WO2004088018A1 - 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置 - Google Patents

頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置 Download PDF

Info

Publication number
WO2004088018A1
WO2004088018A1 PCT/JP2004/003692 JP2004003692W WO2004088018A1 WO 2004088018 A1 WO2004088018 A1 WO 2004088018A1 JP 2004003692 W JP2004003692 W JP 2004003692W WO 2004088018 A1 WO2004088018 A1 WO 2004088018A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
fiber
tension
fiber bundle
roll
Prior art date
Application number
PCT/JP2004/003692
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Dohno
Kouji Ono
Kyoji Uku
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP04721674A priority Critical patent/EP1609897A1/en
Priority to US10/548,859 priority patent/US7337555B2/en
Priority to JP2005504162A priority patent/JPWO2004088018A1/ja
Publication of WO2004088018A1 publication Critical patent/WO2004088018A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel

Definitions

  • the present invention is characterized in that, in the production of regenerated collagen fibers for head decoration such as wigs and hair accessories, twisting of the fiber bundle is performed, and the tension of the fiber bundle during drying is controlled to a desired value.
  • the present invention relates to a method and apparatus for continuously drying regenerated collagen fiber which prevents the occurrence of (thread breakage), has excellent curl setting properties, and has little hackling loss.
  • regenerated collagen fibers are made from animal skin and bone as raw materials, and subjected to alcohol or enzyme treatment to decompose and remove the telopeptide portion of collagen to form water-soluble collagen, which is then spun. Manufactured in. Further, the spun fiber is subjected to various treatments depending on its use. As an example, a combination of two methods using a monofunctional epoxy compound and an aluminum salt is applied to collagen (Patent Document 1), and after that treatment, a drying treatment is performed to remove water content in the fiber. Will be applied.
  • the regenerated collagen fiber has a very low tensile strength of the water-containing yarn before drying, and is liable to break (fuzz) during drying. It shrinks during drying but cannot be stretched, but is cut when forcibly stretched. However, it has the property that the shrinkage behavior during drying varies greatly depending on the drying conditions. Furthermore, if the tension during drying is too low, the contraction rate of the regenerated collagen fiber at the end of drying increases, and the curl set property, which is one of the important qualities of the head decoration fiber, does not appear. There is a problem that the product value is reduced.
  • WO 02Z5 209 states that the batch type drying conditions are as follows: the drying temperature is 100 ° C or less, further 75 ° C or less, and the load is 1.dtex On the other hand, it is disclosed that it is preferable to dry under a gravity of 0.01 to 0.25 weight, particularly 0.02 to 0.15 g weight.
  • the drying temperature is 100 ° C or less, further 75 ° C or less
  • the load is 1.dtex
  • problems such as generation of fluff (thread breakage) and tension control of fibers running in the dryer are required.
  • continuous drying of recycled collagen fibers has not been put to practical use.
  • these fibers are different from regenerated collagen fibers in that they can be stretched during drying and heat treatment, as well as hot air drying using multiple drive rolls.
  • a general-purpose dryer of the heat roll type is used, in order to prevent the sagging of the fiber in the subsequent steps including the drying step, or to adjust the fineness, or to improve the quality such as strength.
  • the rotating speed of the drive hole is gradually increased as it approaches the exit of the process, and the film is stretched and dried.
  • regenerated collagen fibers cannot be stretched during drying. Forcibly stretching causes breakage of the fiber bundle, leading to process trouble.
  • JP-A-48-22710 discloses a method for improving the dimensional stability of copper ammonia rayon fiber, in which a plurality of dryers are provided in order to maintain a low tension, and a plurality of dryers are provided between the dryers.
  • a device provided with a driving roll is disclosed.
  • the rotation speed of the yarn introduction roller can be controlled as a method of drying while controlling the tension.
  • JP-A-57-14359 The feature of this equipment is that it has a structure in which a drive roll (a yarn introduction roller and a winder) is installed at the entrance and exit of the dryer, and is a one-pass dryer with no roll in the dryer.
  • the residence length of the dryer is calculated from the viewpoints of operating conditions (drying time: 30 minutes or more) and productivity (processing speed: 3 m / min or more) in consideration of quality. 0 m or more is required.
  • the object of the present invention is to produce a high quality regenerated collagen fiber for head decoration without causing any process trouble even if the shrinkage behavior of the regenerated collagen fiber is changed by drying under different conditions such as temperature and humidity. It is to develop a continuous drying method and its equipment that can be industrialized.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, twisted a predetermined number of the fiber bundles to be introduced into the drying chamber, and further controlled the tension of the fiber bundles during drying within a certain range. It was found that continuous drying of the regenerated collagen fiber was possible by drying while drying, and the present invention was completed.
  • the fiber bundle to be introduced into the drying chamber is twisted, and the tension of the fiber bundle during drying is controlled so as to be within the range of 0.01 to 0.08 gf / dteX.
  • a method for producing a regenerated collagen fiber for head decoration characterized by drying continuously.
  • the number of twists put into the fiber bundle is preferably 0.2 to 5 twists / m.
  • the value of the tension on the outlet side of the drying chamber is controlled in the range of 0.02 to 0.08 g weight Zdtex.
  • a driving roll is installed at the entrance of the drying chamber, and one of the entrance and exit is rotated at a constant speed
  • a tension detector is installed on the drying chamber side of the exit driving port.
  • a free roll that detects the fiber tension and controls the rotation speed of the other drive roll so that the exit tension becomes the desired value, and rotates freely to move the fiber bundle back and forth in the drying chamber at least once Is provided at a predetermined interval between the inlet and the outlet.
  • Recycled collar for headdress which is the object of the present invention
  • the pH of the gen fiber was adjusted appropriately with sodium hydroxide, boric acid, sodium hydrogen carbonate, sodium lactate, sodium hydrogen phosphate, etc.
  • a regenerated collagen fiber obtained by treating with salt or the like to make it water-resistant can be mentioned, but it can also be applied to other regenerated collagen fibers for head decoration.
  • Figure 1 shows an example of the shrinkage behavior of regenerated collagen fibers during batch drying. From FIG. 1, it can be seen that the regenerated collagen fiber contracts sharply in the vicinity of the falling-rate drying zone, that is, in the vicinity where the water content of the fiber has decreased to 50 to 70 wt% —drybase. Therefore, in continuous drying, the shrinkage rate of the regenerated collagen fiber differs at each position in the continuous drying apparatus.
  • the shrinkage behavior greatly changes depending on the drying conditions, the position where the fibers shrink moves in the drying apparatus depending on the drying conditions. Furthermore, the regenerated collagen fiber shrinks when dried, but cannot be stretched, and tends to be cut when it is forcibly stretched. Therefore, if the tension during drying is too low, the shrinkage of the product after drying is increased, and the curl setting property, which is one of the important qualities of head decoration fibers, is not exhibited. There is a problem of losing value. Furthermore, if the fiber bundle is continuously dried as it is, the dripping will occur in the latter half of drying due to drying spots, and the dripping yarn will be wound around the roll or come off the roll, resulting in yarn breakage or tow (fiber There is a problem of causing cutting.
  • dry spots refers to a phenomenon in which fibers located on the surface of a fiber bundle dries and shrinks faster than fibers located in the center.
  • dry spots occur, only the fibers on the surface of the contracted fiber bundle support the tension of the entire fiber bundle. Therefore, drying under high tension is applied only to the fiber on the surface of the fiber bundle. It becomes.
  • the shrinkage of the rapidly dried fiber decreases, and in the latter half of drying, the fiber length is longer than that of the fiber in the center of the fiber bundle, causing yarn dripping in the latter half of drying.
  • yarn that can be drawn like general chemical fiber it is possible to prevent sagging if it is drawn gradually during drying.However, in the case of regenerated collagen fiber, it is not possible to draw it. do not go. '
