FR3114317A1 - Monolithic nanoparticle metallo-oxides with multi-scale porosity - Google Patents

Monolithic nanoparticle metallo-oxides with multi-scale porosity Download PDF

Info

Publication number
FR3114317A1
FR3114317A1 FR2009497A FR2009497A FR3114317A1 FR 3114317 A1 FR3114317 A1 FR 3114317A1 FR 2009497 A FR2009497 A FR 2009497A FR 2009497 A FR2009497 A FR 2009497A FR 3114317 A1 FR3114317 A1 FR 3114317A1
Authority
FR
France
Prior art keywords
hipe
metal
advantageously
oxides
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR2009497A
Other languages
French (fr)
Other versions
FR3114317B1 (en
Inventor
Rénal Backov
Isabelle VANG (épouse LY)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR2009497A priority Critical patent/FR3114317B1/en
Priority to PCT/EP2021/075529 priority patent/WO2022058449A1/en
Priority to EP21777536.0A priority patent/EP4214177A1/en
Publication of FR3114317A1 publication Critical patent/FR3114317A1/en
Application granted granted Critical
Publication of FR3114317B1 publication Critical patent/FR3114317B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Métallo - oxydes nanoparticulaires monolithiques à porosité multi-échelles Procédé de préparation d’un monolithe d’oxydes mixtes nanoparticulaires à porosité multi-échelle de formule (I) MOxSiO2 (I) dans laquelle M représente un métal ou un métalloïde choisi dans le groupe comprenant Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In et x représente le rapport molaire M/Si et est un nombre compris entre 0,05 et 0,57 , ledit procédé comprenant une étape d’émulsification d’une phase huileuse dans une phase aqueuse homogène acide, ladite phase aqueuse comprenant un tensioactif cationique, au moins un sel métallique précurseur d’oxyde métallique et un précurseur de silice, une étape de polycondensation, une étape d’élimination de la phase huileuse par un traitement d’une nuit par du dichlorométhane et une étape de calcination à une température comprise entre 500 et 700 °C. Metallo - monolithic nanoparticle oxides with multi-scale porosity Process for the preparation of a monolith of nanoparticulate mixed oxides with multi-scale porosity of formula (I) MOxSiO2 (I) wherein M represents a metal or metalloid selected from the group consisting of Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In and x represents the M/Si molar ratio and is a number between 0.05 and 0.57, said method comprising a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, said aqueous phase comprising a cationic surfactant, at least a metal salt precursor of metal oxide and a precursor of silica, a polycondensation stage, a stage of elimination of the oily phase by overnight treatment with dichloromethane and a calcination stage at a temperature between 500 and 700°C.

Description

Métallo-oxydes nanoparticulaires monolithiques à porosité multi-échellesMonolithic nanoparticle metallo-oxides with multi-scale porosity

La présente invention concerne un procédé de synthèse de monolithes d’oxydes mixtes à porosité multi-échelles, les matériaux obtenus et leur utilisation.The present invention relates to a process for the synthesis of monoliths of mixed oxides with multi-scale porosity, the materials obtained and their use.

Etat de la techniqueState of the art

Les oxydes métalliques sont des catalyseurs spécifiques qui sont mis en œuvre dans de très nombreuses applications en fonction du type d’oxyde métallique. On peut citer à titre d’exemple l’oxydation du CO en CO2pour l’oxyde de cobalt, l’oxydation du cyclohexane et du n-hexane pour l’oxyde de manganèse, l’hydro-désoxygénation pour l’oxyde de molybdène, la photocatalyse pour l’oxyde de tungstène, de zinc ou de tantale. Ces oxydes métalliques sont d’autant plus actifs qu’ils sont divisés (petits) et ce à l’échelle nanométrique. Le problème est que ces nano-objets sont alors très pulvérulents, il est donc avantageux de les stabiliser/ancrer dans une matrice d’accueil.Metal oxides are specific catalysts which are implemented in very many applications depending on the type of metal oxide. Examples include the oxidation of CO to CO 2 for cobalt oxide, the oxidation of cyclohexane and n-hexane for manganese oxide, hydro-deoxygenation for oxide of molybdenum, photocatalysis for tungsten, zinc or tantalum oxide. These metal oxides are all the more active as they are divided (small) and this at the nanometric scale. The problem is that these nano-objects are then very powdery, so it is advantageous to stabilize/anchor them in a host matrix.

C’est ainsi que les inventeurs ont proposé des monolithes d’oxydes mixtes à porosité multi-échelles. La synthèse de ces matériaux baptisés Si(HIPE), HIPE étant l’acronyme pour High Internal Phase Emulsion (Emulsion à Phase Interne Elevée) qui repose sur le couplage entre chimie sol-gel et fluides complexes (émulsions huile dans eau, et mésophases lyotropes) a fait l’objet de nombreux travaux par les inventeurs au début des années 2000 (demande de brevet FR 0303774 ; F. Carnet al.J. Mat. Chem. 2004, 14, 1370). Depuis, toute une panoplie de matériaux inorganiques siliciques aux morphologies variées a été développée (A. Roucheret al.J. Sol-Gel Sci. Tech., 2019, 90, 95) et ces matériaux ont été hybridés par des ormosils, des enzymes, des bactéries pour asseoir une propriété catalytique spécifique (A. Roucheret al.The Chemical Record, 2018, 18, 776).This is how the inventors proposed monoliths of mixed oxides with multi-scale porosity. The synthesis of these materials called Si(HIPE), HIPE being the acronym for High Internal Phase Emulsion, which is based on the coupling between sol-gel chemistry and complex fluids (oil-in-water emulsions, and lyotropic mesophases ) was the subject of numerous works by the inventors in the early 2000s (patent application FR 0303774; F. Carn et al. J. Mat. Chem. 2004, 14, 1370). Since then, a whole range of silicic inorganic materials with various morphologies have been developed (A. Roucher et al. J. Sol-Gel Sci. Tech., 2019, 90, 95) and these materials have been hybridized by ormosils, enzymes , bacteria to establish a specific catalytic property (A. Roucher et al. The Chemical Record, 2018, 18, 776).

Parmi ces matériaux monolithiques les inventeurs ont préparé des oxydes mixtes de types TiO2@Si(HIPE) qui ont vocation à être utilisés dans la photoréduction en volume de CO2pour la formation en continue de carburants « solaires » (S. Bernadetet al., Adv. Funct Mat., 2019, 29, 1807767). Ces matériaux sont synthétisés en deux étapes : une synthèse d’une mousse céramique Si(HIPE) suivie par une infiltration (en tirant sous vide) d’un sol acide de précurseurs de TiO2à base d’ispropoxyde de titane (FR18-53644, FR17-53757, FR-1753758 et FR17-53759).Among these monolithic materials, the inventors have prepared mixed oxides of the TiO 2 @Si(HIPE) type which are intended to be used in the volume photoreduction of CO 2 for the continuous formation of “solar” fuels (S. Bernadet et al. , Adv. Funct Mat., 2019, 29, 1807767). These materials are synthesized in two steps: a synthesis of a ceramic Si(HIPE) foam followed by an infiltration (by pulling under vacuum) of an acid soil of TiO 2 precursors based on titanium ispropoxide (FR18-53644 , FR17-53757, FR-1753758 and FR17-53759).

Cependant ces procédés de synthèse à deux étapes sont longs donc difficiles à mettre en œuvre à l’échelle industrielle. En outre, pour de fortes teneur en isopropoxyde de titane, la viscosité des sols de précurseurs de TiO2ne permet pas une infiltration homogène des sols dans la matrice silicique et de ce fait le ratio molaire Ti/Si doit être compris entre 0,095 et 0,15.However, these two-step synthesis methods are long and therefore difficult to implement on an industrial scale. In addition, for high titanium isopropoxide content, the viscosity of the soils of TiO 2 precursors does not allow homogeneous infiltration of the soils into the silica matrix and therefore the Ti/Si molar ratio must be between 0.095 and 0. ,15.

