WO2022058449A1 - Monolithic nanoparticle metal oxides with multiscale porosity - Google Patents

Monolithic nanoparticle metal oxides with multiscale porosity Download PDF

Info

Publication number
WO2022058449A1
WO2022058449A1 PCT/EP2021/075529 EP2021075529W WO2022058449A1 WO 2022058449 A1 WO2022058449 A1 WO 2022058449A1 EP 2021075529 W EP2021075529 W EP 2021075529W WO 2022058449 A1 WO2022058449 A1 WO 2022058449A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
hipe
monolith
metal oxide
chosen
Prior art date
Application number
PCT/EP2021/075529
Other languages
French (fr)
Inventor
Rénal BACKOV
VANG (épouse LY), Isabelle
Original Assignee
Centre National De La Recherche Scientifique
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite de Bordeaux filed Critical Centre National De La Recherche Scientifique
Priority to EP21777536.0A priority Critical patent/EP4214177A1/en
Publication of WO2022058449A1 publication Critical patent/WO2022058449A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the present invention relates to a process for the synthesis of monoliths of mixed oxides with multi-scale porosity, the materials obtained and their use.
  • Metal oxides are specific catalysts which are implemented in very many applications depending on the type of metal oxide. Examples include the oxidation of CO to CO2 for cobalt oxide, the oxidation of cyclohexane and n-hexane for manganese oxide, hydro-deoxygenation for molybdenum oxide , photocatalysis for tungsten, zinc or tantalum oxide. These metal oxides are all the more active as they are divided (small) and this at the nanometric scale. The problem is that these nano-objects are then very powdery, so it is advantageous to stabilize/anchor them in a host matrix.
  • Si(HIPE) being the acronym for High Internal Phase Emulsion, which is based on the coupling between sol-gel chemistry and complex fluids (oil-in-water emulsions, and lyotropic mesophases ) was the subject of numerous works by the inventors in the early 2000s (patent application FR. 0303774; F. Carn et al. J. Mat. Chem. 2004, 14, 1370). Since then, a whole range of silicic inorganic materials with various morphologies have been developed (A. Roucher et al. J. Sol-Gel Sci. Tech., 2019, 90, 95) and these materials have been hybridized by ormosils, enzymes , bacteria to establish a specific catalytic property (A. Roucher et al. The Chemical Record, 2018, 18, 776).
  • the inventors have prepared mixed oxides of the TiO2@Si(HIPE) type which are intended to be used in the volume photoreduction of CO2 for the continuous formation of “solar” fuels (S. Bernadet et al. , Adv.Funct Mat., 2019, 29, 1807767). These materials are synthesized in two steps: a synthesis of an Si(HIPE) ceramic foam followed by infiltration (by pulling under vacuum) of an acid sol of TiOz precursors based on titanium isopropoxide (FR.18-53644, FR.17-53757, FR. -1753758 and FR.17-53759).
  • the inventors have discovered a means of synthesizing metal oxides with high levels of metal salts, while establishing a nanometric character of the newly formed oxides within the silicic matrix as well as a homogeneous distribution of said oxides within the silicic matrix .
  • An object of the invention is therefore to propose a process for the synthesis of nanoparticulate monolithic metallo-oxides with multi-scale porosity which is rapid, in a single step and makes it possible to prepare materials with Ti/Si molar ratios greater than 0, 15 while keeping the nanometric character of the neoformed metallo-oxides as well as their homogeneous distribution.
  • the invention therefore firstly relates to a method for preparing a monolith with multi-scale porosity, said monolith comprising a matrix of silicon oxide, and nanoparticles of a metal oxide M, M representing a metal or a metalloid selected from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and
  • said method comprising: a) a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, said aqueous phase comprising a cationic surfactant, at least one metallic salt precursor of metal oxide M, and a precursor of silica, such that the molar ratio M /Si (referred to below as ratio x) is a number between 0.05 and 0.57 (limits included), b) a polycondensation stage, c) a stage of elimination of the oily phase by treatment with dichloromethane for
  • monolith is understood to mean a solid object whose smallest dimension is at least 1 mm.
  • the monoliths are easy to shape (columns, films, balls) due to the absence of dustiness.
  • the silicon oxide matrix is a continuous matrix.
  • Said monolith is a monolith of mixed oxides in that it comprises several oxides, i.e. at least one silicon oxide and at least one metal oxide M.
  • nanoparticle metal oxide M or nanoparticles of a metal M oxide is meant an oxide having at least one dimension less than or equal to approximately 500 nm, preferably less than or equal to 200 nm, and particularly preferably less than or equal to 100 nm.
  • the metal oxide M preferably has at least one dimension greater than 10 nm, and preferably greater than 50 nm.
  • the dimension(s) of a metal oxide M can be determined by methods well known to those skilled in the art and in particular by TEM (transmission electron microscopy).
  • the acidic aqueous phase has a pH below the isoelectric point of silica, i.e. below 2.1, and preferably between 0.05 (Hammet's acidity) and 1 (limits included).
  • the M/Si molar ratio or ratio x is a number between 0.05 and 0.57 (limits included) and designates the molar ratio in the oil-in-water emulsion obtained at the end of step a), x remains substantially constant during steps a), b) and c).
  • step a The material obtained at the end of step a) can be represented by the following formula (I):
  • x is between 0.1 and 0.57, preferably between 0.2 and 0.57, and even more advantageously between 0.3 and 0.57 (limits included) .
  • x can for example be equal to 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.55 or 0.57.
  • the material obtained according to the method of the invention may lose its monolithic character.
  • x is preferably determined with the aid of the respective quantities of silica precursor and metal salt precursor of metal oxide (metal oxide M) used during step a).
  • the oily phase consists of one or more compounds chosen from linear and branched alkanes having at least 9 carbon atoms. Even more advantageously, the linear alkanes comprise between 10 and 12 carbon atoms.
  • the cationic surfactant is chosen from quaternary ammonium compounds having at least 8 carbon atoms. Mention may be made, by way of examples, of tetradecyltrimethylammonium bromide (TTAB), dodecyltrimethylammonium bromide and cetyltrimethylammonium bromide.
  • the concentration of cationic surfactant is preferably greater than 10% by mass relative to the total amount of water, to obtain a viscous initial reaction medium and promote good stability of the emulsion despite the release of ethanol induced by the hydrolysis of Si(0Et)4 (TEOS).
  • the metal salts precursors of metal oxide are chosen from chlorides and nitrides.
  • the silica precursor is a silicon alkoxide.
  • TEOS tetraethoxy-orthosilicate
  • 3-mercaptopropyl)trimethoxysilane (3-aminopropyl)triethoxysilane
  • N-(3-trimethoxysilylpropyl)pyrrole 3-(2,4- dinitrophenylamino)propyltriethoxysilane
  • N-(2-aminoethyl)-3-aminopropyltrimethoxysilane phenyltriethoxysilane and methyltriethoxysilane.
  • the TEOS is particularly advantageous.
  • Sodium silicate solutions can also be considered as a silica precursor.
  • the concentration of precursor of the inorganic matrix is preferably greater than 10% by mass relative to the total mass of the aqueous phase, to obtain total mineralization of the material and good mechanical strength.
  • the method may further comprise, before step a) of emulsification, a step of adding the metal salt to an aqueous phase comprising the cationic surfactant, followed by the addition of an acid (eg HCl) to form a phase aqueous acid comprising said cationic surfactant and said metal salt, followed by the addition of the silica precursor the time necessary to promote the hydrolysis of the silica precursor before step a).
  • a step a) of emulsification a step of adding the metal salt to an aqueous phase comprising the cationic surfactant, followed by the addition of an acid (eg HCl) to form a phase aqueous acid comprising said cationic surfactant and said metal salt, followed by the addition of the silica precursor the time necessary to promote the hydrolysis of the silica precursor before step a).
  • an acid eg HCl
  • Stage b) of polycondensation is preferably carried out at ambient temperature, in particular for a period of at least 15 days.
  • step b a solid material is obtained (solidified emulsion).
  • Stage b) being carried out in an acid medium, only the silica precursor hydrolyses and polycondenses.
  • the metal salt precursor of metal oxide i.e. precursor of the metal oxide M
  • the metal salt precursor of metal oxide remains intact and does not co-condense with the silicon (it is a spectator of the silicic polycondensation).
  • the stage c) of elimination of the oily phase with dichloromethane preferably lasts about one night.
  • the removal step c) is preferably followed by a drying period or step c′), for example 2 to 3 days.
  • the elimination step c) makes it possible to eliminate the organic residues originating from the oily phase which are essentially found in the macropores.
  • THF tetrahydrofuran
  • dichloromethane is an essential difference with the processes known from the prior state of the art, in particular that described in WO 2004087610. Indeed, THF has a good affinity with water and this causes rapid drying of the aqueous continuous medium, which generates a great deal of capillary force during drying, and induces cracking of the monoliths during drying if this drying is not carried out slowly over at least a week.
  • the affinity of THF with water causes the oxide precursor salts to diffuse out of the monoliths and therefore the THF washes not only the oily phase but also partially washes the salts from the aqueous phase, which avoid.
  • the use of dichloromethane thus avoids any diffusion of the metal salt precursor of the metal oxide M outside the monolith and guarantees its homogeneous dispersion within the silica matrix.
  • the elimination stage c) is carried out by placing the material resulting from the preceding stage b) in a container containing dichloromethane (CH2Cl2), itself being enclosed in the protected from all humidity, preferably in a desiccator. This thus makes it possible to avoid too rapid evaporation of the dichloromethane.
  • step c) the material obtained in step c) can be dried in the air (step c′), for example under a hood.
  • the metal salts precursors of the metal oxide M come to precipitate (ie recrystallize) within the silica matrix, producing a heterogeneous and dense nucleation of said metal salts within the silica matrix (on the surface of the silica walls), while guaranteeing a homogeneous distribution of the nanoparticles of metallic salts within the silica matrix.
  • the calcination or heat treatment step (steps d) and e)) is important because it calcines the micellar phases by creating a mesoporosity, it sinters the ceramic, and it induces the transformations of the nanoparticle metal salts into metal oxide nanoparticles Mr.
  • the first calcination step (step d)) is implemented by heating the material from the previous step with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, d an initial temperature at a first calcination temperature of between 160 and 200° C., advantageously 180° C., then this temperature (also called plateau temperature) is maintained for 3 to 6 hours), advantageously for 3 hours.
  • the second calcination step (step e)) is implemented by heating the material from the previous step with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, d an initial temperature at a second calcination temperature of between 600 and 800° C., advantageously 700° C., then this temperature (also called plateau temperature) is maintained for 3 to 6 hours, advantageously for 5 hours.
  • the heat treatment (steps d) and e)) is preferably carried out in air, for example with a first temperature rise ramp from 25° C. to 180° C. (at 1° C. per minute), remaining at 180° C. C for 3 hours. Then, for example, a second temperature rise ramp at 1° C./min is applied from 180° C.
  • M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, W, Fe, Nb, and Y.