  • the above-mentioned problems are solved by twisting the fiber bundle introduced into the drying chamber and controlling the tension of the fiber bundle during drying.
  • the amount of the fiber bundle at the time of drying is preferably 5,000 filament or less. Above that, the fiber bundle becomes thicker and the dry spots on the surface and the center of the fiber bundle tend to be too large.
  • the method of putting a certain number of twists into the fiber bundle is not particularly limited, but a method of putting the fiber bundle into the container at a constant speed while rotating the container, or a method of putting the fiber bundle into the container.
  • the preferred number of twists for drying is from 0.2 / m to 5 / m. If the number of twists in the fiber bundle is less than 0.2 / m, the convergence of the fiber bundle will be poor, and it will be difficult to sufficiently control the dripping caused by drying spots, resulting in yarn breakage and process trouble. May be caused.
  • the tension of the fiber bundle at the time of drying it is necessary to perform drying while controlling the tension of the fiber bundle at the time of drying to be within the range of 0.01 to 0.08 g weight / 'dtex throughout. If the tension of a part of the fiber bundle during drying is less than 0.01 g weight Z dtex, the fiber bundle will sag or hang at that part, and the sagging yarn will be wound around the mouth. They may stick or come off the mouth, causing process trouble. In addition, the quality of the regenerated collagen fibers after drying, particularly the force-setting property, is adversely affected. If the tension of a part of the fiber bundle during drying exceeds 0.08 g weight Z dtex, a load is applied to that part and yarn breakage occurs.
  • the tension of the fiber bundles in drying 0. 0 1 ⁇ 0. 0 8 ⁇ Weight / (Mochiiruko any method is not particularly limited and includes a method for controlling so as to be 1 1 6 within the scope of the
  • a continuous drying device combining a drive roll and a free roll as described below the tension value of the fiber bundle in the dryer gradually increases from the dryer inlet to the dryer outlet.
  • Use the drive roll to measure the tension value at the dryer outlet This is a preferable method because the tension of the entire fiber bundle in the dryer can be adjusted to a desired value by simply controlling the tension.
  • a preferred continuous drying apparatus used in the production method of the present invention and a method using the same will be described.
  • FIG. 2 shows an outline of a preferred continuous drying apparatus of the present invention.
  • Driving rolls 4 and 8 are installed on the inlet side and outlet side of the drying chamber 7.
  • the drive roll may be any one that can freely control the feed speed of the fiber bundle by its rotation speed, and is preferably a roll that can suppress the slip of the fiber bundle, and more preferably a roll that can prevent the slip of the fiber bundle. That is, a multiple roll that prevents slippage by utilizing friction between the fiber and the roll surface may be used, or a two-roll roll that has a structure in which a rubber-coated mouth is pressed against a metal mouth. Also, multiple lonores and nip rolls may be used in combination.
  • Freely rotating free rolls 6 are installed at predetermined intervals between the inlet and the outlet of the drying chamber 7.
  • the free roll referred to here is defined as one with small frictional resistance when rotated.
  • the tension of the fiber bundle gradually decreases as it goes from the outlet to the inlet of the drying chamber, and the amount of the tension attenuation is determined by the frictional resistance of the bearing that forms the free roll.
  • the free mouth used in the present invention preferably has a tension attenuation expressed by (attenuation tension per free roll) X (the number of free rolls) of not more than 0.03 g weight Zdtex.
  • the rotation speed of one of the drive rolls at the entrance and exit is kept constant, a signal is detected from a tension detector 5 installed on the drying chamber side of the exit drive roll, and the rotation speed of the other drive roll is determined by a fiber. While controlling the outlet side tension value to be constant. By drying, the tension of the entire fiber bundle during drying can be controlled. Note that the tension may be controlled by a general method such as PID control.
  • PID control is one of the control operations performed by the control device in an automatic control system, and is a combination of proportional operation, integral operation, and differential operation.
  • the drying chamber outlet tension is set within the range of 0.02 to 0.08 g weight Z dte X. It is preferable to control. If the outlet tension is controlled to be higher than 0.08 ⁇ weight / (1 16), fuzz (yarn breakage) will occur and process trouble will occur, and the amount of hackling loss will increase. If it is controlled to be lower than 02 g heavy dte X, the force-setting property, which is one of the important qualities of the head decoration fiber, will not be exhibited, and the drying chamber outlet tension will be 0.02 to 0.08.
  • the tension of the fiber bundle at the time of drying is 0.01 to 0.08 g weight dtex Within the range.
  • the higher the temperature the greater the unevenness of drying between the fiber bundle surface and the inside. Therefore, it is preferable to dry at 100 ° C or less, and more preferably at 80 ° C or less.
  • the lower limit of the temperature condition is not particularly limited, it goes without saying that if it is too low, it takes time to dry.
  • the present invention is characterized in that the fiber tension during drying can be controlled to a desired value even if the shrinkage behavior of the regenerated collagen fiber is changed by drying under different conditions such as temperature and humidity. If the fiber tension is controlled by the continuous drying device, the tension of the fiber bundle traveling in the drying chamber can be made lower than the drying chamber outlet tension, and the tension difference between the entrance and exit can be reduced. As a result, the fluff ( In addition to preventing the occurrence of thread breaks), it is possible to prevent process troubles, and to realize continuous production of regenerated collagen fibers for head decorations with excellent curl setting properties and little hackling loss.
  • Fig. 1 shows the changes over time (shrinkage behavior of the fiber) of the fiber shrinkage and the water content during batch drying.
  • Fig. 2 is a schematic diagram of a free-roll type dryer (Examples 1 to 11, Comparative Example 1). 3).
  • Fig. 3 shows the tension fluctuation of the fiber bundle in the drying device (during drying).
  • FIG. 4 is a schematic diagram of a Nelson dryer connected to three units (Comparative Example 4).
  • FIG. 5 is a schematic diagram of a heat roll dryer (Comparative Example 6).
  • Tables 1 and 2 summarize the relationship between the drying conditions and the number of fluff (number of yarn breaks), hackling loss rate, and curl setting properties in Examples and Comparative Examples.
  • Fig. 3 shows the tension fluctuation of the fiber bundle in the drying device (during drying) in that example.
  • the recycled collagen fibers used for drying were produced according to the method described in Patent Document 1. Prior to the description of the examples, measurement and evaluation methods of the fiber shrinkage, curl setting property, number of fluffs (number of thread breaks), and hackling loss rate will be described.
  • Fiber length L per unit time introduced at the drying inlet was measured, and the fiber shrinkage was calculated by the following formula.
  • Fiber shrinkage (%) (L 0 — / L. X 100
  • the curl shape imparting and curl set retention were evaluated as follows.
  • the number of yarn breaks per 72 m of a 700-filament fiber bundle was visually measured. 36 or less were accepted.
  • a 70cm 44800 filament fiber bundle was prepared at a temperature of 20 ⁇ 2 ° C and a humidity of 6 5 After being left for 8 hours in an environment of 2% RH, hacking was performed 50 times from one side and 50 times from the other side for a total of 100 times, and the weight before hackling was W.
  • the hackling loss rate was calculated from the following equation using the following formula and the straight amount after hackling. 1.0% or less was regarded as a pass.
  • FIG. 2 shows a schematic diagram of the drying apparatus used in the example.
  • 23 free rolls 6 (bearing: product name 6005ZE C3 NACHI) with a roll diameter of 14 Omm, a roll length of 50 Omm, and a shaft diameter of 25 mm are installed at 6 m intervals, and the residence length is 144 m ( 6mX 24 passes).
  • Driving rolls 4 and 8 that use multiple rolls and nip rolls were installed at the entrance and exit of the drying chamber to prevent slipping of the fiber bundle, and hot air at a constant wind speed was blown into the drying chamber.
  • a tension detector 5 (LX-TD type tension detector: Mitsubishi Electric Corporation) is installed near the entrance and exit of the drying chamber, and the signal is taken out from the exit side tension detector and the tension value on the exit side becomes constant.