Or les inventeurs ont découvert un moyen de synthétiser des oxydes métalliques à fortes teneurs en sels de métaux tout en asseyant un caractère nanométrique des oxydes néoformés au sein de la matrice silique.However, the inventors have discovered a means of synthesizing metal oxides with a high content of metal salts while establishing a nanometric character of the newly formed oxides within the silic matrix.

Un but de l’invention est donc de proposer un procédé de synthèse de métallo-oxydes monolithiques nanoparticulaires à porosité multi-échelles qui soit rapide, en une seule étape et permettent de préparer des matériaux avec des ratios molaires Ti/Si supérieurs à 0,15 tout en gardant le caractère nanométrique des métallo-oxydes néoformés.An object of the invention is therefore to propose a process for the synthesis of nanoparticulate monolithic metallo-oxides with multi-scale porosity which is rapid, in a single step and makes it possible to prepare materials with Ti/Si molar ratios greater than 0, 15 while keeping the nanometric character of the neoformed metallo-oxides.

Présentation de l’inventionPresentation of the invention

L’invention a donc pour premier objet un procédé de préparation d’un monolithe d’oxydes mixtes nanoparticulaires à porosité multi-échelle de formule (I)
MOxSiO2 (I)
dans laquelle
M représente un métal choisi dans le groupe comprenant Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In et
x représente le rapport molaire M/Si et est un nombre compris entre 0,05 et 0,57,
ledit procédé comprenant :
a) une étape d’émulsification d’une phase huileuse dans une phase aqueuse homogène acide, ladite phase aqueuse comprenant un tensioactif cationique, au moins un sel métallique précurseur d’oxyde métallique et un précurseur de silice,
b) une étape de polycondensation,
c) une étape d’élimination de la phase huileuse par un traitement par du dichlorométhane d’une durée comprise entre 10 et 15 heures, avantageusement d’une durée de 12 heures,
d) une première étape de calcination à une température comprise entre 160 et 200 °C, avantageusement 180 °C, avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min, avantageusement égale à 1°C/min, le plateau étant maintenu pendant 3 à 6 heures, avantageusement pendant 3 heures et
e) une seconde étape de calcination à une température comprise entre 600 et 800 °C avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min, avantageusement égale à 1°C/min, avantageusement 700 °C, le plateau étant maintenu pendant 3 à 6 heures, avantageusement pendant 5 heures.
The first subject of the invention is therefore a process for the preparation of a monolith of nanoparticle mixed oxides with multi-scale porosity of formula (I)
MOxSiO2 (I)
in which
M represents a metal selected from the group comprising Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In and
x represents the M/Si molar ratio and is a number between 0.05 and 0.57,
said method comprising:
a) a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, said aqueous phase comprising a cationic surfactant, at least one metal salt precursor of metal oxide and a precursor of silica,
b) a polycondensation step,
c) a stage of elimination of the oily phase by treatment with dichloromethane for a period of between 10 and 15 hours, advantageously for a period of 12 hours,
d) a first calcining step at a temperature of between 160 and 200°C, advantageously 180°C, with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, the plateau being maintained for 3 to 6 hours, advantageously for 3 hours and
e) a second calcining step at a temperature of between 600 and 800°C with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, advantageously 700°C, the plate being maintained for 3 to 6 hours, advantageously for 5 hours.

Au sens de la présente invention, on entend par monolithe un objet solide dont la plus petite dimension est d’au moins 1 mm. Les monolithes sont faciles à mettre en forme (colonnes, films, billes) du fait de l’absence de de pulvérulence.Within the meaning of the present invention, monolith means a solid object whose smallest dimension is at least 1 mm. The monoliths are easy to shape (columns, films, balls) due to the absence of dustiness.

Au sens de la présente invention la phase aqueuse acide présente un pH compris entre 0,05 et 1.Within the meaning of the present invention, the acidic aqueous phase has a pH of between 0.05 and 1.

Dans un mode de réalisation avantageux de l’invention, x est avantageusement compris entre 0,1 et 0,57 et encore plus avantageusement entre 0,3 et 0,57. Ainsi x peut être égal à 0,05 ; 0,1 ;0,15 ; 0,2 ; 0,25 ; 0,3 ; 0, 4 ; 0, 5 ; 0,55 ou 0,57.In an advantageous embodiment of the invention, x is advantageously between 0.1 and 0.57 and even more advantageously between 0.3 and 0.57. Thus x can be equal to 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.55 or 0.57.

Dans un autre mode de réalisation avantageux de l’invention, la phase huileuse est constituée par un ou plusieurs composés choisis parmi les alcanes linéaires ou ramifiés ayant au moins 9 atomes de carbone. De manière encore plus avantageuse les alcanes linéaires comprennent entre 9 et 12 atomes de carbone. A titre d’exemple on peut citer le décane et le dodécane.In another advantageous embodiment of the invention, the oily phase consists of one or more compounds chosen from linear or branched alkanes having at least 9 carbon atoms. Even more advantageously, the linear alkanes comprise between 9 and 12 carbon atoms. Examples include decane and dodecane.

Dans un autre mode de réalisation avantageux de l’invention, le tensioactif cationique est choisi parmi les ammoniums quaternaires ayant au moins 8 atomes de carbone. On peut citer à titre d’exemples le bromure de tetradécyltriméthylammonium (TTAB), le bromure de dodécyltriméthylammonium et le bromure de cétyl-triméthylammonium.In another advantageous embodiment of the invention, the cationic surfactant is chosen from quaternary ammoniums having at least 8 carbon atoms. Examples include tetradecyltrimethylammonium bromide (TTAB), dodecyltrimethylammonium bromide and cetyltrimethylammonium bromide.

La concentration en agent tensioactif est de préférence supérieure à 10% en masse par rapport à la quantité totale d'eau, pour obtenir un milieu réactionnel initial visqueux et favoriser la bonne stabilité de l’émulsion malgré le dégagement d’éthanol induit par l’hydrolyse du Si(Oet)4(TEOS).The concentration of surfactant is preferably greater than 10% by mass relative to the total amount of water, to obtain a viscous initial reaction medium and promote good stability of the emulsion despite the release of ethanol induced by the hydrolysis of Si(Oet) 4 (TEOS).

Dans un autre mode de réalisation avantageux de l’invention, les sels métalliques précurseurs d’oxyde métalliques sont choisis parmi les chlorures et les nitrures.In another advantageous embodiment of the invention, the metal salts precursors of metal oxide are chosen from chlorides and nitrides.

Dans un autre mode de réalisation avantageux de l’invention le précurseur de silice est un alcoxyde de silicium. On peut citer à titre d’exemple le tétraéthoxy-orthosilicate (TEOS), le (3-mercaptopropyl)triméthoxyxilane, le (3-aminopropyl)triéthoxysilane, le N-(3-triméthoxysilylpropyl)pyrrole, le 3-(2,4-dinitrophénylamino)propyltriéthoxysilane, le N-(2-aminoéthyl)-3-aminopropyltriméthoxysilane, le phényltriéthoxysilane et le méthyltriéthoxysilane. Le TEOS est particulièrement avantageux.In another advantageous embodiment of the invention, the silica precursor is a silicon alkoxide. Mention may be made, by way of example, of tetraethoxy-orthosilicate (TEOS), (3-mercaptopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, N-(3-trimethoxysilylpropyl)pyrrole, 3-(2,4- dinitrophenylamino)propyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, phenyltriethoxysilane and methyltriethoxysilane. The TEOS is particularly advantageous.

Les solutions de silicate de sodium peuvent également être envisagées comme précurseur de silice.Sodium silicate solutions can also be considered as a silica precursor.

La concentration en précurseur de la matrice inorganique est, de préférence, supérieure à 10% en masse par rapport à la phase aqueuse, pour obtenir une minéralisation totale du matériau et une bonne tenue mécanique.The concentration of precursor of the inorganic matrix is preferably greater than 10% by mass relative to the aqueous phase, in order to obtain total mineralization of the material and good mechanical strength.