  • a porous, self-supporting monolith with multi-scale porosity is obtained, thus comprising macropores, mesopores and micropores, said pores being interconnected.
  • Said monolith obtained according to said method of the invention comprises (preferably consists of) a matrix of silicon oxide, and nanoparticles of metal oxide M, said nanoparticles of metal oxide M being homogeneously distributed within said silicon oxide matrix.
  • the nanoparticles are found on the surface of the macropores as well as on the surface of the walls forming the interconnected porous network.
  • the monolith obtained according to the process in accordance with the first object of the invention has a final molar ratio M/Si ranging from 0, 0001 to 0.57, particularly preferably 0.001 to 0.4, and more particularly preferably 0.05 to 0.2.
  • This final molar ratio depends in particular on the ratio x as defined in the invention.
  • This final molar ratio can be determined by ICP (Inductively Coupled Plasma Analytical Technique) elemental analysis.
  • ICP Inductively Coupled Plasma Analytical Technique
  • the material obtained according to the process in accordance with the first object of the invention can be as defined in the second object of the invention described below.
  • the second subject of the invention is a material in the form of a monolith, characterized in that it comprises a matrix of silicon oxide, and nanoparticles of a metal oxide M, and in that:
  • - M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In,
  • said material has a multi-scale porosity
  • said material is obtained from an oil-in-water emulsion comprising a silica precursor and at least one metallic salt precursor of metal oxide M, such that the M/Si molar ratio (called ratio x in the present invention ) in said emulsion is a number between 0.05 and 0.57 (limits included).
  • the matrix of silicon oxide is a continuous matrix.
  • x is between 0.1 and 0.57, preferably between 0.2 and 0.57, and even more advantageously between 0.3 and 0.57 (limits included) .
  • x can for example be equal to 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.55 or 0.57.
  • M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, W, Fe, Nb, and Y.
  • Said monolith of the invention comprises (preferably consists of) a silicon oxide matrix, and metal M oxide nanoparticles, said metal M oxide nanoparticles being distributed homogeneously within said silicon oxide matrix.
  • the metal oxide nanoparticles M are homogeneously distributed or dispersed at the macroscopic scale.
  • the monolith of the invention is a self-supporting monolith.
  • material with multi-scale porosity is understood to mean a material comprising macropores (these originating from the oily phase and the elimination thereof by treatment with dichloromethane), mesopores (those ci from micellar or lyotropic systems), and micropores (these come from the statistical distribution of SiCU tetrahedra in geometric space).
  • Macropores can be identified by scanning electron microscopy (TEM) and their junction windows quantified by mercury intrusion measurements.
  • TEM scanning electron microscopy
  • the implementation of the mercury intrusion technique shows the good mechanical strength of the monoliths obtained, which resist the mercury pressures to which they are subjected during the measurements.
  • Mesoporosity can be identified by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the vermicular texture of the mesoporosity can be identified by small angle X-ray diffraction, this technique also being used to quantify the pore-to-pore distance.
  • Mesoporosity and microporosity can be quantified and segregated by a nitrogen adsorption-desorption technique whose counting is done by the BET calculation method globalizing mesoporosity and microporosity (Brunauer, Emmett and Teller model or BET method (S. Brunauer, PH Emmet, E.
  • the material of the invention is a porous monolith with multi-scale porosity, thus comprising macropores, mesopores and micropores, said pores being interconnected.
  • the metal oxide nanoparticles M are found on the surface of the macropores as well as on the surface and in the volume of the walls forming the interconnected porous network.
  • the material comprises macropores having an average dimension dA of 0.5 to 60 micrometers, mesopores having an average dimension dE of 20 to 30 ⁇ , and micropores having an average dimension dl of 5 to 10 ⁇ , said pores being interconnected.
  • the oily phase/aqueous phase volume fraction makes it possible to control the size of the macropores.
  • An increase in said volume fraction leads to an increase in the viscosity of the reaction medium, and consequently in shear during stirring.
  • the droplets in the emulsion become smaller.
  • a reduction in the size of the droplets causes a reduction in the thickness of the walls of said droplets, said walls forming the structure of the porous material and ensuring its mechanical strength.
  • the oily phase/aqueous phase volume ratio is preferably less than 0.78, advantageously between 0.6 and 0.7 (limits included).
  • the material has a specific surface of between 400 and 1000 m 2 /g, preferably between 400 and 800 m 2 /g, and particularly preferably between 400 and 600 m 2 /g (terminals included). This thus makes it possible to obtain a material having optimal adsorption properties.
  • the specific surface is determined by methods well known to those skilled in the art, and in particular by the BET method, preferably using dinitrogen as gas.
  • the monolith of the invention has a final M/Si molar ratio ranging from 0.0001 to 0.57, particularly preferably from 0.001 to 0.4, and more particularly preferred from 0.05 to 0.2. This molar ratio depends in particular on the ratio x as defined in the invention.
  • the material in accordance with the second object of the invention can advantageously be obtained according to a method as defined in the first object of the invention.
  • the materials according to the invention can be used in processes for the adsorption and specific storage of toxic gases such as in particular CO, NOx and CO2.
  • They can more particularly be used in the catalytic oxidation of CO to CO2.
  • FIGS. 1 to 4 The invention is illustrated by FIGS. 1 to 4 and the example which follow.
  • FIG. 1 represents images of monoliths obtained by the process according to the invention, (a) monoliths of cerium oxide with from right to left Si(HIPE); Ceo,osSi(HIPE); Ceo,iSi(HIPE) and Ceo,5?Si(HIPE). b-g Scanning electron microscopy (SEM) images showing macroporosity interconnected with b-c Ceo,osSi(HIPE); d-e Ceo,iSi(HIPE) and f-g Ceo,5?Si(HIPE).
  • SEM Scanning electron microscopy
  • FIG. 2 represents the images obtained by transmission electron microscopy (TEM) for Ce-Si(HIPE) a-b Ceo,osSi(HIPE) oxides; c-d Ceo,iSi(HIPE) and e-f Ceo,5?Si(HIPE).
  • gh are images obtained by transmission electron diffraction which show the aggregation of Ceo,5?Si(HIPE) nanoparticles which correspond to the diffraction diagrams h,k, and I of the cubic phase of CeC in accordance with figure 3 .
  • FIG. 3 represents the diagrams obtained by wide-angle X-ray scattering on various Si-oxides (HIPE) in accordance with the invention.
  • HIPE Nickel oxides Si
  • HIPE Nickel oxides Si
  • middle curve Nio,i-Si
  • upper curve Nio,57-Si (HIPE) representing the main diagrams of diffraction h, k, I (111) and (200) of cubic phase NiO (JCPDS 47-1049)
  • FIG. 4 represents the catalytic activity of an oxide-Si (HIPE) in accordance with the invention. Description of embodiments
  • TTAB solution tetradecyl-trimethyl ammonium bromide
  • This acidic aqueous phase is left stirring for 10 minutes to homogenize, then 37 g of dodecane are added drop by drop for emulsification (direct oil-in-water emulsion).
  • This resulting emulsion is then poured into small hemolysis tubes where solidification takes place (polycondensation of the silica network: the Si(OH)4 polycondensate to give SiC and form the continuous matrix of silicon oxide).
  • These tubes are then closed and placed in polypropylene beakers with a bottom of water (to avoid possible drying of the silica network during the polycondensation), these beakers are covered with parafilm. Maturation/aging associated with polycondensation takes place for 15 days.
  • the monoliths are unmolded and placed in beakers containing dichloromethane (CH2Cl2), and these beakers locked up in desiccators. This washing of the oily phase with CH2Cl2 is carried out overnight. Then, the monoliths are removed and left to air dry under a hood without any special precautions for 2 to 3 days. During this drying step, the metal oxide salts M crystallize by heterogeneous nucleation at the surface and in the volume of the continuous silicic network. In a last step a heat treatment is applied. The heat treatment is carried out in air with a first temperature rise ramp from 25° C. to 180° C. (at 1° C. per minute), remaining at 180° C. for 3 hours.
  • CH2Cl2 dichloromethane
  • a second temperature rise ramp at 1°C per minute is applied from 180°C to 700°C; the materials are maintained at 700°C for 5 hours.
  • the temperature drop to room temperature is uncontrolled, induced by the inherent thermal inertia of the furnace.
  • the monoliths are then removed from the oven and analyzed.
  • Mx-Si(HIPE) the mixed oxides (MO y )x-SiO2(HIPE) synthesized here
  • Mx-Si(HIPE) the mixed oxides (MO y )x-SiO2(HIPE) synthesized here
  • M represents the metal in question
  • x here represents the M/Si molar ratio used during the synthesis, and in particular during step a).
  • the masses of precursors added to the aqueous solution of TTAB are also indicated:
  • Figure 1 a-g illustrates interconnected macroporosity as revealed by scanning electron microscopy (SEM).
  • Energy dispersive X-ray spectroscopy (EDX) demonstrates the homogeneous distribution of transition or metalloid elements within the silicic matrix ( Figure 1 h-j).
  • FIG. 2 represents the images obtained by transmission electron microscopy (TEM) imaging which highlights the mesoporosity of the silica and demonstrates the nanometric character of the nucleated nanooxides within the silica matrix.
  • TEM transmission electron microscopy
  • DET electronic transmission diffraction
  • WAXS Wide Angle X-ray Scattering
  • the mass of precursor C0Cl2. 6H2O added to the aqueous solution of TTAB is 3.255 g. This thus makes it possible to obtain a final molar ratio M/Si of 0.162.
  • the catalytic activity of the monolith was studied in the oxidation reaction of carbon monoxide to carbon dioxide.
  • the reaction was carried out in a tubular fixed-bed reactor containing 50 mg of the previously ground cobalt-based monolith.
  • the monolith is activated beforehand for two hours by supplying the reactor comprising said monolith with a flow of gas consisting of 29 ml/min of oxygen and 59.4 ml/min of nitrogen for 2 hours, at 500° C. (heating temperature of 10°C/min).
  • the reactor is then fed continuously with a gas flow consisting of 11.6 ml/min of carbon monoxide, 29 ml/min of oxygen, and the remainder in nitrogen (total flow of 100 ml/min), which corresponds at a CO/O2 molar ratio of 0.4 and a weighted hourly space velocity (well known as “weight hourly space velocity” or WHSV) of 120,000 I.h 1 . kg 1 .
  • the reactor is then placed in a tube furnace and subjected to a temperature increase with a heating rate of 5° C./min.
  • the effluents from the reactor are analyzed with a gas chromatography device (Varian GC-3800) equipped with a thermal conductivity detector (the temperatures applied for the injector, the oven, and the detector are respectively 150°C, 50 °C, and 120°C).
  • FIG. 4 shows the conversion of carbon monoxide (in %) as a function of the temperature (in °C), and thus translates the catalytic performances of the monolith of the invention during the oxidation.
  • the monolith in accordance with the invention makes it possible to convert 50% of the carbon monoxide at a temperature of 145°C, and 100% at a temperature of 200°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Disclosed is a method for preparing a monolith with multiscale porosity, the monolith comprising a silicon oxide matrix, and nanoparticles of a metal oxide M, M representing a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In, the method comprising a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, the aqueous phase comprising a cationic surfactant, at least one metal oxide precursor metal salt and one silica precursor, a step of polycondensation, a step of eliminating the oily phase by treatment with dichloromethane, and calcination taking place in two steps.

