイオン源に直接導入した。 anoESIニードルの位置は加熱キ ャピラリーとの距離を微調整できるようになつている。 スプレー電圧はニードル ではなく、 溶離液に直接荷電するようにした。 噴霧のためにガスは使用せず、 ス プレー電流は 3· 0mAとした。
データ処理
得られた LC- MSプロファイルデータは、 36サンプル X 24バンド分の、 合計 864 個である。 これらのプロファイルデータについて、 Xcal ibur™のユーティリティソ フトウエアを用いてテキストファイルに変換した後、 C、 C++言語及び Perl言語で 作成されたプログラムにより、 以下のような手順で解析を行った。
①ノイズレベルのデータを除去するため、 イオン強度が 102以下のシグナルを除 去した。
②処理時間の節約のために、 mZzと保持時間を量子化することでデータ点を集約 した。 具体的には、 保持時間が約 1刻みになるよう、 シグナル強度が大きなもの から順次、 時間差 1を最大限度に近傍を探し、 単調減少する範囲までを 1つのシ グナルとしてまとめられる範囲とした。 また mZzは 1刻みになるよう、元データ の m/z値の値を丸め、 前述の時間範囲内で raZzが同じ値を持つデータ点は加算 集計した。
③標準物質であるニヮトリ卵白リゾチーム由来のシグナルを同定した。すなわち、 予備実験で実測した標準物質の mZz値および保持時間の値の前後ある範囲内で、 最も高いイオン強度を与えるデータ点を探し、 次いでそのデータ点を中心に、 ィ オン強度値が単調減少しかつ 0より大きな範囲にあるデータ点を拾い、 これらを 標準物質由来のシグナルによるデータ点であると見なした。 標準物質由来のシグ ナルの総イオン強度値としては、 標準物質由来シグナルと見なされたデータ点の イオン強度の総和をもって当てた。 具体的には、 ニヮトリ卵白リゾチーム由来の m/z値が 715近傍及び 877近傍のシグナルを標準シグナルとし、サンプルの測定 データからこれらの標準物質由来シグナルを探索する際には、 m/zについては前 後 ± 1 の範囲で、 保持時間に関しては m/z 715 のシグナルについては 10分 ± 5 分の範囲で、 m/z 877のシグナルについては 18分 ± 5分の範囲で探索した。但し、 得られた標準物質由来シグナルの絶対強度、 全シグナル中での相対強度、 および 2 種類の標準物質由来シグナルの強度比のいずれかが他のものに比べてかけ離れ ているものについては、 個別にプロファイルのプロットを確認のうえ、 標準物質 由来シグナルと考えられるシグナル群のピークが探索時のパラメータの中心点に 来るように調整した上で取り直した。 得られた標準物質由来シグナルの総ィオン 強度値をもって、 各シグナルのイオン強度を除算し、 得られた値に 107を乗じる ことで、標準物質由来のシグナル強度を 107に補正した。 さらに、便宜上、 111/^ 715 のシグナルと ηι ζ 877のシグナルのピーク位置がそれぞれ保持時間に関して 10 分、 20分となるよう、 保持時間軸を線型変換した。
④ SDS- PAGEによって分画した 24バンド分のプロファイルについて、 ノくンド間に またがって存在する蛋白質の定量性を保証するため、 全バンドについて重ね合わ せたプロファイルをもって、 各試料のプロファイルとして扱った。 具体的には、 本発明に係る試料解析プログラムの、 プロファイル重ね合わせ機能を用い、 隣接 バンド間のプロファイルを逐次重ね合わせて加算集計した。 即ち、 まずはバンド
1+2, 2+3, 3+4, … , 23+24 のように、 共通パンドを有する形で隣接パンドを重 ねあわせ、 次段階では 1+2と 2+3から: Γ3の重ね合わせ得るという形で、 常に最 低 1バンドは重なるようにして重ねてゆく と、 6段階の重ね合わせ操作により、 最終的には 1~17と 9〜24の重ね合わせによって、 全バンドの重ね合わせを得た。 なお、 重複して重ね合わせたパンドに関しては、 最終段階で重複回数を除算する ことで定量性を保つよう調整した。
重ね合わせの際のパラメータは以下のとおり :