L’étape de polycondensation est réalisée à température ambiante pendant une période d’au moins 15 jours.The polycondensation step is carried out at room temperature for a period of at least 15 days.

L’étape d’élimination de la phase huileuse par le dichlorométhane dure environ une nuit et peut être suivie d’une période de séchage de 2 à 3 jours à l’air sans précautions particulières. Elle permet d’éliminer les résidus organiques provenant de la phase huileuse qui se trouvent essentiellement dans les macropores. La substitution du THF (tétrahydrofurane) par le dichlorométhane est une différence essentielle avec les procédés connus de l’état antérieur de la technique, notamment celui décrit dans WO 2004087610. En effet le THF possède une bonne affinité avec l’eau et de ce fait entraine des séchages rapides du milieu continu aqueux, ce qui génère énormément de force de capillarité pendant le séchage, et induit des craquages des monolithes lors du séchage si ce séchage n’est pas effectué lentement sur une semaine au moins. De plus, l’affinité du THF avec l’eau entraine une diffusion des sels précurseurs d’oxyde hors des monolithes et de ce fait le THF lave non seulement la phase huileuse mais lave aussi partiellement les sels de la phase aqueuse, ce qu’il faut éviter.The stage of elimination of the oily phase by dichloromethane lasts approximately one night and can be followed by a period of drying of 2 to 3 days in the air without any particular precautions. It eliminates organic residues from the oily phase which are mainly found in the macropores. The substitution of THF (tetrahydrofuran) by dichloromethane is an essential difference with the known processes of the prior state of the art, in particular that described in WO 2004087610. Indeed THF has a good affinity with water and therefore results in rapid drying of the aqueous continuous medium, which generates a great deal of capillary force during drying, and induces cracking of the monoliths during drying if this drying is not carried out slowly over at least a week. In addition, the affinity of THF with water causes the oxide precursor salts to diffuse out of the monoliths and therefore the THF washes not only the oily phase but also partially washes the salts from the aqueous phase, which avoid.

L’étape de calcination ou traitement thermique est importante car elle calcine les phases micellaires en créant une mésoporosité, elle fritte la céramique et elle induit les transformations allotropiques des phases oxydes amorphes vers les phases cristallines. Le traitement thermique est opéré sous air avec une première rampe de montée en température de 25°C à 180°C (à 1°C par minute), en restant à 180°C pendant 3 heures. Ensuite une seconde rampe de montée en température à 1°C/mn est appliquée de 180°C à 700°C et les matériaux sont maintenus à 700°C pendant 5 heures. La descente en température à la température ambiante est non contrôlée et induite par l’inertie thermique inhérente du four. Cette étape permet d’éliminer les résidus organiques provenant de l'agent tensioactif qui se trouvent essentiellement dans les mésopores.The calcination or heat treatment step is important because it calcines the micellar phases by creating a mesoporosity, it sinters the ceramic and it induces the allotropic transformations of the amorphous oxide phases towards the crystalline phases. The heat treatment is carried out in air with a first temperature rise ramp from 25° C. to 180° C. (at 1° C. per minute), remaining at 180° C. for 3 hours. Then a second temperature rise ramp at 1°C/min is applied from 180°C to 700°C and the materials are maintained at 700°C for 5 hours. The temperature drop to room temperature is uncontrolled and induced by the inherent thermal inertia of the furnace. This step eliminates the organic residues from the surfactant which are mainly found in the mesopores.

L’invention a pour deuxième objet un matériau sous forme d’un monolithe comprenant une matrice d’oxyde mixte de silicium et d’un métal, ledit oxyde mixte se présentant sous forme de nanoparticules et répondant à la formule (I)
MOxSiO2 (I)
dans laquelle
M représente un métal ou un métalloïde choisi dans le groupe comprenant Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In et
x représente le rapport molaire M/Si et est un nombre compris entre 0,05 et 0,57
ledit matériau possédant une porosité multi-échelle.
The second subject of the invention is a material in the form of a monolith comprising a matrix of mixed oxide of silicon and of a metal, said mixed oxide being in the form of nanoparticles and corresponding to the formula (I)
MOxSiO2 (I)
in which
M represents a metal or a metalloid selected from the group consisting of Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In and
x represents the M/Si molar ratio and is a number between 0.05 and 0.57
said material having a multi-scale porosity.

Dans un mode de réalisation avantageux de l’invention, x est avantageusement compris entre 0,1 et 0,57 et encore plus avantageusement entre 0,3 et 0,57. Ainsi x peut être égal à 0,05 ; 0,1 ;0,15 ; 0,2 ; 0,25 ; 0,3 ; 0, 4 ; 0, 5 ; 0,55 ou 0,57.In an advantageous embodiment of the invention, x is advantageously between 0.1 and 0.57 and even more advantageously between 0.3 and 0.57. Thus x can be equal to 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.55 or 0.57.

Conformément à l’invention on entend par matériau à porosité à multi-échelle un matériau comprenant des macropores provenant de la phase huileuse, des mésopores provenant des systèmes micellaires ou lyotropes et des micropores provenant de la répartition statistique des tétraèdres SiO4dans l'espace géométrique.In accordance with the invention, material with multi-scale porosity is understood to mean a material comprising macropores originating from the oily phase, mesopores originating from micellar or lyotropic systems and micropores originating from the statistical distribution of the SiO 4 tetrahedra in space. geometric.

Les macropores peuvent être identifiés par microscopie électronique à balayage (MET) et quantifiés par des mesures d'intrusion mercure. La mise en œuvre de la technique d'intrusion de mercure montre la bonne tenue mécanique des monolithes obtenus, qui résistent aux pressions de mercure auxquelles ils sont soumis lors des mesures.Macropores can be identified by scanning electron microscopy (TEM) and quantified by mercury intrusion measurements. The implementation of the mercury intrusion technique shows the good mechanical strength of the monoliths obtained, which resist the mercury pressures to which they are subjected during the measurements.

La mésoporosité peut être identifiée par microscopie électronique à transmission (MET). La texture vermiculaire de la mésoporosité peut être. identifiée par diffraction des RX, cette technique servant également à quantifier la distance de pore à pore. La mésoporosité et la microporosité peuvent être quantifiées et ségrégées par une technique d'adsorption-désorption d'azote dont le dépouillement se fait par la méthode de calcul BET globalisant mésoporosité et microporosité (modèle de Brunauer, Emmett et Teller ou méthode BET (S. Brunauer, P. H. Emmet, E. Teller, Journal of the American Chemical Society, vol 60(2), pages 309-319 (1938)) et par la méthode de calcul B.J.H (Barrett, Joyner et Halenda (1951) Journal of the American Chemical Society, 73, 373-380), selon laquelle la ségrégation entre micorporosité et mésoporosité devient effective, la méthode BJH ne considérant que les pores supérieurs à 1,5 angströms.Mesoporosity can be identified by transmission electron microscopy (TEM). The vermicular texture of mesoporosity can be. identified by X-ray diffraction, this technique also being used to quantify the pore-to-pore distance. Mesoporosity and microporosity can be quantified and segregated by a nitrogen adsorption-desorption technique whose counting is done by the BET calculation method globalizing mesoporosity and microporosity (Brunauer, Emmett and Teller model or BET method (S. Brunauer, P. H. Emmet, E. Teller, Journal of the American Chemical Society, vol 60(2), pages 309-319 (1938)) and by the B.J.H calculation method (Barrett, Joyner and Halenda (1951) Journal of the American Chemical Society, 73, 373-380), according to which the segregation between microporosity and mesoporosity becomes effective, the BJH method only considering pores greater than 1.5 angstroms.

Dans un mode de réalisation avantageux de l’invention, le matériau comprend des macropores ayant une dimension moyenne dA de 0,5 à 60 micromètres, des mésopores ayant une dimension moyenne dE de 20 à 30 Å et des micropores ayant une dimension moyenne dI de 5 à 10 Å, lesdits pores étant interconnectés.In an advantageous embodiment of the invention, the material comprises macropores having an average dimension dA of 0.5 to 60 micrometers, mesopores having an average dimension dE of 20 to 30 Å and micropores having an average dimension dI of 5 to 10 Å, said pores being interconnected.

