WO2004087610A2 - Inorganic material with a hierarchical structure and method for the preparation thereof - Google Patents

Inorganic material with a hierarchical structure and method for the preparation thereof Download PDF

Info

Publication number
WO2004087610A2
WO2004087610A2 PCT/FR2004/000589 FR2004000589W WO2004087610A2 WO 2004087610 A2 WO2004087610 A2 WO 2004087610A2 FR 2004000589 W FR2004000589 W FR 2004000589W WO 2004087610 A2 WO2004087610 A2 WO 2004087610A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxide
precursor
oxide
surfactant
material according
Prior art date
Application number
PCT/FR2004/000589
Other languages
French (fr)
Other versions
WO2004087610A3 (en
Inventor
Rénal BACKOV
Annie Colin
Original Assignee
Centre National De La Recherche Scientifique
Universite Des Sciences Et Technologies (Bordeaux 1)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite Des Sciences Et Technologies (Bordeaux 1) filed Critical Centre National De La Recherche Scientifique
Publication of WO2004087610A2 publication Critical patent/WO2004087610A2/en
Publication of WO2004087610A3 publication Critical patent/WO2004087610A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite

Definitions

  • the present invention relates to a material with a hierarchical structure and a method for its manufacture.
  • inorganic polymers in particular of silica, having one or two types of porosity. Macroporosity is obtained by the shaping process by direct emulsification and microporosity is inherent in amorphous silica.
  • A. Imhof, et al. (Nature, vol. 389, October 30, 1997, p. 948-951) describe the implementation of sol-gel processes starting from alkoxides dissolved in a lower alcohol and hydrolysed by addition of a small amount of water, it being recalled that most of the alkoxides are very reactive with water and do not give stable emulsions.
  • This document further describes the preparation of monodisperse macroporous materials of titanium oxide, zirconia, or silica, with pore diameters between 50 nm and several ⁇ m, from a monodisperse oil emulsion in formamide.
  • BP Pinks (Adv. Mater. 2002, 14, no. 24, December 17) describes the preparation of porous silica from an emulsion stabilized by silica particles only, in the absence of surfactant. -Evaporation • at ' Air produces 1' solids with different degrees of porosity and inherent wettability. Gi-Ra Yi, et al. (Chem. Mater. 1999, 11, 2322-2325) describe a process which uses sodium dodecylsulfonate (SDS) as a surfactant.
  • a silica sol is prepared by mixing tetraethoxysilane (TEOS) or tetra-methoxysilane (TMOS) and HCl with stirring.
  • the gelation is obtained by addition of ammonium hydroxide.
  • the final product is obtained by calcination.
  • an "isooctane in formamide" emulsion is used as a system congruent with formamide.
  • the emulsion is stabilized by a triblock PEG-PPG-PEG copolymer.
  • JS Beck, et al. (J. Am. Chem. Soc. 1992, 114, 10834-10843) describe the preparation of mesoporous solids constituted by a silicate or an aluminosilicate.
  • the solid compounds obtained have a specific surface of the order of 700 m 2 / g and the pore size is between 15 and 100 ⁇ .
  • the object of the present invention is to provide a simple process for the preparation of an inorganic material having a large specific surface.
  • the material according to the invention is a monolith constituted by an inorganic matrix. It is characterized in that said inorganic matrix is constituted by a polymer of a metal oxide, and that it comprises macropores having an average dimension d a of 0.5 ⁇ m to 60 ⁇ m, mesopores having an average dimension d E from 20 to 30 ⁇ and micropores having an average dimension di from 5 to 10 ⁇ , said pores being interconnected.
  • monolith a solid object having an average dimension of at least 1 mm.
  • Macropores can be identified by scanning electron microscopy (TEM) and quantified by mercury intrusion measurements.
  • the implementation of the mercury intrusion technique shows the good mechanical strength of the monoliths obtained, which resist the mercury pressures to which they are subjected during the measurements.
  • Mesoporosity can be identified by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the vermicular texture of mesoporosity can be identified by X-ray diffraction, this technique also serving to quantify the pore to pore distance.
  • the metal oxide is an oxide of one or more metals, at least one of the metals being of the type capable of forming an alkoxide.
  • metals capable of forming an alkoxide mention may be made of Si, Ti, Zr, Th, Nb, Ta, V, W and Al.
  • the metal oxide can be a simple oxide, and it is then an oxide of one of the above metals.
  • the metal oxide can also be a mixed oxide of at least two metals, and at least one of the metals is then chosen from the above metals, the other metal (s) being able to be chosen from other metals, in particular B and Sn.
  • Materials whose inorganic matrix is a polymer of silica or of a mixed silica oxide are particularly preferred.
  • the inorganic matrix can also contain a filler, for example a carbonaceous filler such as nanofilaments, nanotubes or carbon powder.
  • the filler can also be a polymer of a monomer which has a marked hydrophilic character, chosen for example from acrylic acid, acrylamide, vinylpyrolidone, methacrylates carrying hydrophilic functions such as in particular OH, COOH, NH, (especially hydroxymethyl methacrylate).
  • a material according to the present invention is obtained by a sol-gel process, characterized in that:
  • an emulsion is prepared by introducing an oily phase into an aqueous solution containing a surfactant and at least one metal alkoxide precursor of the oxide forming the inorganic matrix, in amounts such that the volume fraction p 0 oily phase / aqueous phase is lower at 0.78, then an emulsion is formed by subjecting the mixture to stirring; • the reaction mixture is left to stand until the precursor has condensed, o the oily phase is extracted by washing with a volatile solvent (for example a THF-acetone mixture), then the solid is dried residual to obtain a monolith which is then subjected to calcination.
  • a volatile solvent for example a THF-acetone mixture
  • the final calcination has the effect of releasing the mesoporosity (by calcination of the surfactant) and of sintering the material, which densifies it.
  • the pH of the reaction medium is adjusted to a value less than or equal to 1.2 (for example by addition of the appropriate quantity of HCl) or to a value greater than 9 (for example by addition of NaOH).
  • the oil phase / aqueous phase volume fraction makes it possible to control the size of the macropores.
  • An increase in said volume fraction leads to an increase in the viscosity of the reaction medium, and consequently of the shear during stirring.
  • the droplets in the emulsion become smaller.
  • a reduction in the size of the droplets causes a reduction in the thickness of the walls of said droplets, said walls forming the structure of the porous material and ensuring its mechanical strength. Below a certain thickness, which generally results from the volume ratio oily phase / aqueous phase greater than 0.78, the mechanical strength is insufficient to obtain a monolith and the final product is in powder form.
  • the oxide precursor solution forming the inorganic matrix of the material of the invention contains at least one alkoxide.
  • the inorganic matrix consists of a mixed oxide, a mixture of precursors is used, of which at least one is an alkoxide.
  • alkoxides mention may be made of the compounds R ' n (OR) m _ n M in which M represents a metal having the valence m, and 0 ⁇ n ⁇ m, R represents an alkyl radical having from 1 to 5 atoms of carbon, R ′ represents an alkyl radical or an aryl radical which optionally carry one or more functional groups.
  • M represents a metal having the valence m, and 0 ⁇ n ⁇ m
  • R represents an alkyl radical having from 1 to 5 atoms of carbon
  • R ′ represents an alkyl radical or an aryl radical which optionally carry one or more functional groups.
  • Si (OR) 4 Si (OR) 4 , Ti (OR) 4 , Zr (OR) 4 , Th (OR) 4 , Nb (OR) 5 , Ta (OR) 5 and Al (OR) 3 .
  • the alkoxides in which R is methyl or ethyl are particularly preferred.
  • the precursors which can be used in combination with at least one alkoxide can be chosen, for example, from hydroxides such as Al (OH) 3 , oxides such as B 2 0 3 or V 2 0 5 , chlorides such as SnCl 4 , ZrCl 4 or TiCl 4 , or oxychlorides such as ZrOCl 2 .2H 2 0, or mixed oxides such as sodium metavanadate.
  • a silica matrix is obtained from an aqueous solution of an alkoxide R ' n (OR) 4 _ n Si in which R, R' and n have the previous meaning.
  • R, R' and n have the previous meaning.
  • the inorganic matrix consists of a mixed oxide of silicon and of a metal M
  • the oily phase consists of one or more compounds chosen from linear or branched alkanes having at least 12 carbon atoms. By way of example, mention may be made of dodecane and hexadecane.
  • the oily phase can also consist of a silicone oil of low viscosity, that is to say less than 400 centipoise.
  • the viscosity of the reaction medium increases exponentially when the volume fraction p 0 increases.
  • the oily phase is advantageously introduced all at once into the aqueous solution of surfactant and precursor, and the emulsification of the reaction mixture is carried out using energetic means, such as for example an Ultraturax® device.
  • energetic means such as for example an Ultraturax® device.
  • the surfactant can be a cationic surfactant chosen in particular from tetradecyltrimethyl bromide. ammonium (TTAB) or dodecyltrimethylammonium bromide.
  • TTAB ammonium
  • the reaction medium is brought to a pH less than or equal to 1.2, preferably less than 1.
  • the surfactant can be an anionic surfactant chosen from sodium dodecylsulfate, sodium dodecylsulfonate and sodium dioctylsulfosuccinate (AOT).
  • reaction medium is brought to a pH greater than 10.
  • the surfactant can be a nonionic surfactant chosen from surfactants with an ethoxylated head, and nonylphenols.
  • the reaction medium is brought to a pH greater than 10 or less than or equal to 1.2, preferably less than 1.
  • the monolith contains a carbonaceous filler such as nanofilaments, nanotubes or carbon powder
  • this filler is introduced into the reaction medium by dispersion in the solution of surfactant.
  • the filler is a polymer of a monomer which has a hydrophilic character, it is introduced by dispersing nanofilaments or powder of said polymer in the surfactant solution.
  • the concentration of surfactant is preferably greater than 10% by mass relative to the total amount of water, in order to obtain an initial viscous reaction medium and to promote emulsification.
  • the concentration of precursor of the inorganic matrix is preferably greater than 10% by mass relative to the aqueous phase, in order to obtain total mineralization of the material and good mechanical strength.
  • the alkoxide (s) undergo a hydrolysis which gives a hydroxylated compound, said hydroxylated compound then condensing to form the inorganic matrix of the material.
  • the duration of the hydrolysis is typically a few minutes. The duration of the condensation depends on the pH of the medium. When the pH of the reaction medium is less than 1, or even negative, or when the pH of the medium is very strongly basic (close to 14), the duration of the condensation is of the order of 2 to 3 hours. When the pH tends to 1.2, (which represents the isoelectric point of silica), the condensation is slower and typically requires at least a fortnight. In the latter case, the final material obtained is a very hard inorganic polymer.
  • the hydrolysis / condensation step of precursors of the alkoxide type is advantageously carried out at a temperature close to ambient temperature.