上記式 (I) において、 時間軸上の差 (絶対値) のペナルティ α =1. 0、 シグナル 強度の差のペナルティ i3 =1. 0 (但しシグナル強度を常用対数に変換後の差の絶対 値とした)、点の一致に対するボーナス点 σ =100、不一致点に対するペナルティ π =10、 標準物質由来シグナルに対する一致のボーナス点 Θ ( i, J ) = Sm 1000。 また重ね合わせプロファイルの出カオプションは、不一致を含む全ての点とした。 さらに重ね合わせの処理が終わるごとに、保持時間と m/zがそれぞれ分解能 1. 0 および 1. 0となるようデータ点の集約操作を行つた。
⑤リンパ節転移のある群とない群を特徴付ける蛋白質を探すため、 前述の試料の
4 種類の分類に従って、 まずは群内でプロファイル同士を重ね合わせて集約プロ ファイルを得、次いで群間について同様にプロファイル重ね合わせ操作を行った。 このときの重ね合わせ処理の際のパラメータは、 前述のバンド間重ね合わせ処理 と同じとした。 また重ね合わせ順序については、 群内については事前に総当りで 行っておいた同一パラメ一タの下での重ね合わせ処理の評価関数スコアをもとに、 近いものから順次重ね合わせた。 群間については、 まずリンパ節転移のある群内 の腫瘍径の違いの 2群と、 リンパ節転移のない群内での腫瘍径の違いの 2群を重 ねた後、 最終的にリンパ節転移のある群とない群を重ねた。
図 1 2に最終的な重ね合わせプロファイルについて、 リンパ節転移陽性群に表 れたシグナルを上方向に、 陰性群に存在したシグナルを下方向にプロットしたも のを示す。
⑥前述の重ね合わせた順序を逆にたどることで、 重ね合わせの出発点となってい る 36検体 X 24バンドの元データにたどれるようにし、 最終的な全てを重ね合わ せたプロファイル上の各点について、 元データとの対応を取れるようにした。
⑦最終的な集約プロファイル上の各点について、 リンパ節転移ありの検体由来の データと、 なしの検体由来のデータをそれぞれ集計し、 これら両群の平均値の差 について両側 t検定を行い、 両群間の平均値の差と検定による p値を得た。
図 1 3に、 上記検定で p値が 0. 005未満となった点を、 図 1 2と同様のプロッ トで示す。 この段階で 5, 889個のシグナルが得られた。
⑧上述のようにして選別されたシグナルについて、 このシグナルの情報をもとに ターゲット MSZMSを行い、 あるいは別途行った MS/MS解析から、 蛋白質同定ソ フト MASCOT™を用いて、 シグナルが由来するところの蛋白質同定を行った。 図 1 4に、 この同定によって蛋白質情報と関連付けることができたシグナルを示す。 約半数の 2, 753個のシグナルについて、 何らかの既知蛋白と関連付けることがで きた。
最後に、 上述の既知蛋白質と関連付けられたものの中から、 癌の転移に何らか のかかわりを持つといわれている蛋白質の一部をリストにして示す(図 1 5 )。 こ のように、癌転移に関わると考えられる蛋白質が有効に発見しうることを示せた。 以上より、 本発明に係る試料解析システムおよびプログラムが、 実際の臨床検 体を用いた解析に有効であり、 殊に病理的 ·臨床的な差異を蛋白質の量的な差異 に結び付けて検出することができ、 またその結果を利用して有効に蛋白質同定に 繋げられることから、 バイオマーカーの探索や新規診断方法の開発にも有用であ ることを示したものである。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書に取り入れるものとする。 ' 産業上の利用の可能性
以上、 詳細に説明したように、 本発明に係る試料解析方法及び試料解析プログ ラムによれば、 試料に含まれる成分を分析するに際して、 優れた分析能を達成す ることができる。 したがって、 本発明によれば、 分析対象の試料中に含まれる多 数の成分を網羅的に解析する場合に非常に有効且つ有益な試料分析方法及び試料 分析プログラムを提供することができる。
特に本発明に係る試料解析方法及び試料解析プログラムによれば、 実際の臨床 検体を用いて、 何らかの疾患の病態の違いに関係する物質を採索する目的にたい へん有効であり、 これによりバイオマーカーの探索や診断法の開発ができるとい う点でも有用性はきわめて大である。