Conformément à l’invention la fraction volumique phase huileuse/phase aqueuse permet de contrôler la taille des macropores. Une augmentation de ladite fraction volumique entraîne une augmentation de la viscosité du milieu réactionnel, et par conséquent du cisaillement lors de l'agitation. Les gouttelettes dans l'émulsion deviennent plus petites. Cependant, une diminution de la dimension des gouttelettes provoque une diminution de l'épaisseur des parois desdites gouttelettes, lesdites parois formant la structure du matériau poreux et assurant sa tenue mécanique. En-dessous d'une certaine épaisseur, qui résulte généralement du rapport volumique phase huileuse/phase aqueuse supérieur à 0,78, la résistance mécanique est insuffisante pour obtenir un monolithe et le produit final est sous forme de poudre. Aussi le rapport volumique phase huileuse/phase aqueuse doit être inférieur à 0, 78, avantageusement compris entre 0,6 et 0,7.In accordance with the invention, the oily phase/aqueous phase volume fraction makes it possible to control the size of the macropores. An increase in said volume fraction leads to an increase in the viscosity of the reaction medium, and consequently in shear during stirring. The droplets in the emulsion become smaller. However, a reduction in the size of the droplets causes a reduction in the thickness of the walls of said droplets, said walls forming the structure of the porous material and ensuring its mechanical strength. Below a certain thickness, which generally results from the oily phase/aqueous phase volume ratio greater than 0.78, the mechanical strength is insufficient to obtain a monolith and the final product is in the form of a powder. Also, the oily phase/aqueous phase volume ratio must be less than 0.78, advantageously between 0.6 and 0.7.

Dans un mode de réalisation avantageux de l’invention le matériau présente une surface spécifique comprise entre 400 et 600 m2/g.In an advantageous embodiment of the invention, the material has a specific surface of between 400 and 600 m 2 /g.

Conformément à l’invention, la matrice inorganique peut contenir en outre une charge, par exemple une charge carbonée telle que des nanofila- ments, des nanotubes ou de la poudre de carbone. La charge peut en outre être un polymère d'un monomère qui a un caractère hydrophile marqué, choisi par exemple parmi l'acide acrylique, l'acrylamide, la vinylpyrolidone, les méthacrylates portant des fonctions hydrophiles telles que notamment OH, COOH, NH, (notamment le méthacrylate d'hydroxyméthyle).In accordance with the invention, the inorganic matrix may also contain a filler, for example a carbon filler such as nanofilaments, nanotubes or carbon powder. The filler can also be a polymer of a monomer which has a marked hydrophilic character, chosen for example from acrylic acid, acrylamide, vinylpyrolidone, methacrylates carrying hydrophilic functions such as in particular OH, COOH, NH, (especially hydroxymethyl methacrylate).

Les matériaux selon l’invention peuvent être utilisés notamment dans des procédés d’adsorption et de stockage spécifique de gaz toxiques comme notamment CO, NO et CO2.The materials according to the invention can be used in particular in processes for the adsorption and specific storage of toxic gases such as in particular CO, NO and CO 2 .

L’invention est illustrée par les figures 1 à 3 et l’exemple qui suivent.The invention is illustrated by Figures 1 to 3 and the example which follow.

La figure 1 représente des images de monolithes obtenus par le procédé selon l’invention. (a) monolithes d’oxyde de cérium avec de droite à gauche Si(HIPE) ; Ce0,05Si(HIPE) ; Ce0,1Si(HIPE) et Ce0,57Si(HIPE). b-g Images de microscopie électronique à balayage (MEB) montrant la macroporosité interconnectée avec b-c Ce0,05Si(HIPE) ; d-e Ce0,1Si(HIPE) et f-g Ce0,57Si(HIPE). h-j investigation par spectroscopie de rayons X à dispersion d’énergie avec focus sur les atomes de silice et de cérium avec h Ce0,05Si(HIPE) ; i Ce0,1Si(HIPE) et j Ce0,57 i(HIPE). FIG. 1 represents images of monoliths obtained by the method according to the invention. (a) cerium oxide monoliths with from right to left Si(HIPE); Ce0.05Si(HIPE); Ce0.1Si(HIPE) and Ce0.57Si(HIPE). bg Scanning electron microscopy (SEM) images showing macroporosity interconnected with bc Ce0.05Si(HIPE); of Ce0.1Si(HIPE) and fg Ce0.57Si(HIPE). hj investigation by energy dispersive X-ray spectroscopy with focus on silica and cerium atoms with h Ce0,05Si(HIPE); i Ce0.1Si(HIPE) and j Ce0.57 i(HIPE).

La figure 2 représente les images obtenues en microscopie électronique en transmission (MET) pour des oxydes Ce-Si(HIPE) a-b Ce0,05Si(HIPE) ; c-d Ce0,1Si(HIPE) et e-f Ce0,57Si(HIPE). g-h sont des images obtenues en diffraction électronique à transmission qui montrent l’agrégation de nanoparticules de Ce0,57Si(HIPE) qui correspondent aux diagrammes de diffraction h,k, et l de la phase cubique de CeO2 en accord avec la figure 3. FIG. 2 represents the images obtained by transmission electron microscopy (TEM) for Ce-Si(HIPE) ab Ce0.05Si(HIPE) oxides; cd Ce0.1Si(HIPE) and ef Ce0.57Si(HIPE). gh are images obtained by transmission electron diffraction which show the aggregation of Ce0,57Si(HIPE) nanoparticles which correspond to the diffraction diagrams h,k, and l of the cubic phase of CeO2 in agreement with figure 3.

La figure 3 représente les digrammes obtenus par diffusion de RX aux grands angles sur divers oxydes-Si (HIPE) conformes à l’invention. a) Oxydes de nickel Si (HIPE) courbe inférieure : Ni0,05-Si (HIPE), courbe du milieu : Ni0,1-Si (HIPE), courbe supérieure : Ni0,57-Si (HIPE) représentant les principaux diagrammes de diffraction h, k, l (111) et (200) de phase cubique NiO (JCPDS 47-1049), FIG. 3 represents the diagrams obtained by wide-angle X-ray scattering on various Si-oxides (HIPE) in accordance with the invention. a) Nickel oxides Si (HIPE) lower curve: Ni0.05-Si (HIPE), middle curve: Ni0.1-Si (HIPE), upper curve: Ni0.57-Si (HIPE) representing the main diagrams of diffraction h, k, l (111) and (200) of cubic phase NiO (JCPDS 47-1049),