  • the condensation can be carried out in two stages, the condensation of the alkoxide (s) being catalyzed by the pH of the medium, the subsequent condensation non-alkoxide precursor (s) being optionally catalyzed by heating.
  • Drying can be carried out in air, or by freeze-drying.
  • the monolith obtained after drying has the three degrees of porosity (microporosity, mesoporosity and macroporosity).
  • the pores can be blocked by organic residues.
  • Organic residues from the oily phase are mainly found in macropores and can be removed by simple washing before drying, for example using a volatile organic solvent such as acetone, THF or their mixtures.
  • the organic residues originating from the surfactant are mainly found in the mesopores and can be removed by calcination, carried out for example at a temperature between 600 ° C and 700 ° C.
  • the monolith contains a carbonaceous filler
  • a composite material consisting of the inorganic polymer matrix having the three degrees of porosity, within which the carbonaceous filler is distributed.
  • the calcination of this composite material must be carried out in a reducing medium to avoid the elimination of the carbonaceous charge in the form of CO or C0 2 .
  • the proposed material can be used in a variety of applications, including as a synthetic bone substitute.
  • the macroporosity was characterized qualitatively by a scanning electron microscopy (SEM) technique using a Jeol JSM-840A scanning microscope which operates at 10 kV.
  • the mesoporosity was characterized qualitatively by a transmission electron microscopy (TEM) technique using a Jeol 2000 FX microscope with an acceleration voltage of 200 kV.
  • TEM transmission electron microscopy
  • the samples were prepared by depositing powdered silica skeletons on a copper grid coated with a Formvar® carbon membrane.
  • the mesoporosity and the microporosity were quantified and segregated by a nitrogen adsorption-desorption technique using a device sold under the name Micromeritics ASAP 2010, the analysis being carried out by the BET and BJH calculation methods.
  • the macroporosity was quantified by mercury intrusion measurements, using an apparatus marketed under the name Micromeritics Autopore IV, to achieve the characteristics of the macroscopic mineral cells composing the inorganic skeleton.
  • FIGS. 2a to 2f represent the TEM micrographs of various samples of monoliths, on a scale allowing the determination of the mesoporosity.
  • FIG. 3a to 3f shows the X-ray diffractograms at small angles of a sample of monolith, before and after drying.
  • N represents the number of strokes in arbitrary units
  • Figures 4a to 4h represent the SEM micrographs of various samples of monoliths, at two scales used to determine macroporosity.
  • EXAMPLE 10 3.5 g of tetraethoxysilane (TEOS) were added to 16.5 g of a 35% aqueous solution of tetradecyltrimethylammonium bromide (TTAB) which was brought to pH 0.07.
  • TEOS tetraethoxysilane
  • TTAB tetradecyltrimethylammonium bromide
  • the solution was deposited in a mortar to which 30 g of dodecane was additionally added and it was emulsified using an ultraturax sold under the brand Polytron®.
  • the concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction (that is to say the solidification of the inorganic polymer) took place. This condensation stage took place over a period of one week.
  • the material obtained, designated by A was washed in an acetone / tetrahydrofuran (THF) mixture (3 times for 24 hours) and air dried.
  • the organic part, which produces the imprint of the mesostructure was extracted by calcination at 650 ° C.
  • the mineral material with hierarchical porosity thus obtained is designated by AC.
  • FIG. 1 represents a micrograph of material A, showing the macroporosity, obtained by SEM.
  • the scale bar represents 1.9 ⁇ m.
  • the size of the macropores has an average distribution around 0.5 ⁇ m.
  • FIGS. 2a and 2b represent a micrograph of the materials A and AC respectively, showing the mesoporosity, obtained by TEM.
  • the scale bars represent 100 nm and 50 nm respectively. They also show that the sopores are organized and have a vermicular texture.
  • FIG. 3a represents X-ray diffractograms at small angles of the material A (curve defined by solid squares), and of the material AC (curve defined by triangles). It confirms the vermicular type mesoporosity and makes it possible to associate a characteristic pore-to-pore distance of approximately 40 ⁇ .
  • Example 2 4 g of TEOS was added to 10 g of a 35% aqueous TTAB solution which was brought to pH -0.2. The solution was deposited in a mortar to which 30 g of dodecane were added in addition and emulsified using an ultra-turax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a 24-hour period. The material obtained, designated by B, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by BC.
  • Figure 1b represents a SEM micrograph of the material B, showing the macroporosity.
  • the scale bar represents 1.9 ⁇ m. It shows that the diameter of macropores is generally less than 1 ⁇ m.
  • FIG. 3b represents X-ray diffractograms at small angles of the material B (curve defined by solid squares), and of the material BC (curve defined by triangles).
  • Example 3 0.5 g of Ti (OEt) 4 was added , then 5 g of TEOS to 16.5 g of a 35% aqueous TTAB solution which was brought to pH -0.05. The solution was placed in a mortar to which 30 g of hexadecane was further added and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place, resulting in solidification of the inorganic polymer. ganic Si0 2 . This condensation stage took place over a 24-hour period. Then, the material obtained was brought to 75 ° C to catalyze the condensation reaction of the Ti0 2 system. This second condensation stage lasted 2 hours.
  • the material designated by C obtained was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by CC.
  • FIG. 3c represents X-ray diffractograms at small angles of the material C (curve defined by solid squares), and of the material CC (curve defined by triangles).
  • the specific surface of the CC material measured by the BET method, is 1248 m 2 / g.
  • FIG. 1d represents a SEM micrograph of the material D, showing the macroporosity.
  • the scale bar represents 1.9 ⁇ m.
  • the distribution of macropore dimensions is polydisperse and between 1 and 8 ⁇ m.
  • Figure 3d represents X-ray diffractograms at small angles of the material D (curve defined by solid squares), and of the material DC (curve defined by triangles).
  • the figure represents a SEM micrograph of the material C, showing the macroporosity.
  • the scale bar represents 8 ⁇ m.
  • the distribution of macropore dimensions is polydisperse and between 1 and 8 ⁇ m.
  • Figures 2e and 2f represent a TEM micrograph of materials E and EC respectively, showing the mesoporosity.
  • the scale bars represent 100 nm and 20 nm respectively.
  • the mesopores are organized and have a vermicular sturcture.
  • FIG. 3e represents X-ray diffractograms at small angles of the material e (curve defined by "solid squares), and of the material EC (curve defined by triangles).
  • FIG. 1f represents a SEM micrograph of the material F, showing the macroporosity.
  • the scale bar represents 4 ⁇ m.
  • the compound has a polydisperse distribution of pore sizes between 0.5 ⁇ m and 5 ⁇ m.
  • FIG. 3f represents X-ray diffractograms at small angles of the material F (curve defined by solid squares), and of the material FC (curve defined by triangles).
  • the diffraction curve of the material F presents a broad peak centered on 0.13 ⁇ -1 which moves to 0.17 ⁇ -1 for the material FC (after calcination). This peak is in agreement with the mesoscopic structure of vermicular type.
  • the FC material was subjected to the various analyzes mentioned above. The characteristics obtained are collated in Table 1 below.
  • the intrusion volume, porosity, bulk density and skeleton density were determined from the mercury intrusion measurements.
  • B.E.T and B.J.H. were determined by a nitrogen adsorption-desorption technique.
  • EXAMPLE 7 3.5 g of TEOS were added to 16 g of a 35% aqueous TTAB solution in which 0.3 g of carbon nanofilaments were dispersed beforehand and which was brought to pH +0 , 04. The solution was placed in a mortar to which 30 g of dodecane was added in addition and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a period of fifteen days. The material obtained, designated by G, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The mineral material thus obtained is a composite material constituted by a matrix of Si0 2 in which the carbon nanofilaments are distributed. It is calcined under a reducing atmosphere to obtain a GC material in which the mineral charge is kept.
  • TEOS 3.5 g were added to 16 g of a 35% aqueous TTAB solution in which 0.03 g of carbon nanofilaments were dispersed beforehand and which was then brought to pH +0, 04.
  • the solution was placed in a mortar to which 30 g of dodecane was added in addition and emulsified using an ultraturax.
  • the concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction a . occurred. .This stage of condensation. took place over a period of fifteen days.
  • the material obtained, designated by H was washed in an acetone / THF mixture (3 times for 24 hours) and air dried.
  • the mineral material with hierarchical porosity thus obtained, ' designated by ' HC is, as in the previous example, a composite material constituted by a matrix of Si0 2 in which the carbon nanofilaments are distributed.
  • the increase in the content of carbon nanofilaments makes it possible to optimize the conduction properties of the material.
  • EXAMPLE 9 3.5 g of TEOS were added to 16 g of a 35% aqueous TTAB solution in which 0.3 g of sodium metavanadate was previously dispersed and which was then brought to pH +0 , 04. The solution was placed in a mortar to which 30 g of dodecane was added in addition and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a period of fifteen days. The material obtained, designated by I, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The newly formed mineral material with hierarchical porosity is designated by IC.
  • TEOS tetraethoxysilane
  • TTAB tetradecyltrimethylammonium bromide
  • the material obtained was washed in an acetone / tetrahydrofuran (THF) mixture (3 times for 24 hours) and dried at the air.
  • the organic part, which produces the imprint of the mesostructure, was extracted by calcination at 65O ° C; '
  • the intrusion volume, porosity, bulk density and skeleton density were determined from the mercury intrusion measurements.
  • B.E.T and B.J.H. were determined by a nitrogen adsorption-desorption technique. It thus appears, that all other things being equal, an increase in the volume fraction of the oily phase decreases the porosity and the specific surface, and increases the density.
  • FIG. 4 represents the SEM micrographs of the various samples at two different scales. They show that the materials are formed by an aggregation of hollow spheres and the diameter can go up to more than 100 ⁇ m. The correspondence between the curves and the samples is given in table 3 below. Table 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The invention relates to an inorganic material with a hierarchical structure and to a sol-gel method for the preparation thereof. The material is monolithic and is comprised of an inorganic matrix. The matrix consists of a metal oxide polymer and comprises macro-pores, meso-pores and micro-pores, said pores being interconnected. The preparation method consists in preparing an emulsion by introducing an oily phase into an aqueous solution consisting of a surfactant and a metal alcoxide; the reaction mixture is left to rest until condensation of the precursor occurs; the mixture is subsequently dried and calcinated.