Claims

請 求 の 範 囲
1 . 試料の分析の結果として得られた多次元データにおける、 少なく とも 1 次元のパラメータを補正する工程 aと、
上記工程 aにより得られる補正後のデータを、 複数の試料について比較するェ 程 bとを含む試料解析方法。
2 . 上記多次元データは、 クロマトグラフィ一質量分析の結果として得られ る、 質量/電荷比を示すパラメータと、 イオン強度を示すパラメータと、 保持時 間を示すパラメータとからなる 3次元データであり、 上記工程 aでは保持時間を 示すパラメータを補正することを特徴とする請求の範囲第 1項記載の試料解析方 法。
3 . 上記工程 aでは、 補正対象のパラメータを除いたパラメータに関するプ 口ファイルを参照プロファイルとし、 複数の試料間で複数の参照プロファイルに 関する配置類似性の尺度となる評価関数を用いて、 当該評価関数の値を最適化す る最適解探索問題として各プロファイルの配置を求めることを特徴とする請求の 範囲第 1項記載の試料解析方法。
4 . 上記評価関数は、 以下の①〜⑤からなる群から選ばれる 1以上の項で定 義されることを特徴とする請求の範囲第 3項記載の試料解析方法。
①補正対象のパラメータに関するプロファイル間の類似性及び/又は距離に関す る項
②参照プロファイルに関するプロフアイル間の類似性及び/又は距離に関する項
③比較対象となるプロファイル間でのデータ点の一致の程度に関する項
④比較対象となるプロファイル間でのデータ点の不一致の程度に関する項
⑤比較対象となるプロファイル間での標準物質由来シグナルの一致又は不一致の 程度に関する項
⑥比較操作を繰り返す際に、 過去の比較における一致の程度に関する項
5 . 上記工程 aでは、 上記捕正対象のパラメータについて最適解探索問題と して上記評価関数の値を最適化する際に動的計画法のアルゴリズムを用いること を特徴とする請求の範囲第 3項記載の試料解析方法。
6 . 上記動的計画法のアルゴリズムでは、 補正の対象となるパラメータに含 まれるデータ点の最適な対応関係を、 スコアを算出して評価する際に、 標準物質 に由来するデータ点に関する対応関係については、 当該スコアを良くする設定と することを特徴とする請求の範囲第 5項記載の試料解析方法。
7 . 上記動的計画法のアルゴリズムでは、 補正対象のパラメータに含まれる 5 データ点の最適な対応関係を、 スコアを算出して評価する際に、 標準物質に由来 するデータ点に関する対応関係については、 必ず指定された点で対応することを 拘束条件とすることを特徴とする請求の範囲第 5項記載の試料解析方法。
8 . 上記試料は、 蛋白質群及び/又はペプチド群を含むことを特徴とする請 求の範囲第 1項記載の試料解析方法。
0 9 . 上記複数の試料は、 標準物質を含むことを特徴とする請求の範囲第 1項 記載の試料解析方法。
1 0 上記標準物質は、ぺプチド T (Ala-Ser-Thr-Thr-Asn-Tyr-Thr)、 βカソモ ノレフィン 7 (Tyr- Pro - Phe - Pro-Gly - Pro- lie)及びこれらの構造類似体からなる群 から選ばれる少なくとも 1種以上のぺプチドであることを特徴とする請求の範囲
L5 第 9項記載の試料解析方法。
1 1 . 上記標準物質をゲル内に固定した状態で上記試料に添加することを特 徴とする請求の範囲第 9項記載の試料解析方法。
1 2 . 試料の分析の結果として得られた多次元データを入力する手順 aと、 入力された多次元データのうち少なくとも 1次元のパラメータについてデータ
0 を捕正する手順 bと、
上記手順 bで補正した後のデータを含む多次元データを、 複数の試料について 比較する手順 cとをコンピュータに実行させる試料解析プログラム。
1 3 . 上記多次元スペク トルデータは、 クロマトグラフィー質量分析の結果 として得られる、 質量/電荷比を示すパラメータと、 イオン強度を示すパラメ一
5 タと、 保持時間を示すパラメータとからなる 3次元データであり、 上記手順 bで は保持時間を示すパラメータについてデータを補正することを特徴とする請求の 範囲第 1 2項記載の試料解析プログラム。
1 4 . 上記手順 bでは、 捕正対象のパラメータを除いたパラメータに関する プロファイルを参照プロファイルとし、 複数の試料間で複数の参照プロファイル に関する配置類似性の尺度となる評価関数を用いて、 当該評価関数の値を最適化 する最適解探索問題として各プロファイルの配置を求めることを特徴とする請求 の範囲第 1 2項記載の試料解析プログラム。