  • the rotation speed of the outlet drive roll was PID controlled.
  • the drying conditions were a temperature of 65 ° C., and the outlet tension was controlled to 0.036 g weight ZdteX (20 N / 700 f).
  • the inlet-side tension at that time was 0.018 g weight / dteX (1 ON / 700 f).
  • the tension gradually decreases from the outlet to the inlet, due to the frictional resistance of the bearing generated when the free roll rotates.
  • four 700-filament fiber bundles were introduced into the drying device, and each fiber bundle was twisted at a rate of 0.5 / m.
  • the fineness of the single fiber was 80 dtex
  • the size of the fiber bundle was 56000 dtex
  • the total fineness was 224000 dtex.
  • the shrinkage of the recycled collagen fiber dried under the above conditions is 7%
  • the number of fluffs (thread breaks) at the outlet of the drying chamber is 8/700 fX72m
  • the hackling loss rate is 0.1%. Both evaluations passed the acceptance criteria, and the curl set properties were also good (see Table 1).
  • Example 3 The experiment was performed in the same manner as in Example 1 except that the number of twists was changed from 0.5 / m to 1.0 / m. As a result, the fiber shrinkage rate was 7%, the number of fluffs (yarn breakage) and the hackling loss rate passed the acceptance criteria, and the curl setting property was also good. (Example 3)
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the number of burns was changed from 0.5 / m to 0.25 / m. As a result, the fiber shrinkage was 7. /. Met. Compared to Example 1, the convergence of the fiber bundle was poor and the number of fluffs (thread breaks) increased to 30 and the hackling loss rate increased to 0.3%. However, both the number of fluffs and the hackling loss rate cleared the acceptance criteria. The curl setting property was also good.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the drying temperature was changed from 65 ° C to 50 ° C. As a result, the fiber shrinkage was 5%. Both the number of fluffs (thread breaks) and the hackling loss rate passed the acceptance criteria, and the curl setting properties were also good.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the drying temperature was changed from 65 ° C to 75 ° C. As a result, the fiber shrinkage was 8%. Both the number of fluffs (thread breaks) and the hackling loss rate passed the acceptance criteria, and the force set was good.
  • Example 2 The experiment was carried out in the same manner as in Example 1, except that / dteX (30 N / 700 f) was used. As a result, the inlet-side tension was 0.034 g weight ZdteX (19 N / 700 f), and the tension gradually decreased from the outlet to the inlet as shown in FIG. The fiber shrinkage was 6%. Both the number of fluffs (yarn breaks) and the hackling loss rate passed the acceptance criteria, and the force-setting ability was also good.
  • Example 8 The experiment was carried out in the same manner as in Example 1 except that the outlet side tension 0.036 g weight Z dte X (2 ON / 700 f) was changed to 0.071 g weight / dtex (4 ON / 700 f). As a result, the inlet tension was 0.050 gf / dte X (28 N / 700 f), and the tension gradually decreased from the outlet to the inlet. The fiber shrinkage was 4%. Compared to Example 1, the fiber tension was increased and the number of fluffs (thread breaks) increased to 33 and the hackling loss rate increased to 0.4%. However, both the number of fluffs and the hackling loss rate passed the acceptance criteria. The curl set properties were also good. (Example 8)
  • Example 2 The experiment was performed in the same manner as in Example 1 except that one fiber bundle of 280 filament was introduced into the drying device. As a result, the drying spots increased and the convergence of the fiber bundle slightly decreased, and the number of fluffs (thread breaks) and the hackling loss rate increased from Example 1. However, both of the evaluations passed the acceptance criteria. The curl setting property was also good.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the rotation speed of the entrance drive roll was controlled by PID so that the tension value on the exit side was constant. As a result, the fiber shrinkage was 7%, the number of fluffs (yarn breaks) and the hackling loss rate were all acceptable, and the curl setting was good.
  • Tension of woven bundle () The unit of numerical value is N / 700f
  • Example 1 The experiment was performed in the same manner as in Example 1 except that the number of twists was changed from 0.5 / m to 0 / m (no twist). As a result, no sagging occurred in Example 1, but in Comparative Example 1, sagging occurred in the latter half of drying, and the sagged yarn was wound around the roll or came off the roll, and the yarn was broken. The fiber bundle (tow) was broken on the way, and the operation was stopped. In the evaluation conducted before the fiber bundle was broken, the number of fluffs (thread breaks) at the drying outlet was approximately 200 Z700 f x 72 m, and the hackling loss rate was 5.2%, which was too low to meet the acceptance criteria.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the number of twists was changed from 0.5 / m to 0.17 / m. As a result, the yarn was slightly sagged in the latter half of the drying, causing some yarn breakage. However, compared to Comparative Example 1, the yarn was mild and continuous operation was possible.
  • Example 2 An experiment was performed in the same manner as in Example 1 except that the number of twists was changed from 0.5 / m to 10 / m. As a result, the convergence of the fiber bundle was high, the number of fluffs and the hackling loss rate passed the acceptance criteria, and the force resetting property was also good. However, since the number of twists was large, the obtained dried yarn slightly had a twisted shape.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the outlet side tension 0.036 g weight dtex (2 ON / 700 f) was changed to 0.018 g weight / dtex (1 ON / 700 f).
  • the inlet side tension was 0.005 g weight Zd te X (3 N / 700 f), and as shown in Fig. 2, the tension gradually decreased from the outlet to the inlet.
  • the fiber shrinkage was as high as 11%. Due to the low tension, the number of fluffs (thread breaks) and the hackling loss rate also passed the acceptance criteria. However, curl set retention deteriorated due to increased shrinkage during drying.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the outlet side tension 0.036 g weight Zdtex (20 N / 700 f) was changed to 0.089 g weight / dte X (5 ON / 700 f). As a result, the inlet-side tension was as high as 0.066 g weight Zd tex (37N / 700 f). (See Fig. 3), and the fiber shrinkage was a low value of 2%. The number of fluffs (thread breaks) at the drying outlet was about 150 yarns / 700 f x 72 m, and the cracking loss rate was 4.0%, which was too low to meet the acceptance criteria.
  • Figure 4 shows a schematic diagram of the Nelson dryer.
  • Three Nelson dryers using a tapered roll 9 with a roll diameter of 125 mm and a length of 625 mm were connected to three 10, 10, 11 and 12 experiments.
  • the distance between the rolls in each dryer was 800 mm, and the tow (fiber bundle) was retained for 7.5 turns and dried by blowing hot air at a constant speed.
  • the tow (fiber bundle) was retained for 7.5 turns and dried by blowing hot air at a constant speed.
  • the tow fiber bundle
  • the drying temperature was 65.
  • the fiber bundle to be introduced into the dryer was 700 filaments, and the fiber bundle was twisted at a rate of 0.5 / m.
  • the fineness of the single fiber was 80 dtex, and the fineness of the fiber bundle was 56 OOdtex.
  • the experiment was conducted by changing the free mouth of the drying device shown in Fig. 2 to a driving roll.
  • the rotation speed of each drive roll was adjusted so that the fiber shrinkage at the drying outlet was 7.0%, that is, the rotation speed of the outlet drive roll was 93% of the inlet drive roll speed.
  • the speed of the drive roll in the drying chamber gradually decreased evenly as it approached from the drying inlet to the outlet.
  • the drying temperature was 65 ° C.
  • four fiber bundles of 700 filaments were introduced into the drying device, and each fiber bundle was twisted at a rate of 0.5 / m.
  • the fineness of the single fiber was 80 dte X, the fineness of the fiber bundle was 56 OOO dtex, and the total fineness was 224000 dtex.
  • FIG. 5 shows a schematic diagram of the heat roll dryer.
  • the experiment was performed using a dryer composed of 12 heat rolls having a roll diameter (
  • the tow (fiber bundle) was returned from the outlet side to the heat roll 13 on the inlet side via the guide roll 14, the angle of the guide roll was adjusted, and the turn was performed on the heat roll for 12 turns.
  • the heat roll was a straight cylindrical cylinder, the driving speed of each heat roll was constant, and the shrinkage of the fiber during drying was 0%.
  • the drying temperature was 60-70 ° C.
  • the fiber bundle to be introduced into the dryer was 700 filaments, and the fiber bundle was twisted at a rate of 0.5 / m.
  • the fineness of the single fiber was 80 dteX, and the fineness of the fiber bundle was 56500 dteX.
  • Dry Fiber bundle tension (g weight / dtex) Number of fluff (thread break)