Description

Matériau inorganique à structure hiérarchisée, et procédé pour sa préparation Inorganic material with hierarchical structure, and process for its preparation
La présente invention concerne un matériau à structure hiérarchisée et un procédé pour sa fabrication.The present invention relates to a material with a hierarchical structure and a method for its manufacture.
Il est connu de préparer des polymères inorganiques, notamment de silice, présentant un ou deux types de porosité. La macroporosité est obtenu par le procédé de mise en forme par une émulsification directe et la microporosité est inhérente à la silice amorphe.It is known to prepare inorganic polymers, in particular of silica, having one or two types of porosity. Macroporosity is obtained by the shaping process by direct emulsification and microporosity is inherent in amorphous silica.
Ainsi, A. Imhof, et al. (Nature, vol. 389, 30 October 1997, p. 948-951) décrivent la mise en oeuvre de procédés sol-gel à partir d'alcoxydes dissous dans un alcool inférieur et hydrolyses par addition d'une faible quantité d'eau, étant rappelé que la plupart des alcoxydes sont très réactifs avec l'eau et ne donnent pas d'émulsions stables. Ce document décrit en outre la préparation de matériaux macroporeux monodisperses d'oxyde de titane, de zircone, ou de silice, avec des diamètres de pore entre 50 nm et plusieurs μm, à partir d'une emulsion monodisperse d'huile dans le formamide . Il décrit également un procédé consistant à préparer une emulsion "huile dans formamide", à fractionner l' emulsion pour obtenir une dimension de gouttelettes uniforme, à préparer une solution d'oxyde de métal dans le formamide avec une faible quantité d'eau pour hydrolyser, c'est-à-dire solubiliser l'oxyde, à disperser l' emulsion dans la solution, à centrifuger pour ajuster le volume des gouttelettes, à gélifier par addition d'ammoniac pour augmenter le pH, à laver à l'eau, sécher puis calciner. Ce procédé comporte de nombreuses étapes qui le rendent peu économique .Thus, A. Imhof, et al. (Nature, vol. 389, October 30, 1997, p. 948-951) describe the implementation of sol-gel processes starting from alkoxides dissolved in a lower alcohol and hydrolysed by addition of a small amount of water, it being recalled that most of the alkoxides are very reactive with water and do not give stable emulsions. This document further describes the preparation of monodisperse macroporous materials of titanium oxide, zirconia, or silica, with pore diameters between 50 nm and several μm, from a monodisperse oil emulsion in formamide. It also describes a process consisting in preparing an "oil in formamide" emulsion, in fractionating the emulsion to obtain a uniform droplet size, in preparing a metal oxide solution in formamide with a small amount of water to hydrolyze , that is to say dissolving the oxide, dispersing the emulsion in the solution, centrifuging to adjust the volume of the droplets, gelling by addition of ammonia to increase the pH, washing with water, dry and then calcine. This process has many steps which make it uneconomic.
B. P. Pinks (Adv. Mater. 2002, 14, n° 24, December 17) décrit la préparation de silice poreuse à partir d'une emulsion stabilisée par des particules de silice uniquement, en l'absence de tensioactif. -L' évaporâtion • à 'L'air produit1' des solides avec différents degrés de porosité et une mouillabilité inhérente. Gi-Ra Yi, et al. (Chem. Mater. 1999, 11, 2322-2325) décrivent un procédé qui utilisé le dodécylsulfonatè de' sodium (SDS) comme agent tensioactif. Un sol de silice est préparé en mélangeant tétraéthoxysilane (TEOS) ou de tétra- methoxysilane (TMOS) et HCl sous agitation. La gélification est obtenue par addition d'hydroxyde d'ammonium. Le produit final est obtenu par calcination. Dans un autre mode de réalisation, une emulsion "isooctane dans formamide" est utilisée comme système congruent avec le formamide. L' emulsion est stabilisée par un copolymère tribloc PEG-PPG-PEG.BP Pinks (Adv. Mater. 2002, 14, no. 24, December 17) describes the preparation of porous silica from an emulsion stabilized by silica particles only, in the absence of surfactant. -Evaporation • at ' Air produces 1' solids with different degrees of porosity and inherent wettability. Gi-Ra Yi, et al. (Chem. Mater. 1999, 11, 2322-2325) describe a process which uses sodium dodecylsulfonate (SDS) as a surfactant. A silica sol is prepared by mixing tetraethoxysilane (TEOS) or tetra-methoxysilane (TMOS) and HCl with stirring. The gelation is obtained by addition of ammonium hydroxide. The final product is obtained by calcination. In another embodiment, an "isooctane in formamide" emulsion is used as a system congruent with formamide. The emulsion is stabilized by a triblock PEG-PPG-PEG copolymer.
J. S. Beck, et al. (J. Am. Chem. Soc. 1992, 114, 10834- 10843) décrivent la préparation de solides mésoporeux constitués par un silicate ou un aluminosilicate. Les composés solides obtenus ont une surface spécifique de l'ordre de 700 m2/g et la dimension de pores est entre 15 et 100 Â.JS Beck, et al. (J. Am. Chem. Soc. 1992, 114, 10834-10843) describe the preparation of mesoporous solids constituted by a silicate or an aluminosilicate. The solid compounds obtained have a specific surface of the order of 700 m 2 / g and the pore size is between 15 and 100 Å.
Le but de la présente invention est de fournir un procédé simple pour la préparation d'un matériau inorganique présentant une grande surface spécifique.The object of the present invention is to provide a simple process for the preparation of an inorganic material having a large specific surface.
Le matériau selon l'invention est un monolithe constitué par une matrice inorganique. Il est caractérisé en ce que ladite matrice inorganique est constituée par un polymère d'un oxyde métallique, et ce qu'elle comprend des macropores ayant une dimension moyenne da de 0,5 μm à 60 μm, des mésopores ayant une dimension moyenne dE de 20 à 30 Â et des micropores ayant une dimension moyenne di de 5 à 10 Â, lesdits pores étant interconnectés.The material according to the invention is a monolith constituted by an inorganic matrix. It is characterized in that said inorganic matrix is constituted by a polymer of a metal oxide, and that it comprises macropores having an average dimension d a of 0.5 μm to 60 μm, mesopores having an average dimension d E from 20 to 30 Å and micropores having an average dimension di from 5 to 10 Å, said pores being interconnected.
Par monolithe, on entend un objet solide ayant une dimension moyenne d'au moins 1 mm.By monolith is meant a solid object having an average dimension of at least 1 mm.
Les macropores peuvent être identifiés par microscopie électronique à balayage (MET) et quantifiés par des mesures d'intrusion mercure. La mise en œuvre de la technique d'intrusion de mercure montre la bonne tenue mécanique des monolithes obtenus, qui résistent aux pressions de mercure auxquelles ils sont soumis lors des mesures. La mésoporosité peut être identifiée par microscopie électronique à transmission (MET) . La texture vermiculaire de la mésoporosité peut être identifiée par diffraction des RX, cette technique servant également à quantifier la distance de pore à pore. La mésoporosité et la microporosité peuvent être1 quantifiées - et ' ség égée's par une technique d' adsorption-désorption d'azote dont le dépouillement se fait par la méthode de calcul BET (globalisant mésoporosité et microporosité) et par la méthode de calcul B.JH selon laquelle la ségrégation entre micorporosité et mésoporosité devient effective. L'oxyde métallique est un oxyde d'un ou plusieurs métaux, l'un au moins des métaux étant du type capable de former un alcoxyde. A titre d'exemple de métaux capables de former un alcoxyde, on peut citer Si, Ti, Zr, Th, Nb, Ta, V, W et Al.Macropores can be identified by scanning electron microscopy (TEM) and quantified by mercury intrusion measurements. The implementation of the mercury intrusion technique shows the good mechanical strength of the monoliths obtained, which resist the mercury pressures to which they are subjected during the measurements. Mesoporosity can be identified by transmission electron microscopy (TEM). The vermicular texture of mesoporosity can be identified by X-ray diffraction, this technique also serving to quantify the pore to pore distance. Mesoporosity and microporosity can be 1 quantified - and ' segregated ' by a nitrogen adsorption-desorption technique, which is analyzed by the BET calculation method (globalizing mesoporosity and microporosity) and by the calculation method B.JH according to which the segregation between micorporosity and mesoporosity becomes effective. The metal oxide is an oxide of one or more metals, at least one of the metals being of the type capable of forming an alkoxide. By way of example of metals capable of forming an alkoxide, mention may be made of Si, Ti, Zr, Th, Nb, Ta, V, W and Al.
L'oxyde métallique peut être un oxyde simple, et il s'agit alors d'un oxyde de l'un des métaux ci-dessus. L'oxyde métallique peut aussi être un oxyde mixte d'au moins deux métaux, et l'un au moins des métaux est alors choisi parmi les métaux ci-dessus, le ou les autres métaux pouvant être choisis parmi d'autres métaux, notamment B et Sn.The metal oxide can be a simple oxide, and it is then an oxide of one of the above metals. The metal oxide can also be a mixed oxide of at least two metals, and at least one of the metals is then chosen from the above metals, the other metal (s) being able to be chosen from other metals, in particular B and Sn.
Les matériaux dont la matrice inorganique est un polymère de silice ou d'un oxyde mixte de silice sont particulièrement préférés.Materials whose inorganic matrix is a polymer of silica or of a mixed silica oxide are particularly preferred.
La matrice inorganique peut contenir en outre une charge, par exemple une charge carbonée telle que des nanofila- ments, des nanotubes ou de la poudre de carbone. La charge peut en outre être un polymère d'un monomère qui a un carac- tère hydrophile marqué, choisi par exemple parmi l'acide acrylique, 1 ' acrylamide, la vinylpyrolidone, les méthacryla- tes portant des fonctions hydrophiles telles que notamment OH, COOH, NH, (notamment le méthacrylate d'hydroxyméthyle) .The inorganic matrix can also contain a filler, for example a carbonaceous filler such as nanofilaments, nanotubes or carbon powder. The filler can also be a polymer of a monomer which has a marked hydrophilic character, chosen for example from acrylic acid, acrylamide, vinylpyrolidone, methacrylates carrying hydrophilic functions such as in particular OH, COOH, NH, (especially hydroxymethyl methacrylate).
Un matériau selon la présente invention est obtenu par un procédé sol-gel, caractérisé en ce que :A material according to the present invention is obtained by a sol-gel process, characterized in that:
• on prépare une emulsion en introduisant une phase huileuse dans une solution aqueuse contenant un tensioactif et au moins un alcoxyde de métal précurseur de l'oxyde formant la matrice inorganique, en quantités telles que la fraction volumique p0 phase huileuse/phase aqueuse soit inférieure à 0,78, puis on forme une emulsion en soumettant le mélange à une agitation ; • on laisse le mélange réactionnel au repos jusqu'à la condensation du précurseur, o on extrait la phase huileuse par lavage à l'aide d'un solvant volatil (par exemple un mélange THF-acétone) , puis l'on sèche le solide résiduel pour obtenir un monolithe que l'on soumet ensuite à une calcination.• an emulsion is prepared by introducing an oily phase into an aqueous solution containing a surfactant and at least one metal alkoxide precursor of the oxide forming the inorganic matrix, in amounts such that the volume fraction p 0 oily phase / aqueous phase is lower at 0.78, then an emulsion is formed by subjecting the mixture to stirring; • the reaction mixture is left to stand until the precursor has condensed, o the oily phase is extracted by washing with a volatile solvent (for example a THF-acetone mixture), then the solid is dried residual to obtain a monolith which is then subjected to calcination.
La calcination finale a pour effet de libérer la mésoporosité (par calcination du tensioactif) et de fritter le matériau, ce qui le densifie. De préférence, on ajuste le pH du milieu réactionnel à une valeur inférieure ou égale à 1,2 (par exemple par addition de la quantité appropriée de HCl) ou à une valeur supérieure à 9 (par exemple par addition de NaOH) .The final calcination has the effect of releasing the mesoporosity (by calcination of the surfactant) and of sintering the material, which densifies it. Preferably, the pH of the reaction medium is adjusted to a value less than or equal to 1.2 (for example by addition of the appropriate quantity of HCl) or to a value greater than 9 (for example by addition of NaOH).
La fraction volumique phase huileuse/phase aqueuse per- met de contrôler la taille des macropores. Une augmentation de ladite fraction volumique entraîne une augmentation de la viscosité du milieu réactionnel, et par conséquent du cisaillement lors de l'agitation. Les gouttelettes dans l' emulsion deviennent plus petites. Cependant, une diminu- tion de la dimension des gouttelettes provoque une diminution de l'épaisseur des parois desdites gouttelettes, les- dites parois formant la structure du matériau poreux et assurant sa tenue mécanique. En-dessous d'une certaine épaisseur, qui résulte généralement du rapport volumique phase huileuse/phase aqueuse supérieur à 0,78, la résistance mécanique est insuffisante pour obtenir un monolithe et le produit final est sous forme de poudre.The oil phase / aqueous phase volume fraction makes it possible to control the size of the macropores. An increase in said volume fraction leads to an increase in the viscosity of the reaction medium, and consequently of the shear during stirring. The droplets in the emulsion become smaller. However, a reduction in the size of the droplets causes a reduction in the thickness of the walls of said droplets, said walls forming the structure of the porous material and ensuring its mechanical strength. Below a certain thickness, which generally results from the volume ratio oily phase / aqueous phase greater than 0.78, the mechanical strength is insufficient to obtain a monolith and the final product is in powder form.