1 5 . 上記評価関数は、 以下の①〜⑤からなる群から選ばれる 1以上の項で 5 定義されることを特徴とする請求の範囲第 1 4項記載の試料解析プログラム。
①補正対象のパラメータに関するプロフアイル間の類似性及び/又は距離に関す る項
②参照プロフアイルに関するプロフアイル間の類似性及び/又は距離に関する項
③比較対象となるプロファイル間でのデータ点の一致の程度に関する項
0 ④比較対象となるプロファイル間でのデータ点の不一致の程度に関する項
⑤比較対象となるプロファイル間での標準物質由来シグナルの一致又は不一致の 程度に関する項
⑥比較操作を繰り返す際に、 過去の比較における一致の程度に関する項
1 6 . 上記手順 aでは、 上記補正対象のパラメータについて最適解探索問題 -5 として上記評価関数の値を最適化する際に動的計画法のアルゴリズムを用いるこ とを特徴とする請求の範囲第 1 4項記載の試料解析プログラム。
1 7 . 上記動的計画法のアルゴリズムでは、 補正の対象となるパラメータに 含まれるデータ点の最適な対応関係を、 スコアを算出して評価する際に、 標準物 質に由来するデータ点に関する対応関係については、 当該スコアを良くする設定
0 とすることを特徴とする請求の範囲第 1 6項記載の試料解析プログラム。
1 8 . 上記動的計画法のアルゴリズムでは、 補正対象のパラメータに含まれ るデータ点の最適な対応関係を、 スコアを算出して評価する際に、 標準物質に由 来するデータ点に関する対応関係については、 必ず指定された点で対応すること を拘束条件とすることを特徴とする請求の範囲第 1 6項記載の試料解析プロダラ
5 ム。
1 9 . 上記試料は、 蛋白質群及び Z又はペプチド群を含み、 当該蛋白質群及 び/又はぺプチド群に由来する多次元データを解析することを特徴とする請求の 範囲第 1 2項記載の試料解析プログラム。
2 0 . 上記複数の試料は、 標準物質を含み、 上記手順 bではこれら標準物質 に由来する多次元データ及び上記試料に含まれる成分に由来する多次元データを 用いることを特徴とする請求の範囲第 1 2項記載の試料解析プログラム。
2 1 . 上記標準物質は、ぺプチド T (Ala-Ser-Thr-Thr-Asn-Tyr-Thr) βカソ モルフイ ン 7 (Tyr-Pro-Phe-Pro-Gl y-Pro-Π e)及びこれらの構造類似体からなる 群から選ばれる少なくとも 1種以上のぺプチドであることを特徴とする請求の範 囲第 2 0項記載の試料解析プログラム。
2 2 . 上記標準物質をゲル内に固定した状態で上記試料に添加することを特 徴とする請求の範囲第 2 0項記載の試料解析プログラム。
PCT/JP2004/004621 2003-03-31 2004-03-31 試料解析方法及び試料解析プログラム WO2004090526A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005505220A JP4185933B2 (ja) 2003-03-31 2004-03-31 試料解析方法及び試料解析プログラム
US10/551,148 US20060194329A1 (en) 2003-03-31 2004-03-31 Sample analyzing method and sample analyzing program
EP04724777A EP1626274A4 (en) 2003-03-31 2004-03-31 SAMPLE ANALYSIS PROCEDURE AND SAMPLE ANALYSIS PROGRAM
CA002521108A CA2521108A1 (en) 2003-03-31 2004-03-31 Sample analyzing method and sample analyzing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-095732 2003-03-31
JP2003095732 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004090526A1 true WO2004090526A1 (ja) 2004-10-21