Description

Métallo-oxydes nanoparticulaires monolithiques à porosité multi- échelles Monolithic nanoparticle metallo-oxides with multi-scale porosity
La présente invention concerne un procédé de synthèse de monolithes d'oxydes mixtes à porosité multi-échelles, les matériaux obtenus et leur utilisation. The present invention relates to a process for the synthesis of monoliths of mixed oxides with multi-scale porosity, the materials obtained and their use.
Etat de la technique State of the art
Les oxydes métalliques sont des catalyseurs spécifiques qui sont mis en œuvre dans de très nombreuses applications en fonction du type d'oxyde métallique. On peut citer à titre d'exemple l'oxydation du CO en CO2 pour l'oxyde de cobalt, l'oxydation du cyclohexane et du n-hexane pour l'oxyde de manganèse, l'hydro-désoxygénation pour l'oxyde de molybdène, la photocatalyse pour l'oxyde de tungstène, de zinc ou de tantale. Ces oxydes métalliques sont d'autant plus actifs qu'ils sont divisés (petits) et ce à l'échelle nanométrique. Le problème est que ces nano-objets sont alors très pulvérulents, il est donc avantageux de les stabiliser/ancrer dans une matrice d'accueil. Metal oxides are specific catalysts which are implemented in very many applications depending on the type of metal oxide. Examples include the oxidation of CO to CO2 for cobalt oxide, the oxidation of cyclohexane and n-hexane for manganese oxide, hydro-deoxygenation for molybdenum oxide , photocatalysis for tungsten, zinc or tantalum oxide. These metal oxides are all the more active as they are divided (small) and this at the nanometric scale. The problem is that these nano-objects are then very powdery, so it is advantageous to stabilize/anchor them in a host matrix.
C'est ainsi que les inventeurs ont proposé des monolithes d'oxydes mixtes à porosité multi-échelles. La synthèse de ces matériaux baptisés Si(HIPE), HIPE étant l'acronyme pour High Internal Phase Emulsion (Emulsion à Phase Interne Elevée) qui repose sur le couplage entre chimie sol-gel et fluides complexes (émulsions huile dans eau, et mésophases lyotropes) a fait l'objet de nombreux travaux par les inventeurs au début des années 2000 (demande de brevet FR. 0303774 ; F. Carn et al. J. Mat. Chem. 2004, 14, 1370). Depuis, toute une panoplie de matériaux inorganiques siliciques aux morphologies variées a été développée (A. Roucher et al. J. Sol-Gel Sci. Tech., 2019, 90, 95) et ces matériaux ont été hybridés par des ormosils, des enzymes, des bactéries pour asseoir une propriété catalytique spécifique (A. Roucher et al. The Chemical Record, 2018, 18, 776). This is how the inventors proposed monoliths of mixed oxides with multi-scale porosity. The synthesis of these materials called Si(HIPE), HIPE being the acronym for High Internal Phase Emulsion, which is based on the coupling between sol-gel chemistry and complex fluids (oil-in-water emulsions, and lyotropic mesophases ) was the subject of numerous works by the inventors in the early 2000s (patent application FR. 0303774; F. Carn et al. J. Mat. Chem. 2004, 14, 1370). Since then, a whole range of silicic inorganic materials with various morphologies have been developed (A. Roucher et al. J. Sol-Gel Sci. Tech., 2019, 90, 95) and these materials have been hybridized by ormosils, enzymes , bacteria to establish a specific catalytic property (A. Roucher et al. The Chemical Record, 2018, 18, 776).
Parmi ces matériaux monolithiques, les inventeurs ont préparé des oxydes mixtes de types TiO2@Si(HIPE) qui ont vocation à être utilisés dans la photoréduction en volume de CO2 pour la formation en continue de carburants « solaires » (S. Bernadet et al., Adv. Funct Mat., 2019, 29, 1807767). Ces matériaux sont synthétisés en deux étapes : une synthèse d'une mousse céramique Si(HIPE) suivie par une infiltration (en tirant sous vide) d'un sol acide de précurseurs de TiOz à base d'isopropoxyde de titane (FR.18-53644, FR.17-53757, FR.-1753758 et FR.17-53759). Among these monolithic materials, the inventors have prepared mixed oxides of the TiO2@Si(HIPE) type which are intended to be used in the volume photoreduction of CO2 for the continuous formation of “solar” fuels (S. Bernadet et al. , Adv.Funct Mat., 2019, 29, 1807767). These materials are synthesized in two steps: a synthesis of an Si(HIPE) ceramic foam followed by infiltration (by pulling under vacuum) of an acid sol of TiOz precursors based on titanium isopropoxide (FR.18-53644, FR.17-53757, FR. -1753758 and FR.17-53759).
Cependant ces procédés de synthèse à deux étapes sont longs donc difficiles à mettre en œuvre à l'échelle industrielle. En outre, pour de fortes teneurs en isopropoxyde de titane, la viscosité des sols de précurseurs de TiOz ne permet pas une infiltration homogène des sols dans la matrice silicique, et de ce fait le ratio molaire Ti/Si doit être compris entre 0,095 et 0,15 pour conserver une répartition homogène de titane dans le matériau monolithique. However, these two-step synthesis methods are long and therefore difficult to implement on an industrial scale. In addition, for high titanium isopropoxide contents, the viscosity of the soils of TiOz precursors does not allow homogeneous infiltration of the soils into the silica matrix, and therefore the Ti/Si molar ratio must be between 0.095 and 0. .15 to maintain a homogeneous distribution of titanium in the monolithic material.
Or, les inventeurs ont découvert un moyen de synthétiser des oxydes métalliques à fortes teneurs en sels de métaux, tout en asseyant un caractère nanométrique des oxydes néoformés au sein de la matrice silique ainsi qu'une répartition homogène desdits oxydes au sein de la matrice silicique. However, the inventors have discovered a means of synthesizing metal oxides with high levels of metal salts, while establishing a nanometric character of the newly formed oxides within the silicic matrix as well as a homogeneous distribution of said oxides within the silicic matrix .
Un but de l'invention est donc de proposer un procédé de synthèse de métallo-oxydes monolithiques nanoparticulaires à porosité multi-échelles qui soit rapide, en une seule étape et permettent de préparer des matériaux avec des ratios molaires Ti/Si supérieurs à 0,15 tout en gardant le caractère nanométrique des métallo-oxydes néoformés ainsi que leur répartition homogène. An object of the invention is therefore to propose a process for the synthesis of nanoparticulate monolithic metallo-oxides with multi-scale porosity which is rapid, in a single step and makes it possible to prepare materials with Ti/Si molar ratios greater than 0, 15 while keeping the nanometric character of the neoformed metallo-oxides as well as their homogeneous distribution.
Présentation de l'invention Presentation of the invention
L'invention a donc pour premier objet un procédé de préparation d'un monolithe à porosité multi-échelle, ledit monolithe comprenant une matrice d'oxyde de silicium, et des nanoparticules d'un oxyde de métal M, M représentant un métal ou un métalloïde choisi parmi les métaux et métalloïdes suivants : Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In, ledit procédé comprenant : a) une étape d'émulsification d'une phase huileuse dans une phase aqueuse homogène acide, ladite phase aqueuse comprenant un tensioactif cationique, au moins un sel métallique précurseur d'oxyde de métal M, et un précurseur de silice, de sorte que le rapport molaire M/Si (dénommé ci-après rapport x) est un nombre compris entre 0,05 et 0,57 (bornes comprises), b) une étape de polycondensation, c) une étape d'élimination de la phase huileuse par un traitement par du dichlorométhane d'une durée comprise entre 10 et 15 heures (bornes comprises), avantageusement d'une durée de 12 heures, d) une première étape de calcination à une température comprise entre 160 et 200 °C (bornes comprises), avantageusement 180 °C, avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min (bornes comprises), avantageusement égale à l°C/min, le plateau étant maintenu pendant 3 à 6 heures (bornes comprises), avantageusement pendant 3 heures et e) une seconde étape de calcination à une température comprise entre 600 et 800 °C (bornes comprises), avantageusement 700 °C, avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min (bornes comprises), avantageusement égale à l°C/min, le plateau étant maintenu pendant 3 à 6 heures (bornes comprises), avantageusement pendant 5 heures. The invention therefore firstly relates to a method for preparing a monolith with multi-scale porosity, said monolith comprising a matrix of silicon oxide, and nanoparticles of a metal oxide M, M representing a metal or a metalloid selected from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In, said method comprising: a) a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, said aqueous phase comprising a cationic surfactant, at least one metallic salt precursor of metal oxide M, and a precursor of silica, such that the molar ratio M /Si (referred to below as ratio x) is a number between 0.05 and 0.57 (limits included), b) a polycondensation stage, c) a stage of elimination of the oily phase by treatment with dichloromethane for a period of between 10 and 15 hours (limits included), advantageously for a period of 12 hours, d) a first calcining step at a temperature of between 160 and 200°C (limits included), advantageously 180°C, with a heating rate of between 0.5 and 2°C/min (limits included), advantageously equal to l ° C / min, the plateau being maintained for 3 to 6 hours (limits included), advantageously for 3 hours and e) a second calcination step at a temperature between 600 and 800 ° C (limits included), advantageously 700 ° C , with a heating rate of between 0.5 and 2° C./min (limits included), advantageously equal to 1° C./min, the plateau being maintained for 3 to 6 hours (limits included), advantageously for 5 hours.
Au sens de la présente invention, on entend par monolithe un objet solide dont la plus petite dimension est d'au moins 1 mm. Les monolithes sont faciles à mettre en forme (colonnes, films, billes) du fait de l'absence de de pulvérulence. Within the meaning of the present invention, monolith is understood to mean a solid object whose smallest dimension is at least 1 mm. The monoliths are easy to shape (columns, films, balls) due to the absence of dustiness.
Dans le monolithe obtenu selon le procédé de l'invention, la matrice d'oxyde de silicium est une matrice continue. In the monolith obtained according to the method of the invention, the silicon oxide matrix is a continuous matrix.
Ledit monolithe est un monolithe d'oxydes mixtes en ce qu'il comprend plusieurs oxydes, i.e. au moins un oxyde de silicium et au moins un oxyde de métal M. Said monolith is a monolith of mixed oxides in that it comprises several oxides, i.e. at least one silicon oxide and at least one metal oxide M.
Au sens de la présente invention, on entend par oxyde de métal M nanoparticulaire ou nanoparticules d'un oxyde de métal M, un oxyde ayant au moins une dimension inférieure ou égale à 500 nm environ, de préférence inférieure ou égale à 200 nm, et de façon particulièrement préférée inférieure ou égale à 100 nm. Within the meaning of the present invention, by nanoparticle metal oxide M or nanoparticles of a metal M oxide is meant an oxide having at least one dimension less than or equal to approximately 500 nm, preferably less than or equal to 200 nm, and particularly preferably less than or equal to 100 nm.
L'oxyde de métal M a de préférence au moins une dimension supérieure à 10 nm, et de préférence supérieure à 50 nm. La ou les dimensions d'un oxyde de métal M peut être déterminée par des méthodes bien connues de l'homme du métier et en particulier par MET (microscopie électronique à transmission). The metal oxide M preferably has at least one dimension greater than 10 nm, and preferably greater than 50 nm. The dimension(s) of a metal oxide M can be determined by methods well known to those skilled in the art and in particular by TEM (transmission electron microscopy).
Au sens de la présente invention, la phase aqueuse acide présente un pH inférieur au point isoélectrique de la silice, i.e. inférieur à 2,1, et de préférence compris entre 0,05 (acidité de Hammet) et 1 (bornes comprises). Within the meaning of the present invention, the acidic aqueous phase has a pH below the isoelectric point of silica, i.e. below 2.1, and preferably between 0.05 (Hammet's acidity) and 1 (limits included).