b) Oxydes de chrome Si (HIPE) courbe inférieure: Cr0,05-Si (HIPE), courbe du milieu: Cr0,1-Si (HIPE), bleu: Cr0,57-Si (HIPE) représentant les principaux diagrammes de diffraction h, k, l (012), (104), (110), (006), (113), (202) et (024) de la phase rhomboédrique Cr2O3(JCPDS 38-1479), c) Oxydes de fer Si (HIPE) courbe inférieure: Fe0,05-Si (HIPE), courbe du milieu: Fe0,1-Si (HIPE), bleu: Fe0,57-Si (HIPE) représentant le principal h, k , l diagrammes de diffraction (012), (110), (113), (202) et (024) de la phase rhomboédrique hématite alpha-Fe2O3(JCPDS 33-0664), d) Oxydes de manganèse Si (HIPE), courbe inférieure: Mn0, 05-Si (HIPE), courbe du milieu: Mn0,1-Si (HIPE), bleu: Mn0,57-Si (HIPE) ; on peut observer les principaux diagrammes de diffraction de Mn3O4(JCPDS 24-0734) et Mn2O3(JCPDS 41-1442 ) système biphasique, e) Oxydes de cérium Si (HIPE) courbe inférieure: Ce0,05-Si (HIPE), courbe du milieu: Ce0,1-Si (HIPE), bleu: Ce0,57-Si (HIPE) nous pouvons observer les principaux (111), (200) et (220) pics de diffraction de la phase cubique monophasique CeO2(JCPDS 34-0394), f) Oxydes de vanadium Si (HIPE), courbe inférieure: V0,05-Si (HIPE), courbe du milieu: V0,1-Si ( HIPE), bleu: V0,57-Si (HIPE) on peut observer les principaux pics de diffraction (020), (001), (011), (110), (010) et (130) de la phase cubique V2O5( JCPDS 41-1426), g) Oxydes de cobalt Si (HIPE), courbe inférieure: Co0,05-Si (HIPE), courbe du milieu: Co0,1-Si (HIPE), bleu: Co0,57-Si (HIPE) nous pouvons observer les principaux pics de diffraction (111), (220), (311), (222) et (400) de la phase cubique Co3O4(JCPDS 74-167) avec des pics de diffractions mineurs (*) correspondant à la phase Co2SiO4(JCPDS- 76-1501), h) Oxydes de tungstène Si (HIPE), courbe inférieure: W0,05-Si (HIPE), courbe du milieu: W0,1-Si (HIPE), bleu: W0,57-Si (HIPE) on peut observer le principaux (002), (020), (200), (120), (112), (112), (022), (202: 220) pics de diffraction de la phase cubique WO3(JCPDS 43-1035).b) Chromium oxides Si (HIPE) lower curve: Cr 0.05 -Si (HIPE), middle curve: Cr 0.1 -Si (HIPE), blue: Cr 0.57 -Si (HIPE) representing the main diffraction diagrams h, k, l (012), (104), (110), (006), (113), (202) and (024) of the rhombohedral phase Cr 2 O 3 (JCPDS 38-1479), c) Iron oxides Si (HIPE) lower curve: Fe 0.05 -Si (HIPE), middle curve: Fe 0.1 -Si (HIPE), blue: Fe 0.57 -Si (HIPE) representing the main h, k, l (012), (110), (113), (202) and (024) diffraction patterns of the alpha-Fe 2 O 3 hematite rhombohedral phase (JCPDS 33-0664), d) Manganese oxides Si (HIPE), lower curve: Mn 0.05 -Si (HIPE), middle curve: Mn 0.1 -Si (HIPE), blue: Mn 0.57 -Si (HIPE); one can observe the main diffraction patterns of Mn 3 O 4 (JCPDS 24-0734) and Mn 2 O 3 (JCPDS 41-1442 ) biphasic system, e) Oxides of cerium Si (HIPE) lower curve: Ce 0.05 - Si (HIPE), middle curve: Ce 0.1 -Si (HIPE), blue: Ce 0.57 -Si (HIPE) we can observe the main (111), (200) and (220) diffraction peaks of the monophasic cubic phase CeO 2 (JCPDS 34-0394), f) Vanadium oxides Si (HIPE), lower curve: V 0.05 -Si (HIPE), middle curve: V 0.1 -Si (HIPE), blue: V 0.57 -Si (HIPE) the main diffraction peaks (020), (001), (011), (110), (010) and (130) of the cubic phase V 2 O 5 can be observed (JCPDS 41-1426), g) Cobalt oxides Si (HIPE), lower curve: Co 0.05 -Si (HIPE), middle curve: Co 0.1 -Si (HIPE), blue: Co 0.57 -Si (HIPE) we can observe the main diffraction peaks (111), (220), (311), (222) and (400) of the cubic phase Co 3 O 4 (JCPDS 74-167) with peaks of minor diffractions (*) corresponding to the Co 2 SiO 4 phase (JCPDS- 76-1501), h) Tungsten oxides Si (HIPE), lower curve: W 0.05 -Si (HIPE), middle curve: W 0.1 -Si (HIPE) , blue: W 0.57 -Si (HIPE) the main (002), (020), (200), (120), (112), (112), (022), (202: 220) can be observed cubic phase diffraction peaks WO 3 (JCPDS 43-1035).

Exemple de synthèse conforme à l’inventionExample of synthesis in accordance with the invention

Tous les réactifs et solvants utilisés viennent de Sigma-Aldrich et n’ont pas été purifiés avant leur utilisation. La phase aqueuse est une solution TTAB (bromure de tétradécyl-triméthyl ammonium) à 35 % massique. A 16 g de cette solution aqueuse sont ajoutées les quantités idoines de précurseurs d’oxydes métalliques, jusqu’à dissolution ou dispersion homogène (voir tableau 1). Ensuite 5 g d’HCl à 37% massique (12M) sont ajoutés. Cette phase aqueuse est laissée sou agitation 20 minutes. Juste avant l’émulsification dans le dodécane, 5 g de précurseur de silice (TEOS tétraéthyl-orthosilicate) y sont introduits. Le système biphasique (eau + huile) au départ devient monophasique au fur et à mesure de l’hydrolyse du TEOS (Si(OEt)4 devient Si(OH)4). C’est au sein de cette phase aqueuse homogène que sera émulsifié 37g de dodécane (émulsion directe huile dans eau). Cette émulsion est alors coulée dans des petits tubes à hémolyse où siège la prise en masse (polycondenstion du réseau silique les Si(OH)4 polycondensent pour donner SiO2). Ces tubes sont alors fermés et placés dans des béchers en polypropylène avec un fond d’eau (pour éviter un séchage éventuel du réseau silicique pendant la polycondenstion), ces béchers sont couverts de parafilm. La maturation/vieillissement associé à la polycondensation a lieu pendant 15 jours.All reagents and solvents used are from Sigma-Aldrich and have not been purified prior to use. The aqueous phase is a TTAB solution (tetradecyl-trimethyl ammonium bromide) at 35% by mass. To 16 g of this aqueous solution are added the appropriate quantities of metal oxide precursors, until dissolution or homogeneous dispersion (see table 1). Then 5 g of HCl at 37% by weight (12M) are added. This aqueous phase is left under stirring for 20 minutes. Just before emulsification in dodecane, 5 g of silica precursor (TEOS tetraethyl-orthosilicate) are introduced therein. The biphasic system (water + oil) initially becomes monophasic as the hydrolysis of the TEOS progresses (Si(OEt)4 becomes Si(OH)4). It is within this homogeneous aqueous phase that 37g of dodecane will be emulsified (direct oil-in-water emulsion). This emulsion is then poured into small hemolysis tubes where solidification takes place (polycondensation of the silica network, the Si(OH)4 polycondensate to give SiO2). These tubes are then closed and placed in polypropylene beakers with a bottom of water (to avoid possible drying of the silicic network during the polycondensation), these beakers are covered with parafilm. Maturation/aging associated with polycondensation takes place for 15 days.

Ensuite les monolithes sont démoulés et placés dans des béchers contenant du dichlorométhane (CH2Cl2), et ces béchers enfermés dans des dessiccateurs. Ce lavage de la phase huileuse par le CH2Cl2est opéré une nuit. Ensuite, les monolithes sont retirés et sont laissés sécher à l’air sous hotte sans précautions particulière pendant 2 à 3 jours. Dans une dernière étape un traitement thermique est appliqué. Le traitement thermique est opéré sous air avec une première rampe de montée en température de 25°C à 180°C (à 1°C par minute), en restant à 180°C pendant 3 heures. Ensuite une seconde rampe de montée en température à 1°C par minute est appliquée de 180°C à 700°C ; les matériaux sont maintenus à 700°C pendant 5 heures. La descente en température à la température ambiante est non contrôlée, induite par l’inertie thermique inhérente du four. Les monolithes sont ensuite retirés du four et analysés.Then the monoliths are removed from the mold and placed in beakers containing dichloromethane (CH 2 Cl 2 ), and these beakers locked up in desiccators. This washing of the oily phase with CH 2 Cl 2 is carried out overnight. Then, the monoliths are removed and left to air dry under a hood without any special precautions for 2 to 3 days. In a last step a heat treatment is applied. The heat treatment is carried out in air with a first temperature rise ramp from 25° C. to 180° C. (at 1° C. per minute), remaining at 180° C. for 3 hours. Then a second temperature rise ramp at 1°C per minute is applied from 180°C to 700°C; the materials are maintained at 700° C. for 5 hours. The temperature drop to room temperature is uncontrolled, induced by the inherent thermal inertia of the furnace. The monoliths are then removed from the oven and analyzed.