Family

ID=33156638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004621 WO2004090526A1 (ja) 2003-03-31 2004-03-31 試料解析方法及び試料解析プログラム

Country Status (5)

Country Link
US (1) US20060194329A1 (ja)
EP (1) EP1626274A4 (ja)
JP (2) JP4185933B2 (ja)
CA (1) CA2521108A1 (ja)
WO (1) WO2004090526A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023876A1 (ja) * 2005-08-25 2007-03-01 Mcbi, Inc. 多数試料中に含まれる物質の存在量を比較解析する方法
JP2007108060A (ja) * 2005-10-14 2007-04-26 Kao Corp 肌質の評価方法
JP2007147459A (ja) * 2005-11-28 2007-06-14 Kazusa Dna Kenkyusho 情報処理装置、プログラム、及びコンピュータ読み取り可能な記録媒体
JP2007535672A (ja) * 2004-04-30 2007-12-06 マイクロマス ユーケー リミテッド 質量分析計
JP2008249440A (ja) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp クロマトグラフィー質量分析方法、及びクロマトグラフ質量分析装置
JP2008261741A (ja) * 2007-04-12 2008-10-30 Kao Corp 肌質判定方法
JP2008541095A (ja) * 2005-05-12 2008-11-20 ウオーターズ・インベストメンツ・リミテツド 化学分析データの視覚化
JP2008542690A (ja) * 2005-05-06 2008-11-27 エクソンモービル リサーチ アンド エンジニアリング カンパニー 2次元(多次元)分離概念が例として適用された2次元(多次元)分離ガスクロマトグラフィーx質量分析(GCxMS)技術のための新規のデータ処理/視覚化の方法
JP2008545973A (ja) * 2005-06-03 2008-12-18 ウオーターズ・インベストメンツ・リミテツド 化学分析のためのポリペプチド関連情報のカタログの発生および使用
JP2009500617A (ja) * 2005-07-08 2009-01-08 メタノミクス ゲーエムベーハー 化学試料を特徴づけるシステムおよび方法
JP2009503480A (ja) * 2005-07-25 2009-01-29 メタノミクス ゲーエムベーハー クロマトグラフィー/マススペクトロメトリーを用いてサンプルを分析する手段と方法
JP2009080010A (ja) * 2007-09-26 2009-04-16 Hitachi High-Technologies Corp 質量分析システム
WO2009051277A1 (ja) 2007-10-18 2009-04-23 Medical Proteoscope Co., Ltd. 手術後の予後を推定する方法及び診断キット
JP2009156722A (ja) * 2007-12-27 2009-07-16 Hitachi High-Technologies Corp 質量分析スペクトル分析方法
JP2009170238A (ja) * 2008-01-16 2009-07-30 Hitachi Ltd 質量分析計及び質量分析方法
JP2009294231A (ja) * 2009-09-24 2009-12-17 Hitachi High-Technologies Corp クロマトグラフィー質量分析方法、及びクロマトグラフ質量分析装置
JP2011220907A (ja) * 2010-04-13 2011-11-04 Shimadzu Corp クロマトグラムデータ処理方法及び装置
WO2012118209A1 (ja) * 2011-03-02 2012-09-07 株式会社堀場エステック ガスクロマトグラフ用データ処理装置及びそれに用いられるデータ処理プログラム
JP2014134504A (ja) * 2013-01-11 2014-07-24 Toyama Univ 試料解析装置、試料解析方法、及び試料解析プログラム
WO2014128912A1 (ja) * 2013-02-22 2014-08-28 株式会社島津製作所 データ処理装置及びデータ処理方法
US9500629B2 (en) 2012-11-05 2016-11-22 Shimadzu Corporation Chromatogram data processing method and device
WO2018134998A1 (ja) * 2017-01-23 2018-07-26 株式会社島津製作所 クロマトグラムデータ処理装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045207A1 (en) * 2004-08-25 2006-03-02 Jie Cheng Peak detection in mass spectroscopy data analysis
US7897405B2 (en) 2008-02-11 2011-03-01 Thermo Finnigan Llc Method for identifying the elution time of an analyte