Le rapport molaire M/Si ou rapport x est un nombre compris entre 0,05 et 0,57 (bornes comprises) et désigne le rapport molaire dans l'émulsion huile dans eau obtenue à l'issue de l'étape a), x reste toutefois sensiblement constant lors des étapes a), b) et c). The M/Si molar ratio or ratio x is a number between 0.05 and 0.57 (limits included) and designates the molar ratio in the oil-in-water emulsion obtained at the end of step a), x remains substantially constant during steps a), b) and c).
Le matériau obtenu à l'issue de l'étape a) peut être représenté par la formule (I) suivante : The material obtained at the end of step a) can be represented by the following formula (I):
(MOy)xSiO2 (I) dans laquelle : x représente le rapport molaire M/Si et est un nombre compris entre 0,05 et 0,57 (bornes comprises), et y représente un nombre allant de 1 à 5. (MO y )xSiO 2 (I) in which: x represents the M/Si molar ratio and is a number between 0.05 and 0.57 (limits included), and y represents a number ranging from 1 to 5.
Dans un mode de réalisation avantageux de l'invention, x est compris entre 0,1 et 0,57, de préférence entre 0,2 et 0,57, et encore plus avantageusement entre 0,3 et 0,57 (bornes comprises). Ainsi x peut être par exemple égal à 0,05 ; 0,1 ;0,15 ; 0,2 ; 0,25 ; 0,3 ; 0, 4 ; 0, 5 ; 0,55 ou 0,57. In an advantageous embodiment of the invention, x is between 0.1 and 0.57, preferably between 0.2 and 0.57, and even more advantageously between 0.3 and 0.57 (limits included) . Thus x can for example be equal to 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.55 or 0.57.
Au-delà de 0,57, le matériau obtenu selon le procédé de l'invention peut perdre son caractère monolithique. x est déterminé de préférence à l'aide des quantités respectives de précurseur de silice et de sel métallique précurseur d'oxyde métallique (oxyde de métal M) utilisés lors de l'étape a). Beyond 0.57, the material obtained according to the method of the invention may lose its monolithic character. x is preferably determined with the aid of the respective quantities of silica precursor and metal salt precursor of metal oxide (metal oxide M) used during step a).
Dans un mode de réalisation avantageux de l'invention, la phase huileuse est constituée par un ou plusieurs composés choisis parmi les alcanes linéaires et ramifiés ayant au moins 9 atomes de carbone. De manière encore plus avantageuse, les alcanes linéaires comprennent entre 10 et 12 atomes de carbone. À titre d'exemple, on peut citer le décane ou le dodécane. Dans un mode de réalisation avantageux de l'invention, le tensioactif cationique est choisi parmi les ammoniums quaternaires ayant au moins 8 atomes de carbone. On peut citer à titre d'exemples le bromure de tetradécyltriméthylammonium (TTAB), le bromure de dodécyltriméthylammonium et le bromure de cétyl-triméthylammonium. In an advantageous embodiment of the invention, the oily phase consists of one or more compounds chosen from linear and branched alkanes having at least 9 carbon atoms. Even more advantageously, the linear alkanes comprise between 10 and 12 carbon atoms. By way of example, mention may be made of decane or dodecane. In an advantageous embodiment of the invention, the cationic surfactant is chosen from quaternary ammonium compounds having at least 8 carbon atoms. Mention may be made, by way of examples, of tetradecyltrimethylammonium bromide (TTAB), dodecyltrimethylammonium bromide and cetyltrimethylammonium bromide.
La concentration en agent tensioactif cationique est de préférence supérieure à 10% en masse par rapport à la quantité totale d'eau, pour obtenir un milieu réactionnel initial visqueux et favoriser la bonne stabilité de l'émulsion malgré le dégagement d'éthanol induit par l'hydrolyse du Si(0Et)4 (TEOS). The concentration of cationic surfactant is preferably greater than 10% by mass relative to the total amount of water, to obtain a viscous initial reaction medium and promote good stability of the emulsion despite the release of ethanol induced by the hydrolysis of Si(0Et)4 (TEOS).
Dans un mode de réalisation avantageux de l'invention, les sels métalliques précurseurs d'oxyde métalliques (i.e. d'oxydes de métal M) sont choisis parmi les chlorures et les nitrures. In an advantageous embodiment of the invention, the metal salts precursors of metal oxide (i.e. of oxides of metal M) are chosen from chlorides and nitrides.
Dans un mode de réalisation avantageux de l'invention, le précurseur de silice est un alcoxyde de silicium. In an advantageous embodiment of the invention, the silica precursor is a silicon alkoxide.
On peut citer à titre d'exemple le tétraéthoxy-orthosilicate (TEOS), le (3-mercaptopropyl)triméthoxyxilane, le (3-aminopropyl)triéthoxysilane, le N-(3-triméthoxysilylpropyl)pyrrole, le 3-(2,4- dinitrophénylamino)propyltriéthoxysilane, le N-(2-aminoéthyl)-3- aminopropyltriméthoxysilane, le phényltriéthoxysilane et le méthyltriéthoxysilane. Le TEOS est particulièrement avantageux. Mention may be made, by way of example, of tetraethoxy-orthosilicate (TEOS), (3-mercaptopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, N-(3-trimethoxysilylpropyl)pyrrole, 3-(2,4- dinitrophenylamino)propyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, phenyltriethoxysilane and methyltriethoxysilane. The TEOS is particularly advantageous.
Les solutions de silicate de sodium peuvent également être envisagées comme précurseur de silice. Sodium silicate solutions can also be considered as a silica precursor.
La concentration en précurseur de la matrice inorganique est, de préférence, supérieure à 10% en masse par rapport à la masse totale de la phase aqueuse, pour obtenir une minéralisation totale du matériau et une bonne tenue mécanique. The concentration of precursor of the inorganic matrix is preferably greater than 10% by mass relative to the total mass of the aqueous phase, to obtain total mineralization of the material and good mechanical strength.
Le procédé peut comprendre en outre avant l'étape a) d'émulsification, une étape d'ajout du sel métallique à une phase aqueuse comprenant le tensioactif cationique, suivie de l'ajout d'un acide (e.g. HCl) pour former une phase aqueuse acide comprenant ledit tensioactif cationique et ledit sel métallique, suivie de l'ajout du précurseur de silice le temps nécessaire pour promouvoir l'hydrolyse du précurseur de silice avant l'étape a). The method may further comprise, before step a) of emulsification, a step of adding the metal salt to an aqueous phase comprising the cationic surfactant, followed by the addition of an acid (eg HCl) to form a phase aqueous acid comprising said cationic surfactant and said metal salt, followed by the addition of the silica precursor the time necessary to promote the hydrolysis of the silica precursor before step a).
L'étape b) de polycondensation est de préférence réalisée à température ambiante, en particulier pendant une période d'au moins 15 jours. Stage b) of polycondensation is preferably carried out at ambient temperature, in particular for a period of at least 15 days.
À l'issue de l'étape b), on obtient un matériau solide (émulsion solidifiée). At the end of step b), a solid material is obtained (solidified emulsion).
L'étape b) étant effectuée en milieu acide, seul le précurseur de silice s'hydrolyse et polycondense. En d'autres termes, le sel métallique précurseur d'oxyde métallique (i.e. précurseur de l'oxyde de métal M) reste intact et ne co-condense pas avec le silicium (il est spectateur de la polycondensation silicique). Stage b) being carried out in an acid medium, only the silica precursor hydrolyses and polycondenses. In other words, the metal salt precursor of metal oxide (i.e. precursor of the metal oxide M) remains intact and does not co-condense with the silicon (it is a spectator of the silicic polycondensation).
L'étape d'élimination c) de la phase huileuse par le dichlorométhane dure de préférence environ une nuit. The stage c) of elimination of the oily phase with dichloromethane preferably lasts about one night.
L'étape d'élimination c) est de préférence suivie d'une période ou étape de séchage c'), par exemple de 2 à 3 jours. The removal step c) is preferably followed by a drying period or step c′), for example 2 to 3 days.
L'étape d'élimination c) permet d'éliminer les résidus organiques provenant de la phase huileuse qui se trouvent essentiellement dans les macropores. La substitution du THF (tétrahydrofurane) par le dichlorométhane est une différence essentielle avec les procédés connus de l'état antérieur de la technique, notamment celui décrit dans WO 2004087610. En effet, le THF possède une bonne affinité avec l'eau et de ce fait entraine des séchages rapides du milieu continu aqueux, ce qui génère énormément de force de capillarité pendant le séchage, et induit des craquages des monolithes lors du séchage si ce séchage n'est pas effectué lentement sur une semaine au moins. De plus, l'affinité du THF avec l'eau entraine une diffusion des sels précurseurs d'oxyde hors des monolithes et de ce fait le THF lave non seulement la phase huileuse mais lave aussi partiellement les sels de la phase aqueuse, ce qu'il faut éviter. L'utilisation du dichlorométhane évite ainsi toute diffusion du sel métallique précurseur de l'oxyde de métal M hors du monolithe et garantit sa dispersion homogène au sein de la matrice de silice. Selon une forme de réalisation préférée de l'invention, l'étape d'élimination c) est effectuée en plaçant le matériau issu de l'étape précédente b) dans un récipient contenant du dichlorométhane (CH2CI2), lui- même étant enfermé à l'abri de toute humidité, de préférence dans un dessiccateur. Cela permet ainsi d'éviter une évaporation trop rapide du dichlorométhane. The elimination step c) makes it possible to eliminate the organic residues originating from the oily phase which are essentially found in the macropores. The substitution of THF (tetrahydrofuran) by dichloromethane is an essential difference with the processes known from the prior state of the art, in particular that described in WO 2004087610. Indeed, THF has a good affinity with water and this causes rapid drying of the aqueous continuous medium, which generates a great deal of capillary force during drying, and induces cracking of the monoliths during drying if this drying is not carried out slowly over at least a week. In addition, the affinity of THF with water causes the oxide precursor salts to diffuse out of the monoliths and therefore the THF washes not only the oily phase but also partially washes the salts from the aqueous phase, which avoid. The use of dichloromethane thus avoids any diffusion of the metal salt precursor of the metal oxide M outside the monolith and guarantees its homogeneous dispersion within the silica matrix. According to a preferred embodiment of the invention, the elimination stage c) is carried out by placing the material resulting from the preceding stage b) in a container containing dichloromethane (CH2Cl2), itself being enclosed in the protected from all humidity, preferably in a desiccator. This thus makes it possible to avoid too rapid evaporation of the dichloromethane.
Ensuite, le matériau obtenu à l'étape c) peut être séché à l'air (étape c'), par exemple sous une hotte. Then, the material obtained in step c) can be dried in the air (step c′), for example under a hood.
Au cours de l'étape de séchage c'), les sels métalliques précurseurs de l'oxyde de métal M viennent précipiter (i.e. recristallisent) au sein de la matrice de silice, produisant une nucléation hétérogène et dense desdits sels métalliques au sein de la matrice de silice (en surface des murs siliciques), tout en garantissant une répartition homogène des nanoparticules de sels métalliques au sein de la matrice silicique. During the drying step c′), the metal salts precursors of the metal oxide M come to precipitate (ie recrystallize) within the silica matrix, producing a heterogeneous and dense nucleation of said metal salts within the silica matrix (on the surface of the silica walls), while guaranteeing a homogeneous distribution of the nanoparticles of metallic salts within the silica matrix.