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

明細書 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置 技術分野
本発明は、 ウイッグやヘアアクセサリーなどの頭飾用再生コラーゲン繊維の製 造において、 繊維束に撚りを入れること、 及び、 乾燥中の繊維束の張力を所望値 に制御することを特徴としており、 毛羽 (糸切れ) の発生を防ぎ、 カールセット 性に優れ且つハックリングロスの少ない再生コラーゲン繊維を連続で乾燥する方 法及びその装置に関するものである。 背景技術
再生コラーゲン繊維は、 一般に、 動物の皮や骨を原料として、 これにアル力リ または酵素処理を施し、 コラーゲンのテロペプチド部を分解除去して水に可溶な コラーゲンとし、 これを紡糸する方法で製造される。 さらに、 この紡糸された繊 維にはその用途に応じて様々な処理が施される。 一例を示すと、 コラーゲンに単 官能エポキシ化合物とアルミニウム塩とを用いた 2つの方法を組み合わせた処理 が施され (特許文献 1) 、 その処理後、 繊維中の含水を除去するために乾燥処理 が施される。
再生コラーゲン繊維は、 乾燥する前の含水糸の引張り強度が非常に弱く乾燥時 に糸切れ (毛羽) が発生し易い、 乾燥時に収縮はするが延伸できず無理に延伸す ると切断する、 また、 乾燥時の収縮挙動が乾燥条件により大きく変化する性質を 持つ。 さらに、 糸切れを恐れるがあまり乾燥時の張力を低下させ過ぎると、 乾燥 終了時の再生コラーゲン繊維の収縮率が大きくなり頭飾用繊維の重要品質の一つ であるカールセット性が発現せず、 商品価値が低下するという問題がある。 再生コラーゲン繊維の乾燥方法として、 WO 0 2Z5 2 0 9 9にはバッチ方式 の乾燥条件に関しては、 乾燥温度は、 1 0 0°C以下、 さらには 7 5°C以下、 荷重 は、 1. d t e xに対して 0. 0 1〜0. 2 5 §重、 特に0. 0 2〜0. 1 5 g重 の重力下で乾燥するのが好ましいことが開示されている。 しかしながら、 生産性を向上させる観点からは、 連続方式での乾燥方法及びそ の装置の開発が不可欠となるが、 毛羽 (糸切れ) の発生や乾燥機内を走行する繊 維の張力制御等の課題が挙げられ、 再生コラ一ゲン繊維の連続乾燥は実用化され ていない状況にある。
アクリル系やアミ ド系繊維等の一般的な合成繊維の製造に関しては、 それらの 繊維は再生コラーゲン繊維とは異なり、乾燥および熱処理時に延伸できること力、 ら、 複数の駆動ロールを用いた熱風乾燥方式やヒートロール方式の汎用的な乾燥 機が用いられ、 乾燥工程を含め乾燥以降の工程では繊維の垂れが発生しないよう 、 或いは、 繊度を調整するため、 或いは、 強度等の品質向上を目的とし、 駆動口 ールの回転速度を工程の出口に近づくとともに徐々に上げて、 延伸しつつ乾燥し ているのが現状である。 それに対して再生コラーゲン繊維の場合、 乾燥時に延伸 できない。 無理に延伸すると繊維束の破断が発生して工程トラブルにつながる。 さらに、 延伸せずそのまま連続的に乾燥しようとすると、 乾燥中の繊維束に乾燥 斑ができ、 繊維の収縮長さに違いが生じて乾燥後半で糸垂れが発生し、 その垂れ た糸がロールに卷き付いたりロールから外れたりする。 結果として、 それが糸切 れ或いは繊維束の破断を引き起こして、 運転できない状況に陥る。
一方、 一定張力を保持しながら連続乾燥する方法やその装置についていくつか の先行文献がある。 例えば、 特開昭 4 8 - 2 2 7 1 0号公報には銅アンモニアレ 一ヨン繊維の寸法安定性向上を目的とし、 低張力を保持するために乾燥機を複数 機設けてその間に複数の駆動ロール (糸送り装置) を設置した装置が開示されて いる。
しかし、 再生コラーゲン繊維の乾燥にこの装置を採用した場合、 各駆動ロール 間の繊維張力を一定に保持することが困難となる。 というのは、 再生コラーゲン 繊維を乾燥すると、 減率乾燥域に入った付近で急激に収縮が起こる、 また、 乾燥 条件が変わると繊維の収縮挙動が大きく変化することから、 繊維が収縮する位置 を乾燥機内のある位置に特定できず、 その位置が乾燥機内で移動してしまうから である。 よって、 繊維の収縮挙動を駆動ロールの減速比で合致させることは極め て難しく、 繊維張力が高くなる区間と低くなる区間ができてしまい、 繊維張力が 高くなる区間では糸切れ (毛羽) が発生し、 低くなる区間では糸垂れが発生する ことになり工程トラブルにつながる。
また、 毛羽の少ない高モジュラスタイプの P P T A繊維を製造することを目的 とし、 一定張力を付与して乾燥する方法として、 複数のネルソンローラーゃテー パー付きローラーの使用を記載した文献がある(特開昭 6 0 _ 8 8 1 1 7号公報)。 しかし、 再生コラーゲン繊維の乾燥にこの装置を採用した場合も、 上述した理由 により、 ネルソンローラーやテーパー付きローラーの緩和角度を繊維の収縮挙動 に合致させることは難しく、 繊維張力が高くなる箇所では糸切れ (毛羽) が発生 し、 繊維張力が低くなる箇所では糸垂れが起こることになる。
さらに、 耐摩耗性の優れた高モジュラス繊維を製造することを目的とし、 一定 張力下で乾燥する 1つの方法として、 糸を加熱されたロール (ヒート口ール) 上 及びロール聞に通すことを記載した文献がある(特開平 4 _ 2 1 4 4 3 4号公報)。 しかし、 再生コラ一ゲン繊維の乾燥にこのヒート口ールを採用した場合、 通常の 直銅型ヒート口ールでは、 乾燥が進行するとともに糸が収縮して張力が上昇し続 ける。 その結果、 張力の制御が不可能となるため繊維束 (トウ) の破断を避けら れない。 よって、 再生コラーゲン繊維の場合は、 ヒートロール単独での連続乾燥 運転はできない。
そのほか、 湿潤時わずかに収縮することを特徴とするセルロース系血液処理用 中空繊維の製造を目的とし、 引張り張力をコントロールしつつ乾燥する方法とし て、 導糸ローラーの回転速度をコントロールすることが見出されている (特開昭 5 7 - 1 4 3 5 9号公報) 。 この装置の特徴は、乾燥機の出入口に駆動ロール(導 糸ローラーと卷き取り口一ラー) を設置した構造で、 乾燥機内にロールが存在し ないワンパスの乾燥機になっていることである。 ここで、 再生コラーゲン繊維の 乾燥において、 品質を考慮した操作条件 (乾燥時間 3 0分以上) と生産性 (処理 速度 3 m/分以上) の観点から乾燥機の滞留長を算出すると、 少なくとも 9 0 m 以上必要となる。
よって、 9 O m以上のワンパス乾燥機の実現は、 横型或いは縦型にするにして も立地条件、 建設費、 操作性等を考慮した場合極めて困難になることから、 乾燥 機内にロールが存在しないワンパス乾燥機を再生コラーゲン繊維の乾燥に採用す ることは現実的でない。
以上のことから、 頭飾用再生コラーゲン繊維の製造において、 工程トラブルを 起こすことなく、 品質に優れた再生コラーゲン繊維を連続で乾燥できる方法及び その装置は未だ見出されていない。
発明の開示 本発明の目的は、 温度や湿度等異なる条件で乾燥して再生コラーゲン繊維の収 縮挙動が変化しても、 工程トラブルを生じることなく、 品質の優れた頭飾用再生 コラーゲン繊維を製造できる、 工業化可能な連続乾燥方法及びその装置を開発す ることである。
上記課題を解決するために本発明者らは鋭意検討を重ねた結果、 乾燥室に導入 する繊維束に所定数の割合で撚りを入れ、 さらに乾燥中の繊維束の張力をある範 囲内に制御しながら乾燥することで、 再生コラーゲン繊維の連続乾燥が可能とな ることを見出し、 本発明を完成させた。
すなわち本発明は、 乾燥室に導入する繊維束に撚りを入れ、 且つ、 乾燥中の繊 維束の張力が 0 . 0 1〜0 . 0 8 g重/ d t e Xの範囲内となるように制御して 連続で乾燥することを特徴とする頭飾用再生コラーゲン繊維の製造方法に関する 。 ここで、 繊維束に入れる撚りの個数は、 0 . 2〜 5個/ mの割合であるのが好 ましい。 さらには、 このとき、 乾燥室出口側の張力の値を 0 . 0 2〜0 . 0 8 g 重 Z d t e xの範囲に制御するのが好ましい。
さらに本発明は、 乾燥室の出入口に駆動ロールを設置して、 出入口のいずれか 一方の駆動口ールを一定速度で回転させ、 出口駆動口ールの乾燥室側に設置した 張力検出器から繊維張力を検出し、 その出口張力が所望値になるよう他方の駆動 ロールの回転速度を制御する機構を備え、 さらに乾燥室内に 1回以上繊維束を往 復させるための自在に回転するフリーロールが、 入口から出口の間に所定の間隔 で設置されていることを特徴とした連続乾燥装置に関する。