US8589081B2 (en) * 2009-07-24 2013-11-19 Bio-Rad Laboratories, Inc. System and method to determine sigma of a clinical diagnostic process
EP2717045B1 (en) * 2011-06-01 2021-08-11 Tsumura & Co. Creation method, creation program, and creation device for characteristic amount of pattern or fingerprint
JP5945590B2 (ja) * 2012-04-10 2016-07-05 国立大学法人岐阜大学 獣毛の種類を特定し定量する方法
JP6020314B2 (ja) 2013-04-04 2016-11-02 株式会社島津製作所 クロマトグラフ質量分析データ処理装置
JP6060793B2 (ja) * 2013-04-19 2017-01-18 株式会社島津製作所 ピーク検出装置
WO2015019400A1 (ja) * 2013-08-05 2015-02-12 株式会社島津製作所 クロマトグラフ用データ処理装置及びクロマトグラフ用データ処理方法
JP6260709B2 (ja) * 2014-09-03 2018-01-17 株式会社島津製作所 クロマトグラムデータ処理方法及び装置
GB201511508D0 (en) * 2015-07-01 2015-08-12 Ge Healthcare Bio Sciences Ab Method for determining a size of biomolecules
JP6654119B2 (ja) * 2016-09-20 2020-02-26 株式会社日立製作所 プラントデータ表示処理装置及びプラント制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108260A (ja) * 1986-10-24 1988-05-13 Jeol Ltd 質量分析装置を用いた定性分析方法
JPH07198703A (ja) * 1993-12-28 1995-08-01 Tokai Rubber Ind Ltd クロマトグラフ分析結果に基づくポリマーの自動解析装置
JPH11344482A (ja) * 1998-06-02 1999-12-14 Jeol Ltd 質量分析システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904061B2 (ja) * 1995-06-07 1999-06-14 株式会社島津製作所 液体クロマトグラフ質量分析装置
US5885841A (en) * 1996-09-11 1999-03-23 Eli Lilly And Company System and methods for qualitatively and quantitatively comparing complex admixtures using single ion chromatograms derived from spectroscopic analysis of such admixtures
CA2466837A1 (en) * 2001-11-13 2003-05-22 Caprion Pharmaceuticals Inc. Mass intensity profiling system and uses thereof
US6989100B2 (en) * 2002-05-09 2006-01-24 Ppd Biomarker Discovery Sciences, Llc Methods for time-alignment of liquid chromatography-mass spectrometry data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108260A (ja) * 1986-10-24 1988-05-13 Jeol Ltd 質量分析装置を用いた定性分析方法
JPH07198703A (ja) * 1993-12-28 1995-08-01 Tokai Rubber Ind Ltd クロマトグラフ分析結果に基づくポリマーの自動解析装置
JPH11344482A (ja) * 1998-06-02 1999-12-14 Jeol Ltd 質量分析システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PINKSTON J D, ET AL: "Characterization of low molecular weight alkoxylated polymers using long column SFC/MS and an image analysis based quantitation approach", JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, vol. 13, no. 10, 10 October 2002 (2002-10-10), pages 1195 - 1208, XP004383143 *
See also references of EP1626274A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535672A (ja) * 2004-04-30 2007-12-06 マイクロマス ユーケー リミテッド 質量分析計
JP2008542690A (ja) * 2005-05-06 2008-11-27 エクソンモービル リサーチ アンド エンジニアリング カンパニー 2次元(多次元)分離概念が例として適用された2次元(多次元)分離ガスクロマトグラフィーx質量分析(GCxMS)技術のための新規のデータ処理/視覚化の方法