L'étape de calcination ou traitement thermique (étapes d) et e)) est importante car elle calcine les phases micellaires en créant une mésoporosité, elle fritte la céramique, et elle induit les transformations des sels métalliques nanoparticulaires en nanoparticules d'oxyde de métal M. The calcination or heat treatment step (steps d) and e)) is important because it calcines the micellar phases by creating a mesoporosity, it sinters the ceramic, and it induces the transformations of the nanoparticle metal salts into metal oxide nanoparticles Mr.
La première étape de calcination (étape d)) est mise en œuvre en chauffant le matériau de l'étape précédente avec une vitesse de chauffe comprise entre 0,5 et 2°C/min, avantageusement égale à l°C/min, d'une température initiale à une première température de calcination comprise entre 160 et 200°C, avantageusement 180°C, puis celle-ci (également appelée température de plateau) est maintenue pendant 3 à 6 heures), avantageusement pendant 3 heures. The first calcination step (step d)) is implemented by heating the material from the previous step with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, d an initial temperature at a first calcination temperature of between 160 and 200° C., advantageously 180° C., then this temperature (also called plateau temperature) is maintained for 3 to 6 hours), advantageously for 3 hours.
La deuxième étape de calcination (étape e)) est mise en œuvre en chauffant le matériau de l'étape précédente avec une vitesse de chauffe comprise entre 0,5 et 2°C/min, avantageusement égale à l°C/min, d'une température initiale à une deuxième température de calcination comprise entre 600 et 800°C, avantageusement 700°C, puis celle-ci (également appelée température de plateau) est maintenue pendant 3 à 6 heures, avantageusement pendant 5 heures. Le traitement thermique (étapes d) et e)) est de préférence opéré sous air, par exemple avec une première rampe de montée en température de 25°C à 180°C (à 1°C par minute), en restant à 180°C pendant 3 heures. Ensuite, par exemple une seconde rampe de montée en température à l°C/mn est appliquée de 180°C à 700°C et les matériaux sont maintenus à 700°C pendant 5 heures. La descente en température à la température ambiante est non contrôlée et induite par l'inertie thermique inhérente du four. Cette étape permet d'éliminer les résidus organiques provenant de l'agent tensioactif qui se trouvent essentiellement dans les mésopores. The second calcination step (step e)) is implemented by heating the material from the previous step with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, d an initial temperature at a second calcination temperature of between 600 and 800° C., advantageously 700° C., then this temperature (also called plateau temperature) is maintained for 3 to 6 hours, advantageously for 5 hours. The heat treatment (steps d) and e)) is preferably carried out in air, for example with a first temperature rise ramp from 25° C. to 180° C. (at 1° C. per minute), remaining at 180° C. C for 3 hours. Then, for example, a second temperature rise ramp at 1° C./min is applied from 180° C. to 700° C. and the materials are maintained at 700° C. for 5 hours. The temperature drop to room temperature is uncontrolled and induced by the inherent thermal inertia of the oven. This step makes it possible to eliminate the organic residues originating from the surfactant which are essentially found in the mesopores.
Selon un mode de réalisation avantageux, M représente un métal ou un métalloïde choisi parmi les métaux et métalloïdes suivants : Cr, Co, Mn, Ni, Ce, V, W, Fe, Nb, et Y. According to an advantageous embodiment, M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, W, Fe, Nb, and Y.
À l'issue du procédé de l'invention, on obtient un monolithe poreux, autosupporté, à porosité multi-échelle, comprenant ainsi des macropores, des mésopores et des micropores, lesdits pores étant interconnectés. At the end of the method of the invention, a porous, self-supporting monolith with multi-scale porosity is obtained, thus comprising macropores, mesopores and micropores, said pores being interconnected.
Ledit monolithe obtenu selon ledit procédé de l'invention comprend (de préférence est constitué d') une matrice d'oxyde de silicium, et des nanoparticules d'oxyde de métal M, lesdites nanoparticules d'oxyde de métal M étant réparties de façon homogène au sein de ladite matrice d'oxyde de silicium. Said monolith obtained according to said method of the invention comprises (preferably consists of) a matrix of silicon oxide, and nanoparticles of metal oxide M, said nanoparticles of metal oxide M being homogeneously distributed within said silicon oxide matrix.
En particulier, les nanoparticules se trouvent à la surface des macropores ainsi qu'à la surface des parois formant le réseau poreux interconnecté. In particular, the nanoparticles are found on the surface of the macropores as well as on the surface of the walls forming the interconnected porous network.
Selon un mode de réalisation préféré de l'invention, le monolithe obtenu selon le procédé conforme au premier objet de l'invention (i.e. à l'issue de l'étape e)) possède un rapport molaire final M/Si allant de 0,0001 à 0,57, de façon particulièrement préférée de 0,001 à 0,4, et de façon plus particulièrement préférée de 0,05 à 0,2. Ce rapport molaire final dépend notamment du rapport x tel que défini dans l'invention. According to a preferred embodiment of the invention, the monolith obtained according to the process in accordance with the first object of the invention (ie at the end of step e)) has a final molar ratio M/Si ranging from 0, 0001 to 0.57, particularly preferably 0.001 to 0.4, and more particularly preferably 0.05 to 0.2. This final molar ratio depends in particular on the ratio x as defined in the invention.
Ce rapport molaire final peut être déterminé par analyse élémentaire ICP (technique analytique à plasma à couplage inductif). Le matériau obtenu selon le procédé conforme au premier objet de l'invention peut être tel que défini dans le deuxième objet de l'invention décrit ci-après. This final molar ratio can be determined by ICP (Inductively Coupled Plasma Analytical Technique) elemental analysis. The material obtained according to the process in accordance with the first object of the invention can be as defined in the second object of the invention described below.
L'invention a pour deuxième objet un matériau sous forme d'un monolithe caractérisé en ce qu'il comprend une matrice d'oxyde de silicium, et des nanoparticules d'un oxyde de métal M, et en ce que : The second subject of the invention is a material in the form of a monolith, characterized in that it comprises a matrix of silicon oxide, and nanoparticles of a metal oxide M, and in that:
- M représente un métal ou un métalloïde choisi parmi les métaux et métalloïdes suivants : Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In, - M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In,
- ledit matériau possède une porosité multi-échelle, et - said material has a multi-scale porosity, and
- ledit matériau est obtenu à partir d'une émulsion huile dans eau comprenant un précurseur de silice et au moins un sel métallique précurseur d'oxyde de métal M, de sorte que le rapport molaire M/Si (dénommé rapport x dans la présente invention) dans ladite émulsion est un nombre compris entre 0,05 et 0,57 (bornes comprises). - said material is obtained from an oil-in-water emulsion comprising a silica precursor and at least one metallic salt precursor of metal oxide M, such that the M/Si molar ratio (called ratio x in the present invention ) in said emulsion is a number between 0.05 and 0.57 (limits included).
Dans le monolithe de l'invention, la matrice d'oxyde de silicium est une matrice continue. In the monolith of the invention, the matrix of silicon oxide is a continuous matrix.
Dans un mode de réalisation avantageux de l'invention, x est compris entre 0,1 et 0,57, de préférence entre 0,2 et 0,57, et encore plus avantageusement entre 0,3 et 0,57 (bornes comprises). Ainsi, x peut être par exemple égal à 0,05 ; 0,1 ;0,15 ; 0,2 ; 0,25 ; 0,3 ; 0, 4 ; 0, 5 ; 0,55 ou 0,57. In an advantageous embodiment of the invention, x is between 0.1 and 0.57, preferably between 0.2 and 0.57, and even more advantageously between 0.3 and 0.57 (limits included) . Thus, x can for example be equal to 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.55 or 0.57.
Selon un mode de réalisation avantageux, M représente un métal ou un métalloïde choisi parmi les métaux et métalloïdes suivants : Cr, Co, Mn, Ni, Ce, V, W, Fe, Nb, et Y. According to an advantageous embodiment, M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, W, Fe, Nb, and Y.
Ledit monolithe de l'invention comprend (de préférence est constitué d') une matrice d'oxyde de silicium, et des nanoparticules d'oxyde de métal M, lesdites nanoparticules d'oxyde de métal M étant réparties de façon homogène au sein de ladite matrice d'oxyde de silicium. Said monolith of the invention comprises (preferably consists of) a silicon oxide matrix, and metal M oxide nanoparticles, said metal M oxide nanoparticles being distributed homogeneously within said silicon oxide matrix.
Les nanoparticules d'oxyde de métal M sont réparties ou dispersées de manière homogène à l'échelle macroscopique. Le monolithe de l'invention est un monolithe autosupporté. The metal oxide nanoparticles M are homogeneously distributed or dispersed at the macroscopic scale. The monolith of the invention is a self-supporting monolith.
Conformément à l'invention, on entend par matériau à porosité à multi-échelle un matériau comprenant des macropores (celles-ci provenant de la phase huileuse et de l'élimination de celle-ci par traitement au dichlorométhane), des mésopores (celles-ci provenant des systèmes micellaires ou lyotropes), et des micropores (celles-ci provenant de la répartition statistique des tétraèdres SiCU dans l'espace géométrique). In accordance with the invention, material with multi-scale porosity is understood to mean a material comprising macropores (these originating from the oily phase and the elimination thereof by treatment with dichloromethane), mesopores (those ci from micellar or lyotropic systems), and micropores (these come from the statistical distribution of SiCU tetrahedra in geometric space).
Les macropores peuvent être identifiés par microscopie électronique à balayage (MET) et leurs fenêtres de jonctions quantifiées par des mesures d'intrusion mercure. La mise en œuvre de la technique d'intrusion de mercure montre la bonne tenue mécanique des monolithes obtenus, qui résistent aux pressions de mercure auxquelles ils sont soumis lors des mesures. Macropores can be identified by scanning electron microscopy (TEM) and their junction windows quantified by mercury intrusion measurements. The implementation of the mercury intrusion technique shows the good mechanical strength of the monoliths obtained, which resist the mercury pressures to which they are subjected during the measurements.
La mésoporosité peut être identifiée par microscopie électronique à transmission (MET). La texture vermiculaire de la mésoporosité peut être, identifiée par diffraction des R.X aux petits angles, cette technique servant également à quantifier la distance de pore à pore. La mésoporosité et la microporosité peuvent être quantifiées et ségrégées par une technique d'adsorption-désorption d'azote dont le dépouillement se fait par la méthode de calcul BET globalisant mésoporosité et microporosité (modèle de Brunauer, Emmett et Teller ou méthode BET (S. Brunauer, P. H. Emmet, E. Teller, Journal of the American Chemical Society, vol 60(2), pages 309-319 (1938)) et par la méthode de calcul B. J. H (Barrett, Joyner et Halenda (1951) Journal of the American Chemical Society, 73, 373-380), selon laquelle la ségrégation entre micorporosité et mésoporosité devient effective, la méthode BJH ne considérant que les pores supérieurs à 1,5 angstroms. Mesoporosity can be identified by transmission electron microscopy (TEM). The vermicular texture of the mesoporosity can be identified by small angle X-ray diffraction, this technique also being used to quantify the pore-to-pore distance. Mesoporosity and microporosity can be quantified and segregated by a nitrogen adsorption-desorption technique whose counting is done by the BET calculation method globalizing mesoporosity and microporosity (Brunauer, Emmett and Teller model or BET method (S. Brunauer, PH Emmet, E. Teller, Journal of the American Chemical Society, vol 60(2), pages 309-319 (1938)) and by the BJ H calculation method (Barrett, Joyner and Halenda (1951) Journal of the American Chemical Society, 73, 373-380), according to which the segregation between microporosity and mesoporosity becomes effective, the BJH method only considering pores greater than 1.5 Angstroms.