Pour des commodités d’écriture les oxydes mixtes MOx-SiO2(HIPE) synthétisés ici seront nommés : Mx-Si(HIPE) dans le tableau 1 ; M représente le métal en question, « x » représente ici le rapport molaire M/Si utilisé lors de la synthèse. Les masses de précurseurs ajoutées à la solution aqueuse de TTAB sont également indiquées :
Matériau final Sel utilisé Masse de sel Fe0,57-Si(HIPE) FeCl2.4H2O 2,7 Fe0,1-Si(HIPE) 0,477 Fe0,05-Si(HIPE) 0,239 Cr0,57-Si(HIPE) CrCl3.6 H2O 3,465 Cr0,1-Si(HIPE) 0,640 Cr0,05-Si(HIPE) 0,32 Mn0,3-Si(HIPE) MnCl2. 4H2O 1,43 Mn0,1-Si(HIPE) 0,475 Mn0,05-Si(HIPE) 0,238 Ni0,57-Si(HIPE) NiCl2. 6H20 3,252 Ni0,1-Si(HIPE) 0,571 Ni0,05-Si(HIPE) 0,2852 Co0,57-Si(HIPE) CoCl2. 6H20 3,255 Co0,1-Si(HIPE) 0,571 Co0,05-Si(HIPE) 0,2852 V0,57-Si(HIPE) VOCl3 2,371 (1,3 ml) V0,1-Si(HIPE) 0,416 (0,23 ml) V0,05-Si(HIPE) 0,208 (0,114 ml) Ce0,57-Si(HIPE) CeCl3. 7H20 5,097 Ce0,1-Si(HIPE) 0,894 Ce0,05-Si(HIPE) 0,447 Zn0,2-Si(HIPE) Zn(NO3)3. 6H2O 1,42 Zn0,1-Si(HIPE) 0,71 Zn0,05-Si(HIPE) 0,36 Mo0,25-Si(HIPE) MoCl5anhydre 1,64 Mo0,15-Si(HIPE) 0,985 Mo0,1-Si(HIPE) 0,656 Mo0,05-Si(HIPE) 0,328 W0,2-Si(HIPE) WCl6anhydre 1,903 W0,1-Si(HIPE) 0,952 W0,05-Si(HIPE) 0,476 Y0, 3-Si(HIPE) YCl3. 6H20 2,18 Y0,1-Si(HIPE) 0,73 Y0, 05-Si(HIPE) 0,36 Nb0, 3-Si(HIPE) NbCl5anhydre 1,950 Nb0, 2-Si(HIPE) 1,296 Nb0, 1-Si(HIPE) 0,648 Nb0, 05-Si(HIPE) 0,324 Cd0, 3-Si(HIPE) CdCl2anhydre 1,32 Cd0, 1-Si(HIPE) 0,44 Cd0, 05-Si(HIPE) 0,22 Sn0, 3-Si(HIPE) SnCl2anhydre 1,38 Sn0, 1-Si(HIPE) 0,46 Sn0, 05-Si(HIPE) 0,23 Ta0, 2-Si(HIPE) TaCl5anhydre 1,72 Ta0, 1-Si(HIPE) 0,86 Ta0, 05-Si(HIPE) 0,43 In0, 3-Si(HIPE) InCl3. 4H2O 2,1 In0, 1-Si(HIPE) 0,7 In0, 05-Si(HIPE) 0,35 Cu 0,25 -Si(HIPE) CuCl2. 2H2O 1,02 Cu 0,1 -Si(HIPE) 0,41 Cu 0,05 -Si(HIPE) 0,21
For writing convenience, the mixed oxides MOx-SiO2(HIPE) synthesized here will be named: Mx-Si(HIPE) in table 1; M represents the metal in question, “x” here represents the M/Si molar ratio used during the synthesis. The masses of precursors added to the aqueous solution of TTAB are also indicated:
End material Salt used mass of salt Fe 0.57 -Si(HIPE) FeCl 2 .4H 2 O 2.7 Fe 0.1 -Si(HIPE) 0.477 Fe 0.05 -Si(HIPE) 0.239 Cr 0.57 -Si(HIPE) CrCl 3 .6 H 2 O 3,465 Cr 0.1 -Si(HIPE) 0.640 Cr 0.05 -Si(HIPE) 0.32 Mn 0.3 -Si(HIPE) MnCl 2 . 4H 2 O 1.43 Mn 0.1 -Si(HIPE) 0.475 Mn 0.05 -Si(HIPE) 0.238 Ni 0.57 -Si(HIPE) NiCl2 . 6:20 a.m. 3,252 Ni 0.1 -Si(HIPE) 0.571 Ni 0.05 -Si(HIPE) 0.2852 Co 0.57 -Si(HIPE) CoCl2 . 6:20 a.m. 3,255 Co 0.1 -Si(HIPE) 0.571 Co 0.05 -Si(HIPE) 0.2852 V 0.57 -Si(HIPE) VOCl 3 2.371 (1.3ml) V 0.1 -Si(HIPE) 0.416 (0.23ml) V 0.05 -Si(HIPE) 0.208 (0.114ml) Ce 0.57 -Si(HIPE) CeCl 3 . 7:20 a.m. 5,097 Ce 0.1 -Si(HIPE) 0.894 Ce 0.05 -Si(HIPE) 0.447 Zn 0.2 -Si(HIPE) Zn(NO 3 ) 3 . 6H 2 O 1.42 Zn 0.1 -Si(HIPE) 0.71 Zn 0.05 -Si(HIPE) 0.36 Mo 0.25 -Si(HIPE) Anhydrous MoCl 5 1.64 Mo 0.15 -Si(HIPE) 0.985 Mo 0.1 -Si(HIPE) 0.656 Mo 0.05 -Si(HIPE) 0.328 W 0.2 -Si(HIPE) WCl 6 anhydrous 1,903 W 0.1 -Si(HIPE) 0.952 W 0.05 -Si(HIPE) 0.476 Y 0, 3 -Si(HIPE) YCl 3 . 6:20 a.m. 2.18 Y 0.1 -Si(HIPE) 0.73 Y 0.05 -Si (HIPE) 0.36 Nb 0, 3 -Si(HIPE) Anhydrous NbCl 5 1,950 Nb 0, 2 -Si(HIPE) 1,296 Nb 0, 1 -Si(HIPE) 0.648 Nb 0.05 -Si (HIPE) 0.324 Cd 0, 3 -Si(HIPE) CdCl 2 anhydrous 1.32 Cd 0, 1 -Si(HIPE) 0.44 Cd 0.05 -Si (HIPE) 0.22 Sn 0, 3 -Si(HIPE) SnCl 2 anhydrous 1.38 Sn 0, 1 -Si(HIPE) 0.46 Sn 0.05 -Si (HIPE) 0.23 Ta 0, 2 -Si(HIPE) Anhydrous TaCl 5 1.72 Ta 0, 1 -Si(HIPE) 0.86 Ta 0.05 -Si (HIPE) 0.43 In 0, 3 -Si(HIPE) InCl 3 . 4H 2 O 2.1 In 0, 1 -Si(HIPE) 0.7 In 0.05 -Si (HIPE) 0.35 Cu 0.25 - Si(HIPE) CuCl2 . 2H 2 O 1.02 Cu 0.1 - Si(HIPE) 0.41 Cu 0.05 - Si(HIPE) 0.21

Les figures montrent le caractère monolithique des céramiques obtenues. La figure 1 a-g illustre la macroporosité interconnectée telle qu’elle est révélée par la microscopie électronique à balaye (MEB). La spectroscopie de rayons X à dispersion d’énergie (EDX) démontre la répartition homogène des éléments de transitions ou métalloïdes au sein de la matrice silicique (Figure 1 h-j).The figures show the monolithic character of the ceramics obtained. Figure 1a-g illustrates interconnected macroporosity as revealed by scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDX) demonstrates the homogeneous distribution of transition or metalloid elements within the silicic matrix (Figure 1 h-j).