US8323575B2 (en) 2005-05-12 2012-12-04 Waters Technologies Corporation Visualization of chemical-analysis data
JP2008541095A (ja) * 2005-05-12 2008-11-20 ウオーターズ・インベストメンツ・リミテツド 化学分析データの視覚化
JP2008545973A (ja) * 2005-06-03 2008-12-18 ウオーターズ・インベストメンツ・リミテツド 化学分析のためのポリペプチド関連情報のカタログの発生および使用
JP2009500617A (ja) * 2005-07-08 2009-01-08 メタノミクス ゲーエムベーハー 化学試料を特徴づけるシステムおよび方法
JP2009503480A (ja) * 2005-07-25 2009-01-29 メタノミクス ゲーエムベーハー クロマトグラフィー/マススペクトロメトリーを用いてサンプルを分析する手段と方法
JP2011203262A (ja) * 2005-07-25 2011-10-13 Metanomics Gmbh クロマトグラフィー/マススペクトロメトリーを用いてサンプルを分析する手段と方法
WO2007023876A1 (ja) * 2005-08-25 2007-03-01 Mcbi, Inc. 多数試料中に含まれる物質の存在量を比較解析する方法
JP2007108060A (ja) * 2005-10-14 2007-04-26 Kao Corp 肌質の評価方法
JP2007147459A (ja) * 2005-11-28 2007-06-14 Kazusa Dna Kenkyusho 情報処理装置、プログラム、及びコンピュータ読み取り可能な記録媒体
JP2008249440A (ja) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp クロマトグラフィー質量分析方法、及びクロマトグラフ質量分析装置
US7742879B2 (en) 2007-03-30 2010-06-22 Hitachi High-Technologies Corporation Method and apparatus for chromatography mass spectrometry
JP4602374B2 (ja) * 2007-03-30 2010-12-22 株式会社日立ハイテクノロジーズ クロマトグラフィー質量分析方法、及びクロマトグラフ質量分析装置
JP2008261741A (ja) * 2007-04-12 2008-10-30 Kao Corp 肌質判定方法
JP2009080010A (ja) * 2007-09-26 2009-04-16 Hitachi High-Technologies Corp 質量分析システム
WO2009051277A1 (ja) 2007-10-18 2009-04-23 Medical Proteoscope Co., Ltd. 手術後の予後を推定する方法及び診断キット
JP2009156722A (ja) * 2007-12-27 2009-07-16 Hitachi High-Technologies Corp 質量分析スペクトル分析方法
JP2009170238A (ja) * 2008-01-16 2009-07-30 Hitachi Ltd 質量分析計及び質量分析方法
JP2009294231A (ja) * 2009-09-24 2009-12-17 Hitachi High-Technologies Corp クロマトグラフィー質量分析方法、及びクロマトグラフ質量分析装置
JP2011220907A (ja) * 2010-04-13 2011-11-04 Shimadzu Corp クロマトグラムデータ処理方法及び装置
WO2012118209A1 (ja) * 2011-03-02 2012-09-07 株式会社堀場エステック ガスクロマトグラフ用データ処理装置及びそれに用いられるデータ処理プログラム
US9222923B2 (en) 2011-03-02 2015-12-29 Horiba Stec, Co., Ltd. Data processing device for gas chromatograph and data processing program used in same
US9500629B2 (en) 2012-11-05 2016-11-22 Shimadzu Corporation Chromatogram data processing method and device
JP2014134504A (ja) * 2013-01-11 2014-07-24 Toyama Univ 試料解析装置、試料解析方法、及び試料解析プログラム
WO2014128912A1 (ja) * 2013-02-22 2014-08-28 株式会社島津製作所 データ処理装置及びデータ処理方法
CN105008908A (zh) * 2013-02-22 2015-10-28 株式会社岛津制作所 数据处理装置以及数据处理方法
JP6004080B2 (ja) * 2013-02-22 2016-10-05 株式会社島津製作所 データ処理装置及びデータ処理方法
JPWO2014128912A1 (ja) * 2013-02-22 2017-02-02 株式会社島津製作所 データ処理装置及びデータ処理方法
WO2018134998A1 (ja) * 2017-01-23 2018-07-26 株式会社島津製作所 クロマトグラムデータ処理装置
JPWO2018134998A1 (ja) * 2017-01-23 2019-06-27 株式会社島津製作所 クロマトグラムデータ処理装置