La solution de précurseur de l'oxyde formant la matrice inorganique du matériau de l'invention contient au moins un alcoxyde. Lorsque la matrice inorganique est constituée par un oxyde mixte, on utilise un mélange de précurseurs parmi lesquels au moins l'un est un alcoxyde.The oxide precursor solution forming the inorganic matrix of the material of the invention contains at least one alkoxide. When the inorganic matrix consists of a mixed oxide, a mixture of precursors is used, of which at least one is an alkoxide.
Comme exemples d'alcoxydes, on peut citer les composés R'n(OR)m_nM dans lesquels M représente un métal ayant la valence m, et 0 < n < m, R représente un radical alkyle ayant de 1 à 5 atomes de carbone, R' représente un radical alkyle ou un radical aryle qui portent éventuellement un ou plusieurs groupes fonctionnels. On peut citer par exemple Si (OR) 4, Ti(OR)4, Zr(OR)4, Th(OR)4, Nb(OR)5, Ta(OR)5 et Al (OR) 3. On peut également citer les composés VU (OR) 3 et (OR)6- Les alcoxydes dans lesquels R est un méthyle ou un éthyle sont particulièrement préférés. Les précurseurs utilisables en association avec au moins un alcoxyde peuvent être choisis par exemple parmi les hydroxydes tels que Al (OH) 3, les oxydes tels que B203 ou V205, les chlorures tels que SnCl4, ZrCl4 ou TiCl4, ou les oxychlorures tels que ZrOCl2.2H20, ou les oxydes mixtes tels que le métavanadate de sodium.As examples of alkoxides, mention may be made of the compounds R ' n (OR) m _ n M in which M represents a metal having the valence m, and 0 <n <m, R represents an alkyl radical having from 1 to 5 atoms of carbon, R ′ represents an alkyl radical or an aryl radical which optionally carry one or more functional groups. We can cite for example Si (OR) 4 , Ti (OR) 4 , Zr (OR) 4 , Th (OR) 4 , Nb (OR) 5 , Ta (OR) 5 and Al (OR) 3 . Mention may also be made of the compounds VU (OR) 3 and (OR) 6. The alkoxides in which R is methyl or ethyl are particularly preferred. The precursors which can be used in combination with at least one alkoxide can be chosen, for example, from hydroxides such as Al (OH) 3 , oxides such as B 2 0 3 or V 2 0 5 , chlorides such as SnCl 4 , ZrCl 4 or TiCl 4 , or oxychlorides such as ZrOCl 2 .2H 2 0, or mixed oxides such as sodium metavanadate.
Par exemple, une matrice de silice est obtenue à partir d'une solution aqueuse d'un alcoxyde R'n(OR)4_nSi dans lequel R, R' et n ont la signification précédente. Lorsque la matrice inorganique est constituée par un oxyde mixte de silicium et d'un métal M, on utilise un solution d' alcoxyde de silicium et un précurseur du métal M qui peut être un alcoxyde de M ou un précurseur non alcoxyde de M.For example, a silica matrix is obtained from an aqueous solution of an alkoxide R ' n (OR) 4 _ n Si in which R, R' and n have the previous meaning. When the inorganic matrix consists of a mixed oxide of silicon and of a metal M, use is made of a solution of silicon alkoxide and a precursor of the metal M which can be an alkoxide of M or a precursor non-alkoxide of M.
La phase huileuse est constitué par un ou plusieurs composés choisis parmi les alcanes linéaires ou ramifiés ayant au moins 12 atomes de carbone. A titre d'exemple, on peut citer le dodécane et 1 'hexadécane. La phase huileuse peut en outre être constituée par une huile de silicone de faible viscosité, c'est-à-dire inférieure à 400 centipoise.The oily phase consists of one or more compounds chosen from linear or branched alkanes having at least 12 carbon atoms. By way of example, mention may be made of dodecane and hexadecane. The oily phase can also consist of a silicone oil of low viscosity, that is to say less than 400 centipoise.
La viscosité du milieu réactionnel augmente de manière exponentielle lorsque la fraction volumique p0 augmente. Pour les valeurs plus faibles de p0, la phase huileuse est avantageusement introduite en une seule fois dans la solution aqueuse de tensioactif et de précurseur, et 1 ' émulsification du mélange réactionnel est effectuée à l'aide de moyens énergiques, tels que par exemple un dispositif Ultraturax®. Pour les valeurs plus élevées de p0, il est préférable d'introduire la phase huileuse goutte à goutte ou sous forme d'un filet continu dans la solution aqueuse contenant le tensioactif et le . précurseur, en effectuant 1 ' émulsification à l'aide de moyens peu énergiques, tels que par exemple un moulin colloïdal.The viscosity of the reaction medium increases exponentially when the volume fraction p 0 increases. For the lower values of p 0 , the oily phase is advantageously introduced all at once into the aqueous solution of surfactant and precursor, and the emulsification of the reaction mixture is carried out using energetic means, such as for example an Ultraturax® device. For higher values of p 0 , it is preferable to introduce the oily phase drop by drop or in the form of a continuous stream into the aqueous solution containing the surfactant and the. precursor, by carrying out emulsification using low energy means, such as for example a colloid mill.
L'agent tensioactif peut être un tensioactif cationique choisi notamment parmi le bromure de tétradécyltriméthyl- ammonium (TTAB) ou le bromure de dodécyltriméthylammonium. Dans ce cas, le milieu réactionnel est porté à un pH inférieur ou égal à 1,2, de préférence inférieur à 1.The surfactant can be a cationic surfactant chosen in particular from tetradecyltrimethyl bromide. ammonium (TTAB) or dodecyltrimethylammonium bromide. In this case, the reaction medium is brought to a pH less than or equal to 1.2, preferably less than 1.
L'agent tensioactif peut être un tensioactif anionique choisi parmi le dodécylsulfate de sodium, le dodécylsulfo- nate de sodium et le dioctylsulfosuccinate de sodium (AOT) .The surfactant can be an anionic surfactant chosen from sodium dodecylsulfate, sodium dodecylsulfonate and sodium dioctylsulfosuccinate (AOT).
Dans ce cas, le milieu réactionnel est porté à un pH supérieur à 10.In this case, the reaction medium is brought to a pH greater than 10.
L'agent tensioactif peut être un tensioactif non ioni- que choisi parmi les tensioactifs à tête éthoxylée, et les nonylphénols. Dans ce cas, le milieu réactionnel est porté à un pH supérieur à 10 ou inférieur ou égal à 1,2, de préférence inférieur à 1.The surfactant can be a nonionic surfactant chosen from surfactants with an ethoxylated head, and nonylphenols. In this case, the reaction medium is brought to a pH greater than 10 or less than or equal to 1.2, preferably less than 1.
Lorsque le monolithe contient une charge carbonée telle que des nanofilaments, des nanotubes ou de la poudre de carbone, cette charge est introduite dans le milieu réactionnel par dispersion dans la solution d'agent tensioactif. Lorsque la charge est un polymère d'un monomère qui a un caractère hydrophile, elle est introduite par dispersion de nanofilaments ou de poudre dudit polymère dans la solution d'agent tensioactif.When the monolith contains a carbonaceous filler such as nanofilaments, nanotubes or carbon powder, this filler is introduced into the reaction medium by dispersion in the solution of surfactant. When the filler is a polymer of a monomer which has a hydrophilic character, it is introduced by dispersing nanofilaments or powder of said polymer in the surfactant solution.
La concentration en agent tensioactif est de préférence supérieure à 10% en masse par rapport à la quantité totale d'eau, pour obtenir un milieu réactionnel initial visqueux et favoriser 1 ' émulsification.The concentration of surfactant is preferably greater than 10% by mass relative to the total amount of water, in order to obtain an initial viscous reaction medium and to promote emulsification.
La concentration en précurseur de la matrice inorganique est, de préférence, supérieure à 10% en masse par rapport à la phase aqueuse, pour obtenir une minéralisation totale du matériau et une bonne tenue mécanique. Lors de l'étape de condensation, lorsque le milieu réactionnel est laissé au repos après le mélange de la solution de précurseur inorganique et la solution de tensioactif, le ou les alcoxydes subissent une hydrolyse qui donne un composé hydroxylé, ledit composé hydroxylé se condensant ensuite pour former la matrice inorganique du matériau. La durée de l'hydrolyse est typiquement de quelques minutes. La durée de la condensation dépend du pH du milieu. Lorsque le pH du milieu réactionnel est inférieur à 1, voire négatif, ou bien lorsque le pH du milieu est très fortement basique (proche de 14), la durée de la condensation est de l'ordre de 2 à 3 heures. Lorsque le pH tend vers 1,2, (qui représente le point isoélectrique de la silice) , la condensation est plus lente et nécessite typiquement au moins une quinzaine de jours. Dans ce dernier cas, le matériau final obtenu est un polymère inorganique très dur.The concentration of precursor of the inorganic matrix is preferably greater than 10% by mass relative to the aqueous phase, in order to obtain total mineralization of the material and good mechanical strength. During the condensation step, when the reaction medium is left to stand after mixing the inorganic precursor solution and the surfactant solution, the alkoxide (s) undergo a hydrolysis which gives a hydroxylated compound, said hydroxylated compound then condensing to form the inorganic matrix of the material. The duration of the hydrolysis is typically a few minutes. The duration of the condensation depends on the pH of the medium. When the pH of the reaction medium is less than 1, or even negative, or when the pH of the medium is very strongly basic (close to 14), the duration of the condensation is of the order of 2 to 3 hours. When the pH tends to 1.2, (which represents the isoelectric point of silica), the condensation is slower and typically requires at least a fortnight. In the latter case, the final material obtained is a very hard inorganic polymer.
L'étape d'hydrolyse/condensation de précurseurs du type alcoxyde est effectuée avantageusement à une température proche de la température ambiante.The hydrolysis / condensation step of precursors of the alkoxide type is advantageously carried out at a temperature close to ambient temperature.
Lorsque la solution aqueuse de précurseur contient en outre au moins un précurseur autre qu'un alcoxyde, la condensation peut s'effectuer en deux étapes, la condensation du (des) alcoxyde (s) étant catalysée par le pH du milieu, la condensation subséquente du (des) précurseur (s) non alcoxyde (s) étant éventuellement catalysée par chauffage.When the aqueous precursor solution also contains at least one precursor other than an alkoxide, the condensation can be carried out in two stages, the condensation of the alkoxide (s) being catalyzed by the pH of the medium, the subsequent condensation non-alkoxide precursor (s) being optionally catalyzed by heating.
Le séchage peut être effectué à l'air, ou par lyophilisation .Drying can be carried out in air, or by freeze-drying.
Le monolithe obtenu après séchage présente les trois degrés de porosité (microporosité, mésoporosité et macroporosité) . Cependant, les pores peuvent être obturés par des résidus organiques. Les résidus organiques provenant de la phase huileuse se trouvent essentiellement dans les macropores et peuvent être éliminés par simple lavage avant le séchage, par exemple à l'aide d'un solvant organique volatil tel que l'acétone, le THF ou leurs mélanges. Les résidus organiques provenant de l'agent tensioactif se trouvent essentiellement dans ' les mésopores et peuvent être éliminés par une calcination, effectuée par exemple à une température entre 600°C et 700°C. Lorsque le monolithe contient une charge carbonée, il forme après séchage un matériau composite constitué par la matrice de polymère inorganique présentant les trois degrés de porosité, au sein de laquelle la charge carbonée est répartie. La calcination de ce matériau composite doit être effectuée en milieu réducteur pour éviter l'élimination de la charge carbonée sous forme de CO ou de C02. Le matériau proposé peut être utilisé dans diverses ' applications, notamment comme substitut osseux de synthèse.The monolith obtained after drying has the three degrees of porosity (microporosity, mesoporosity and macroporosity). However, the pores can be blocked by organic residues. Organic residues from the oily phase are mainly found in macropores and can be removed by simple washing before drying, for example using a volatile organic solvent such as acetone, THF or their mixtures. The organic residues originating from the surfactant are mainly found in the mesopores and can be removed by calcination, carried out for example at a temperature between 600 ° C and 700 ° C. When the monolith contains a carbonaceous filler, after drying it forms a composite material consisting of the inorganic polymer matrix having the three degrees of porosity, within which the carbonaceous filler is distributed. The calcination of this composite material must be carried out in a reducing medium to avoid the elimination of the carbonaceous charge in the form of CO or C0 2 . The proposed material can be used in a variety of applications, including as a synthetic bone substitute.
La présente invention est décrite plus en détail par les exemples suivants, auxquels elle n'est cependant pas limitée.The present invention is described in more detail by the following examples, to which it is not however limited.
Les matériaux obtenus ont été caractérisés sur différentes échelles de tailles.The materials obtained were characterized on different size scales.