Comme expliqué plus haut, le matériau de l'invention est un monolithe poreux à porosité multi-échelle, comprenant ainsi des macropores, des mésopores et des micropores, lesdits pores étant interconnectés. As explained above, the material of the invention is a porous monolith with multi-scale porosity, thus comprising macropores, mesopores and micropores, said pores being interconnected.
En particulier, les nanoparticules d'oxyde de métal M se trouvent à la surface des macropores ainsi qu'à la surface et dans le volume des parois formant le réseau poreux interconnecté. In particular, the metal oxide nanoparticles M are found on the surface of the macropores as well as on the surface and in the volume of the walls forming the interconnected porous network.
Dans un mode de réalisation avantageux de l'invention, le matériau comprend des macropores ayant une dimension moyenne dA de 0,5 à 60 micromètres, des mésopores ayant une dimension moyenne dE de 20 à 30 Â, et des micropores ayant une dimension moyenne dl de 5 à 10 Â, lesdits pores étant interconnectés. In an advantageous embodiment of the invention, the material comprises macropores having an average dimension dA of 0.5 to 60 micrometers, mesopores having an average dimension dE of 20 to 30 Å, and micropores having an average dimension dl of 5 to 10 Å, said pores being interconnected.
Conformément à l'invention la fraction volumique phase huileuse/phase aqueuse permet de contrôler la taille des macropores. Une augmentation de ladite fraction volumique entraîne une augmentation de la viscosité du milieu réactionnel, et par conséquent du cisaillement lors de l'agitation. Les gouttelettes dans l'émulsion deviennent plus petites. Cependant, une diminution de la dimension des gouttelettes provoque une diminution de l'épaisseur des parois desdites gouttelettes, lesdites parois formant la structure du matériau poreux et assurant sa tenue mécanique. En- dessous d'une certaine épaisseur, qui résulte généralement du rapport volumique phase huileuse/phase aqueuse supérieur à 0,78, la résistance mécanique peut être insuffisante pour obtenir un monolithe et le produit final est sous forme de poudre. Aussi, le rapport volumique phase huileuse/phase aqueuse est de préférence inférieur à 0,78, avantageusement compris entre 0,6 et 0,7 (bornes comprises). In accordance with the invention, the oily phase/aqueous phase volume fraction makes it possible to control the size of the macropores. An increase in said volume fraction leads to an increase in the viscosity of the reaction medium, and consequently in shear during stirring. The droplets in the emulsion become smaller. However, a reduction in the size of the droplets causes a reduction in the thickness of the walls of said droplets, said walls forming the structure of the porous material and ensuring its mechanical strength. Below a certain thickness, which generally results from the oily phase/aqueous phase volume ratio greater than 0.78, the mechanical strength may be insufficient to obtain a monolith and the final product is in the form of a powder. Also, the oily phase/aqueous phase volume ratio is preferably less than 0.78, advantageously between 0.6 and 0.7 (limits included).
Dans un mode de réalisation avantageux de l'invention, le matériau présente une surface spécifique comprise entre 400 et 1000 m2/g, de préférence comprise entre 400 et 800 m2/g, et de façon particulièrement préférée comprise entre 400 et 600 m2/g (bornes comprises). Cela permet ainsi d'obtenir un matériau ayant des propriétés d'adsorption optimales. In an advantageous embodiment of the invention, the material has a specific surface of between 400 and 1000 m 2 /g, preferably between 400 and 800 m 2 /g, and particularly preferably between 400 and 600 m 2 /g (terminals included). This thus makes it possible to obtain a material having optimal adsorption properties.
Dans la présente invention, la surface spécifique est déterminée par des méthodes bien connues de l'homme du métier, et en particulier par la méthode BET, de préférence en utilisant du diazote comme gaz. In the present invention, the specific surface is determined by methods well known to those skilled in the art, and in particular by the BET method, preferably using dinitrogen as gas.
Selon un mode de réalisation préféré de l'invention, le monolithe de l'invention possède un rapport molaire final M/Si allant de 0,0001 à 0,57, de façon particulièrement préférée de 0,001 à 0,4, et de façon plus particulièrement préférée de 0,05 à 0,2. Ce rapport molaire dépend notamment du rapport x tel que défini dans l'invention. According to a preferred embodiment of the invention, the monolith of the invention has a final M/Si molar ratio ranging from 0.0001 to 0.57, particularly preferably from 0.001 to 0.4, and more particularly preferred from 0.05 to 0.2. This molar ratio depends in particular on the ratio x as defined in the invention.
Le matériau conforme au deuxième objet de l'invention peut être avantageusement obtenu selon un procédé tel que défini dans le premier objet de l'invention. Les matériaux selon l'invention peuvent être utilisés dans des procédés d'adsorption et de stockage spécifique de gaz toxiques comme notamment CO, NOx et CO2. The material in accordance with the second object of the invention can advantageously be obtained according to a method as defined in the first object of the invention. The materials according to the invention can be used in processes for the adsorption and specific storage of toxic gases such as in particular CO, NOx and CO2.
Ils peuvent plus particulièrement être utilisés dans l'oxydation catalytique du CO en CO2. They can more particularly be used in the catalytic oxidation of CO to CO2.
Brève description des dessins Brief description of the drawings
L'invention est illustrée par les figures 1 à 4 et l'exemple qui suivent.The invention is illustrated by FIGS. 1 to 4 and the example which follow.
La figure 1 représente des images de monolithes obtenus par le procédé selon l'invention, (a) monolithes d'oxyde de cérium avec de droite à gauche Si(HIPE) ; Ceo,osSi(HIPE) ; Ceo,iSi(HIPE) et Ceo,5?Si(HIPE). b-g Images de microscopie électronique à balayage (MEB) montrant la macroporosité interconnectée avec b-c Ceo,osSi(HIPE) ; d-e Ceo,iSi(HIPE) et f-g Ceo,5?Si(HIPE). h-j investigation par spectroscopie de rayons X à dispersion d'énergie avec focus sur les atomes de silice et de cérium avec h Ceo,osSi(HIPE) ; i Ceo,iSi(HIPE) et j Ceo, 57 i(HIPE). FIG. 1 represents images of monoliths obtained by the process according to the invention, (a) monoliths of cerium oxide with from right to left Si(HIPE); Ceo,osSi(HIPE); Ceo,iSi(HIPE) and Ceo,5?Si(HIPE). b-g Scanning electron microscopy (SEM) images showing macroporosity interconnected with b-c Ceo,osSi(HIPE); d-e Ceo,iSi(HIPE) and f-g Ceo,5?Si(HIPE). h-j investigation by energy dispersive X-ray spectroscopy with focus on silica and cerium atoms with h Ceo,osSi(HIPE); i Ceo,iSi(HIPE) and j Ceo, 57 i(HIPE).
La figure 2 représente les images obtenues en microscopie électronique en transmission (MET) pour des oxydes Ce-Si(HIPE) a-b Ceo,osSi(HIPE) ; c-d Ceo,iSi(HIPE) et e-f Ceo,5?Si(HIPE). g-h sont des images obtenues en diffraction électronique à transmission qui montrent l'agrégation de nanoparticules de Ceo,5?Si(HIPE) qui correspondent aux diagrammes de diffraction h,k, et I de la phase cubique de CeC en accord avec la figure 3. FIG. 2 represents the images obtained by transmission electron microscopy (TEM) for Ce-Si(HIPE) a-b Ceo,osSi(HIPE) oxides; c-d Ceo,iSi(HIPE) and e-f Ceo,5?Si(HIPE). gh are images obtained by transmission electron diffraction which show the aggregation of Ceo,5?Si(HIPE) nanoparticles which correspond to the diffraction diagrams h,k, and I of the cubic phase of CeC in accordance with figure 3 .
La figure 3 représente les digrammes obtenus par diffusion de RX aux grands angles sur divers oxydes-Si (HIPE) conformes à l'invention. a) Oxydes de nickel Si (HIPE) courbe inférieure : Nio,os-Si (HIPE), courbe du milieu : Nio,i-Si (HIPE), courbe supérieure : Nio,57-Si (HIPE) représentant les principaux diagrammes de diffraction h, k, I (111) et (200) de phase cubique NiO (JCPDS 47-1049), b) Oxydes de chrome Si (HIPE) courbe inférieure : Cro,o5-Si (HIPE), courbe du milieu : Cro,i-Si (HIPE), courbe supérieure : Cro,57-Si (HIPE) représentant les principaux diagrammes de diffraction h, k, I (012), (104), (110), (006), (113), (202) et (024) de la phase rhomboédrique CrzCh (JCPDS 38-1479), c) Oxydes de fer Si (HIPE) courbe inférieure : Feo,os-Si (HIPE), courbe du milieu : Feo,i-Si (HIPE), courbe supérieure : Feo,57-Si (HIPE) représentant le principal h, k, I diagrammes de diffraction (012), (110), (113), (202) et (024) de la phase rhomboédrique hématite alpha-FezOs (JCPDS 33-0664), d) Oxydes de manganèse Si (HIPE), courbe inférieure : Mno, os-Si (HIPE), courbe du milieu : Mno,i-Si (HIPE), courbe supérieure : Mno,57-Si (HIPE) ; on peut observer les principaux diagrammes de diffraction de Mn3Û4 (JCPDS 24-0734) et MnzOs (JCPDS 41-1442) système biphasique, e) Oxydes de cérium Si (HIPE) courbe inférieure : Ceo,os-Si (HIPE), courbe du milieu : Ceo,i-Si (HIPE), courbe supérieure : Ceo,57-Si (HIPE) nous pouvons observer les principaux (111), (200) et (220) pics de diffraction de la phase cubique monophasique CeOz (JCPDS 34-0394), f) Oxydes de vanadium Si (HIPE), courbe inférieure : Vo,os-Si (HIPE), courbe du milieu : Vo,i-Si (HIPE), courbe supérieure : Vo,57-Si (HIPE) on peut observer les principaux pics de diffraction (020), (001), (011), (110), (010) et (130) de la phase cubique V2O5 (JCPDS 41-1426), g) Oxydes de cobalt Si (HIPE), courbe inférieure : Coo,os-Si (HIPE), courbe du milieu : Coo,i-Si (HIPE), courbe supérieure : Coo,57-Si (HIPE) nous pouvons observer les principaux pics de diffraction (111), (220), (311), (222) et (400) de la phase cubique CO3O4 (JCPDS 74-167) avec des pics de diffractions mineurs (*) correspondant à la phase C02SiÛ4 (JCPDS- 76-1501), h) Oxydes de tungstène Si (HIPE), courbe inférieure : Wo,os-Si (HIPE), courbe du milieu : Wo,i-Si (HIPE), courbe supérieure : Wo,2-Si (HIPE) on peut observer le principaux (002), (020), (200), (120), (112), (112), (022), (202 : 220) pics de diffraction de la phase cubique WO3 (JCPDS 43-1035). FIG. 3 represents the diagrams obtained by wide-angle X-ray scattering on various Si-oxides (HIPE) in accordance with the invention. a) Nickel oxides Si (HIPE) lower curve: Nio,os-Si (HIPE), middle curve: Nio,i-Si (HIPE), upper curve: Nio,57-Si (HIPE) representing the main diagrams of diffraction h, k, I (111) and (200) of cubic phase NiO (JCPDS 47-1049), b) Chromium oxides Si (HIPE) lower curve: Cro,o5-Si (HIPE), middle curve: Cro ,i-Si (HIPE), upper curve: Cro,57-Si (HIPE) representing the main diffraction patterns h, k, I (012), (104), (110), (006), (113), (202) and (024) of the rhombohedral phase CrzCh (JCPDS 38-1479), c) Iron oxides Si (HIPE) lower curve: Feo,os-Si (HIPE ), middle curve: Feo,i-Si (HIPE), upper curve: Feo,57-Si (HIPE) representing the main h, k, I diffraction patterns (012), (110), (113), ( 202) and (024) of the rhombohedral hematite phase alpha-FezOs (JCPDS 33-0664), d) Manganese oxides Si (HIPE), lower curve: Mno, os-Si (HIPE), middle curve: Mno,i -Si (HIPE), upper curve: Mno.57-Si (HIPE); one can observe the main diffraction diagrams of Mn3Û4 (JCPDS 24-0734) and MnzOs (JCPDS 41-1442) biphasic system, e) Oxides of cerium Si (HIPE) lower curve: Ceo,os-Si (HIPE), curve of the middle: Ceo,i-Si (HIPE), upper curve: Ceo,57-Si (HIPE) we can observe the main (111), (200) and (220) diffraction peaks of the monophasic cubic phase CeOz (JCPDS 34 -0394), f) Vanadium oxides Si (HIPE), lower curve: Vo,os-Si (HIPE), middle curve: Vo,i-Si (HIPE), upper curve: Vo,57-Si (HIPE) one can observe the main diffraction peaks (020), (001), (011), (110), (010) and (130) of the cubic phase V2O5 (JCPDS 41-1426), g) Cobalt oxides Si ( HIPE), lower curve: Coo,os-Si (HIPE), middle curve: Coo,i-Si (HIPE), upper curve: Coo,57-Si (HIPE) we can observe the main diffraction peaks (111) , (220), (311), (222) and (400) of the cubic phase CO3O4 (JCPDS 74-167) with minor diffraction peaks (*) c orresponding to C02SiO4 phase (JCPDS- 76-1501), h) Tungsten oxides Si (HIPE), lower curve: Wo,os-Si (HIPE), middle curve: Wo,i-Si (HIPE), upper curve : Wo,2-Si (HIPE) we can observe the main (002), (020), (200), (120), (112), (112), (022), (202: 220) diffraction peaks cubic phase WO3 (JCPDS 43-1035).