Also Published As

Publication number Publication date
EP1626274A4 (en) 2009-08-05
US20060194329A1 (en) 2006-08-31
CA2521108A1 (en) 2004-10-21
JP4185933B2 (ja) 2008-11-26
JP2008241721A (ja) 2008-10-09
EP1626274A1 (en) 2006-02-15
JPWO2004090526A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
WO2004090526A1 (ja) 試料解析方法及び試料解析プログラム
Cannon et al. Ultraviolet photodissociation for characterization of whole proteins on a chromatographic time scale
US20200144040A1 (en) System and method of data-dependent acquisition by mass spectrometry
Pontillo et al. CE‐MS‐based proteomics in biomarker discovery and clinical application
US7498568B2 (en) Real-time analysis of mass spectrometry data for identifying peptidic data of interest
Kolch et al. Capillary electrophoresis–mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery
Pomastowski et al. Two-dimensional gel electrophoresis in the light of new developments
Vlahou et al. Proteomic approaches in the search for disease biomarkers
JP4160558B2 (ja) 結果主導型ストラテジーを利用して生体分子を特徴付けるための方法
US9472386B2 (en) Chromatograph mass spectrometry data processing apparatus
EP2761288B1 (en) Method for analysis of samples in targeted proteomics applications, computer program product and set of reference peptides
US20050116159A1 (en) Mass spectrometic quantification of chemical mixture components
JP2006522340A (ja) 質量分析データの分析法
JP2009540319A (ja) 質量分析バイオマーカーアッセイ
Gao et al. Guidelines for the routine application of the peptide hits technique
JP2004506216A (ja) 混合物の化学成分を同定および定量するための方法およびシステム
JP2005522713A (ja) 生物学的分子の定量
Lombard-Banek et al. A microanalytical capillary electrophoresis mass spectrometry assay for quantifying angiotensin peptides in the brain
JP7431933B2 (ja) 質量分析を使用する低存在量のポリペプチドの絶対定量のための方法
US12072322B2 (en) Method for matrix effect correction in quantitative mass spectrometric analysis of analytes in complex matrices
Kilpatrick et al. Optimizing high-resolution mass spectrometry for the identification of low-abundance post-translational modifications of intact proteins
Khan et al. Proteomics by mass spectrometry—Go big or go home?
Salzano et al. Mass spectrometry for protein identification and the study of post translational modifications
Štěpánová et al. CE–MS Approaches for Peptidomics
Müller et al. Molecular scanner experiment with human plasma: improving protein identification by using intensity distributions of matching peptide masses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505220

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006194329

Country of ref document: US

Ref document number: 2521108

Country of ref document: CA

Ref document number: 10551148

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004724777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004724777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10551148

Country of ref document: US