La macroporosité a été caractérisée de manière qualitative par une technique de microscopie électronique à balayage (MEB) à l'aide d'un microscope à balayage Jeol JSM- 840A qui fonctionne à 10 kV.The macroporosity was characterized qualitatively by a scanning electron microscopy (SEM) technique using a Jeol JSM-840A scanning microscope which operates at 10 kV.
La mésoporosité a été caractérisée de manière qualitative par une technique de microscopie électronique à transmission (MET) à l'aide d'un microscope Jeol 2000 FX ayant une tension d'accélération de 200 kV. Les échantillons ont été préparés en déposant des squelettes de silice en poudre sur une grille en cuivre revêtue d'une membrane Formvar® en carbone .The mesoporosity was characterized qualitatively by a transmission electron microscopy (TEM) technique using a Jeol 2000 FX microscope with an acceleration voltage of 200 kV. The samples were prepared by depositing powdered silica skeletons on a copper grid coated with a Formvar® carbon membrane.
La mésoporosité et la microporosité ont été quantifiées et ségrégées par une technique d' adsorption-desorption d'azote à l'aide d'un appareil commercialisé sous la dénomination Micromeritics ASAP 2010, le dépouillement étant fait par les méthodes de calcul BET et BJH.The mesoporosity and the microporosity were quantified and segregated by a nitrogen adsorption-desorption technique using a device sold under the name Micromeritics ASAP 2010, the analysis being carried out by the BET and BJH calculation methods.
La macroporosité a été quantifiée par des mesures d'intrusion de mercure, à l'aide d'un apparareil commercialisé sous la dénomination Micromeritics Autopore IV, pour atteindre les caractéristiques des cellules minérales macroscopiques composant le squelette inorganique.The macroporosity was quantified by mercury intrusion measurements, using an apparatus marketed under the name Micromeritics Autopore IV, to achieve the characteristics of the macroscopic mineral cells composing the inorganic skeleton.
Dans le but de vérifier la structure mésoporeuse, les échantillons ont été soumis à une analyse par diffraction des rayons X à l'aide d'une source de RX à anode tournante de 18 kW (Rigaku-200) utilisant un cristal (111) de Ge comme monochromateur . La radiation diffusée a été collectée sur un collecteur à deux dimensions (Imaging Plate system, commercialisé par Mar Research, Hambourg) . La distance du détecteur à l'échantillon était de 500 mm. Les figures la à lf représentent les micrographies MEB de divers échantillons de monolithes-, à une échelle permettant de déterminer la macroporosité.In order to verify the mesoporous structure, the samples were subjected to X-ray diffraction analysis using an 18 kW rotating anode X-ray source (Rigaku-200) using a crystal (111) of Ge as a monochromator. The scattered radiation was collected on a two-dimensional collector (Imaging Plate system, marketed by Mar Research, Hamburg). The distance from the detector to the sample was 500 mm. Figures 1a to 1f represent SEM micrographs of various samples of monoliths, on a scale making it possible to determine the macroporosity.
Les figure 2a à 2f représentent les micrographies MET de divers échantillons de monolithes, à une échelle permettant de déterminer la mésoporosité.FIGS. 2a to 2f represent the TEM micrographs of various samples of monoliths, on a scale allowing the determination of the mesoporosity.
Chacune des figures 3a à 3f représente les diffracto- grammes de rayons X aux petits angles d'un échantillon de monolithe, avant et après séchage. N représente le nombre de coups en unités arbitraire, q représente le vecteur d'onde, qui permet de calculer une distance d dans l'espace réel, par la formule d = 2π/q.Les figures 4a à 4h représentent les micrographies MEB de divers échantillons de monolithes, à deux échelles permettant de déterminer la macroporosité. Exemple lOn a ajouté 3,5 g de tétraéthoxysilane (TEOS) à 16,5 g d'une solution aqueuse de bromure de tétradécyl- triméthylammonium (TTAB) à 35% que l'on a portée à pH 0,07. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g de dodécane et l'on a émulsifié à l'aide d'un ultraturax commercialisé sous la marque Polytron®. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel (c'est-à-dire la prise en masse du polymère inorganique) a eu lieu. Cette étape de condensation s'est déroulée sur une période d'une semaine. Le matériau obtenu, désigné par A, a été lavé dans un mélange acétone / tétrahydrofurane (THF) (3 fois pendant 24 heures) et séché à l'air. La partie organique, qui réalise l'empreinte de la mésostructure, a été extraite par calcination à 650 °C. Le matériau minéral à porosité hiérarchisée ainsi obtenu est désigné par AC.Each of Figures 3a to 3f shows the X-ray diffractograms at small angles of a sample of monolith, before and after drying. N represents the number of strokes in arbitrary units, q represents the wave vector, which makes it possible to calculate a distance d in real space, by the formula d = 2π / q. Figures 4a to 4h represent the SEM micrographs of various samples of monoliths, at two scales used to determine macroporosity. EXAMPLE 10 3.5 g of tetraethoxysilane (TEOS) were added to 16.5 g of a 35% aqueous solution of tetradecyltrimethylammonium bromide (TTAB) which was brought to pH 0.07. The solution was deposited in a mortar to which 30 g of dodecane was additionally added and it was emulsified using an ultraturax sold under the brand Polytron®. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction (that is to say the solidification of the inorganic polymer) took place. This condensation stage took place over a period of one week. The material obtained, designated by A, was washed in an acetone / tetrahydrofuran (THF) mixture (3 times for 24 hours) and air dried. The organic part, which produces the imprint of the mesostructure, was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by AC.
La figure la représente une micrographie du matériau A, montrant la macroporosité, obtenue par MEB. La barre d'échelle représente 1,9 μm. La dimension des macropores a une distribution moyenne autour de 0,5 μm. Les figures 2a et 2b représentent une micrographie respectivement des matériaux A et AC, montrant la mésoporosité, obtenue par MET. Les barres d'échelle représentent respectivement 100 nm et 50 nm. Elles montrent en outre que les mé- sopores sont organisés et présentent une texture vermicu- laire.La figure 3a représente des diffractogrammes de rayons X aux petits angles du matériau A (courbe définie par des carrés pleins) , et du matériau AC (courbe définie par des triangles) . Elle confirme la mésoporosité de type vermi- culaire et permet d'associer une distance caractéristique de pore à pore d'environ 40 Â.Figure la represents a micrograph of material A, showing the macroporosity, obtained by SEM. The scale bar represents 1.9 μm. The size of the macropores has an average distribution around 0.5 μm. FIGS. 2a and 2b represent a micrograph of the materials A and AC respectively, showing the mesoporosity, obtained by TEM. The scale bars represent 100 nm and 50 nm respectively. They also show that the sopores are organized and have a vermicular texture. FIG. 3a represents X-ray diffractograms at small angles of the material A (curve defined by solid squares), and of the material AC (curve defined by triangles). It confirms the vermicular type mesoporosity and makes it possible to associate a characteristic pore-to-pore distance of approximately 40 Å.
Exemple 2 On a ajouté 4 g de TEOS à 10 g d'une solution aqueuse de TTAB à 35% que l'on a portée à pH -0,2. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g de dodécane et l'on a émulsifié à l'aide d'un ultra- turax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu. Cette étape de condensation s'est déroulée sur une période de 24 heures. Le matériau obtenu, désigné par B, a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organique a été extraite par calcination à 650°C. Le matériau minéral à porosité hiérarchisée ainsi obtenu est désigné par BC.Example 2 4 g of TEOS was added to 10 g of a 35% aqueous TTAB solution which was brought to pH -0.2. The solution was deposited in a mortar to which 30 g of dodecane were added in addition and emulsified using an ultra-turax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a 24-hour period. The material obtained, designated by B, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by BC.
La figure lb représente une micrographie MEB du matériau B, montrant la macroporosité. La barre d'échelle représente 1,9 μm. Elle montre que le diamètre des macropores est généralement inférieure à 1 μm. La figure 3b représente des diffractogrammes de rayons X aux petits angles du matériau B (courbe définie par des carrés pleins) , et du matériau BC (courbe définie par des triangles) .Figure 1b represents a SEM micrograph of the material B, showing the macroporosity. The scale bar represents 1.9 μm. It shows that the diameter of macropores is generally less than 1 μm. FIG. 3b represents X-ray diffractograms at small angles of the material B (curve defined by solid squares), and of the material BC (curve defined by triangles).
Exemple 3 On a ajouté 0,5 g de Ti(OEt)4, puis 5 g de TEOS à 16,5 g d'une solution aqueuse de TTAB à 35% que l'on a portée à pH -0,05. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g d'hexadécane et l'on a émulsifié à l'aide d'un ultraturax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu, se traduisant par une prise en masse du polymère inor- ganique Si02. Cette étape de condensation s'est déroulée sur une- période de 24 heures. Ensuite, le matériau obtenu a été porté à 75°C pour catalyser la réaction de condensation du système Ti02. Cette seconde étape de condensation a duré 2 heures.Example 3 0.5 g of Ti (OEt) 4 was added , then 5 g of TEOS to 16.5 g of a 35% aqueous TTAB solution which was brought to pH -0.05. The solution was placed in a mortar to which 30 g of hexadecane was further added and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place, resulting in solidification of the inorganic polymer. ganic Si0 2 . This condensation stage took place over a 24-hour period. Then, the material obtained was brought to 75 ° C to catalyze the condensation reaction of the Ti0 2 system. This second condensation stage lasted 2 hours.
Le matériau désigné par C obtenu a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organique a été extraite par calcination à 650°C. Le matériau minéral à porosité hiérarchisée ainsi obtenu est désigné par CC.The material designated by C obtained was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by CC.
La figure le représente une micrographie MEB du matériau C, montrant la macroporosité. La barre d'échelle représente 8 μm. La répartition des dimensions des macropores est polydisperse entre 1 et 4 μm. Les figures 2c et 2d représentent une micrographie MET respectivement des matériaux C et CC, montrant la mésoporosité. Les barres d'échelle représentent chacune 20 nm. Ici également, les mésopores sont organisés et présentent une sturcture vermiculaire. La figure 3c représente des diffractogrammes de rayons X aux petits angles du matériau C (courbe définie par des carrés pleins) , et du matériau CC (courbe définie par des triangles) .The figure represents a SEM micrograph of the material C, showing the macroporosity. The scale bar represents 8 μm. The distribution of macropore dimensions is polydisperse between 1 and 4 μm. Figures 2c and 2d represent a TEM micrograph of materials C and CC respectively, showing the mesoporosity. The scale bars each represent 20 nm. Here too, the mesopores are organized and have a vermicular sturcture. FIG. 3c represents X-ray diffractograms at small angles of the material C (curve defined by solid squares), and of the material CC (curve defined by triangles).
La surface spécifique du matériau CC, mesurée par la méthode B.E.T., est de 1248 m2/g.The specific surface of the CC material, measured by the BET method, is 1248 m 2 / g.
Exemple 4Example 4
On a ajouté 5 g de TEOS à 15 g d'une solution aqueuse de TTAB à 35% que l'on a portée à pH -0,1. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g de dodecane et l'on a émulsifié à l'aide d'un ultratu- rax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu. Cette étape de condensation s'est déroulée sur une période de 48 heures. Le matériau obtenu, désigné par D, a été lavé "dans un' mélan- ge acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organique a été extraite par calcination à 650°C. Le matériau minéral à porosité hiérarchisée ainsi obtenu est désigné par .DC: _ ' ' 5 g of TEOS were added to 15 g of a 35% aqueous TTAB solution which was brought to pH -0.1. The solution was placed in a mortar to which 30 g of dodecane was added further and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a period of 48 hours. The resulting material, designated as D, was washed "in a" mixed foreign acetone / THF (3 times during 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by .DC: _ ''
La figure ld représente une micrographie MEB du matériau D, montrant la macroporosité. La barre d'échelle représente 1,9 μm. La répartition des dimensions des macropores est polydisperse et entre 1 et 8 μm.FIG. 1d represents a SEM micrograph of the material D, showing the macroporosity. The scale bar represents 1.9 μm. The distribution of macropore dimensions is polydisperse and between 1 and 8 μm.
La figure 3d représente des diffractogrammes de rayons X aux petits angles du matériau D (courbe définie par des carrés pleins) , et du matériau DC (courbe définie par des triangles) .Figure 3d represents X-ray diffractograms at small angles of the material D (curve defined by solid squares), and of the material DC (curve defined by triangles).
Exemple 5Example 5