La figure 2 représente les images obtenues par imagerie en microscopie électronique en transmission (MET) qui mettent en évidence la mésoporosité de la silice et démontre le caractère nanométrique des nano-oxydes nucléés au sein de la matrice silicique. A cette MET est associée de la DET (Diffraction électronique à transmission) qui révèle la microstructure de ces nano-oxydes technique de caractérisation dédoublée par de la diffusion de RX aux grands angles (WAXS : Wide Angle X-ray Scattering) avec la Figure 3.

FIG. 2 represents the images obtained by transmission electron microscopy (TEM) imaging which highlights the mesoporosity of the silica and demonstrates the nanometric character of the nucleated nano-oxides within the silicic matrix. Associated with this TEM is DET (electronic transmission diffraction) which reveals the microstructure of these nano-oxides, characterization technique split by wide-angle X-ray scattering (WAXS: Wide Angle X-ray Scattering) with Figure 3 .

Claims (10)

Procédé de préparation d’un monolithe d’oxydes mixtes nanoparticulaires à porosité multi-échelle de formule (I)
MOxSiO2 (I)
dans laquelle
M représente un métal ou un métalloïde choisi dans le groupe comprenant Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In et
x représente le rapport molaire M/Si et est un nombre compris entre 0,05 et 0,57 ,
ledit procédé comprenant :
a) une étape d’émulsification d’une phase huileuse dans une phase aqueuse homogène acide , ladite phase aqueuse comprenant un tensioactif cationique, au moins un sel métallique précurseur d’oxyde métallique et un précurseur de silice,
b) une étape de polycondensation,
c) une étape d’élimination de la phase huileuse par un traitement d’une nuit par du dichlorométhane et
d) une première étape de calcination à une température comprise entre 160 et 200 °C, avantageusement 180 °C, avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min, avantageusement égale à 1°C/min, le plateau étant maintenu pendant 3 à 6 heures, avantageusement pendant 3 heures et
e) une seconde étape de calcination à une température comprise entre 600 et 800 °C, avantageusement 700 °C, avec une vitesse de chauffe comprise entre 0,5 et 2 °C/min , avantageusement égale à de 1°C/min, le plateau étant maintenu pendant 3 à 6 heures, avantageusement pendant 5 heures.
Process for the preparation of a monolith of nanoparticulate mixed oxides with multi-scale porosity of formula (I)
MOxSiO2 (I)
in which
M represents a metal or a metalloid selected from the group consisting of Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In and
x represents the M/Si molar ratio and is a number between 0.05 and 0.57,
said method comprising:
a) a step of emulsifying an oily phase in a homogeneous acidic aqueous phase, said aqueous phase comprising a cationic surfactant, at least one metal salt precursor of metal oxide and a precursor of silica,
b) a polycondensation step,
c) a stage of elimination of the oily phase by overnight treatment with dichloromethane and
d) a first calcining step at a temperature of between 160 and 200°C, advantageously 180°C, with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, the plateau being maintained for 3 to 6 hours, advantageously for 3 hours and
e) a second calcining step at a temperature of between 600 and 800°C, advantageously 700°C, with a heating rate of between 0.5 and 2°C/min, advantageously equal to 1°C/min, the plateau being maintained for 3 to 6 hours, advantageously for 5 hours.
Procédé selon la revendication 1 caractérisé en ce que la phase huileuse est constituée par un ou plusieurs composés choisis parmi les alcanes linéaires ou ramifiés ayant au moins 9 atomes de carbone.Process according to Claim 1, characterized in that the oily phase consists of one or more compounds chosen from linear or branched alkanes having at least 9 carbon atoms. Procédé selon l’une quelconque des revendications 1 ou 2 caractérisé en ce que le tensioactif cationique est choisi parmi les ammoniums quaternaires ayant au moins 8 atomes de carbone.Process according to any one of Claims 1 or 2, characterized in that the cationic surfactant is chosen from quaternary ammoniums having at least 8 carbon atoms. Procédé selon l’une quelconque des revendications 1 à 3 caractérisé en ce que les sels métalliques précurseurs d’oxyde métalliques sont choisis parmi les chlorures et les nitrures.Process according to any one of Claims 1 to 3, characterized in that the metal salts which are metal oxide precursors are chosen from chlorides and nitrides. Procédé selon l’une quelconque des revendications 1 à 4 caractérisé en ce que le précurseur de silice est un alcoxyde de silicium.Process according to any one of Claims 1 to 4, characterized in that the silica precursor is a silicon alkoxide. Procédé selon la revendication 5 caractérisé en ce que l’alcoxyde de silicium est choisi dans le groupe comprenant le tétraéthoxy-orthosilicate (TEOS), le (3-mercaptopropyl)triméthoxyxilane, le (3-aminopropyl) triéthoxysilane, le N-(3-triméthoxysilylpropyl)pyrrole, le 3 (2,4-dinitrophénylamino)propyltriéthoxysilane, le N-(2-aminoéthyl)-3-aminopropyltriméthoxysilane, le phényltriéthoxysilane et le méthyltriéthoxysilaneProcess according to Claim 5, characterized in that the silicon alkoxide is chosen from the group comprising tetraethoxy-orthosilicate (TEOS), (3-mercaptopropyl)trimethoxyxilane, (3-aminopropyl)triethoxysilane, N-(3- trimethoxysilylpropyl)pyrrole, 3 (2,4-dinitrophenylamino)propyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, phenyltriethoxysilane and methyltriethoxysilane Matériau sous forme d’un monolithe comprenant une matrice d’oxyde mixte de silicium et d’un métal, ledit oxyde mixte se présentant sous forme de nanoparticules et répondant à la formule (I)
MOxSiO2 (I)
dans laquelle
M représente un métal ou un métalloïde choisi dans le groupe comprenant Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu et In et
x représente le rapport molaire M/Si et est un nombre compris entre 0,05 et 0,57 ,
ledit matériau possédant une porosité multi-échelle.
Material in the form of a monolith comprising a matrix of mixed oxide of silicon and of a metal, said mixed oxide being in the form of nanoparticles and corresponding to the formula (I)
MOxSiO2 (I)
in which
M represents a metal or a metalloid selected from the group consisting of Cr, Co, Mn, Ni, Ce, V, Y, W, Nb, Mo, Fe, Zn, Ta, Sn, Cd, Cu and In and
x represents the M/Si molar ratio and is a number between 0.05 and 0.57,
said material having a multi-scale porosity.
Matériau selon la revendication 7 caractérisé en ce qu’il comprend des macropores ayant une dimension moyenne dA de 0,5 à 60 micromètres, des mésopores ayant une dimension moyenne dE de 20 à 30 Å et des micropores ayant une dimension moyenne dI de 5 à 10 Å, lesdits pores étant interconnectés.Material according to Claim 7, characterized in that it comprises macropores having an average dimension dA of 0.5 to 60 micrometers, mesopores having an average dimension dE of 20 to 30 Å and micropores having an average dimension dI of 5 to 10 Å, said pores being interconnected. Matériau selon l’une quelconque des revendications 8 ou 9 caractérisé en ce sa surface spécifique est comprise entre 400 et 600 m2/g. parfaitMaterial according to any one of Claims 8 or 9, characterized in that its specific surface is between 400 and 600 m2/g. Perfect Utilisation d’un matériau selon l’une quelconque des revendications 7 à 9 dans des procédés d’adsorption et de stockage spécifique de gaz toxiques comme notamment CO, NO et CO2.Use of a material according to any one of Claims 7 to 9 in processes for the adsorption and specific storage of toxic gases such as in particular CO, NO and CO 2 .
FR2009497A 2020-09-18 2020-09-18 Monolithic nanoparticle metallo-oxides with multi-scale porosity Active FR3114317B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR2009497A FR3114317B1 (en) 2020-09-18 2020-09-18 Monolithic nanoparticle metallo-oxides with multi-scale porosity
PCT/EP2021/075529 WO2022058449A1 (en) 2020-09-18 2021-09-16 Monolithic nanoparticle metal oxides with multiscale porosity
EP21777536.0A EP4214177A1 (en) 2020-09-18 2021-09-16 Monolithic nanoparticle metal oxides with multiscale porosity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009497 2020-09-18
FR2009497A FR3114317B1 (en) 2020-09-18 2020-09-18 Monolithic nanoparticle metallo-oxides with multi-scale porosity

Publications (2)

Publication Number Publication Date
FR3114317A1 true FR3114317A1 (en) 2022-03-25
FR3114317B1 FR3114317B1 (en) 2022-09-23

Family

ID=74205947

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2009497A Active FR3114317B1 (en) 2020-09-18 2020-09-18 Monolithic nanoparticle metallo-oxides with multi-scale porosity

Country Status (3)

Country Link
EP (1) EP4214177A1 (en)
FR (1) FR3114317B1 (en)
WO (1) WO2022058449A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064322A1 (en) * 2002-01-29 2003-08-07 Imperial Chemical Industries Plc Silica materials with meso- and macropores
WO2004087610A2 (en) 2003-03-27 2004-10-14 Centre National De La Recherche Scientifique Inorganic material with a hierarchical structure and method for the preparation thereof
US20050130827A1 (en) * 2002-02-22 2005-06-16 Schunk Stephan A. Decomposable monotithic ceramic materials having an at least bimodal pore distribution and active metal centers located in the pores
FR2965807A1 (en) * 2010-10-11 2012-04-13 Centre Nat Rech Scient PROCESS FOR PREPARING ALVEOLAR INORGANIC MONOLITHIC MATERIALS AND USES THEREOF
FR2993874A1 (en) * 2012-07-26 2014-01-31 Univ Paris Curie Preparing silica-alumina material used as acid catalyst and catalyst support for heterogeneous catalysis in continuous flow, comprises preparing oil phase, aqueous phase and oil-in-water emulsion and performing condensation step
FR3065650A1 (en) * 2017-04-28 2018-11-02 IFP Energies Nouvelles METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064322A1 (en) * 2002-01-29 2003-08-07 Imperial Chemical Industries Plc Silica materials with meso- and macropores
US20050130827A1 (en) * 2002-02-22 2005-06-16 Schunk Stephan A. Decomposable monotithic ceramic materials having an at least bimodal pore distribution and active metal centers located in the pores
WO2004087610A2 (en) 2003-03-27 2004-10-14 Centre National De La Recherche Scientifique Inorganic material with a hierarchical structure and method for the preparation thereof
FR2965807A1 (en) * 2010-10-11 2012-04-13 Centre Nat Rech Scient PROCESS FOR PREPARING ALVEOLAR INORGANIC MONOLITHIC MATERIALS AND USES THEREOF
FR2993874A1 (en) * 2012-07-26 2014-01-31 Univ Paris Curie Preparing silica-alumina material used as acid catalyst and catalyst support for heterogeneous catalysis in continuous flow, comprises preparing oil phase, aqueous phase and oil-in-water emulsion and performing condensation step
FR3065650A1 (en) * 2017-04-28 2018-11-02 IFP Energies Nouvelles METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A. ROUCHER ET AL., J. SOL-GEL SCI. TECH., vol. 90, 2019, pages 95
A. ROUCHER ET AL., THE CHEMICAL RECORD, vol. 18, 2018, pages 776
BARRETTJOYNER ET HALENDA, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 73, 1951, pages 373 - 380
DEBECKER DAMIEN ET AL: "First acidic macro-mesocellular aluminosilicate monolithic foams "SiAl(HIPE)" and their catalytic properties", 1 January 2015 (2015-01-01), pages 13993 - 14128, XP055806481, Retrieved from the Internet <URL:https://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc05328e> [retrieved on 20210521] *
DEBECKER DAMIEN P ET AL: "First Acidic Macrocellular Aluminosilicate Monoliths "SiAl(HIPE)" and their Catalytic Properties Electronic Supplementary Information (ESI)", 29 July 2015 (2015-07-29), XP055806476, Retrieved from the Internet <URL:http://www.rsc.org/suppdata/c5/cc/c5cc05328e/c5cc05328e1.pdf> [retrieved on 20210521] *
F. CARN ET AL., J. MAT. CHEM., vol. 14, 2004, pages 1370
FLORENT CARN ET AL: "Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templatesElectronic supplementary information (ESI) available: XRD profiles, nitrogen physisorption data and pore size distribution calculated from density functional theory, for the xSi-HIPE0.035 series. See h", JOURNAL OF MATERIALS CHEMISTRY, vol. 14, no. 9, 1 January 2004 (2004-01-01), GB, pages 1370, XP055267430, ISSN: 0959-9428, DOI: 10.1039/b400984c *
S. BERNADET ET AL., ADV. FUNCT MAT., vol. 29, 2019, pages 1807767
S. BRUNAUERP. H. EMMETE. TELLER, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, no. 2, 1938, pages 309 - 319

Also Published As

Publication number Publication date
EP4214177A1 (en) 2023-07-26
WO2022058449A1 (en) 2022-03-24
FR3114317B1 (en) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2010027854A1 (en) Porous films by a templating co-assembly process
JP7401627B2 (en) Method for producing hollow silica particles
EP0073703A1 (en) Alumina composition for coating a catalyst support, its preparation and catalyst coated therewith
FR2886636A1 (en) INORGANIC MATERIAL HAVING METALLIC NANOPARTICLES TRAPPED IN A MESOSTRUCTURED MATRIX
EP2334430B1 (en) Method for preparing a structured porous material comprising nanoparticles of metal 0 imbedded in the walls thereof
CN108610786B (en) A kind of super-hydrophobic coat and preparation method thereof based on three-dimensional grapheme
KR101239262B1 (en) method for manufacturing silica-ceria, core-shell nanoparticles using microemulsion
Finsel et al. Synthesis and thermal stability of ZrO 2@ SiO 2 core–shell submicron particles
JPWO2013073475A1 (en) Nano hollow particles and method for producing the same
EP2117709A2 (en) Hybrid material, and method for the production thereof
Hessien et al. Fabrication of porous Al2O3–MgO–TiO2 ceramic monoliths by the combination of nanoemulsion templating and temperature-induced forming
Zhao et al. The influence of water content on the growth of the hybrid-silica particles by sol-gel method
FR3114317A1 (en) Monolithic nanoparticle metallo-oxides with multi-scale porosity
D’Souza et al. Preparation of thermally stable high surface area mesoporous tetragonal ZrO2 and Pt/ZrO2: An active hydrogenation catalyst
WO2004087610A2 (en) Inorganic material with a hierarchical structure and method for the preparation thereof
KR101466095B1 (en) hollow sillica spheres synthetic method using of surfactant
Landau Sol–gel process
Tong et al. Facile fabrication and application of Au@ MSN nanocomposites with a supramolecular star-copolymer template
EP2231326A2 (en) Purified powder of nanometric particles
Li et al. Uniform and reactive hydrogen polysilsesquioxane hollow spheres immobilized with silver nanoparticles for catalytic reduction of methylene blue
WO2006006425A1 (en) Composite nanosheet, process for producing the same, and process for producing metal oxide nanosheet
Ravikrishna et al. Polyaphrons as templates for the sol–gel synthesis of macroporous silica
FR2917983A1 (en) NEW COMPOSITE MATERIALS, PROCESS FOR PREPARING THEM AND USES THEREOF.
Cao et al. Polymeric Surfactant (PIBSA-X) Facilitates the Formation of a Water-in-Oil Emulsion Reactor for the Preparation of Ultrasmall Nanosilica
JP2004250277A (en) Novel method for preparing mesoporous transition metal oxide doped with different kinds of metals

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20220325

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5