La figure 4 représente l'activité catalytique d'un oxyde-Si (HIPE) conforme à l'invention. Description des modes de réalisation FIG. 4 represents the catalytic activity of an oxide-Si (HIPE) in accordance with the invention. Description of embodiments
Exemple 1 de synthèse conforme à l'invention Example 1 of synthesis in accordance with the invention
Tous les réactifs et solvants utilisés viennent de Sigma-Aldrich et n'ont pas été purifiés avant leur utilisation. La phase aqueuse est une solution TTAB (bromure de tétradécyl-triméthyl ammonium) à 35 % massique. A 16 g de cette solution aqueuse sont ajoutées les quantités idoines de précurseurs d'oxydes métalliques, jusqu'à dissolution ou dispersion homogène (voir tableau 1). Ensuite 5 g d'HCI à 37% massique (12M) sont ajoutés. 5 g de précurseur de silice (TEOS tétraéthyl-orthosilicate) sont ensuite introduits dans la phase aqueuse acide (pH = 0,05) et s'y hydrolysent en devenant Si(OH)4. Cette phase aqueuse acide est laissée sous agitation pendant 10 minutes pour s'homogénéiser, puis 37g de dodécane sont ajoutés goutte à goutte pour l'émulsification (émulsion directe huile dans eau). Cette émulsion résultante est alors coulée dans des petits tubes à hémolyse où siège la prise en masse (polycondensation du réseau silique : les Si(OH)4 polycondensent pour donner SiC et former la matrice continue d'oxyde de silicium). Ces tubes sont alors fermés et placés dans des béchers en polypropylène avec un fond d'eau (pour éviter un séchage éventuel du réseau silicique pendant la polycondensation), ces béchers sont couverts de parafilm. La maturation/vieillissement associé à la polycondensation a lieu pendant 15 jours. All reagents and solvents used are from Sigma-Aldrich and have not been purified prior to use. The aqueous phase is a TTAB solution (tetradecyl-trimethyl ammonium bromide) at 35% by weight. To 16 g of this aqueous solution are added the appropriate quantities of metal oxide precursors, until dissolution or homogeneous dispersion (see Table 1). Then 5 g of HCl at 37% by mass (12M) are added. 5 g of silica precursor (TEOS tetraethyl-orthosilicate) are then introduced into the acidic aqueous phase (pH=0.05) and hydrolyse there, becoming Si(OH)4. This acidic aqueous phase is left stirring for 10 minutes to homogenize, then 37 g of dodecane are added drop by drop for emulsification (direct oil-in-water emulsion). This resulting emulsion is then poured into small hemolysis tubes where solidification takes place (polycondensation of the silica network: the Si(OH)4 polycondensate to give SiC and form the continuous matrix of silicon oxide). These tubes are then closed and placed in polypropylene beakers with a bottom of water (to avoid possible drying of the silica network during the polycondensation), these beakers are covered with parafilm. Maturation/aging associated with polycondensation takes place for 15 days.
Ensuite les monolithes sont démoulés et placés dans des béchers contenant du dichlorométhane (CH2CI2), et ces béchers enfermés dans des dessiccateurs. Ce lavage de la phase huileuse par le CH2CI2 est opéré une nuit. Ensuite, les monolithes sont retirés et sont laissés sécher à l'air sous hotte sans précautions particulière pendant 2 à 3 jours. Lors de cette étape de séchage, les sels d'oxydes de métal M cristallisent par nucléation hétérogène en surface et dans le volume du réseau continu silicique. Dans une dernière étape un traitement thermique est appliqué. Le traitement thermique est opéré sous air avec une première rampe de montée en température de 25°C à 180°C (à 1°C par minute), en restant à 180°C pendant 3 heures. Ensuite une seconde rampe de montée en température à 1°C par minute est appliquée de 180°C à 700°C ; les matériaux sont maintenus à 700°C pendant 5 heures. La descente en température à la température ambiante est non contrôlée, induite par l'inertie thermique inhérente du four. Les monolithes sont ensuite retirés du four et analysés. Then the monoliths are unmolded and placed in beakers containing dichloromethane (CH2Cl2), and these beakers locked up in desiccators. This washing of the oily phase with CH2Cl2 is carried out overnight. Then, the monoliths are removed and left to air dry under a hood without any special precautions for 2 to 3 days. During this drying step, the metal oxide salts M crystallize by heterogeneous nucleation at the surface and in the volume of the continuous silicic network. In a last step a heat treatment is applied. The heat treatment is carried out in air with a first temperature rise ramp from 25° C. to 180° C. (at 1° C. per minute), remaining at 180° C. for 3 hours. Then a second temperature rise ramp at 1°C per minute is applied from 180°C to 700°C; the materials are maintained at 700°C for 5 hours. The temperature drop to room temperature is uncontrolled, induced by the inherent thermal inertia of the furnace. The monoliths are then removed from the oven and analyzed.
Pour des commodités d'écriture les oxydes mixtes (MOy)x-SiO2(HIPE) synthétisés ici seront nommés : Mx-Si(HIPE) dans le tableau 1 ; M représente le métal en question, « x » représente ici le rapport molaire M/Si utilisé lors de la synthèse, et notamment lors de l'étape a). Les masses de précurseurs ajoutées à la solution aqueuse de TTAB sont également indiquées :
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
For writing convenience, the mixed oxides (MO y )x-SiO2(HIPE) synthesized here will be named: Mx-Si(HIPE) in table 1; M represents the metal in question, “x” here represents the M/Si molar ratio used during the synthesis, and in particular during step a). The masses of precursors added to the aqueous solution of TTAB are also indicated:
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
TABLEAU 1 TABLE 1
Les figures montrent le caractère monolithique des céramiques obtenues. La figure 1 a-g illustre la macroporosité interconnectée telle qu'elle est révélée par la microscopie électronique à balaye (MEB). La spectroscopie de rayons X à dispersion d'énergie (EDX) démontre la répartition homogène des éléments de transitions ou métalloïdes au sein de la matrice silicique (Figure 1 h-j). The figures show the monolithic character of the ceramics obtained. Figure 1 a-g illustrates interconnected macroporosity as revealed by scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDX) demonstrates the homogeneous distribution of transition or metalloid elements within the silicic matrix (Figure 1 h-j).
La figure 2 représente les images obtenues par imagerie en microscopie électronique en transmission (MET) qui mettent en évidence la mésoporosité de la silice et démontre le caractère nanométrique des nanooxydes nucléés au sein de la matrice silicique. À cette MET est associée de la DET (Diffraction électronique à transmission) qui révèle la microstructure de ces nano-oxydes technique de caractérisation dédoublée par de la diffusion de RX aux grands angles (WAXS : Wide Angle X-ray Scattering) avec la figure 3. FIG. 2 represents the images obtained by transmission electron microscopy (TEM) imaging which highlights the mesoporosity of the silica and demonstrates the nanometric character of the nucleated nanooxides within the silica matrix. This TEM is associated with DET (electronic transmission diffraction) which reveals the microstructure of these nano-oxides, characterization technique split by wide-angle X-ray scattering (WAXS: Wide Angle X-ray Scattering) with figure 3 .
Exemple 2 d'application conforme à l'invention Example 2 of application according to the invention
Un monolithe conforme à l'invention sous la forme d'un oxyde mixte CO(o.57)-Si(HIPE) (x = 0,57) a été préparé selon un procédé identique à celui tel que décrit dans l'exemple 1 ci-dessus. La masse de précurseur C0CI2. 6H2O ajoutée à la solution aqueuse de TTAB est de 3,255 g. Cela permet ainsi d'obtenir un rapport molaire final M/Si de 0.162. A monolith in accordance with the invention in the form of a mixed oxide CO(o.57)-Si(HIPE) (x=0.57) was prepared according to a method identical to that as described in Example 1 above. The mass of precursor C0Cl2. 6H2O added to the aqueous solution of TTAB is 3.255 g. This thus makes it possible to obtain a final molar ratio M/Si of 0.162.
L'activité catalytique du monolithe a été étudiée dans la réaction d'oxydation du monoxyde de carbone en dioxyde de carbone. La réaction a été effectuée dans un réacteur tubulaire à lit fixe contenant 50 mg du monolithe à base de cobalt préalablement broyé. Le monolithe est préalablement activé pendant deux heures en alimentant le réacteur comprenant ledit monolithe avec un flux de gaz constitué de 29 ml/min de dioxygène et 59,4 ml/min de diazote pendant 2 heures, à 500°C (température de chauffe de 10°C/min). Le réacteur est ensuite alimenté en continu avec un flux de gaz constitué de 11,6 ml/min de monoxyde de carbone, 29 ml/min de dioxygène, et le reste en diazote (flux total de 100 ml/min), ce qui correspond à un rapport molaire CO/O2 de 0,4 et une vitesse spatiale horaire pondérée (bien connue sous l'anglicisme « weight hourly space velocity » ou WHSV) de 120 000 I. h 1. kg 1. Le réacteur est alors placé dans un four tubulaire et soumis à une augmentation de la température avec une vitesse de chauffe de 5°C/min. Les effluents issus du réacteur sont analysés avec un appareil de chromatographie gazeuse (Varian GC-3800) équipé d'un détecteur de conductivité thermique (les températures appliquées pour l'injecteur, le four, et le détecteur sont respectivement de 150°C, 50°C, et 120°C). The catalytic activity of the monolith was studied in the oxidation reaction of carbon monoxide to carbon dioxide. The reaction was carried out in a tubular fixed-bed reactor containing 50 mg of the previously ground cobalt-based monolith. The monolith is activated beforehand for two hours by supplying the reactor comprising said monolith with a flow of gas consisting of 29 ml/min of oxygen and 59.4 ml/min of nitrogen for 2 hours, at 500° C. (heating temperature of 10°C/min). The reactor is then fed continuously with a gas flow consisting of 11.6 ml/min of carbon monoxide, 29 ml/min of oxygen, and the remainder in nitrogen (total flow of 100 ml/min), which corresponds at a CO/O2 molar ratio of 0.4 and a weighted hourly space velocity (well known as “weight hourly space velocity” or WHSV) of 120,000 I.h 1 . kg 1 . The reactor is then placed in a tube furnace and subjected to a temperature increase with a heating rate of 5° C./min. The effluents from the reactor are analyzed with a gas chromatography device (Varian GC-3800) equipped with a thermal conductivity detector (the temperatures applied for the injector, the oven, and the detector are respectively 150°C, 50 °C, and 120°C).
La figure 4 montre la conversion du monoxyde de carbone (en %) en fonction de la température (en °C), et traduit ainsi les performances catalytiques du monolithe de l'invention pendant l'oxydation. Le monolithe conforme à l'invention permet de convertir 50% du monoxyde de carbone à une température de 145°C, et 100% à une température de 200°C. FIG. 4 shows the conversion of carbon monoxide (in %) as a function of the temperature (in °C), and thus translates the catalytic performances of the monolith of the invention during the oxidation. The monolith in accordance with the invention makes it possible to convert 50% of the carbon monoxide at a temperature of 145°C, and 100% at a temperature of 200°C.
Les résultats montrent indirectement la capacité d'adsorption du monoxyde de carbone par le monolithe de l'invention. En effet, la réaction d'oxydation requiert l'adsorption du monoxyde de carbone sur les sites actifs du catalyseur. The results indirectly show the adsorption capacity of carbon monoxide by the monolith of the invention. Indeed, the oxidation reaction requires the adsorption of carbon monoxide on the active sites of the catalyst.