On a ajouté 3. g de TEOS à 16,5 g d'une solution aqueuse de TTAB à 35% que l'on a portée à pH +0,05. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g d'hexadecane et l'on a émulsifié à l'aide d'un ultratu- rax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu. Cette étape de condensation s'est déroulée pendant une semaine. Le matériau obtenu, désigné par E, a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organique a été extraite par calcination à 650 °C. Le matériau minéral à porosité hiérarchisée ainsi obtenu est désigné par EC.3. g of TEOS was added to 16.5 g of a 35% aqueous TTAB solution which was brought to pH +0.05. The solution was placed in a mortar to which 30 g of hexadecane was further added and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place for a week. The material obtained, designated by E, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by EC.
La figure le représente une micrographie MEB du maté- riau C, montrant la macroporosité. La barre d'échelle représente 8 μm. La répartition des dimensions des macropores est polydisperse et entre 1 et 8 μm.The figure represents a SEM micrograph of the material C, showing the macroporosity. The scale bar represents 8 μm. The distribution of macropore dimensions is polydisperse and between 1 and 8 μm.
Les figures 2e et 2f représentent une micrographie MET respectivement des matériaux E et EC, montrant la mésopo- rosité. Les barres d'échelle représentent respectivement 100 nm et 20 nm. Les mésopores sont organisés et présentent une sturcture vermiculaire.Figures 2e and 2f represent a TEM micrograph of materials E and EC respectively, showing the mesoporosity. The scale bars represent 100 nm and 20 nm respectively. The mesopores are organized and have a vermicular sturcture.
La figure 3e représente des diffractogrammes de rayons X aux petits angles du matériau e (courbe définie par "des carrés pleins) , et du matériau EC (courbe définie par des triangles) . Exemple 6FIG. 3e represents X-ray diffractograms at small angles of the material e (curve defined by "solid squares), and of the material EC (curve defined by triangles). Example 6
On a ajouté 4 g de TEOS à 16 g d'une solution aqueuse de TTAB à 35% que 1 ' on a portée à pH +0,5. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 35 g de dodecane et l'on a émulsifié à l'aide d'un ultra- turax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu. Cette étape de condensation s'est déroulée sur une période de quinze jours. Le matériau obtenu, désigné par F, a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organique a été extraite par calcination à 650°C. Le matériau minéral à porosité hiérarchisée ainsi obtenu est désigné par FC.4 g of TEOS were added to 16 g of a 35% aqueous TTAB solution which was brought to pH +0.5. The solution was placed in a mortar to which 35 g of dodecane was further added and emulsified using an ultra-turax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a period of fifteen days. The material obtained, designated by F, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The mineral material with hierarchical porosity thus obtained is designated by FC.
La figure lf représente une micrographie MEB du maté- riau F, montrant la macroporosité. La barre d'échelle représente 4 μm. Le composé présente une distribution polydisperse des dimensions des pores entre 0,5 μm et 5 μm.FIG. 1f represents a SEM micrograph of the material F, showing the macroporosity. The scale bar represents 4 μm. The compound has a polydisperse distribution of pore sizes between 0.5 μm and 5 μm.
La figure 3f représente des diffractogrammes de rayons X aux petits angles du matériau F (courbe définie par des carrés pleins) , et du matériau FC (courbe définie par des triangles) . La courbe de diffraction du matériau F présente un large pic centré sur 0,13 Â-1 qui se déplace à 0,17 Â-1 pour le matériau FC (après calcination) . Ce pic est en accord avec la structure mésoscopique de type vermiculaire. Le matériau FC a été soumis aux diverses analyses mentionnées précédemment. Les caractéristiques obtenues sont rassemblées dans le tableau 1 ci-après.FIG. 3f represents X-ray diffractograms at small angles of the material F (curve defined by solid squares), and of the material FC (curve defined by triangles). The diffraction curve of the material F presents a broad peak centered on 0.13 Å -1 which moves to 0.17 Å -1 for the material FC (after calcination). This peak is in agreement with the mesoscopic structure of vermicular type. The FC material was subjected to the various analyzes mentioned above. The characteristics obtained are collated in Table 1 below.
Tableau 1Table 1
Figure imgf000014_0001
Le volume d'intrusion, la porosité, la densité apparente et la densité de squelette ont été déterminées à partir des mesures d' intrusionde mercure.
Figure imgf000014_0001
The intrusion volume, porosity, bulk density and skeleton density were determined from the mercury intrusion measurements.
Les surfaces B.E.T et B.J.H. ont été déterminées par une technique d' adsorption-desorption d'azote.B.E.T and B.J.H. were determined by a nitrogen adsorption-desorption technique.
Il apparaît ainsi, que toutes choses étant égales par ailleurs, une augmentation de la fraction volumique de phase huileuse diminue la macroporosité et t augmente la densité.It thus appears, that all other things being equal, an increase in the volume fraction of the oily phase decreases the macroporosity and t increases the density.
Exemple 7 On a ajouté 3,5 g de TEOS à 16 g d'une solution aqueuse de TTAB à 35% dans laquelle on a dispersé au préalable 0,3 g de nanofilaments de carbone et que l'on a portée à pH +0,04. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g de dodecane et l'on a émulsifié à l'aide d'un ultraturax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu. Cette étape de condensation s'est déroulée sur une période de quinze jours. Le matériau obtenu, désigné par G, a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. Le matériau minéral ainsi obtenu, est un matériau composite constitué par une matrice de Si02 dans laquelle sont répartis les nanofilaments de carbone. Il est calciné sous atmosphère réductrice pour obtenir un matériau GC dans lequel la charge minérale est conservée.EXAMPLE 7 3.5 g of TEOS were added to 16 g of a 35% aqueous TTAB solution in which 0.3 g of carbon nanofilaments were dispersed beforehand and which was brought to pH +0 , 04. The solution was placed in a mortar to which 30 g of dodecane was added in addition and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a period of fifteen days. The material obtained, designated by G, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The mineral material thus obtained is a composite material constituted by a matrix of Si0 2 in which the carbon nanofilaments are distributed. It is calcined under a reducing atmosphere to obtain a GC material in which the mineral charge is kept.
Exemple 8Example 8
On a ajouté 3,5 g de TEOS à 16 g d'une solution aqueuse de TTAB à 35% dans laquelle on a dispersé au préalable 0,03 g de nanofilaments de carbone et que l'on a ensuite portée à pH +0,04. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g de dodecane et l'on a émulsifié à l'aide d'un ultraturax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a . eu lieu. .Cette étape de condensation . s ' est déroulée sur une période de quinze jours. Le matériau obtenu, désigné par H, a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organi- que a été extraite par calcination à 1700°C. Le matériau minéral à porosité hiérarchisée ainsi obtenu, ' désigné par' HC est, comme dans l'exemple précédent, un matériau composite constitué par une matrice de Si02 dans laquelle sont répartis les nanofilaments de carbone. L'augmentation de la teneur en nanofilaments de carbone permet d'optimiser les propriétés de conduction du matériau.3.5 g of TEOS were added to 16 g of a 35% aqueous TTAB solution in which 0.03 g of carbon nanofilaments were dispersed beforehand and which was then brought to pH +0, 04. The solution was placed in a mortar to which 30 g of dodecane was added in addition and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction a . occurred. .This stage of condensation. took place over a period of fifteen days. The material obtained, designated by H, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organizational part that was extracted by calcination at 1700 ° C. The mineral material with hierarchical porosity thus obtained, ' designated by ' HC is, as in the previous example, a composite material constituted by a matrix of Si0 2 in which the carbon nanofilaments are distributed. The increase in the content of carbon nanofilaments makes it possible to optimize the conduction properties of the material.
Exemple 9 On a ajouté 3,5 g de TEOS à 16 g d'une solution aqueuse de TTAB à 35% dans laquelle on a préalablement dispersé 0,3 g de métavanadate de sodium et que l'on a ensuite portée à pH +0,04. La solution a été déposée dans un mortier dans lequel on a ajouté en outre 30 g de dodecane et l'on a émulsifié à l'aide d'un ultraturax. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel a eu lieu. Cette étape de condensation s'est déroulée sur une période de quinze jours. Le matériau obtenu, désigné par I, a été lavé dans un mélange acétone/THF (3 fois pendant 24 heures) et séché à l'air. La partie organique a été extraite par calcination à 650°C. Le matériau minéral à porosité hiérarchisée néoformé est désigné par IC.EXAMPLE 9 3.5 g of TEOS were added to 16 g of a 35% aqueous TTAB solution in which 0.3 g of sodium metavanadate was previously dispersed and which was then brought to pH +0 , 04. The solution was placed in a mortar to which 30 g of dodecane was added in addition and emulsified using an ultraturax. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction took place. This condensation stage took place over a period of fifteen days. The material obtained, designated by I, was washed in an acetone / THF mixture (3 times for 24 hours) and air dried. The organic part was extracted by calcination at 650 ° C. The newly formed mineral material with hierarchical porosity is designated by IC.
Exemple 10Example 10
On a ajouté 5 g de tétraéthoxysilane (TEOS) à 16,5 g d'une solution aqueuse de bromure de tétradécyltriméthyl- ammonium (TTAB) à 35% que l'on a portée à pH 0,035 par addition de 5,84 ml de HCl à 37%. A la solution ainsi obtenue, on a ajouté x g de dodecane. L' émulsification a été effectuée en versant le dodecane goutte à goutte dans la solution et en effectuant une agitation manuelle dans un mortier. L' emulsion concentrée obtenue a été déposée dans un moule dans lequel la réaction sol-gel (c'est-à-dire la prise en masse du polymère inorganique) a eu lieu. Cette étape de condensation s'est déroulée sur une période d'une semaine. Le matériau obtenu a été lavé dans un mélange acétone / tétrahydrofurane (THF) (3 fois pendant 24 heures) et séché à l'air. La partie organique, qui réalise l'empreinte de la mésostructure, a été extraite par calcination à 65O°C;' 5 g of tetraethoxysilane (TEOS) were added to 16.5 g of a 35% aqueous solution of tetradecyltrimethylammonium bromide (TTAB) which was brought to pH 0.035 by addition of 5.84 ml of HCl at 37%. To the solution thus obtained, xg of dodecane was added. The emulsification was carried out by pouring the dodecane drop by drop into the solution and carrying out manual stirring in a mortar. The concentrated emulsion obtained was deposited in a mold in which the sol-gel reaction (that is to say the solidification of the inorganic polymer) took place. This condensation stage took place over a period of one week. The material obtained was washed in an acetone / tetrahydrofuran (THF) mixture (3 times for 24 hours) and dried at the air. The organic part, which produces the imprint of the mesostructure, was extracted by calcination at 65O ° C; '
Quatre essais ont été effectués avec des quantités différentes de dodecane, c'est-à-dire avec différentes fractions volumiques phase huileuse/phase aqueuse p0.Four tests were carried out with different amounts of dodecane, that is to say with different volume fractions oily phase / aqueous phase p 0 .
Les matériaux obtenus après traitement thermique ont été soumis aux diverses analyses mentionnées dans l'exemple 6. Les caractéristiques obtenues sont rassemblées dans le tableau 2 ci-après.The materials obtained after heat treatment were subjected to the various analyzes mentioned in Example 6. The characteristics obtained are collated in Table 2 below.
Tableau 2Table 2
Figure imgf000017_0001
Le volume d'intrusion, la porosité, la densité apparente et la densité de squelette ont été déterminées à partir des mesures d'intrusion de mercure.
Figure imgf000017_0001
The intrusion volume, porosity, bulk density and skeleton density were determined from the mercury intrusion measurements.
Les surfaces B.E.T et B.J.H. ont été déterminées par une technique d' adsorption-desorption d'azote. II apparaît ainsi, que toutes choses étant égales par ailleurs, une augmentation de la fraction volumique de phase huileuse diminue la porosité et la surface spécifique, et augmente la densité.B.E.T and B.J.H. were determined by a nitrogen adsorption-desorption technique. It thus appears, that all other things being equal, an increase in the volume fraction of the oily phase decreases the porosity and the specific surface, and increases the density.
La figure 4 représentent les micrographies MEB des divers échantillons à deux échelles différentes. Elles montrent que les matériaux sont formées par un aggregat de sphères creuses sont le diamètre peut aller jusqu'à plus de lOOμm. La correspondance entre les courbes et les échantillons est donnée dans le tableau 3 ci-après. Tableau 3FIG. 4 represents the SEM micrographs of the various samples at two different scales. They show that the materials are formed by an aggregation of hollow spheres and the diameter can go up to more than 100 μm. The correspondence between the curves and the samples is given in table 3 below. Table 3
Figure imgf000018_0001
Figure imgf000018_0001