以下に本発明をさらに詳細に説明する。 本発明の対象となる頭飾用再生コラー ゲン繊維は、 例えば、 可溶化コラーゲンを必要に応じて酸処理した後、 水酸化ナ トリウム、 ホウ酸、 炭酸水素ナトリウム、 乳酸ナトリウム、 リン酸水素 2ナトリ ゥムなどで適宜 p H調整を行なった硫酸ナトリウム、 塩化ナトリウム、 硫酸アン モ -ゥムなどの無機塩を 1種または 2種以上を含む水溶液に、 紡糸ノズルゃスリ ットを通して、 吐出し繊維化したものを、 単官能エポキシ化合物やアルミニウム 塩などで処理して耐水化させて得られる再生コラーゲン繊維 (WO O 2 / 5 2 0 9 9参照)が挙げられるが、その他の頭飾用再生コラーゲン繊維にも適用できる。 ここで、 再生コラーゲン繊維の性質を説明する。 図 1に、 バッチ乾燥時におけ る再生コラーゲン繊維の収縮挙動の一例を示す。 図 1より、 再生コラーゲン繊維 は減率乾燥域に入った付近、 すなわち、 繊維の含水率が 5 0〜 7 0 w t %— d r y b a s eにまで低下した付近で急激に収縮することがわかる。 従って、 連続乾 燥においては、 再生コラーゲン繊維の収縮する割合は、 連続乾燥装置内の各位置 で異なることになる。 また、 この収縮挙動は乾燥条件により大きく変化するため 、 繊維の収縮する位置が乾燥諸条件によって乾燥装置内で移動する。 さらに、 再 生コラーゲン繊維は乾燥時に収縮はするが、 延伸はできず、 無理に延伸しようと すると切断されてしまう性質がある。 そこで、 糸切れを恐れるがあまり乾燥時の 張力を低下させ過ぎると、 乾燥終了後の製品の収縮率が大きくなり、 頭飾用繊維 の重要品質の一つであるカールセット性が発現せず、 商品価値がなくなるという 問題がある。 さらに、 繊維束を連続でそのまま乾燥すると、 乾燥斑が原因となり 乾燥後半で糸垂れが発生し、 その垂れた糸がロールに巻き付いたりロールから外 れたりして、 結果として糸切れやトウ (繊維束) 切れを引き起こすという問題が ある。 ここで言う乾燥斑とは、 繊維束の表面に位置する繊維は、 中心部に位置す る繊維より速く乾燥して収縮するという現象である。 乾燥斑が起こると、 その収 縮した繊維束表面の繊維のみで繊維束全体の張力を支えることになることから、 実質的には繊維束表面の繊維のみに高張力がかかった状態での乾燥となる。 その 結果、 速く乾燥した繊維の収縮率は小さくなり、 乾燥後半では繊維束中心部の繊 維に比べて繊維長が長くなるため、 乾燥後半で糸垂れを引き起こすことになるの である。 一般的な化学繊維のように延伸できる糸では、 乾燥時に徐々に延伸すれ ば糸垂れを防止できるが、 再生コラーゲン繊維の場合、 延伸できないためそうは いかない。 '
本発明では、 そのような性質を有する再生コラーゲン繊維を連続乾燥する際、 乾燥室に導入する繊維束に撚りを入れ、 かつ乾燥中の繊維束の張力を制御するこ とで上記課題を解決する。 本発明において、 乾燥時の繊維束の量は 5 0 0 0フィ ラメント以下が好ましい。 それ以上になると、 繊維束が太くなり、 繊維束の表面 部と中心部との乾燥斑が大きくなり過ぎる傾向がある。
本発明において、 繊維束に一定数の撚りを入れる方法については、 特に限定さ れないが、 容器を一定速度で回転させながらその容器の中に繊維束を一定速度で 入れる方法や、 繊維束を入れた容器を一定速度で回転させながらその繊維束を乾 燥機に導入する方法等があるが、 いずれの方法を採用しても良い。 なお、 乾燥す るのに好ましい撚りの数は 0 . 2個/ m〜 5個/ mである。 繊維束に入れる撚りの 数が 0 . 2個/ mより少ない場合、 繊維束の収束性が悪くなり、 乾燥斑により発 生した糸垂れを十分に抑制できにくくなり、 結果として糸切れや工程トラブルが 引き起こされる場合がある。 —方、 燃りの数が 5個/ mより多い場合、 繊維束の 収束性が良くなり糸垂れを防止できるという点では良いが、 乾燥糸に撚りの形状 が残りやすくストレートな用途では使いにくくなる場合がある。
さらに本発明においては、 乾燥時の繊維束の張力が、 全体を通じて 0 . 0 1〜 0 . 0 8 g重/' d t e xの範囲内となるよう制御して乾燥を行う必要がある。 乾 燥時の一部の繊維束の張力が 0 . 0 1 g重 Z d t e x未満の場合、 その部分で繊 維束の垂れや糸垂れが発生し、 結果垂れた糸が口一ルに卷き付いたり口ールから 外れたりして工程トラブルの原因となる。 さらに乾燥後の再生コラーゲン繊維の 品質、 特に力一ルセット性にも悪影響を与える。 また、 乾燥時の一部の繊維束の 張力が 0 . 0 8 g重 Z d t e xをこえる場合、 その部分に負荷がかかり、 糸切れ が発生する。
本発明において、 乾燥時の繊維束の張力を 0 . 0 1〜0 . 0 8 §重/ (1 1 6 の範囲内となるよう制御する方法としては特に限定されず任意の方法を用いるこ とができるが、 以下述べるような駆動ロールとフリーロールを組み合わせた連続 乾燥装置を用いた場合、 乾燥機内の繊維束の張力値は乾燥機入口から出口にかけ て徐々に上昇することになる。 よって、 乾燥機出口での張力値を駆動ロールを用 いて制御するだけで、 乾燥機内全体の繊維束の張力を所望の値にすることが可能 になることから、 好ましい方法である。 以下、 本発明の製造方法において用いら れる好ましい連続乾燥装置と、 それを用いる方法について説明する。
図 2に、 本発明の好ましい連続乾燥装置の概略を示す。 乾燥室 7の入口側およ ぴ出口側に、 駆動ロール 4, 8を設置する。 この駆動ロールは、 その回転速度に よって繊維束の送り速度を自由にコントロールできるものであれば良く、 繊維束 の滑りを抑制できるもの、 さらには繊維束の滑りを防止できるものが好ましい。 すなわち、 繊維とロール表面との摩擦を利用して滑りを防止する多連ロールでも 良いし、 ゴムを張った口ールを金属口一ルに押し当てる構造の二ップロールでも 良い。 また、 多連ローノレとニップロールを併用しても良い。
乾燥室 7の入口から出口の間には、 自在に回転するフリ一ロール 6を所定の間 隔で設置する。 ここで言うフリーロールとは、 回転させた時の摩擦抵抗が小ざい ものと定義する。 一般に、 乾燥室の出口から入口に向かうとともに繊維束の張力 は徐々に減衰するが、 その張力の減衰量はフリーロールを構成するべァリングの 摩擦抵抗の大きさで決まる。 本発明において用いられるフリー口ールは、 (フリ 一ロール 1個当りの減衰張力) X (フリーロールの個数) で表現できる張力減衰 量が 0 . 0 3 g重 Z d t e x以下のものが好ましい。 ここで、 フリーロールのか わりに、 一般的な繊維の乾燥に用いられるような駆動ロールを設置した場合には 、 繊維が著しく収縮する区間では張力が上昇して毛羽 (糸切れ) が発生する。 さ らに、 乾燥条件を変えると繊維の収縮挙動が大きく変化し、 繊維の収縮する位置 が乾燥室内で移動してしまうことから、 乾燥室内に設置した駆動ロールの減速比 を繊維の収縮挙動に合致させ、 乾燥室内の繊維張力を均一に保持することが極め て困難となる。 しかし、 本発明のように自在に回転するフリーロールを設置すれ ば、 入口から出口までのどの位置で繊維の収縮が起ころうとも、 張力は分散され て乾燥機内部の繊維張力を出口張力より低く、 且つ、 出入口間の張力差を小さく することが可能となる。
本発明においては、 出入口のいずれか一方の駆動ロールの回転速度を一定とし 、 出口駆動ロールの乾燥室側に設置した張力検出器 5から信号を検出し、 他方の 駆動ロールの回転速度を、 繊維の出口側張力値が一定になるように制御しながら 乾燥することで乾燥中の繊維束全体の張力を制御することができる。 なお、 張力 の制御方法は、 P I D制御を始めとする一般的な方法で良い。 なお、 P I D制御 とは、 自動制御系において制御装置が行なう制御動作の一つで、 比例動作、 積分 動作、 微分動作を組み合わせたものである。
本発明においては、 乾燥終了時における毛羽数(糸切れ数)、 ハックリングロス 量及びカールセット性の観点から、 乾燥室出口張力を 0. 02〜0. 08 g重 Z d t e Xの範囲内に制御するのが好ましい。 出口張力を 0. 08 §重/(1 1 6 より高く制御した場合、 毛羽 (糸切れ) が発生して工程トラブルを引き起こすと ともにハックリングロス量も増大する。 一方、 乾燥室出口張力を 0. 02 g重ノ d t e Xより低く制御した場合、 頭飾用繊維の重要品質の 1つである力一ルセッ ト性が発現しなくなる。 また、 乾燥室出口張力の値を 0. 02〜0. 08 g重/ d t e xの範囲内に制御することによって、 上記好ましい張力減衰量となるフリ 一ロールを設置した場合、 乾燥時の繊維束の張力を全体を通じて 0. 0 1〜0. 08 g重ノ d t e xの範囲内とすることができる。
連続乾燥時の温度条件については、 温度が高いほど繊維束表面と内部との間の 乾燥斑が大きくなるため、 100°C以下、 さらには 80°C以下で乾燥するのが好 ましい。 温度条件の下限値については特に限定されないが、 あまり低すぎると乾 燥に時間を要してしまうことはいうまでもない。
以上、 本発明は、 温度や湿度等異なる条件で乾燥して再生コラ一ゲン繊維の収 縮挙動が変化しても、 乾燥中の繊維張力を所望値に制御できることが特徴であり 、 本発明の連続乾燥装置で繊維張力を制御すれば、 乾燥室内を走行する繊維束の 張力を乾燥室出口張力より低く、 且つ、 出入口間の張力差を小さくすることが可 能となり、 その結果として、 毛羽 (糸切れ) の発生を防いで工程トラブルを防止 するとともに、 カールセット性に優れ且つハックリングロスの少ない頭飾用再生 コラーゲン繊維の連続生産を実現できる。
図面の簡単な説明
図 1は、バッチ乾燥における繊維収縮率と含水率の経時変化(繊維の収縮挙動) を示す。
図 2は、 フリーロール形式の乾燥装置の概略図 (実施例 1〜1 1、 比較例 1 〜3) である。
図 3は、 乾燥装置内 (乾燥中) の繊維束の張力変動を示す。
図 4は、 3機連結したネルソン乾燥機の概略図である (比較例 4) 。
図 5は、 ヒートロール乾燥機の概略図である (比較例 6) 。
(符号の説明)
1 :繊維束 (トウ) 、 2 : ローラーポンプ、 3 :油剤槽、 4 :乾燥入口駆動ロー ル、 5 :張力検出器、 6 :フリーロール、 7 :乾燥室、 8 :乾燥出口駆動ロール 、 9 : ネルソンロール (駆動) 、 10 :ネルソン乾燥機 1、 1 1 : ネルソン乾燥 機 2、 1 2 :ネルソン乾燥機 3、 1 3 : ヒートロール (駆動) 、 14 :ガイドロ ール
【実施例】
次に実施例により本発明をさらに詳細に説明するが、 本発明はこれら実施例に 限定されるものではない。 表 1と表 2に、 実施例と比較例における乾燥条件と毛 羽数 (糸切れ数) 、 ハックリングロス率、 カールセット性との関係を整理した。 図 3には、 その例における乾燥装置内 (乾燥中) の繊維束の張力変動を示した。 乾燥に使用した再生コラ一ゲン繊維は、 特許文献 1記載の方法に準じて作製した 。 なお、 実施例の記載に先立ち、 繊維の収縮率、 カールセット性、 毛羽数 (糸切 れ数) 、 ハックリングロス率の測定及び評価方法を説明する。
(繊維の収縮率)
乾燥入口で導入される単位時間当たりの繊維長 L。と乾燥出口から出てくる単 位時間当たりの繊維長 を測定し、 次式にて繊維収縮率を計算した。
繊維収縮率 (%) = (L0— /L。X 100
(カールセット性)
カール形状付与とカールセット保持性の評価を以下のように行なった。
(1) よく開繊した繊維束 (6. 3 g/58. 4 cm) の中央にミシンをかけて、 繊維長 33cm、 幅 1 2 cmの蓑毛を作った。
(2) その蓑毛を 25°C、 80%RHの雰囲気中に吊り状態で 1 2時間以上放置し た。
(3)上記蓑毛を 4つ折りにして幅 3 cmとし、外径 1 2 mmのアルミ製パイプに 1 ピッチ当り 1回のひねりを入れながら巻き付け、 繊維束がずれないようにしつか りと両端を輪ゴムで固定した。
(4) 巻き終ったロッドをスチームセッター (平山製作所製: HA- 300P) に投入 し 80°Cで 4時間蓑毛を湿潤させた。 その後、 シリコン系油剤水溶液 (0. 44 wt%) に 5分浸し、 熱風対流式乾燥機 (タバイエスペック(株)製: PV- 221) で 9 0でで 1時間乾燥して、 30分間放冷した。
(5) アルミ製パイプから蓑毛をはずし、 シリコン系油剤水溶液 (0. 44wt°/0 ) 中で蓑毛をほぐし、 網の上にあげカール形状を整えた。 その後、 熱風対流式乾 燥機で 50 °Cで 2時間乾燥した。
(6) 蓑毛を下記の手順でシャンプーした。
1) 手にシャンプー剤 ((株)資生堂製:スーパーマイルドシャンプーフロー ラルフルーティ一) を 1/2ポンプ量取る。
2) シャンプー剤を蓑毛に塗布し 10回手揉み洗いする。
3) 40 °Cの温水で溜めすすぎをする。
4) 蓑毛を強く握り水分を絞る。
5) 蓑毛を吊り、 手櫛を 10回通す。
6) 再度、 蓑毛の根元、 真ん中、 毛先の 3箇所を強く握る。
7) タオルに蓑毛を挟み、 水分を吸収する。
8) 蓑毛に手櫛を 3回通す。
9) 50°Cで 90分間蓑毛を吊り乾燥する。
(7) カール形状の耐シャンプー (繰り返しシャンプー回数によるカール形状の 保持性) は、 前記 (6) の操作を 3回繰り返し、 カール形状が保持されているか を観察し、 良好な力ール形状保持性を示すものを〇、 ややカール形状が落ちてい るものを△、 カール形状がほとんど観察されないものを Xとした。
(毛羽数 (糸切れ数) )
乾燥室の出口において、 700フィラメントの繊維束 72 m当たりに存在する 糸切れ本数を目視にて測定した。 36本以下を合格とした。
(ノヽックリングロス率)
70 cmの 44800フィラメントの繊維束を作製し、 温度 20 ± 2 °C、湿度 6 5土 2 %R H環境下に 8時間放置後、 一方から 50回、 他方から 50回計 1 00 回ハックリングを行い、 ハックリング前重量 W。とハックリング後直量 から、 次式にてハックリングロス率を計算した。 1. 0%以下を合格とした。
ハックリングロス率 (%) = (Wo-W^ /W0X 100
(実施例 1 )
図 2に、 実施例で用いた乾燥装置の概略図を示す。 乾燥室 7にロール径 φ 14 Omm, ローノレ長さ 50 Omm、 軸径 φ 25 mmのフリーローノレ 6 (ベアリング :製品名 6005ZE C3 NACHI) を 6 m間隔で 23本設置して、 滞留長を 144 m ( 6mX 24パス) とした。 乾燥室の出入口には、 繊維束に滑りが起こらないよう 多連ロールとニップロールを併用した駆動ロール 4, 8を設置して、 乾燥室内に は一定風速の熱風を吹き込んだ。 また、 乾燥室の出入口近傍に張力検出器 5 (L X - TD形張力検出器:三菱電機株式会社) を設置し、 出口側張力検出器から信 号を取り出し、 出口側の張力値が一定になるよう出口駆動ロールの回転速度を P I D制御した。 乾燥条件は、 温度 65°Cとし、 出口側張力を 0. 036 g重 Z d t e X (20 N/700 f ) に制御した。 その時の入口側張力は 0. 0 18 g重 / d t e X ( 1 ON/700 f ) であった。
図 3に示すように、 出口から入口に向って張力は徐々に減衰するが、 この理由 はフリーロールが回転する際に発生するベアリングの摩擦抵抗によるものである 。 なお、 乾燥装置には 700フィラメントの繊維束を 4本導入し、 その各繊維束 には 0. 5個/ mの割合で撚りを入れた。 単繊維の繊度は 80 d t e Xとし、 繊 維束の繊度は 56000 d t e x、 総繊度は 224000 d t e xで乾燥した。 上記の条件で乾燥した再生コラ一ゲン繊維の収縮率は 7%であり、 乾燥室出口 における毛羽 (糸切れ) 数は 8本/ 700 f X 72m、 ハックリングロス率は 0 . 1%で両評価とも合格基準をクリアしており、 且つ、 カールセット性も良好で あった (表 1参照) 。
(実施例 2 )
撚り数 0. 5個/ mを 1. 0個/ mにした以外は、 実施例 1と同様にして実験し た。その結果、 繊維収縮率は 7%であり、 毛羽 (糸切れ) 数、 ハックリングロス 率とも合格基準をクリアしており、 カールセット性も良好であった。 (実施例 3 )
燃り数 0. 5個/ mを 0. 25個/ mにした以外は、 実施例 1と同様にして実験 した。その結果、 繊維収縮率は 7。/。であった。 実施例 1に比べ、繊維束の収束性が 悪く毛羽 (糸切れ) 数が 30本、 ハックリングロス率が 0. 3%に増加したが、 毛羽数、 ハックリングロス率とも合格基準をクリアしており、 カールセット性も 良好であった。
(実施例 4 )
乾燥温度 65°Cを 50°Cにした以外は、 実施例 1と同様にして実験した。その 結果、 繊維収縮率は 5%であった。 毛羽 (糸切れ) 数、 ハックリングロス率とも 合格基準をクリアしており、 カールセット性も良好であった。
(実施例 5 )
乾燥温度 65 °Cを 75 °Cにした以外は、 実施例 1と同様にして実験した。その 結果、 繊維収縮率は 8%であった。 毛羽 (糸切れ) 数、 ハックリングロス率とも 合格基準をクリアしており、 力一ルセット性も良好であつた。
(実施例 6 )
出口側張力 0. 036 §重ノ(1 1: 6 (20N/700 f ) を 0. 054 g重
/d t e X (30 N/ 700 f ) にした以外は、 実施例 1と同様にして実験した 。 その結果、 入口側張力は 0. 034 g重 Z d t e X ( 1 9 N/ 700 f ) で、 図 3に示すように、 出口から入口に向って張力は徐々に減衰した。 繊維収縮率は 6 %であった。 毛羽 (糸切れ) 数、 ハックリングロス率とも合格基準をクリアし ており、 力一ルセット性も良好であった。
(実施例 7 )
出口側張力 0. 036 g重 Z d t e X (2 ON/700 f ) を 0. 071 g重 /d t e x (4 ON/700 f ) にした以外は、 実施例 1と同様にして実験した 。 その結果、 入口側張力は 0. 050 g重/ d t e X (28 N/700 f ) で、 出口から入口に向って張力は徐々に減衰した。 繊維収縮率は' 4%であった。 実施 例 1に比べ、 繊維張力が高くなつたため毛羽 (糸切れ) 数が 33本、 ハックリン グロス率が 0. 4%に増加したが、 毛羽数、 ハックリングロス率とも合格基準を クリアしており、 カールセット性も良好であった。 (実施例 8 )
乾燥装置に 2 8 0 0フィラメントの繊維束を 1本導入した以外は、 実施例 1と 同様にして実験した。その結果、 乾燥斑が大きくなり繊維束の収束性がやや低下 して、 毛羽 (糸切れ) 数、 ハックリングロス率とも実施例 1より増加したが、 両 評価とも合格基準をクリアしており、 カールセット性も良好であった。
(実施例 9 )
出口側の張力値が一定になるよう入口駆動ロールの回転速度を P I D制御した 以外は、 実施例 1と同様にして実験した。 その結果、 繊維収縮率は 7 %であり、 毛羽 (糸切れ) 数、 ハックリングロス率とも合格基準をクリアしており、 カール セット性も良好であった。
ほ 1】
実施例 1 9の乾燥条件と毛羽数 (条切れ数) *ハックリングロス率 ·力一) 'セッ卜性との関係
-1
Figure imgf000016_0001
織維束の張力: ( ) 内数値の単位は N/700f
(比較例 1 )
撚り数 0. 5個/ mを 0個/ m (撚り無し) にした以外は、 実施例 1と同様にし て実験した。その結果、 実施例 1では糸垂れが全く発生しなかったが、 比較例 1 では乾燥後半で糸垂れが発生し、 その垂れた糸がロールに卷き付いたりロールか ら外れたりして糸切れを引き起こし、 途中で繊維束 (トウ) が破断して運転を停 止した。 繊維束が破断するまでに実施した評価では、 乾燥出口における毛羽 (糸 切れ) 数は約 200本 Z700 f X 72m、 ハックリングロス率も 5. 2 %と多 く合格基準に達しなかった。
(実施例 10 )
撚り数 0. 5個/ mを 0. 1 7個/ mにした以外は、 実施例 1と同様にして実験 した。その結果、 乾燥後半で若干糸垂れが発生し、 幾分糸切れを引き起こしたが 、 比較例 1に比べれば軽度で、 連続運転は可能であった。
(実施例 1 1 )
撚り数 0. 5個/ mを 10個/ mにした以外は、 実施例 1と同様にして実験した 。その結果、 繊維束の収束性が高く、 毛羽数、 ハックリングロス率とも合格基準 をクリアしており、 力一ルセット性も良好であった。 しかし、 撚りの数が多いた め、 得られた乾燥糸には撚りの形状が若干残った。
(比較例 2 )
出口側張力 0. 036 g重 d t e X (2 ON/700 f ) を 0. 0 18 g重 /d t e x (1 ON/700 f ) にした以外は、 実施例 1と同様にして実験した 。 その結果、 入口側張力は 0. 005 g重 Zd t e X (3 N/700 f ) で、 図 2に示すように、 出口から入口に向って張力は徐々に減衰した。 繊維収縮率は 1 1%と高くなつた。 張力が低いため、 毛羽 (糸切れ) 数、 ハックリングロス率と も合格基準をクリアしていた。 しかし、 カールセット保持性は、 乾燥時の収縮率 が高くなつたため、 悪化した。
(比較例 3 )
出口側張力 0. 036 g重 Zd t e x (20 N/ 700 f ) を 0. 089 g重 /d t e X (5 ON/700 f ) にした以外は、 実施例 1と同様にして実験した 。 その結果、 入口側張力も 0. 066 g重 Zd t e x (37N/700 f ) と高 くなり (図 3参照) 、 繊維収縮率も 2%と低い値になった。 乾燥出口における毛 羽 (糸切れ) 数は約 1 50本 /700 f X 72m、 ノ、ックリングロス率も 4. 0 %と多く合格基準に達しなかった。
(比較例 4 )
図 4に、 ネルソン乾燥機の概略図を示す。 ロール径 φ 1 25 mm, 長さ 625mm のテーパー付きロール 9を使用したネルソン乾燥機を 3機 10、 1 1、 12連結 して実験を行なった。 なお、 各乾燥機内のロール間距離は 800瞧とし、 トウ ( 繊維束) を 7. 5ターン滞留させ、 一定速度の熱風を吹き込むことにより乾燥し た。 各乾燥機のネルソンロール 9については、 3機とも収縮率が 2. 4%となる ようにテーパー角度を調整したものを使用した。 よって、 3機連結した乾燥出口 における繊維の収縮率は 7. 0%となる。 乾燥温度は、 65でとした。 なお、 乾 燥機に導入する繊維束は 700フィラメントとし、 その繊維束には 0. 5個/ m の割合で撚りを入れた。 単繊維の繊度は 80 d t e Xとし、 繊維束の繊度は 56 O O O d t e xとした。
図 3に示すように、 乾燥機内の張力は、 減率乾燥域に入り繊維が著しく収縮す る位置で、 0. 214 g重 Zd t e x ( 1 20 N/ 700 f ) まで急激に上昇し た。 その結果、 乾燥出口での繊維の収縮率は実施例 1と同じ 7%であるにもかか わらず、 乾燥機内で糸切れが発生して毛羽数は約 300本 /700 f X 72m、 ハックリングロス率は 7. 8 %と非常に多く合格基準を満たさなかった。 また、 トウ (繊維束) 外観も悪く、 商品価値のないものであった。
(比較例 5 )
図 2に示した乾燥装置のフリー口ールを駆動ロールに変更して実験した。 各駆 動ロールの回転速度については、 乾燥出口の繊維の収縮率が 7. 0%となるよう 、 すなわち、 出口駆動ロールの回転速度を入口駆動ロール速度の 93%となるよ う調整した。 また、 乾燥室内の駆動ロールの速度は、 乾燥入口から出口に近づく とともに、 徐々に均等に低下させた。 乾燥温度は 65°Cとした。 なお、 乾燥装置 には 700フィラメントの繊維束を 4本導入し、 その各繊維束には 0. 5個/ m の割合で撚りを入れた。 単繊維の繊度は 80 d t e Xとし、 繊維束の繊度は 56 O O O d t e x, 総繊度は 224000 d t e xで乾燥した。 その結果、 乾燥装置内の張力変動は、 比較例 4とほぼ同様の挙動となり、 張力 値は最大で 0. 205 g重 d t e X ( 1 1 5 N/700 f ) まで上昇した。 そ れにより、 乾燥室出口での繊維の収縮率は実施例 1と同じ 7%であるにもかかわ らず、 乾燥室内で糸切れが発生して毛羽数は約 300本 Z700 f X 72m、 ハ ックリングロス率は 7. 4%と非常に高く合格基準を満たさなかった。 また、 ト ゥ (繊維束) 外観も悪く、 商品価値のないものであった。
(比較例 6 )
図 5に、 ヒートロール乾燥機の概略図を示す。 ロール径 (|) 56 5mm、 幅 50 Ommのヒートロール 1 2個から構成される乾燥機を使用して実験した。 トウ( 繊維束)は、 ガイドロール 14を介して出口側から入口側のヒートロール 1 3に 戻し、 ガイドロールの角度を調整して、 ヒートロール上で 12ターンさせた。 ヒ 一トロールは直胴の円筒型であり、 各ヒートロールの駆動速度は等速とし、 乾燥 中の繊維の収縮率は 0 %とした。 乾燥温度は、 60〜70°Cとした。 なお、 乾燥 機に導入する繊維束は 700フィラメントとし、 その繊維束には 0. 5個/ mの 割合で撚りを入れた。 単繊維の繊度は 80 d t e Xとし、 繊維束の繊度は 560 00 d t e Xとした。
その結果、 乾燥途中で張力が 0. 2 14 g重 Z d t e X (1 20 N/ 700 f ) 以上となり、 トゥ(繊維束)が破断して運転続行が不可能となつた。
ほ 2】
実施例 1 0 , 1 1、 比較例 1 ~ 6の乾燦条件と毛羽数 (糸切れ数) ·ハックリングロス率 ·カールセット性との関係
ノ /
燥 繊維束の張力(g重/ dtex) 毛羽 (糸切れ)数
出口の ロス率
乾燥機内の 撚リ数 JB rtF (本/ 700fx 72m) カール
lOLlSk. 7Ό 備者 ロール形式 (個/ m) 入口 出口 最低 «¾¾ 合格基準 セット性
O 雄率 合格基準
張力 張力 張力 張力 (OA) 36本以下
i
比鉸例 0 0. 018 0. 036 0. 018 0. 036 途中トウ
65 7 約 200 5. 2
1 At (10) (20) (10) (20) 0 3¾ 実施例 0. 01 8 0. 036 0. 018 0。 036
0. 17 65 7 約 100 3. 4
10 (10) (20) (10) (20) 0
フリー 実施例 0. 018 0. 036 0. 018 0。 036 糸がストレ
10 65 7 23 0. 3 o
ロール 1 1 (10) (20) (10) (20) 一 1^ *な 1 \ 比較例 0. 005 0. 018 0. 005 0. 018
0. 5 65 1 1 6 0. 1 Δ〜
2 (3) χ
(10) (3) (10)
比較例 0. 066 0. 089 0. 066 0. 089
0. 5 65 2 約 150 4. 0 Ο〜厶
3 (37) (50) (37) (50)
ネルソン 比較例 0. 046 0. 045 0. 020 0. 214 トウ外観
0. 5 65 7 約 300 7. 8
ロール 4 (26) (25) (1 1 ) (120) 悪い 駆動 比較例 0. 036 0. 045 0. 01 8 0. 205 トウ外観
0. 5 65 7 約 300 7. 4
ロール 5 (20) (25) (10) (1 1 5) 恶ぃ ヒート 比較例 60 0. 004 0. 004 0. 214 トウ切れ発生で
0. 5 0
ロール 6 ~70 (2) (2) 以上 測定できず
繊維束の張力:( ) 内数値の単位ま N/7001
産業上の利用可能性
本発明の連続乾燥方法とその装置により、 頭飾用再生コラーゲン繊維の製造に おいて、 毛羽 (糸切れ) の発生を防いで工程トラブルを防止するとともに、 カー ルセット性に優れ且つハックリングロスの少ない再生コラーゲン繊維の連続生産 を実現した。

Claims

請求の範囲
1 . 乾燥室に導入する繊維束に撚りを入れ、 且つ、 乾燥中の繊維束の張力が 0 . 0 1〜 0 . 0 8 g重 Z d t e Xの範囲内となるように制御して連続で乾燥するこ とを特徴とする頭飾用再生コラーゲン繊維の製造方法。
2 .繊維束に 0 . 2〜5個/ mの割合で撚りを入れることを特徴とする特許請求範 囲第 1項に記載の製造方法。
3 . 乾燥室出口側の張力の値を 0 . 0 2〜0 . 0 8 g重 Z d t e Xの範囲に制御 することを特徴とする特許請求範囲第 1項または第 2項に記載の製造方法。
4 . 乾燥室の出入口に駆動ロールが設置され、 出口駆動ロールの乾燥室側に張力 検出器が設置され、 その張力検出器から検出された乾燥室出口張力が所望値にな るよう駆動ロールの回転速度を制御する機構を備えており、 さらに乾燥室内に 1 回以上繊維束を往復させるための自在に回転するフリーロールが、 入口から出口 の間に所定の間隔で設置されていることを特徴とする連続乾燥装匱。
5 . 特許請求範囲第 4項記載の連続乾燥装置を用いて、 入口駆動ロールの回転速 度を一定とし、 出口駆動ロールの回転速度を制御して乾燥することを特徴とする 特許請求範囲第 1項〜第 3項記載の頭飾用再生コラーゲン繊維の製造方法。
6 . 特許請求範囲第 4項記載の連続乾燥装置を用いて、 出口駆動ロールの回転速 度を一定とし、 入口駆動ロールの回転速度を制御して乾燥することを特徴とする 特許請求範囲第 1項〜第 3項記載の頭飾用再生コラーゲン繊維の製造方法。
PCT/JP2004/003692 2003-03-31 2004-03-18 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置 WO2004088018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04721674A EP1609897A1 (en) 2003-03-31 2004-03-18 Manufacturing method and continuous drying apparatus for head decorating regenerated collagen fiber
US10/548,859 US7337555B2 (en) 2003-03-31 2004-03-18 Manufacturing method and continuous drying apparatus for head decorating regenerated collagen fiber
JP2005504162A JPWO2004088018A1 (ja) 2003-03-31 2004-03-18 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003093396A JP4245952B2 (ja) 2003-03-31 2003-03-31 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置
JP2003-093396 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004088018A1 true WO2004088018A1 (ja) 2004-10-14

Family

ID=33127359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003692 WO2004088018A1 (ja) 2003-03-31 2004-03-18 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置

Country Status (6)

Country Link
US (1) US7337555B2 (ja)
EP (1) EP1609897A1 (ja)
JP (2) JP4245952B2 (ja)
KR (1) KR100691721B1 (ja)
CN (1) CN100519862C (ja)
WO (1) WO2004088018A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142097A1 (ja) * 2006-06-02 2007-12-13 Kaneka Corporation アルミニウム塩含有樹脂粉末、その製造方法、これを含む樹脂組成物、リン吸着剤、抗菌剤及び抗黴剤
DE102006040065A1 (de) * 2006-08-26 2008-02-28 Oerlikon Textile Gmbh & Co. Kg Verfahren zur thermischen Behandlung eines laufenden Garns sowie Zwirnmaschine zur Durchführung des Verfahrens
US8776490B2 (en) * 2012-11-09 2014-07-15 Coreleader Biotech Co., Ltd. Natural polymeric yarn and its fabrication method as well as application
JP6663422B2 (ja) * 2015-03-30 2020-03-11 株式会社カネカ 毛髪用人工タンパク質繊維、その製造方法及びそれを含む頭飾製品
CN112643927B (zh) * 2020-11-26 2022-05-20 浙江科马摩擦材料股份有限公司 高性能离合器面片生产用橡胶料加工设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499403B1 (ja) * 1963-11-30 1974-03-04
WO2002052099A1 (fr) * 2000-12-22 2002-07-04 Kaneka Corporation Procede de production d'une fibre de collagene regeneree et son procede de durcissement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696601A (en) * 1968-08-12 1972-10-10 Henry W Mccard Textile heating and cooling
US3576081A (en) * 1969-12-17 1971-04-27 William G Mccrary Combination strand-drying and bearing-lubrication apparatus
US3816993A (en) * 1972-10-27 1974-06-18 Monsanto Co Friction twist tangling of yarns
DE3438859A1 (de) * 1983-12-30 1985-07-11 VEB Forschung und Entwicklung Betrieb des VEB Kombinat Wolle und Seide, DDR 6600 Greiz Verfahren und anordnung zur optimierung thermischer behandlungsprozesse von flaechengebilden
US5174046A (en) * 1989-03-20 1992-12-29 Chern Terry S On-line fiber heat treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499403B1 (ja) * 1963-11-30 1974-03-04
WO2002052099A1 (fr) * 2000-12-22 2002-07-04 Kaneka Corporation Procede de production d'une fibre de collagene regeneree et son procede de durcissement

Also Published As

Publication number Publication date
JP2006045681A (ja) 2006-02-16
JPWO2004088018A1 (ja) 2006-07-06
CN1759210A (zh) 2006-04-12
EP1609897A1 (en) 2005-12-28
CN100519862C (zh) 2009-07-29
JP4245952B2 (ja) 2009-04-02
KR100691721B1 (ko) 2007-03-12
US7337555B2 (en) 2008-03-04
US20060090368A1 (en) 2006-05-04
KR20050113210A (ko) 2005-12-01

Similar Documents

Publication Publication Date Title
JP3143638B2 (ja) 仮撚加工糸
WO2004088018A1 (ja) 頭飾用再生コラーゲン繊維の製造方法及び連続乾燥装置
US20030041586A1 (en) False twist yarns and production method and production device therefor
JP4859901B2 (ja) 頭飾用再生コラーゲン繊維の連続乾燥装置
JP3665293B2 (ja) アセテートマルチフィラメント糸及びその製造方法並びにその織編物
JP6111408B2 (ja) 延伸復元獣毛紡績糸、延伸復元複合獣毛紡績糸、復元獣毛紡績糸、復元獣毛布帛、延伸縮径獣毛繊維束、獣毛繊維束、延伸固定獣毛繊維紡績糸および布帛
JP5621295B2 (ja) 炭素繊維用アクリル系前駆体繊維束の製造方法
JP3605925B2 (ja) ポリエステル系マルチフィラメント複合糸および該複合糸を用いた織編物
JP4374704B2 (ja) 仮撚加工糸の製造方法および仮撚加工糸の製造装置
JP2003082540A (ja) 仮撚加工糸
TW201710572A (zh) 丙烯酸系纖維及其製造方法
JP2003013331A (ja) パラ系アラミド捲縮糸の製造方法
JP4479067B2 (ja) ポリアミド繊維の製造方法
US6006509A (en) Method for continuosly producing a twisted yard with minimal curling tendency
JP2004346447A (ja) アクリル系繊維の製造方法
JPH0122363B2 (ja)
JP5938619B6 (ja) 延伸縮径獣毛繊維の製造方法ならびに延伸復元獣毛紡績糸、延伸復元複合獣毛紡績糸、復元獣毛紡績糸、復元獣毛布帛、延伸縮径獣毛繊維束、獣毛繊維束、延伸固定獣毛繊維紡績糸および布帛
JPS6050883B2 (ja) 新規なアクリロニトリル系合成繊維およびその製造方法
JP2019094595A (ja) ポリエステル仮撚糸
JPS6141315A (ja) ビスコ−スレ−ヨン糸
JP2007270367A (ja) ポリアミド繊維
JP2004076235A (ja) 高捲縮仮撚加工糸の製造方法
KR20010027966A (ko) 초고속방사연신법에 의한 나일론 6 섬유의 제조방법
JPS6156336B2 (ja)
JPH01111032A (ja) 編物用ナイロン6捲縮加工糸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504162

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004721674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057016251

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006090368

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10548859

Country of ref document: US

Ref document number: 20048064262

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057016251

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004721674

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10548859

Country of ref document: US