Claims

Revendications Claims
1. Procédé de préparation d'un monolithe à porosité multi-échelle, ledit monolithe comprenant une matrice d'oxyde de silicium, et des nanoparticules d'un oxyde de métal M, 1. Process for preparing a monolith with multi-scale porosity, said monolith comprising a matrix of silicon oxide, and nanoparticles of a metal oxide M,
M représentant un métal ou un métalloïde choisi parmi les métaux et métalloïdes suivants : Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In, ledit procédé comprenant : a) une étape d'émulsification d'une phase huileuse dans une phase aqueuse homogène acide, ladite phase aqueuse comprenant un tensioactif cationique, au moins un sel métallique précurseur d'oxyde de métal M, et un précurseur de silice, de sorte que le rapport molaire M/Si est un nombre compris entre 0,05 et 0,57, b) une étape de polycondensation, c) une étape d'élimination de la phase huileuse par un traitement par du dichlorométhane d'une durée comprise entre 10 et 15 heures, d) une première étape de calcination à une température comprise entre 160 et 200 °C avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min, le plateau étant maintenu pendant 3 à 6 heures, et e) une seconde étape de calcination à une température comprise entre 600 et 800 °C, avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min, le plateau étant maintenu pendant 3 à 6 heures. M representing a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In, said process comprising: a) a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, said aqueous phase comprising a cationic surfactant, at least one metal salt precursor of metal oxide M, and a precursor of silica, of so that the M/Si molar ratio is a number between 0.05 and 0.57, b) a polycondensation stage, c) a stage of elimination of the oily phase by treatment with dichloromethane for a period of between 10 and 15 hours, d) a first calcining step at a temperature of between 160 and 200°C with a heating rate of between 0.5 and 2°C/min, the plateau being maintained for 3 to 6 hours, and e) a second calcination step at a temperature of between 600 and 800°C, with a heating rate of between 0.5 and 2°C/ min, the plateau being maintained for 3 to 6 hours.
2. Procédé selon la revendication 1, caractérisé en ce que la phase huileuse est constituée par un ou plusieurs composés choisis parmi les alcanes linéaires et ramifiés ayant au moins 9 atomes de carbone. 2. Method according to claim 1, characterized in that the oily phase consists of one or more compounds chosen from linear and branched alkanes having at least 9 carbon atoms.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le tensioactif cationique est choisi parmi les ammoniums quaternaires ayant au moins 8 atomes de carbone. 3. Method according to any one of claims 1 or 2, characterized in that the cationic surfactant is chosen from quaternary ammoniums having at least 8 carbon atoms.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les sels métalliques précurseurs d'oxyde de métal M sont choisis parmi les chlorures et les nitrures. 4. Method according to any one of claims 1 to 3, characterized in that the metallic salts precursors of metal oxide M are chosen from chlorides and nitrides.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le précurseur de silice est un alcoxyde de silicium. 5. Method according to any one of claims 1 to 4, characterized in that the silica precursor is a silicon alkoxide.
6. Procédé selon la revendication 5, caractérisé en ce que l'alcoxyde de silicium est choisi parmi le tétraéthoxy-orthosilicate (TEOS), le (3- mercaptopropyl)triméthoxyxilane, le (3-aminopropyl) triéthoxysilane, le N- (3-triméthoxysilylpropyl)pyrrole, le 3 (2,4- dinitrophénylamino)propyltriéthoxysilane, le N-(2-aminoéthyl)-3- aminopropyltriméthoxysilane, le phényltriéthoxysilane et le méthyltriéthoxysilane 6. Method according to claim 5, characterized in that the silicon alkoxide is chosen from tetraethoxy-orthosilicate (TEOS), (3-mercaptopropyl)trimethoxyxilane, (3-aminopropyl)triethoxysilane, N-(3- trimethoxysilylpropyl)pyrrole, 3 (2,4-dinitrophenylamino)propyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, phenyltriethoxysilane and methyltriethoxysilane
7. Matériau sous forme d'un monolithe, caractérisé en ce qu'il comprend une matrice d'oxyde de silicium, et des nanoparticules d'un oxyde de métal M, et en ce que : 7. Material in the form of a monolith, characterized in that it comprises a matrix of silicon oxide, and nanoparticles of a metal oxide M, and in that:
- M représente un métal ou un métalloïde choisi parmi les métaux et métalloïdes suivants : Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In, - M represents a metal or a metalloid chosen from the following metals and metalloids: Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In,
- ledit matériau possède une porosité multi-échelle, et - said material has a multi-scale porosity, and
- ledit matériau est obtenu à partir d'une émulsion huile dans eau comprenant un précurseur de silice et au moins un sel métallique précurseur d'oxyde de métal M, de sorte que le rapport molaire M/Si dans ladite émulsion est un nombre compris entre 0,05 et 0,57. - said material is obtained from an oil-in-water emulsion comprising a silica precursor and at least one metal salt precursor of metal oxide M, such that the M/Si molar ratio in said emulsion is a number between 0.05 and 0.57.
8. Matériau selon la revendication 7, caractérisé en ce qu'il comprend des macropores ayant une dimension moyenne dA de 0,5 à 60 micromètres, des mésopores ayant une dimension moyenne dE de 20 à 30 Â et des micropores ayant une dimension moyenne dl de 5 à 10 Â, lesdits pores étant interconnectés. 8. Material according to claim 7, characterized in that it comprises macropores having an average dimension dA of 0.5 to 60 micrometers, mesopores having an average dimension dE of 20 to 30 Å and micropores having an average dimension dl from 5 to 10 Å, said pores being interconnected.
9. Matériau selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que sa surface spécifique est comprise entre 400 et 600 m2/g. 9. Material according to any one of claims 8 or 9, characterized in that its specific surface is between 400 and 600 m 2 /g.
10. Utilisation d'un matériau selon l'une quelconque des revendications 7 à 9, dans des procédés d'adsorption et de stockage spécifique de gaz toxiques comme notamment CO, NO et CO2. 10. Use of a material according to any one of claims 7 to 9, in processes for the adsorption and specific storage of toxic gases such as in particular CO, NO and CO2.
PCT/EP2021/075529 2020-09-18 2021-09-16 Monolithic nanoparticle metal oxides with multiscale porosity WO2022058449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21777536.0A EP4214177A1 (en) 2020-09-18 2021-09-16 Monolithic nanoparticle metal oxides with multiscale porosity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2009497 2020-09-18
FR2009497A FR3114317B1 (en) 2020-09-18 2020-09-18 Monolithic nanoparticle metallo-oxides with multi-scale porosity

Publications (1)

Publication Number Publication Date
WO2022058449A1 true WO2022058449A1 (en) 2022-03-24

Family

ID=74205947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/075529 WO2022058449A1 (en) 2020-09-18 2021-09-16 Monolithic nanoparticle metal oxides with multiscale porosity

Country Status (3)

Country Link
EP (1) EP4214177A1 (en)
FR (1) FR3114317B1 (en)
WO (1) WO2022058449A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064322A1 (en) * 2002-01-29 2003-08-07 Imperial Chemical Industries Plc Silica materials with meso- and macropores
WO2004087610A2 (en) 2003-03-27 2004-10-14 Centre National De La Recherche Scientifique Inorganic material with a hierarchical structure and method for the preparation thereof
US20050130827A1 (en) * 2002-02-22 2005-06-16 Schunk Stephan A. Decomposable monotithic ceramic materials having an at least bimodal pore distribution and active metal centers located in the pores
FR2965807A1 (en) * 2010-10-11 2012-04-13 Centre Nat Rech Scient PROCESS FOR PREPARING ALVEOLAR INORGANIC MONOLITHIC MATERIALS AND USES THEREOF
FR2993874A1 (en) * 2012-07-26 2014-01-31 Univ Paris Curie Preparing silica-alumina material used as acid catalyst and catalyst support for heterogeneous catalysis in continuous flow, comprises preparing oil phase, aqueous phase and oil-in-water emulsion and performing condensation step
FR3065650A1 (en) * 2017-04-28 2018-11-02 IFP Energies Nouvelles METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064322A1 (en) * 2002-01-29 2003-08-07 Imperial Chemical Industries Plc Silica materials with meso- and macropores
US20050130827A1 (en) * 2002-02-22 2005-06-16 Schunk Stephan A. Decomposable monotithic ceramic materials having an at least bimodal pore distribution and active metal centers located in the pores
WO2004087610A2 (en) 2003-03-27 2004-10-14 Centre National De La Recherche Scientifique Inorganic material with a hierarchical structure and method for the preparation thereof
FR2965807A1 (en) * 2010-10-11 2012-04-13 Centre Nat Rech Scient PROCESS FOR PREPARING ALVEOLAR INORGANIC MONOLITHIC MATERIALS AND USES THEREOF
FR2993874A1 (en) * 2012-07-26 2014-01-31 Univ Paris Curie Preparing silica-alumina material used as acid catalyst and catalyst support for heterogeneous catalysis in continuous flow, comprises preparing oil phase, aqueous phase and oil-in-water emulsion and performing condensation step
FR3065650A1 (en) * 2017-04-28 2018-11-02 IFP Energies Nouvelles METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A. ROUCHER ET AL., J. SOL-GEL SCI. TECH., vol. 90, 2019, pages 95
BARRETTJOYNERHALENDA, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 73, 1951, pages 373 - 380
DEBECKER DAMIEN ET AL: "First acidic macro-mesocellular aluminosilicate monolithic foams "SiAl(HIPE)" and their catalytic properties", 1 January 2015 (2015-01-01), pages 13993 - 14128, XP055806481, Retrieved from the Internet <URL:https://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc05328e> [retrieved on 20210521] *
DEBECKER DAMIEN P ET AL: "First Acidic Macrocellular Aluminosilicate Monoliths "SiAl(HIPE)" and their Catalytic Properties Electronic Supplementary Information (ESI)", 29 July 2015 (2015-07-29), XP055806476, Retrieved from the Internet <URL:http://www.rsc.org/suppdata/c5/cc/c5cc05328e/c5cc05328e1.pdf> [retrieved on 20210521] *
F. CARN ET AL., J. MAT. CHEM., vol. 14, 2004, pages 1370
FLORENT CARN ET AL: "Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templatesElectronic supplementary information (ESI) available: XRD profiles, nitrogen physisorption data and pore size distribution calculated from density functional theory, for the xSi-HIPE0.035 series. See h", JOURNAL OF MATERIALS CHEMISTRY, vol. 14, no. 9, 1 January 2004 (2004-01-01), GB, pages 1370, XP055267430, ISSN: 0959-9428, DOI: 10.1039/b400984c *
ROUCHER ET AL., THE CHEMICAL RECORD, vol. 18, 2018, pages 776
S. BERNADET ET AL., ADV. FUNCT MAT., vol. 29, 2019, pages 1807767
S. BRUNAUERP. H. EMMETE. TELLER, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, no. 2, 1938, pages 309 - 319

Also Published As

Publication number Publication date
FR3114317B1 (en) 2022-09-23
EP4214177A1 (en) 2023-07-26
FR3114317A1 (en) 2022-03-25

Similar Documents

Publication Publication Date Title
US20110223096A1 (en) Catalyst for oxidation reactions in the presence of hydrogen chloride and/or chlorine and method for the production thereof, and the use thereof
Muñoz-Espí et al. Inorganic nanoparticles prepared in miniemulsion
EP0073703A1 (en) Alumina composition for coating a catalyst support, its preparation and catalyst coated therewith
CN102574696B (en) Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
TW201103627A (en) Catalyst support material and methods of manufacture
JP5801411B2 (en) Composition based on zirconium oxide and at least one oxide of rare earth elements other than cerium, having a unique porosity, its production process and its use in catalysis
WO2010027854A1 (en) Porous films by a templating co-assembly process
FR2886636A1 (en) INORGANIC MATERIAL HAVING METALLIC NANOPARTICLES TRAPPED IN A MESOSTRUCTURED MATRIX
FR2905371A1 (en) HIGH REDUCIBILITY COMPOSITION BASED ON NANOMETRY CERIUM OXIDE ON A CARRIER, PROCESS FOR PREPARATION AND USE AS CATALYST
JP2008504199A (en) Method for producing fine particles
JP2008504199A5 (en)
EP2334430B1 (en) Method for preparing a structured porous material comprising nanoparticles of metal 0 imbedded in the walls thereof
KR101239262B1 (en) method for manufacturing silica-ceria, core-shell nanoparticles using microemulsion
EP2262736A1 (en) Composition based on a zirconium oxide, a titanium oxide or a mixed zirconium titanium oxide on an alumina or aluminium oxyhydroxide support, methods of preparation and use as catalyst
WO2014070116A1 (en) Encapsulated Nanoparticles
Wang et al. Surface modification of alumina membranes via a sol-gel process for antifouling properties
Liu et al. Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks
EP2117709A2 (en) Hybrid material, and method for the production thereof
JP4576909B2 (en) Method for producing porous body
WO2022058449A1 (en) Monolithic nanoparticle metal oxides with multiscale porosity
D’Souza et al. Preparation of thermally stable high surface area mesoporous tetragonal ZrO2 and Pt/ZrO2: An active hydrogenation catalyst
WO2018197432A1 (en) Porous monolith containing tio 2 and method for the production thereof
Landau Sol–gel process
KR101466095B1 (en) hollow sillica spheres synthetic method using of surfactant
Li et al. Uniform and reactive hydrogen polysilsesquioxane hollow spheres immobilized with silver nanoparticles for catalytic reduction of methylene blue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021777536

Country of ref document: EP

Effective date: 20230418