Claims

Re endications Re endications
1. Matériau sous forme d'un monolithe ' constitué par une matrice inorganique, caractérisé en ce que ladite matrice inorganique est constituée par un polymère d'un oxyde métallique et en ce qu'elle comprend des macropores ayant une dimension moyenne dR de 0,5 μm à 60.μm, des mésopores ayant une dimension moyenne dE de 20 à 30 Â et des micropores ayant une dimension moyenne di de 5 à 10 Â, lesdits pores étant interconnectés. 1. Material in the form of a monolith 'consisting of an inorganic matrix, characterized in that said inorganic matrix consists of a polymer of a metal oxide and in that it comprises macropores having an average dimension d R of 0 5 .mu.m to 60.μm, mesopores having an average dimension E from 20 to 30 Å and micropores having an average di size of 5 to 10 Å, said pores being interconnected.
2. Matériau selon la revendication 1, caractérisé en ce que l'oxyde métallique est un oxyde d'un ou plusieurs métaux, l'un au moins des métaux étant du type capable de former un alcoxyde.2. Material according to claim 1, characterized in that the metal oxide is an oxide of one or more metals, at least one of the metals being of the type capable of forming an alkoxide.
3. Matériau selon la revendication 2, caractérisé en ce que l'un au moins des métaux est choisi parmi Si, Ti, Zr,3. Material according to claim 2, characterized in that at least one of the metals is chosen from Si, Ti, Zr,
Th, Nb, Ta, V, W et Al.Th, Nb, Ta, V, W and Al.
4. Matériau selon l'une des revendications 2 ou 3, caractérisé en ce que l'oxyde est un oxyde mixte contenant en outre B et Sn. 4. Material according to one of claims 2 or 3, characterized in that the oxide is a mixed oxide further containing B and Sn.
5. Matériau selon l'une des revendications 1 à 4, caractérisé en ce que le polymère inorganique est un polymère d'oxyde de silicium ou d'un oxyde mixte de silicium.5. Material according to one of claims 1 to 4, characterized in that the inorganic polymer is a polymer of silicon oxide or of a mixed oxide of silicon.
6. Matériau selon la revendication 1, caractérisé en ce que la matrice inorganique contient en outre une charge. 6. Material according to claim 1, characterized in that the inorganic matrix also contains a filler.
7. Matériau selon la revendication 6, caractérisé en ce que la charge est une charge carbonée.7. Material according to claim 6, characterized in that the filler is a carbonaceous filler.
8. Matériau selon la revendication 6, caractérisé en ce que la charge est un polymère d'un monomère qui a un caractère hydrophile. 8. Material according to claim 6, characterized in that the filler is a polymer of a monomer which has a hydrophilic character.
9. Procédé de préparation d'un matériau selon la revendication 1 par un procédé sol-gel, caractérisé en ce que : o on prépare une emulsion en introduisant une phase huileuse dans une solution aqueuse contenant un tensioactif et au moins un alcoxyde de métal précurseur de l'oxyde formant la matrice inorganique, en quantités telles que la fraction volumique p0 phase huileuse/phase aqueuse soit inférieure à 0,78, puis on forme une emulsion en soumettant le mélange à une agitation ; o on laisse le mélange réactionnel au repos jusqu'à la condensation du précurseur, o on extrait la phase huileuse par lavage à l'aide d'un solvant volatil, puis l'on sèche le solide résiduel pour obtenir un monolithe que l'on soumet ensuite à une calcination.9. A method of preparing a material according to claim 1 by a sol-gel method, characterized in that: o an emulsion is prepared by introducing an oily phase into an aqueous solution containing a surfactant and at least one precursor metal alkoxide oxide forming the inorganic matrix, in amounts such as the volume fraction p 0 oily phase / phase aqueous is less than 0.78, then an emulsion is formed by subjecting the mixture to stirring; o the reaction mixture is left to stand until the precursor has condensed, o the oily phase is extracted by washing with a volatile solvent, then the residual solid is dried to obtain a monolith which is then subjected to calcination.
10. Procédé selon la revendication 9, caractérisé en ce que le solvant organique volatil est un mélange THF- acétone.10. Method according to claim 9, characterized in that the volatile organic solvent is a THF-acetone mixture.
11. Procédé selon la revendication 9, caractérisé en ce que la solution de précurseurs contient au moins un alcoxyde R'n (OR)m_nM dans lequel M représente un métal ayant la valence m, et 0 < n < m, R représente un radical alkyle ayant de 1 à 5 atomes de carbone, R' représente un radical alkyle ou un radical aryle qui portent éventuellement un ou plusieurs groupes fonctionnels.11. Method according to claim 9, characterized in that the solution of precursors contains at least one alkoxide R ' n (OR) m _ n M in which M represents a metal having the valence m, and 0 <n <m, R represents an alkyl radical having from 1 to 5 carbon atoms, R ′ represents an alkyl radical or an aryl radical which optionally carry one or more functional groups.
12. Procédé selon la revendication 11, caractérisé en ce que 1 ' alcoxyde est choisi parmi Si (OR) 4, Ti(OR)4, Zr(OR)4,12. Method according to claim 11, characterized in that the alkoxide is chosen from Si (OR) 4 , Ti (OR) 4 , Zr (OR) 4 ,
Th(OR)4, Nb(OR)5, Ta (OR) 5 et Al (OR) 3.Th (OR) 4 , Nb (OR) 5 , Ta (OR) 5 and Al (OR) 3.
13. Procédé selon la revendication 9, caractérisé en ce que l' alcoxyde est VO(OR)3 ou W(OR)6, R représentant un radical alkyle ayant de 1 à 5 atomes de carbone. 13. Method according to claim 9, characterized in that the alkoxide is VO (OR) 3 or W (OR) 6 , R representing an alkyl radical having from 1 to 5 carbon atoms.
14. Procédé selon la revendication 9, caractérisé en ce qu'on utilise un mélange de précurseurs comprenant au moins un alcoxyde, le ou les autres précurseurs étant choisis parmi les oxydes, les oxydes mixtes, les hydroxydes, les chlorures et les oxychlorures. 14. Method according to claim 9, characterized in that a mixture of precursors is used comprising at least one alkoxide, the other precursor (s) being chosen from oxides, mixed oxides, hydroxides, chlorides and oxychlorides.
15. Procédé selon la revendication 9, caractérisé en ce que la phase huileuse est constituée par un ou plusieurs composés choisis parmi les alcanes linéaires ou ramifiés ayant au moins 12 atomes de carbone, ou par une huile de silicone ayant une viscosité inférieure à 400 centipoises. 15. The method of claim 9, characterized in that the oily phase consists of one or more compounds chosen from linear or branched alkanes having at least 12 carbon atoms, or by a silicone oil having a viscosity of less than 400 centipoises .
16. Procédé selon la revendication 9, caractérisé en ce que la phase huileuse est introduite goutte à goutte ou sous forme d'un filet dans la solution de tensioactif et de précurseur, et l' émulsification est effectuée à l'aide de moyens peu énergiques.16. Method according to claim 9, characterized in that the oily phase is introduced dropwise or in the form of a trickle into the solution of surfactant and precursor, and the emulsification is carried out using low-energy means.
17. Procédé selon la revendication 10, caractérisé en ce que l'on utilise pour faire le mélange des constituants, un dispositif qui génère un brassage intensif.17. The method of claim 10, characterized in that one uses to make the mixture of constituents, a device which generates intensive stirring.
18. Procédé selon la revendication 9, caractérisé en ce que l'on ajuste le pH du milieu réactionnel à une valeur inférieure ou égale à 1,2, ou à une valeur supérieure à 9.18. The method of claim 9, characterized in that the pH of the reaction medium is adjusted to a value less than or equal to 1.2, or to a value greater than 9.
19. Procédé selon la revendication 14, caractérisé en ce que la condensation est effectuée en deux étapes, la condensation du (des) alcoxyde (s) étant catalysée par le pH du milieu, la condensation subséquente du (des) précurseur (s) non alcoxyde (s) étant catalysée par chauffage.19. The method of claim 14, characterized in that the condensation is carried out in two stages, the condensation of the alkoxide (s) being catalyzed by the pH of the medium, the subsequent condensation of the precursor (s) not alkoxide (s) being catalyzed by heating.
20. Procédé selon la revendication 9, caractérisé en ce que 1 ' on introduit une charge carbonée dans le milieu réactionnel par dispersion dans la solution d'agent tensioactif.20. Method according to claim 9, characterized in that one introduces a carbonaceous charge into the reaction medium by dispersion in the surfactant solution.
21. Procédé selon la revendication 9, caractérisé en ce que l'on introduit à titre de charge un polymère d'un monomère qui a un caractère hydrophile, par dispersion de nanofilaments ou de poudre dudit monomère dans la solution d'agent tensioactif.21. The method of claim 9, characterized in that a polymer of a monomer which has a hydrophilic nature is introduced as a filler, by dispersion of nanofilaments or powder of said monomer in the surfactant solution.
22. Procédé selon la revendication 9, caractérisé en ce que la concentration en agent tensioactif est supérieure à 10% en masse par rapport à la quantité totale d'eau.22. The method of claim 9, characterized in that the concentration of surfactant is greater than 10% by mass relative to the total amount of water.
23. Procédé selon la revendication 9, caractérisé en ce que la concentration en précurseur de la matrice inorganique est supérieure à 10% en masse par rapport à la phase aqueuse . 23. The method of claim 9, characterized in that the concentration of precursor of the inorganic matrix is greater than 10% by mass relative to the aqueous phase.
24. Procédé selon la revendication 9, caractérisé en ce que l'étape de calcination est effectuée à une température entre 600 et 700 °C.24. The method of claim 9, characterized in that the calcination step is carried out at a temperature between 600 and 700 ° C.
25. Procédé selon la revendication 24, caractérisé en ce que l'étape de calcination est effectuée sous atmosphère réductrice. 25. The method of claim 24, characterized in that the calcination step is carried out under a reducing atmosphere.
PCT/FR2004/000589 2003-03-27 2004-03-11 Inorganic material with a hierarchical structure and method for the preparation thereof WO2004087610A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0303774A FR2852947B1 (en) 2003-03-27 2003-03-27 INORGANIC MATERIAL HIERARCHISED STRUCTURE AND PROCESS FOR PREPARING THE SAME
FR03/03774 2003-03-27

Publications (2)

Publication Number Publication Date
WO2004087610A2 true WO2004087610A2 (en) 2004-10-14
WO2004087610A3 WO2004087610A3 (en) 2004-11-18

Family

ID=32947209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000589 WO2004087610A2 (en) 2003-03-27 2004-03-11 Inorganic material with a hierarchical structure and method for the preparation thereof

Country Status (2)

Country Link
FR (1) FR2852947B1 (en)
WO (1) WO2004087610A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025838B2 (en) 2005-06-27 2011-09-27 K.U. Leuven Research & Development Process for producing sintered porous materials
RU2527408C2 (en) * 2012-03-30 2014-08-27 Общество с ограниченной ответственностью "EUTIT-UA" Stone casting
WO2022058449A1 (en) 2020-09-18 2022-03-24 Centre National De La Recherche Scientifique Monolithic nanoparticle metal oxides with multiscale porosity
WO2024009045A1 (en) 2022-07-07 2024-01-11 Universite de Bordeaux Microporous carbon monoliths and method for producing such monoliths

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912400B1 (en) * 2007-02-14 2009-04-17 Univ Paris Curie HYBRID ALVEOLA MATERIAL, PROCESS FOR PREPARING THE SAME
FR2947564B1 (en) * 2009-07-06 2011-07-22 Univ Paris Curie HETEROGENEOUS ENZYMATIC CATALYST, PROCESS FOR PREPARATION AND USE
FR2955429B1 (en) 2010-01-20 2012-03-02 Centre Nat Rech Scient ENZYMATIC MODIFICATIONS OF A MONOLITHIC ALVEOLAR CARBON AND APPLICATIONS
FR2965807B1 (en) * 2010-10-11 2012-12-21 Centre Nat Rech Scient PROCESS FOR PREPARING ALVEOLAR INORGANIC MONOLITHIC MATERIALS AND USES THEREOF
FR2993874A1 (en) * 2012-07-26 2014-01-31 Univ Paris Curie Preparing silica-alumina material used as acid catalyst and catalyst support for heterogeneous catalysis in continuous flow, comprises preparing oil phase, aqueous phase and oil-in-water emulsion and performing condensation step

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTONIETI M ET AL: "SYNTHESIS OF MESOPOROUS SILICA WITH LARGE PORES AND BIMODEL PORE SIZE DISTRIBUTION BY TEMPLATING OF POLYMER LATICES" ADVANCED MATERIALS, VCH VERLAGSGESELLSCHAFT, WEINHEIM, DE, vol. 10, no. 2, 22 janvier 1998 (1998-01-22), pages 154-159, XP000727863 ISSN: 0935-9648 *
BULENT E. YOLDAS: "MICROSTRUCTURE OF MONOLITHIC MATERIALS FORMED BY HEAT TREATMENT OF CHEMICALLY POLYMERIZED PRECURSORS IN THE AL2O3-SIO2 BINARY" CERAMIC BULLETIN, vol. 59, no. 4, 1980, pages 479-483, XP009016948 *
NAKANISHI K ET AL: "EFFECTS OF AGING AND SOLVENT EXCHANGE ON PORE STRUCTURE OF SILICA GELS WITH INTERCONNECTED MACROPORES" JOURNAL OF NON-CRYSTALLINE SOLIDS, NORTH-HOLLAND PHYSICS PUBLISHING. AMSTERDAM, NL, vol. 189, no. 1-2, 1 août 1995 (1995-08-01), pages 66-76, XP004067728 ISSN: 0022-3093 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025838B2 (en) 2005-06-27 2011-09-27 K.U. Leuven Research & Development Process for producing sintered porous materials
RU2527408C2 (en) * 2012-03-30 2014-08-27 Общество с ограниченной ответственностью "EUTIT-UA" Stone casting
WO2022058449A1 (en) 2020-09-18 2022-03-24 Centre National De La Recherche Scientifique Monolithic nanoparticle metal oxides with multiscale porosity
FR3114317A1 (en) 2020-09-18 2022-03-25 Centre National De La Recherche Scientifique Monolithic nanoparticle metallo-oxides with multi-scale porosity
WO2024009045A1 (en) 2022-07-07 2024-01-11 Universite de Bordeaux Microporous carbon monoliths and method for producing such monoliths
FR3137679A1 (en) 2022-07-07 2024-01-12 Universite de Bordeaux Microporous carbon monoliths and method of manufacturing such monoliths

Also Published As

Publication number Publication date
FR2852947B1 (en) 2005-06-03
WO2004087610A3 (en) 2004-11-18
FR2852947A1 (en) 2004-10-01

Similar Documents

Publication Publication Date Title
US6680013B1 (en) Synthesis of macroporous structures
CA2947499C (en) Individualised inorganic particles
DE19705497C2 (en) Process for the preparation of mesoporous solids, solids obtainable by the process and their use
DE112017001567T5 (en) A rapid production process for an airgel with a microemulsion precursor
JP7401627B2 (en) Method for producing hollow silica particles
US11124419B2 (en) Method for producing a micron-size spherical silica aerogel
DE112010000282B4 (en) Process for the preparation of a silica structure
EP2197792B1 (en) Crystallised material containing silicon with hierarchised and organised porosity
JP2006008509A (en) Mesostructured aluminosilicate material
WO2021118459A1 (en) Porous composites, scaffolds, foams, methods of fabrication and uses thereof
WO2016140316A1 (en) Silica glass precursor production method, silica glass precursor, silica glass production method and silica glass precursor
WO2004087610A2 (en) Inorganic material with a hierarchical structure and method for the preparation thereof
US20110092363A1 (en) Porous metal oxide particles
EP2627616B1 (en) Process for preparing cellular inorganic monolithic materials and uses of these materials
EP2334430A1 (en) Method for preparing a structured porous material comprising nanoparticles of metal 0 imbedded in the walls thereof
CN108217661A (en) A kind of universal method for synthesizing multilevel ordered duct material
JP2008280193A (en) Method for producing mesoporous silica fine particle, coating liquid for forming silica-based coating film, and silica-based coating film
JP2003519074A (en) Production of mesostructured materials from nanometer-sized particles
JP7455666B2 (en) Porous metal oxide powder and method for producing the same
Han et al. Synthesis of hollow spherical silica with MCM-41 mesoporous structure
Jeon et al. Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution
JP5464150B2 (en) Hollow particle manufacturing method, optical material using hollow particle, and heat insulating material
Ravikrishna et al. Polyaphrons as templates for the sol–gel synthesis of macroporous silica
WO2005019134A1 (en) Method for preparing a monolith made of inorganic material
JP4300045B2 (en) Method for producing metal oxide microspheres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase