WO2004086430A1 - Permanent magnetic film - Google Patents

Permanent magnetic film Download PDF

Info

Publication number
WO2004086430A1
WO2004086430A1 PCT/JP2004/004229 JP2004004229W WO2004086430A1 WO 2004086430 A1 WO2004086430 A1 WO 2004086430A1 JP 2004004229 W JP2004004229 W JP 2004004229W WO 2004086430 A1 WO2004086430 A1 WO 2004086430A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
powder
film
magnetic
magnet film
Prior art date
Application number
PCT/JP2004/004229
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Sugimoto
Koichiro Inomata
Jun Akedo
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2004086430A1 publication Critical patent/WO2004086430A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals

Definitions

  • the present invention relates to a magnetic film having permanent magnet capability and a method for producing the same. n.
  • Permanent magnets have been widely used in the fields of electronic communication equipment and automobiles because of their own magnetic field.
  • These permanent magnet materials include RFeB-based alloys containing rare earth metal elements (hereinafter abbreviated as R), boron (B) and iron (Fe) as main components, and R and cobalt (Co) as main components.
  • R rare earth metal elements
  • B boron
  • Fe iron
  • Co cobalt
  • ferrite magnets composed of a ferrite phase having a spinel-type or magnetoplumbite-type crystal structure
  • FeAINi Co-based alloy containing nickel, nickel (Ni) and Co as main components FeAINi Co-based alloy containing nickel, nickel (Ni) and Co as main components, CuNi Fe-based alloy containing copper (Cu), Ni and Fe as main components, CuNi Co-based alloy, Fe, chromium (Cr), and Co
  • alloy magnets such as FeCrCo based alloys whose main component is.
  • thin film magnets with a thickness of 1 ⁇ m or less can be manufactured using the sputtering method, and thick film magnets with a thickness of about 100 to 50 ⁇ zrn can be manufactured using the plasma laser deposition (PLD) method. See JP-A-9-50611 and JP-A-2000-212766.).
  • the present invention has been made in view of the above points, and provides a permanent magnet film which is efficiently and inexpensively obtained at a low cost, has a film thickness desired to be reduced in the future and has high magnetic properties, and a method for manufacturing the same.
  • the purpose is to do. Disclosure of the invention
  • the crystal lattice may be displaced or fractured along a projected surface such as an interface between crystallites.
  • a new surface is formed on the slip surface or fractured surface, where the atoms that originally existed and were bonded to other atoms are exposed.
  • the layer of one atom of this new surface is exposed to an unstable surface state by an external force from the originally stable atomic bond state, and the surface energy becomes high.
  • the application of a continuous mechanical impact from the outside where the active surface joins the surface of the adjacent brittle material, the newly formed surface of the adjacent brittle material or the substrate surface and transitions to a stable state continuously causes this phenomenon. As a result, the deformation and crushing of the fine particles are repeated, so that the bonding progresses and densifies, and a brittle material is formed.
  • the present invention further provides a mechanical impact force obtained by colliding a material with a base material using a carrier gas, and directly forming a polycrystalline structure of the material on the base material. is there.
  • a mechanical impact force obtained by colliding a material with a base material using a carrier gas, and directly forming a polycrystalline structure of the material on the base material.
  • an aerosol in which fine particles of a material such as a magnetic metal powder or a ferrite magnetic powder used as a raw material for forming a magnetic film are dispersed in a gas is conveyed, and the sol is jetted onto the surface of the base material at a high speed. And collide to break or deform the fine particles, form a layer of anchor at the interface with the substrate and join them together, and join the crushed or deformed fine particles together By doing so, it is possible to obtain a film structure having good adhesion to the substrate, high strength, and high strength.
  • a method for producing a permanent magnet film according to the present invention is a method for producing
  • the film thickness of 1 ⁇ m or more, which was difficult with the conventional sputter method, and 300, m or less, which was difficult with the conventional bonded magnet The film can be formed efficiently and at low cost.
  • the magnetic film formation by the AD method is a low-temperature process, there is little influence on a film-forming target.
  • the crystal grain size of the film obtained by molding at low temperature is from several ⁇ m to several hundred nm, or less than 10 O nm, and the exchange coupling between magnetic particles has a large effect and high magnetic characteristics.
  • a magnetic film exhibiting properties can be obtained.
  • the magnetic film formed by the AD method almost matches the composition of the powder charged before the formation, the degree of freedom in the composition of the magnetic film can be remarkably improved as compared with the conventional sputtering method. And a magnetic film having a stable composition can be easily formed.
  • the magnetic film obtained by the AD method has a large adhesion strength to a film-forming object.
  • an optical target is not required unlike a conventional spa, a magnetic film can be formed at low cost.
  • a soft magnetic phase such as Fe, Co, and FeCo, which exhibit high saturation magnetization, and a hard magnetic phase, both phases are prayed in nanometer order. It is also possible to manufacture the obtained nanocomposite magnet thick film.
  • the method for producing a permanent magnet film according to the present invention may further comprise the steps of: providing a permanent magnet material powder, a metal magnetic powder or a ferrite compound powder, or a mixture of a metal magnetic powder and a ferrite compound powder; a metal magnetic powder and a polymer It is characterized by comprising a mixture of material powders, a mixture of ferrite compound powders and polymer material powders, a mixture of metal magnetic powder, a fluoride compound powder and a polymer material powder.
  • the method for producing a permanent magnet film according to the present invention is characterized in that the permanent magnet film is formed at room temperature, and the film is formed at room temperature or higher while heating the object to be formed.
  • the structure of the magnet film can be changed, and the magnetic properties of the magnet film can be controlled according to the application.o
  • a permanent magnet film made of metal magnetic powder having permanent magnet capability It has a magnetic phase containing an amorphous layer of 20 nm or less, preferably 10 nm or less between crystal grains, and has a Vickers hardness of 200 to; L 000Hv, preferably 300 to 800 HV, and a coercive force of 0.2T. As described above, it is preferably 1.7 T or more.
  • the permanent magnet film of the present invention is a permanent magnet film made of a ferrite compound powder having a permanent magnet capability, and has a magnetic phase including an oxide layer of 10 to 20 nm or less between crystal grains of the ferrite compound powder. It has a Vickers hardness of 200 to; L000Hv, preferably 300 to 800 HV, and a coercive force of 0.2 T or more, preferably 1.7 T or more.
  • the permanent magnet film of the present invention is preferably a permanent magnet film comprising a mixture of a magnetic metal powder having a permanent magnet function and a ferrite compound powder, wherein the distance between crystal grains of the magnetic metal powder is 20 nm or less.
  • the permanent magnet film of the present invention is a permanent magnet film comprising a mixture of a magnetic metal powder having a permanent magnet function and a polymer material powder, wherein the permanent magnet film includes a polymer layer between crystal grains of the magnetic metal powder. It is characterized by having a phase.
  • the permanent magnet film of the present invention is characterized in that the metal magnetic powder is composed of one or more kinds of metal magnetic powder.
  • the permanent magnet film of the present invention is characterized in that the fluoride compound powder is composed of one or more ferrite compound powders.
  • the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 ⁇ 111 to 500 ⁇ m.
  • the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 m to 30 Om.
  • the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 / m to 200 ⁇ m.
  • the permanent magnet film of the present invention is characterized in that it is formed without solder on a Si substrate, a metal substrate or a resin substrate having a thickness of 20 O ⁇ m or less. Further, the permanent magnet film of the present invention is formed on an Si substrate, a metal substrate or a resin substrate with an adhesion strength of 50 MPa or more.
  • FIG. 1 is a schematic diagram of a magnetic film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a magnetic film obtained by the AD method according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a demagnetization curve of the magnetic characteristics of the SmFeN powder (average powder particle size 3 Urn) used in the AD method according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an appearance photograph of an SmFeN film produced by using the AD method according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an X-ray diffraction pattern of a thick SmFeN film produced by the AD method according to the embodiment of the present invention under the conditions of a gas flow rate of 4 to 10 lZmin and a deposition time of 4 minutes. is there.
  • FIG. 6 is a diagram showing the gas flow rate dependence of the film thickness of the SmFeN film produced by the AD method according to the embodiment of the present invention in the AD method.
  • FIG. 7 is a diagram showing the time dependence of the film thickness of the SmFeN film in the AD method according to the embodiment of the present invention.
  • FIG. 8 is a view showing an optical microscope structure of the SmFeN film obtained by the AD method according to the embodiment of the present invention under the condition of a gas flow rate of 61 Zmin and a deposition time of 4 minutes.
  • FIG. 9 is a diagram showing a scanning electron microscopic structure of the SmFeN film obtained by the AD method according to the embodiment of the present invention under the conditions of a gas flow rate of 61 min min and a deposition time of 4 minutes.
  • FIG. 10 shows the influence of the gas flow rate in the AD method on the micro Vickers hardness of the SmFeN thick film produced by the AD method according to the embodiment of the present invention under the condition that the film formation time is 4 minutes.
  • FIG. 11 is a diagram showing the results of magnetic measurement.
  • FIG. 12 is a diagram showing the gas flow rate dependence of the magnetic properties.
  • FIG. 13 is a diagram showing the dramatic time dependence of the magnetic properties of a thick SmFeN film formed at a gas flow rate of 41 Zmin and 81 / min.
  • FIG. 14 is a diagram showing a situation in which a thick film composed of crystal grains having large metal magnet compound powder particles as nuclei and small oxide powder disposed around the particles is obtained.
  • FIG. 15 is a diagram showing the gas flow rate dependence of the coercive force in an AD thick film using M-type ferrite powder.
  • FIG. 1 is a schematic diagram of a magnetic film manufacturing apparatus.
  • the magnetic film of the present invention is formed by aerosol-deposition method (hereinafter, referred to as “AD The law is used.)
  • AD aerosol-deposition method
  • a magnetic film having a desired composition and thickness can be efficiently manufactured by aerosolizing raw material powder having a composition equal to the composition of a target magnetic film and causing the material powder to collide with an object to be formed. .
  • the magnetic film forming apparatus 10 for performing the AD method includes a mixer 11, a channel 12, a mouth pump, and a mechanical booth pump 13.
  • the raw material powder 14 is charged into the mixer 11, and the raw material powder 14 charged therein is mixed by the vibration of the mixer 11. This eliminates bias in the particle size distribution in the mixer when the raw material powder 14 is a single type of powder, and uniformly mixes them when the raw material powder 14 is a plurality of types of powder. The deviation of the particle size distribution can be eliminated.
  • a nozzle 15 connected to the mixer 11 via a pipe is arranged in the channel 12, and the raw material powder 14 in the mixer 11 is supplied from the gas cylinder 17 from the tip of the nozzle 15. Is aerosolized by the above gas and ejected.
  • the substrate 20 is arranged on the tip end side of the nozzle 15 via a mask 16. When the raw material powder 14 is jetted, the particles 14 a collide with the surface of the substrate 20 not covered with the mask 15.
  • the inlet / outlet pump and the mechanical booth pump 13 are used for adjusting the pressure in the chamber 12.
  • the pressure in the chamber 12 is set to 10 2 Torr or less.
  • the formation of the magnetic film can be performed at normal temperature such as room temperature.
  • the optimum speed varies depending on the type of material, but is in the range of 200 to 800 m / sec for brittle materials and 400 to 80 Om / sec for fine metal particles.
  • a magnetic film having a desired film thickness can be manufactured at a high speed.
  • the thickness of the magnetic film is about the usual thickness in the conventional sputtering method, whereas the AD method can form a magnetic film with a thickness in the range of 2 / m to 500 zm. Wear.
  • the film thickness to be formed is preferably 2 im to 30 OAdm, and more preferably 2 m to 200 m.
  • the deposition rate of the magnetic film by the AD method is as fast as about 10 ⁇ m Zmin, which is an industrially superior method.
  • FIG. 2 is a schematic diagram of a magnetic film obtained by the AD method.
  • a magnetic film 30 is formed in which fine particles that have collided with the film-forming object 20 which is a substrate are laminated on the surface thereof.
  • the magnetic film 30 has a structure having an amorphous layer of 20 nm or less between crystal grains of the fine particles when the metal magnetic material powder is used as a raw material, and the fine particles when a ferrite compound powder is used as a raw material. It has a magnetic phase that contains an oxide layer (FeOx, SmOx, etc.) of 2 Onm or less between crystal grains.
  • the magnetic film formed by the AD method has a higher Beakers hardness than that formed by a conventional method such as a sintering method or a thermal spraying method. It has a hardness of 20 OHv to 100 OHv, preferably 300 Hv to 80 OHv, depending on the conditions at the time of production, for example, the injection speed and the like.
  • the magnetic film thus formed almost matches the composition of the powder charged before the formation.
  • the conventional sputtering method it is necessary to determine the composition ratio of the magnetic film to be formed based on the area of the target used, and to develop an optimal structure by heat treatment.
  • the AD method the degree of freedom of composition of a magnetic film that can be formed can be remarkably improved.
  • Gold magnetic powders used as raw materials for forming magnetic films by the AD method are Fe, Co ⁇ Ni, In addition to Mn simple metals, FeAlNi Co, CuNiFe, CuNiCo, FeCrCo, FePt, CoPt, RFeB, RCo, RFeN, MnAl, MnAlC alloys, etc. Can be. Further, nanocomposite powders of these metallic magnetic phases and Fe 3 B phase, Fe phase and the like can also be used.
  • spinel Blow wells compounds such as C o 0 ⁇ F e 2 ⁇ 3 as Fuwerai bets magnetic powder, BaFe 12 0, S r F e 0 19 M -type ferrite compounds such as, BaFe 18 0 27, S rFe 18 ⁇ 27 it is possible to use a W-type ferrite compounds such as.
  • the particle diameters of the metal magnetic powder and the ferrite compound powder are approximately several tens nm to several // m. Further, a mixed powder of the above-mentioned metal magnetic powder and ferrite magnetic powder can be used.
  • oxide powders of different sizes such as a mixture of oxide powders such as ferrite magnetic powders of several tens nm to sub / m size and metal petrochemical compound powders such as rare earth magnet compound powders of several ⁇ m size, and metal magnet compounds
  • a film is formed by the AD method using a powder mixed with a powder or a powder in which an oxide powder is supported on a metal magnet compound powder, particles of a large metal magnet compound powder as shown in FIG. 14 are nucleated. As a result, a thick film composed of crystal grains around which small iridescent powder is arranged is obtained.
  • metal magnetic substance powder and polymer material powder or mixed powder of metal magnetic substance powder, ferrite magnetic powder and polymer material powder, or ferrite magnetic powder and polymer material powder.
  • polymer material powder acryl-based, nylon-based, epoxy-based, polyamide-based, or polyimide-based resin is used.
  • Magnetic film obtained by using the AD method, very strongly attached to the film formation was a glass substrate, S i 0 2 substrate, Fe, Cu, metal such as Mg alloy, A 1 2 ⁇ 3 It can also be formed on ceramics such as ceramics, and polymer materials such as polycarbonate and ABS resin.
  • a micro motor or a micro actuator using a thin film magnet or a thick film magnet is formed, it is required to form a magnet film on such a thin substrate.
  • a thin magnet film is adhered on the above substrate having a thickness of ⁇ m to 200 zm with an adhesive, the application of the adhesive layer and the attachment of the magnet film are extremely difficult, and there is a major problem in productivity.
  • a specific portion table of a thin substrate material having a thickness of 200 zm or less can be easily formed by spraying magnet material fine particles.
  • the magnet film can be formed only on the surface.
  • the composition of the magnetic film formed of the AD film is determined by the composition of the raw material powder, and a magnetic film having a stable composition can be easily formed, and a magnetic film having high magnetic properties can be formed.
  • the magnetic film formation by the AD method is a low-temperature process, there is little effect on a film-formed object to be formed. Further, since a high-priced evening gate is not required unlike the conventional spa, it is possible to form a magnetic film at low cost.
  • the magnetic film obtained by the AD method has a very strong adhesion strength to the object to be formed, of 50 MPa or more even with a film thickness of 2 ⁇ m or more. Stability can be improved. Furthermore, it is possible to form a magnetic film having a film thickness of 1 JU.m or more, which was difficult to form by the conventional sputtering method, and a thickness of 300 ⁇ m or less, which was difficult with the conventional bond magnet. Therefore, a magnetic film can be arbitrarily formed on a variety of materials, parts, and the like according to their use or space.
  • VSM vibrating magnetometer
  • Fig. 3 shows the demagnetization curve.
  • the vertical axis is the magnetic polarization J (T)
  • the horizontal axis is the magnetic field /. ⁇ ( ⁇ ).
  • the host SmFeN powder has a remanent Br of about 0.7 T and a coercive force of about 1.2 T ⁇ . It can be seen that it has H.
  • Fig. 4 shows a photograph of the appearance of the SmFeN film produced by the AD method.
  • the gas flow rate in the AD method was varied from 2 lZmin to 101 / min, and the deposition time was kept constant at 4 minutes.
  • Figure 5 shows an X-ray diffraction pattern of a thick SmFeN film produced by the AD method under the conditions of a gas flow rate of 4 to 10 l / min and a deposition time of 4 minutes.
  • the vertical axis represents X-ray intensity
  • the horizontal axis represents 26 2.
  • Almost all the X-ray diffraction peaks can be indexed by the Tb 2 Fe 17 type structure, and the obtained thick film is considered to be composed of SmaFenN X-based compounds.
  • AD method Before and after AD method It is presumed that there is no change in the appearance phase, and this is a feature of the AD method in which the crystal structure does not change before and after film formation, and is a method different from other methods such as the sputtering method.
  • FIG. 6 shows the gas flow rate dependence of the thickness of the SmFeN film produced by the AD method in the AD method.
  • the horizontal axis of FIG. 6 represents the gas flow rate (lZmin) in the AD method, and the vertical axis represents the film thickness (1 m).
  • the film formation time was fixed at 4 minutes. From this, a film thickness of 45 / m or more was obtained by jetting at a flow rate of 81 / min for about 4 minutes, and the film formation rate calculated from this was 10 im / min or more.
  • O shows that the film was formed at high speed by the method.o
  • Figure 7 shows the dependence of the SmFeN film on the deposition time in the AD method.
  • the horizontal axis in FIG. 7 shows the film formation time (min) in the AD method, and the vertical axis shows the film thickness (jum). From this, it was found that the longer the film formation time, the thicker the film thickness, and the film thickness of 81Zmin was larger than the film thickness of 41Zmin. In addition, it is difficult to produce a thick film of this thickness by cutting a sintered magnet, and the superiority of this method, which can form a thick film in a short time of 4 minutes, can be seen.
  • FIGS. 8 and 9 show the optical microscopic structure and the scanning electron microscopic structure of the SmFeN film obtained by the AD method under the conditions of a gas flow rate of 61 / min and a film forming time of 4 minutes. It can be seen that the obtained thick film is formed by bonding particles of several tens nm to several // m. In view of the fact that high-temperature sintering causes crystal grain growth in the sintering method and crystal grains grow to 5 m or more, this method is a method that can produce a thick film composed of fine crystals. You can say that.
  • Fig. 10 shows the effect of the gas flow rate in the AD method on the micro Vickers hardness of the SmFeN thick film produced by the AD method under the conditions of the obtained film formation time of 4 minutes.
  • the vertical axis shows the picker hardness HV, and the horizontal axis shows the gas flow rate gfr (l / min).
  • the HV does not change much depending on the gas flow rate, indicating a high hardness of 600 to 800.
  • FIG. 11 is a diagram showing the results of magnetic measurement.
  • the horizontal axis represents the magnetic field intensity ⁇ .
  • H (T) and the vertical axis indicate the magnetic polarization J (T), respectively.
  • Magnetic properties of SmFeN film with a thickness of 18 ⁇ m formed by AD method were measured.
  • the obtained coercive force ⁇ . H is 1.7 T, and the formed SmFeN film shows a higher coercive force than the coercive force of the raw material powder shown in FIG.
  • Fig. 12 shows the gas flow rate dependence of the magnetic properties.
  • the horizontal axis is the gas flow in the AD method min)
  • the vertical axis is the saturation magnetic polarization J s (T)
  • the residual magnetic flux density B r (T) the coercive force //.
  • Hcj (T) is represented. This indicates that a coercive force of about 1.8 mm was obtained at all gas flow rates.
  • Fig. 13 shows the dependence of the magnetic properties of the SmFeM thick film deposited at a gas flow rate of 41 / min and 81 / min on the deposition time. From this, it can be seen that a coercive force of about 1.8 T was obtained at almost all times. Judging from Figs. 12 and 13, the SmFeN thick film prepared by this AD method can be said to have a higher coercive force than the magnetic powder of the host, as shown in Figs. 8 and 9. It is presumed to be related to the fact that the thick film formed in the above is composed of fine particles.
  • the flight speed of the SmFeN raw material particles injected from the nozzle (opening: 0.4 X 5 mm) used in the experiment increases in response to the increase in gas flow rate, but the flight speed described in the literature (JVSTA) is increased.
  • the gas flow rate is 20 OmZsec at 41 in 111 in. Therefore, it was clarified that the flying speed (injection speed) of the SmFeN material particles must be at least 20 Om / sec to obtain a good film.
  • M-type ferrite powder (average powder particle size 1.3 zm), which is a raw material for ferrite magnet powder, is used.
  • a coercive force of 0.14 to 0.25 T as shown in Fig. 15 was obtained.
  • this AD method can produce a thick-film magnet that generates coercive force with ferrite magnet powder in addition to rare-earth magnet powder. Therefore, this method can be said to be a method that can produce high coercivity thick film magnets even with various magnet materials.
  • this AD method is a method that can produce thinner magnets at a higher speed than conventional bonded magnets.
  • the AD method to form the permanent magnet film, it is possible to efficiently and efficiently form a magnetic film with a thickness of 300 mm or less, which was difficult with the conventional sputter method, and which was difficult with the conventional bonded magnet. It can be formed at low cost. In particular, it is possible to form a magnetic film having a film thickness in the range of 2 to 200 ⁇ m, which is expected to be thinner in the future.
  • the AD method Since the formation of the magnetic film by this is a low-temperature process, the influence on the film formation object is small.
  • the crystal grain size of the film obtained by molding at low temperature is from several ⁇ m to several hundred nm, or less than 10 O nm, and the exchange coupling between magnetic particles has a large effect and high magnetic characteristics.
  • a magnetic film exhibiting properties can be obtained.
  • the magnetic film formed by the AD method almost matches the composition of the powder to be charged before the formation, the degree of freedom in the composition of the magnetic film can be remarkably improved as compared with the conventional sputter method. And a magnetic film having a stable composition can be easily formed.
  • the magnetic film obtained by the AD method has a large adhesion strength to a film-forming object. Further, since an optical target is not required unlike the conventional sputtering, a magnetic film can be formed at low cost.
  • both phases are deposited on the order of nanometers to form a nanocomposite magnet thick film. Manufacturing is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Thin Magnetic Films (AREA)

Abstract

A method for producing a permanent magnet film having the performance capability as a permanent magnet, characterized in that it comprises converting a powder of a permanent magnet material to the form of an aerosol and spraying the aerosol to an article due to have the permanent magnet film thereon, to thereby form the permanent magnet film; and the above method, characterized in that the powder of a permanent magnet material comprises a magnet metal powder, a ferrite compound powder, a mixture of a magnet metal powder and a ferrite compound powder, a mixture of a magnet metal powder and a polymer material powder, a mixture of a ferrite compound powder and a polymer material powder, or a mixture of a magnet metal powder, a ferrite compound powder and a polymer material powder; and a permanent magnet film produced by the method. The method allows the production of a permanent magnet film having a thickness expected for a thin magnetic film in the near future and exhibiting high magnetic characteristics, with high efficiency at a low cost.

Description

明 細 書 永久磁石膜  Description Permanent magnet film
5 技術分野 5 Technical fields
:の発明は永久磁石能を有する磁性膜およびその製造方法に関する。 n.  The present invention relates to a magnetic film having permanent magnet capability and a method for producing the same. n.
永久磁石は自ら発する磁界のため電子通信機器、 自動車などの分野で従来から広く利 10用されている。  Permanent magnets have been widely used in the fields of electronic communication equipment and automobiles because of their own magnetic field.
これらの永久磁石材料としては、希土類金属元素(以下、 Rと略記する)とホウ素(B) と鉄 (Fe) とを主成分とする RFeB系合金や Rとコバルト (Co) を主成分とする R Co系合金等の希土類磁石、 スピネル型構造やマグネトプランバイ卜型構造の結晶構 造を有するフェライト相から構成されるフェライト磁石、 Feとアルミニウム (A1) These permanent magnet materials include RFeB-based alloys containing rare earth metal elements (hereinafter abbreviated as R), boron (B) and iron (Fe) as main components, and R and cobalt (Co) as main components. R Co-based alloys and other rare-earth magnets, ferrite magnets composed of a ferrite phase having a spinel-type or magnetoplumbite-type crystal structure, Fe and aluminum (A1)
15 とニッケル (Ni) と Coを主成分とする FeAINi Co系合金、 銅 (Cu) と Ni と Feを主成分とする CuNi Fe系合金、 CuNi Co系合金、 Feとクロム(Cr) と C oを主成分とする F e C r C o系合金等の合金磁石がある。 15 FeAINi Co-based alloy containing nickel, nickel (Ni) and Co as main components, CuNi Fe-based alloy containing copper (Cu), Ni and Fe as main components, CuNi Co-based alloy, Fe, chromium (Cr), and Co There are alloy magnets such as FeCrCo based alloys whose main component is.
これらの永久磁石の製造方法としては各磁石材料を溶解錶造する、 または微粉末にし てから焼結または樹脂と複合化させるなどの方法が用いられている (例えば、 日本特閧 As a method of manufacturing these permanent magnets, a method of melting and manufacturing each magnet material, or forming a fine powder and then sintering or compounding it with a resin is used.
20 2000-273556号公報、 日本特開 2000- 150217号公報及び日本特開 2003-59706号公報参照。)。 20 JP-A-2000-273556, JP-A-2000-150217 and JP-A-2003-59706. ).
しかしながら近年では電子機器、 通信機器のモパイル化、 ウェアラブル化に伴い、 い つそう薄型の永久磁石が要望されている。 これまでに焼結磁石の切削による薄型化ゃ樹 脂と複合化させることにより厚さ 300 z m程度のボンド磁石の形成が報告されてい However, in recent years, as electronic devices and communication devices have become motile and wearable, ever-smaller permanent magnets have been demanded. So far, it has been reported that bonded magnets with a thickness of about 300 zm can be formed by thinning sintered magnets and combining them with resin.
25 る。 またスパッ夕法などを用いることにより 1〃m以下の薄膜磁石、 プラズマレ一ザ一 デポジション (PLD) 法により 100〜50 Ο zrn程度の厚膜磁石の作製なども報告 されている (例えば、 日本特開平 9— 5061 1号公報及び日本特開 2000-212 766号公報参照。)。 25 It has also been reported that thin film magnets with a thickness of 1〃m or less can be manufactured using the sputtering method, and thick film magnets with a thickness of about 100 to 50Οzrn can be manufactured using the plasma laser deposition (PLD) method. See JP-A-9-50611 and JP-A-2000-212766.).
しかしながら、 従来の永久磁石特性の高い磁性膜の形成には、 焼結磁石の切削やボン ド磁石の作製などが用いられるが、 将来薄型化に望まれている 2 0 0 zm以下の厚さを 有する磁性膜の作製は難しい。 またスパッ夕法では現実的に数 m程度の薄い磁性膜を 形成することしかできず、 P L D法を用いる場合にもその形成には時間とコストがかか るという問題点があった。 However, to form a magnetic film with high permanent magnet properties in the past, cutting of sintered magnets and bonding Although the production of magnets and the like is used, it is difficult to produce a magnetic film having a thickness of 200 zm or less, which is expected to be thinner in the future. In addition, the sputtering method can actually form only a thin magnetic film of about several meters, and even when the PLD method is used, there is a problem that it takes time and costs to form the film.
このような背景から、 高い永久磁石特性を有する磁性膜を、 従来の焼結磁石、 ボンド 磁石よりも薄く、 そしてスパッ夕、 P L D法で形成できる以上の適当な膜厚で高速に形 成するための技術が求められている。  Against this background, to form a magnetic film with high permanent magnet properties at a high speed with an appropriate film thickness that is thinner than conventional sintered magnets and bonded magnets and that can be formed by sputtering or PLD. Technology is required.
本発明は、 このような点に鑑みてなされたものであり、効率的かつ低コストで得られ、 将来薄型化に望まれる膜厚でかつ高い磁気特性を有する永久磁石膜およびその製造方法 を提供することを目的とする。 発明の開示  The present invention has been made in view of the above points, and provides a permanent magnet film which is efficiently and inexpensively obtained at a low cost, has a film thickness desired to be reduced in the future and has high magnetic properties, and a method for manufacturing the same. The purpose is to do. Disclosure of the invention
この発明による J3i¾成の原理は以下のとおりである。  The principle of the J3i configuration according to the present invention is as follows.
例えば、 延展性を持たない脆性材料 (セラミックス) に機械的衝撃力を付加すると、 結晶子同士の界面などの壁閧面に沿って結晶格子のずれを生じたり、 あるいは破砕され る。 そして、 これらの現象が起こると、 ずれ面や破面には、 もともとの内部に存在し別 の原子と結合していた原子が剥き出しの状態となつた新生面が形成される。 この新生面 の原子一層の部分は、 もともと安定した原子結合状態から外力により強制的に不安定な 表面状態に晒され、 表面エネルギーが高い状態となる。 この活性面が隣接した脆性材料 表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合して安定状態に移行す る外部からの連続した機械的衝撃力の付加は、 この現象を継続的に発生させ、 微粒子の 変形、 破砕などの繰り返しにより接合の進展、 緻密化が行われ、 脆性材料物が形成され る。  For example, when a mechanical impact force is applied to a brittle material (ceramics) having no extensibility, the crystal lattice may be displaced or fractured along a projected surface such as an interface between crystallites. When these phenomena occur, a new surface is formed on the slip surface or fractured surface, where the atoms that originally existed and were bonded to other atoms are exposed. The layer of one atom of this new surface is exposed to an unstable surface state by an external force from the originally stable atomic bond state, and the surface energy becomes high. The application of a continuous mechanical impact from the outside where the active surface joins the surface of the adjacent brittle material, the newly formed surface of the adjacent brittle material or the substrate surface and transitions to a stable state continuously causes this phenomenon. As a result, the deformation and crushing of the fine particles are repeated, so that the bonding progresses and densifies, and a brittle material is formed.
この発明は、 更に、 機械的衝撃力を搬送ガスにて材料を基材に衝突させることにより 得るようにしたものであり、 基材上に材料の多結晶構造物をダイレク卜に形成させるも のである。 具体的には、 磁性膜形成の原料に用いられる金属磁性体粉末あるいはフェラ ィト磁性粉末等からなる材料の微粒子をガス中に分散させたエア口ゾルを搬送し、 高速 で基材表面に噴射して衝突させ、 微粒子を破碎あるいは変形せしめ、 基板との界面にァ ンカ一層を形成して接合させるとともに、 破砕あるいは変形した断片微粒子同士を接合 させることにより、 基材との密着性が良好で強度の大きレ、膜構造を得ることができる。 上記目的を達成するため、 本発明永久磁石膜の製造方法は、 永久磁石能を有する永久 磁石膜の製造方法において、 永久磁石材料粉末をエアロゾル化して被成膜物に噴射する ことにより永久磁石膜を形成することを特徴とする。 The present invention further provides a mechanical impact force obtained by colliding a material with a base material using a carrier gas, and directly forming a polycrystalline structure of the material on the base material. is there. Specifically, an aerosol in which fine particles of a material such as a magnetic metal powder or a ferrite magnetic powder used as a raw material for forming a magnetic film are dispersed in a gas is conveyed, and the sol is jetted onto the surface of the base material at a high speed. And collide to break or deform the fine particles, form a layer of anchor at the interface with the substrate and join them together, and join the crushed or deformed fine particles together By doing so, it is possible to obtain a film structure having good adhesion to the substrate, high strength, and high strength. In order to achieve the above object, a method for producing a permanent magnet film according to the present invention is a method for producing a permanent magnet film having permanent magnet capability, comprising: Is formed.
このように、 永久磁石膜形成に A D法を用いることにより従来のスパヅ夕法で困難で あった膜厚 1〃m以上、 また従来のボンド磁石で困難であった 3 0 0 , m以下の磁性膜 を効率的かつ低コス卜で形成することができる。 特に将来薄型化に望まれている 2〃m 以上で 2 0 0〃m以下の範囲の膜厚の磁性膜を形成することができる。 また、 AD法に よる磁性膜形成は低温プロセスであるため、 膜形成される被成膜物への影響が少ない。 さらに、 低温での成形のため得られる膜の結晶粒サイズは数〃 mから数百 nm、 あるい は 1 0 O nm以下のサイズとなり、 磁性粒子間で交換結合が大きく作用して高い磁気特 性を発現する磁性膜を得ることができる。 さらにまた、 AD法により形成された磁性膜 は形成前に仕込む粉末の組成にほぼ一致するようになるため、 従来のスパッ夕法に比較 して磁性膜の組成自由度を格段に向上させることができるとともに、 安定した組成の磁 性膜を容易に形成できる。 また、 AD法で得られた磁性膜は被成膜物との密着強度が大 きい。 さらに、 従来のスパヅ夕のように光学のターゲットを必要としないため低コスト で磁性膜の形成が可能である。 さらにまた、 磁性粒子を高飽和磁化を示す F e、 C o、 F e C oなどのソフト磁性相とハ一ド磁性相を混合することによって、 両相がナノメ一 夕ォ一ダ一で祈出したナノコンポジヅ ト磁石厚膜の製造も可能である。  As described above, by using the AD method for forming the permanent magnet film, the film thickness of 1 μm or more, which was difficult with the conventional sputter method, and 300, m or less, which was difficult with the conventional bonded magnet The film can be formed efficiently and at low cost. In particular, it is possible to form a magnetic film having a film thickness in a range of 2 μm or more and 200 μm or less, which is desired for thinning in the future. In addition, since the magnetic film formation by the AD method is a low-temperature process, there is little influence on a film-forming target. In addition, the crystal grain size of the film obtained by molding at low temperature is from several μm to several hundred nm, or less than 10 O nm, and the exchange coupling between magnetic particles has a large effect and high magnetic characteristics. A magnetic film exhibiting properties can be obtained. Furthermore, since the magnetic film formed by the AD method almost matches the composition of the powder charged before the formation, the degree of freedom in the composition of the magnetic film can be remarkably improved as compared with the conventional sputtering method. And a magnetic film having a stable composition can be easily formed. In addition, the magnetic film obtained by the AD method has a large adhesion strength to a film-forming object. In addition, since an optical target is not required unlike a conventional spa, a magnetic film can be formed at low cost. Furthermore, by mixing the magnetic particles with a soft magnetic phase such as Fe, Co, and FeCo, which exhibit high saturation magnetization, and a hard magnetic phase, both phases are prayed in nanometer order. It is also possible to manufacture the obtained nanocomposite magnet thick film.
また、 本発明永久磁石膜の製造方法は、 永久磁石材料粉末を、 金属磁性体粉末若しく はフェライト化合物粉末、 又は金属磁性体粉末及びフェライト化合物粉末の混合体、 金 属磁性体粉末及び高分子材料粉末の混合体、 フェライト化合物粉末及び高分子材料粉末 の混合体、 金属磁性 末、 フヱライト化合物粉末及び高分子材料粉末の混合体から構 成することを特徴とする  The method for producing a permanent magnet film according to the present invention may further comprise the steps of: providing a permanent magnet material powder, a metal magnetic powder or a ferrite compound powder, or a mixture of a metal magnetic powder and a ferrite compound powder; a metal magnetic powder and a polymer It is characterized by comprising a mixture of material powders, a mixture of ferrite compound powders and polymer material powders, a mixture of metal magnetic powder, a fluoride compound powder and a polymer material powder.
また、 本発明永久磁石膜の製造方法は、 永久磁石膜の形成を常温下行うことを特徴と するが、 被成膜物を加熱しながら常温以上で成膜することにより、 また、 これら常温下 で得られた永久磁石膜を加熱処理することにより、 磁石膜の組織を変化せしめ、 用途に 応じて磁石膜の磁気特性を制御することも可能である o  The method for producing a permanent magnet film according to the present invention is characterized in that the permanent magnet film is formed at room temperature, and the film is formed at room temperature or higher while heating the object to be formed. By heat-treating the permanent magnet film obtained in step 2, the structure of the magnet film can be changed, and the magnetic properties of the magnet film can be controlled according to the application.o
永久磁石能を有する金属磁性体粉末からなる永久磁石膜において、 金属磁性体粉末の 結晶粒間に 20 nm以下、 好ましくは 10 nm以下の非結晶層を含む磁性相を有し、 ビ ッカース硬度が 200〜; L 000Hv、 好ましくは 300〜800 HVであり、 保磁力 が 0. 2T以上、 好ましくは 1. 7 T以上であることを特徴とする。 In a permanent magnet film made of metal magnetic powder having permanent magnet capability, It has a magnetic phase containing an amorphous layer of 20 nm or less, preferably 10 nm or less between crystal grains, and has a Vickers hardness of 200 to; L 000Hv, preferably 300 to 800 HV, and a coercive force of 0.2T. As described above, it is preferably 1.7 T or more.
また、 本発明の永久磁石膜は、 永久磁石能を有するフェライト化合物粉末からなる永 久磁石膜において、 フェライ卜化合物粉末の結晶粒間に 10〜20 nm以下の酸化物層 を含む磁性相を有し、 ビヅカース硬度が 200〜; L 000Hv、 好ましくは 300〜 8 00 HVであり、 保磁力が 0. 2T以上、 好ましくは 1. 7T以上であることを特徴と する。  Further, the permanent magnet film of the present invention is a permanent magnet film made of a ferrite compound powder having a permanent magnet capability, and has a magnetic phase including an oxide layer of 10 to 20 nm or less between crystal grains of the ferrite compound powder. It has a Vickers hardness of 200 to; L000Hv, preferably 300 to 800 HV, and a coercive force of 0.2 T or more, preferably 1.7 T or more.
また、 本発明の永久磁石膜は、 永久磁石能を有する金属磁性体粉末及ぴフェライト化 合物粉末の混合体からなる永久磁石膜において、 金属磁性体粉末の結晶粒間に 20 nm 以下、 好ましくは 1 Onm以下の非結晶層を含む磁性相とフェライト化合物粉末の結晶 粒間に 2 Onm以下、好ましくは 10 nm以下の酸ィ匕物層を含む磁性相との混相を有し、 ビヅカース硬度が 200〜1000Hv、 好ましくは 300〜 800 HVであり、 保磁 力が 0. 2T以上、 好ましくは 1. 7 T以上であることを特徴とする。  In addition, the permanent magnet film of the present invention is preferably a permanent magnet film comprising a mixture of a magnetic metal powder having a permanent magnet function and a ferrite compound powder, wherein the distance between crystal grains of the magnetic metal powder is 20 nm or less. Has a mixed phase of a magnetic phase containing an amorphous layer of 1 Onm or less and a magnetic phase containing an oxide layer of 2 Onm or less, preferably 10 nm or less between crystal grains of the ferrite compound powder, and has a Vickers hardness. 200 to 1000 Hv, preferably 300 to 800 HV, and a coercive force of 0.2 T or more, preferably 1.7 T or more.
また、 本発明の永久磁石膜は、 永久磁石能を有する金属磁性体粉末及び高分子材料粉 末の混合体からなる永久磁石膜において、 金属磁性体粉末の結晶粒間に高分子層を含む 磁性相を有することを特徴とする。  Further, the permanent magnet film of the present invention is a permanent magnet film comprising a mixture of a magnetic metal powder having a permanent magnet function and a polymer material powder, wherein the permanent magnet film includes a polymer layer between crystal grains of the magnetic metal powder. It is characterized by having a phase.
また、 本発明の永久磁石膜は、 金属磁性体粉末を 1種又は 2種以上の金属磁性体粉末 から構成することを特徴とする。  Further, the permanent magnet film of the present invention is characterized in that the metal magnetic powder is composed of one or more kinds of metal magnetic powder.
また、 本発明の永久磁石膜は、 フヱライト化合物粉末を 1種又は 2種以上のフェライ ト化合物粉末から構成することを特徴とする。  Further, the permanent magnet film of the present invention is characterized in that the fluoride compound powder is composed of one or more ferrite compound powders.
また、 本発明の永久磁石膜は、 永久磁石膜の厚さが 2^111〜500〃mであることを 特徴とする。  Further, the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 ^ 111 to 500〃m.
また、 本発明の永久磁石膜は、 永久磁石膜の厚さが 2 m〜30 O mであることを 特徴とする。  The permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 m to 30 Om.
また、 本発明の永久磁石膜は、 永久磁石膜の厚さが 2 /m〜200〃mであることを 特徴とする。  Further, the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 / m to 200 μm.
また、 本発明の永久磁石膜は、 厚さ 20 O^m以下の S i基板、 金属基板又は樹脂基 板上にノ ンダ一レスで形成されたことを特徴とする。 また、 本発明の永久磁石膜は、 S i基板、 金属基板又は樹脂基板上に 5 0 MP a以上 の密着強度で形成されたことを特徴とする。 図面の簡単な説明 Further, the permanent magnet film of the present invention is characterized in that it is formed without solder on a Si substrate, a metal substrate or a resin substrate having a thickness of 20 O ^ m or less. Further, the permanent magnet film of the present invention is formed on an Si substrate, a metal substrate or a resin substrate with an adhesion strength of 50 MPa or more. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態に係る磁性膜製造装置の概略模式図である。  FIG. 1 is a schematic diagram of a magnetic film manufacturing apparatus according to an embodiment of the present invention.
第 2図は、 この発明の実施の形態に係る A D法で得られる磁性膜の模式図である。 第 3図は、 この発明の実施の形態に係る AD法に用いた SmFeN粉末 (平均粉末粒径 3 U rn) の磁気特性の減磁曲線を示した図である。  FIG. 2 is a schematic diagram of a magnetic film obtained by the AD method according to the embodiment of the present invention. FIG. 3 is a diagram showing a demagnetization curve of the magnetic characteristics of the SmFeN powder (average powder particle size 3 Urn) used in the AD method according to the embodiment of the present invention.
第 4図は、 この発明の実施の形態に係る A D法を用いて作製した SmFeN 膜の外観写 真を示した図である。  FIG. 4 is a diagram showing an appearance photograph of an SmFeN film produced by using the AD method according to the embodiment of the present invention.
第 5図は、 ガス流量 4〜1 0 l Zm i n、 成膜時間 4分間の条件でこの発明の実施の 形態に係る A D法にて作製した SmFeN厚膜の X線回折パターンを示した図である。 第 6図は、 この発明の実施の形態に係る AD法を用いて作製した S mF e N膜の膜厚 の AD法におけるガス流量依存性を示した図である。  FIG. 5 is a diagram showing an X-ray diffraction pattern of a thick SmFeN film produced by the AD method according to the embodiment of the present invention under the conditions of a gas flow rate of 4 to 10 lZmin and a deposition time of 4 minutes. is there. FIG. 6 is a diagram showing the gas flow rate dependence of the film thickness of the SmFeN film produced by the AD method according to the embodiment of the present invention in the AD method.
第 7図は、 SmFeN 膜の膜厚のこの発明の実施の形態に係る AD法における成膜時間 依存†生を示した図である。  FIG. 7 is a diagram showing the time dependence of the film thickness of the SmFeN film in the AD method according to the embodiment of the present invention.
第 8図は、 ガス流量 6 1 Zm i n成膜時間 4分間の条件でこの発明の実施の形態に 係る AD法にて得られた SmFeN膜の光学顕«組織を示した図である。  FIG. 8 is a view showing an optical microscope structure of the SmFeN film obtained by the AD method according to the embodiment of the present invention under the condition of a gas flow rate of 61 Zmin and a deposition time of 4 minutes.
第 9図は、 ガス流量 6 1ノ m i n成膜時間 4分間の条件でこの発明の実施の形態に 係る AD法にて得られた SmFeN膜の走査電子顕微鏡組織を示した図である。  FIG. 9 is a diagram showing a scanning electron microscopic structure of the SmFeN film obtained by the AD method according to the embodiment of the present invention under the conditions of a gas flow rate of 61 min min and a deposition time of 4 minutes.
第 1 0図は、 成膜時間 4分間の条件でこの発明の実施の形態に係る A D法にて作製し た SmFeN 厚膜のマイクロビヅカース硬度に及ぼす A D法におけるガス流量の影響を示 した図である。  FIG. 10 shows the influence of the gas flow rate in the AD method on the micro Vickers hardness of the SmFeN thick film produced by the AD method according to the embodiment of the present invention under the condition that the film formation time is 4 minutes. FIG.
第 1 1図は、 磁気測定結果を示す図である。  FIG. 11 is a diagram showing the results of magnetic measurement.
第 1 2図は、 磁気特性のガス流量依存性を示した図である。  FIG. 12 is a diagram showing the gas flow rate dependence of the magnetic properties.
第 1 3図は、 ガス流量 4 1 Zm i n、 8 1 /m i nで成膜した SmFeN 厚膜の磁気 特の劇莫時間依存性を示した図である。  FIG. 13 is a diagram showing the dramatic time dependence of the magnetic properties of a thick SmFeN film formed at a gas flow rate of 41 Zmin and 81 / min.
第 1 4図は、 大きな金属磁石化合物粉末の粒子を核としその周りに小さな酸化物粉末 が配置された結晶粒から構成される厚膜が得られる状況を示した図である。 第 1 5図は、 M型フェライト粉末を用いた AD厚膜における保磁力のガス流量依存性 を示した図である。 発明を実施するための最良の形態 FIG. 14 is a diagram showing a situation in which a thick film composed of crystal grains having large metal magnet compound powder particles as nuclei and small oxide powder disposed around the particles is obtained. FIG. 15 is a diagram showing the gas flow rate dependence of the coercive force in an AD thick film using M-type ferrite powder. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明による実施の形態を図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図は磁性膜製造装置の概略模式図である。  FIG. 1 is a schematic diagram of a magnetic film manufacturing apparatus.
この発明の磁性膜の形成には、 形成する磁性膜の原料となる微粒子粉末をエアロゾル 化して基板などの被成膜物に衝突させ、厚膜を形成するエアロゾル ·デポジション法(以 下 「AD法」 という。) を用いる。 この AD法では、 目的とする磁性膜の組成に等しい 組成の原料粉末をエアロゾル化して被成膜物に衝突させることで、 所望の組成および膜 厚の磁性膜を効率的に製造することができる。  The magnetic film of the present invention is formed by aerosol-deposition method (hereinafter, referred to as “AD The law is used.) In this AD method, a magnetic film having a desired composition and thickness can be efficiently manufactured by aerosolizing raw material powder having a composition equal to the composition of a target magnetic film and causing the material powder to collide with an object to be formed. .
この AD法を行うための磁性膜形成装置 1 0は、 ミキサ 1 1 , チャンノ 1 2 , 口一夕 リ一ポンプおよびメカニカルブース夕一ポンプ 1 3を有している。 ミキサ 1 1には、 原 料粉末 1 4が仕込まれるようになつていて、 ミキサ 1 1の振動により、 中に仕込まれた 原料粉末 1 4が混合されるようになっている。 これにより原料粉末 1 4が単一種の粉末 である場合にはミキサ内でのその粒度分布の偏りをなくし、 原料粉末 1 4が複数種の粉 末である場合にはこれらを均一に混合するとともにその粒度分布の偏りを無くすことが できる。  The magnetic film forming apparatus 10 for performing the AD method includes a mixer 11, a channel 12, a mouth pump, and a mechanical booth pump 13. The raw material powder 14 is charged into the mixer 11, and the raw material powder 14 charged therein is mixed by the vibration of the mixer 11. This eliminates bias in the particle size distribution in the mixer when the raw material powder 14 is a single type of powder, and uniformly mixes them when the raw material powder 14 is a plurality of types of powder. The deviation of the particle size distribution can be eliminated.
チャンノ 1 2には、 その内部に、 ミキサ 1 1に配管を介して接続されているノズル 1 5が配置され、 このノズル 1 5の先端からミキサ 1 1内の原料粉末 1 4がガスボンベ 1 7からの気体によりエアロゾル化されて噴射されるようになっている。 ノズル 1 5の先 端側には、 マスク 1 6を介して基板 2 0が配置されるようになっている。 原料粉末 1 4 が噴射されると、 粒子 1 4 aがマスク 1 5で被覆されていない基板 2 0表面に衝突して A nozzle 15 connected to the mixer 11 via a pipe is arranged in the channel 12, and the raw material powder 14 in the mixer 11 is supplied from the gas cylinder 17 from the tip of the nozzle 15. Is aerosolized by the above gas and ejected. The substrate 20 is arranged on the tip end side of the nozzle 15 via a mask 16. When the raw material powder 14 is jetted, the particles 14 a collide with the surface of the substrate 20 not covered with the mask 15.
J頼に積層していくようになっている。 It is designed to be stacked according to J.
また、 口一夕リ一ポンプおよびメカニカルブース夕一ポンプ 1 3は、 チャンバ 1 2内 の圧力調整に用いられる。 ここでは、 チャンバ 1 2内の圧力を 1 0 ·2 T o r r以下に設 疋レしいる。 In addition, the inlet / outlet pump and the mechanical booth pump 13 are used for adjusting the pressure in the chamber 12. Here, the pressure in the chamber 12 is set to 10 2 Torr or less.
さらに、 磁性膜の形成は例えば室温など常温下で行うことができる。  Further, the formation of the magnetic film can be performed at normal temperature such as room temperature.
上記のように、 A D法により永久磁石膜を形成する際には、 金属磁性体粉末、 フェラ ィト化合物粉末または両粉末の混合粉末等を原料粉末 14としてミキサ 1 1内に仕込ん で混合し、 ノズル 15からエアロゾル化して基板 20に噴射する。 原料粉末の速度が大 になると、 保持力を向上させるものの、 成膜体内に欠陥や歪みの導入を促進し、 同時に 飽和磁化を低下させ、 磁石性能を低下させる。 従って、 これら両条件を満たす最適な 速度範囲で噴射させることが必要である。 As described above, when a permanent magnet film is formed by the AD method, metal magnetic powder, ferrite The compound powder or a mixed powder of both powders and the like is charged as raw material powder 14 into the mixer 11, mixed, aerosolized from the nozzle 15 and sprayed onto the substrate 20. When the speed of the raw material powder increases, it increases the coercive force but promotes the introduction of defects and distortion into the film, and at the same time lowers the saturation magnetization and lowers the magnet performance. Therefore, it is necessary to inject in the optimal speed range that satisfies both conditions.
最適な速度は、 材料の種類により相違するが、 脆性材料の場合は 200〜800m/ s e c, 金属微粒子の場合は 400〜80 Om/s e cの範囲である。  The optimum speed varies depending on the type of material, but is in the range of 200 to 800 m / sec for brittle materials and 400 to 80 Om / sec for fine metal particles.
このような磁性膜形成装置 10では、 所望の膜厚の磁性膜を高速で製造することがで きる。例えば、従来のスパッ夕法では、磁性膜の膜厚が通常 程度であるのに対し、 本 AD法によれば 2 /mから 500 zm程度の範囲の膜厚で磁性膜を形成することがで きる。 形成する膜厚としては、 好ましくは 2 imから 30 OAdm、 更に好ましくは 2 mから 200 mである。  In such a magnetic film forming apparatus 10, a magnetic film having a desired film thickness can be manufactured at a high speed. For example, the thickness of the magnetic film is about the usual thickness in the conventional sputtering method, whereas the AD method can form a magnetic film with a thickness in the range of 2 / m to 500 zm. Wear. The film thickness to be formed is preferably 2 im to 30 OAdm, and more preferably 2 m to 200 m.
さらに AD法による磁性膜の成膜速度は、 10〃m Zmi n程度と速く、 工業的に も優れた方法といえる。  Furthermore, the deposition rate of the magnetic film by the AD method is as fast as about 10 μm Zmin, which is an industrially superior method.
第 2図は、 AD法で得られる磁性膜の模式図である。  FIG. 2 is a schematic diagram of a magnetic film obtained by the AD method.
ADを行うと第 2図に示すように基板であるところの被成膜物 20に衝突した微粒子 がその表面に積層された磁性膜 30が形成される。 磁性膜 30は、 金属磁性体粉末を原 料とした場合は微粒子の結晶粒間に 20 nm以下の非結晶層を有する構成となってお り、 又フェライト化合物粉末を原料とした場合は微粒子の結晶粒間に 2 Onm以下の酸 化物層 (FeOx, SmOxなど) を含む磁性相を有する構成となっている。 また、 A D法で形成された磁性膜は、 焼結法や溶射法などの従来法で形成した場合よりビヅカー ス硬度は高くなる。 製造時の条件、 例えば噴射速度等にもよるが、 20 OHv〜l 00 OHv、 好ましくは 300Hv~80 OHvの硬度を有する。  When the AD is performed, as shown in FIG. 2, a magnetic film 30 is formed in which fine particles that have collided with the film-forming object 20 which is a substrate are laminated on the surface thereof. The magnetic film 30 has a structure having an amorphous layer of 20 nm or less between crystal grains of the fine particles when the metal magnetic material powder is used as a raw material, and the fine particles when a ferrite compound powder is used as a raw material. It has a magnetic phase that contains an oxide layer (FeOx, SmOx, etc.) of 2 Onm or less between crystal grains. Further, the magnetic film formed by the AD method has a higher Beakers hardness than that formed by a conventional method such as a sintering method or a thermal spraying method. It has a hardness of 20 OHv to 100 OHv, preferably 300 Hv to 80 OHv, depending on the conditions at the time of production, for example, the injection speed and the like.
このように形成された磁性膜は形成前に仕込む粉末の組成にほぼ一致するようにな る。 これに対し、 従来のスパヅ夕法では、 形成する磁性膜の組成は用いるターゲットの 面積で配合比を決定し、 熱処理によって最適組織を発現させる必要があり、 この点で、 磁性膜 30の形成に A D法を用いると形成できる磁性膜の組成自由度を格段に向上させ ることができる。  The magnetic film thus formed almost matches the composition of the powder charged before the formation. On the other hand, in the conventional sputtering method, it is necessary to determine the composition ratio of the magnetic film to be formed based on the area of the target used, and to develop an optimal structure by heat treatment. When the AD method is used, the degree of freedom of composition of a magnetic film that can be formed can be remarkably improved.
A D法による磁性膜形成の原料に用いられる金厲磁性体粉末は、 Fe、 Coヽ Ni、 Mnの単体金属の他、 FeAlNi Co系、 CuNiFe系、 CuNi Co系、 Fe C rCo系、 FePt系、 CoPt系、 RFeB系、 RCo系、 RFeN系、 Mn Al 系、 MnAl C系合金なども用いることができる。 さらにこれらの金属磁性体相と F e 3B相、 F e相などとのナノコンポジット粉末も利用できる。 Gold magnetic powders used as raw materials for forming magnetic films by the AD method are Fe, Co ヽ Ni, In addition to Mn simple metals, FeAlNi Co, CuNiFe, CuNiCo, FeCrCo, FePt, CoPt, RFeB, RCo, RFeN, MnAl, MnAlC alloys, etc. Can be. Further, nanocomposite powders of these metallic magnetic phases and Fe 3 B phase, Fe phase and the like can also be used.
一方、 フヱライ ト磁性粉末としては C o 0 · F e23などのスピネルフェライ ト化合 物、 BaFe120 、 S r F e 019などの M型フェライ ト化合物、 BaFe 18027、 S rFe1827などの W型フェライト化合物を用いることが可能である。 On the other hand, spinel Blow wells compounds such as C o 0 · F e 23 as Fuwerai bets magnetic powder, BaFe 12 0, S r F e 0 19 M -type ferrite compounds such as, BaFe 18 0 27, S rFe 1827 it is possible to use a W-type ferrite compounds such as.
金属磁性体粉末及びフェライト化合物粉末の粒径は、およそ数十 nm〜数// mである。 さらに上記金属磁性体粉末とフェライト磁性粉末の混合粉末を用いることも可能であ る。  The particle diameters of the metal magnetic powder and the ferrite compound powder are approximately several tens nm to several // m. Further, a mixed powder of the above-mentioned metal magnetic powder and ferrite magnetic powder can be used.
例えば、 数十 nmからサブ /mサイズのフェライト磁性粉末等の酸化物粉末と数〃 m サイズの希土類磁石化合物粉末等の金属石化化合物粉末を混合するといったサイズの異 なる酸化物粉末と金属磁石化合物粉末とを混合した粉末、 又は金属磁石化合物粉末に酸 化物粉末を担持した粉末を用いて AD法により膜形成をする場合には、 第 14図で示す ような大きな金属磁石化合物粉末の粒子を核としその周りに小さな酸ィ匕物粉末が配置さ れた結晶粒から構成される厚膜が得られる。  For example, oxide powders of different sizes, such as a mixture of oxide powders such as ferrite magnetic powders of several tens nm to sub / m size and metal petrochemical compound powders such as rare earth magnet compound powders of several μm size, and metal magnet compounds When a film is formed by the AD method using a powder mixed with a powder or a powder in which an oxide powder is supported on a metal magnet compound powder, particles of a large metal magnet compound powder as shown in FIG. 14 are nucleated. As a result, a thick film composed of crystal grains around which small iridescent powder is arranged is obtained.
さらに上記金属磁性体粉末と高分子材料粉末またはフヱライト磁性粉末と高分子材料 粉末または金属磁性体粉末とフェライト磁性粉末と高分子材料粉末の混合粉末を用いる ことも可能である。  Further, it is also possible to use the above-mentioned metal magnetic substance powder and polymer material powder, or mixed powder of metal magnetic substance powder, ferrite magnetic powder and polymer material powder, or ferrite magnetic powder and polymer material powder.
高分子材料粉末としては、 ァクリル系、 ナイロン系、 エポキシ系、 ポリアミド系、 ポ リイミド系などの樹旨が用いられる。  As the polymer material powder, acryl-based, nylon-based, epoxy-based, polyamide-based, or polyimide-based resin is used.
この AD法を用いて得られる磁性膜は、 被成膜物に非常に強固に付着し、 ガラス基板 や S i 02基板の他、 Fe、 Cu、 Mg合金などの金属、 A 123などのセラミックス、 ポリカーボネート、 ABS樹脂などの高分子材料などにも形成することができる。 薄膜 磁石、 厚膜磁石を用いたマイクロモー夕一、 マイクロアクチユエ一夕などを構成する場 合、 この様な薄い基板上への磁石膜の形成が要求されるが、 従来、 厚さが 5〃m〜20 0 zmの上記基板上に薄い磁石膜を接着材で貼り付ける場合、 接着層の塗布作業、 磁石 膜の貼り付け作業が非常に困難で生産性に大きな課題があった。 本発明によれば、 磁石 材料微粒子の吹きつけにより容易に、 厚さ 200 zm以下の薄い基板材料の特定部位表 面だけに磁石膜を形成することができる。 Magnetic film obtained by using the AD method, very strongly attached to the film formation was a glass substrate, S i 0 2 substrate, Fe, Cu, metal such as Mg alloy, A 1 23 It can also be formed on ceramics such as ceramics, and polymer materials such as polycarbonate and ABS resin. When a micro motor or a micro actuator using a thin film magnet or a thick film magnet is formed, it is required to form a magnet film on such a thin substrate. When a thin magnet film is adhered on the above substrate having a thickness of 〃m to 200 zm with an adhesive, the application of the adhesive layer and the attachment of the magnet film are extremely difficult, and there is a major problem in productivity. According to the present invention, a specific portion table of a thin substrate material having a thickness of 200 zm or less can be easily formed by spraying magnet material fine particles. The magnet film can be formed only on the surface.
以上、 説明したように磁性膜形成に A D法を用いることにより、 成膜速度を速め永久 磁石能を有する磁性膜を効率的に形成することができる。 この A D膜で形成される磁性 膜の組成は原料粉末の組成で決まり、 安定した組成の磁性膜を容易に形成でき高い磁気 特性を有する磁性膜を形成できる。  As described above, by using the AD method for forming a magnetic film, it is possible to increase the film forming speed and efficiently form a magnetic film having permanent magnet capability. The composition of the magnetic film formed of the AD film is determined by the composition of the raw material powder, and a magnetic film having a stable composition can be easily formed, and a magnetic film having high magnetic properties can be formed.
また、 A D法による磁性膜形成は低温プロセスであるため、 膜形成される被成膜物へ の影響が少ない。 また従来のスパヅ夕のように高額の夕一ゲヅトを必要としないため低 コストで磁性膜の形成が可能である。  In addition, since the magnetic film formation by the AD method is a low-temperature process, there is little effect on a film-formed object to be formed. Further, since a high-priced evening gate is not required unlike the conventional spa, it is possible to form a magnetic film at low cost.
A D法で得られた磁性膜は被成膜物との密着強度は、 2〃m以上の膜厚でも 5 0 M P a以上と非常に強いため、 ァクチユエ一夕などに応用した際に耐久性や安定性が向上 できる。 さらに従来のスパヅ夕法で形成困難であつた膜厚 1 JU. m以上、 従来のボンド磁 石で困難であった 3 0 0〃m以下の磁性膜を形成することが可能である。 従って種々の 材質の 反や部品などに、 それらの用途あるいはスペースに合わせて任意に磁性膜を形 成することができる。  The magnetic film obtained by the AD method has a very strong adhesion strength to the object to be formed, of 50 MPa or more even with a film thickness of 2 μm or more. Stability can be improved. Furthermore, it is possible to form a magnetic film having a film thickness of 1 JU.m or more, which was difficult to form by the conventional sputtering method, and a thickness of 300 μm or less, which was difficult with the conventional bond magnet. Therefore, a magnetic film can be arbitrarily formed on a variety of materials, parts, and the like according to their use or space.
以下、 A D法を用いて形成した磁性膜の特性を評価した結果について説明する。  Hereinafter, the results of evaluating the characteristics of the magnetic film formed using the AD method will be described.
まず、 A D法に用いた SmFeN 粉末 (平均粉末粒径 3〃 m) の磁気特性を振動磁気磁 力計 (VSM) で調べた。  First, the magnetic properties of the SmFeN powder (average powder particle size 3〃m) used in the A / D method were examined using a vibrating magnetometer (VSM).
第 3図に、 その減磁曲線を示したが、 この図において縦軸は磁気分極 J (T)、 横軸は 磁界 / 。Η (Τ) を表している。 これよりホストの SmFeN 粉末は 0 . 7 T程度の残留磁 化 Brと 1 . 2 T程度の保磁力〃。 H を有していることがわかる。  Fig. 3 shows the demagnetization curve. In this figure, the vertical axis is the magnetic polarization J (T), and the horizontal axis is the magnetic field /. Η (Τ). From this, the host SmFeN powder has a remanent Br of about 0.7 T and a coercive force of about 1.2 T〃. It can be seen that it has H.
次にこの粉末を用いて A D法を行い、 厚膜を作製した。  Next, the AD method was performed using this powder to produce a thick film.
第 4図に、 A D法を用いて作製した SmFeN 膜の外観写真を示す。 なお A D法におけ るガス流量は 2 l Zm i nから 1 0 1 /m i nで変ィ匕させ成膜時間は 4分間で一定とし た。 ガス流量 2 i Zm i nの条件で作製した場合には、 良好 ¾膜は形成しなかったが 4 1 /m i n 以上のガス流量では写真に示すような良好な膜を形成することができた。 第 5図は、 ガス流量 4〜1 0 l /m i n、 成膜時間 4分間の条件で AD法にて作製し た SmFeN厚膜の X線回折パ夕一ンを示す。 縦軸が X線強度、 横軸が 2 6»を表す。 ほぼ 全ての X線回折ピークは Tb2Fe17 型構造で指数づけすることが可能であり、 得られた厚 膜は SmaFenN X系化合物より構成されていると考えられる。 これより A D法前後にお いて出現相の変化はないと推察され、 これは成膜の前後において結晶構造が変化しない 本 A D法の特徴であり、 他のスパッ夕法などの方法と異なる方法である。 Fig. 4 shows a photograph of the appearance of the SmFeN film produced by the AD method. The gas flow rate in the AD method was varied from 2 lZmin to 101 / min, and the deposition time was kept constant at 4 minutes. When the film was manufactured under the conditions of a gas flow rate of 2 iZmin, a good film was not formed, but at a gas flow rate of 41 / min or more, a good film as shown in the photograph could be formed. Figure 5 shows an X-ray diffraction pattern of a thick SmFeN film produced by the AD method under the conditions of a gas flow rate of 4 to 10 l / min and a deposition time of 4 minutes. The vertical axis represents X-ray intensity, and the horizontal axis represents 26 2. Almost all the X-ray diffraction peaks can be indexed by the Tb 2 Fe 17 type structure, and the obtained thick film is considered to be composed of SmaFenN X-based compounds. Before and after AD method It is presumed that there is no change in the appearance phase, and this is a feature of the AD method in which the crystal structure does not change before and after film formation, and is a method different from other methods such as the sputtering method.
第 6図に、 AD法を用いて作製した SmFeN膜の膜厚の AD法におけるガス流量依 存性を示した。 第 6図の横軸は、 AD法におけるガス流量 (lZmi n)、 縦軸は膜厚 ( 1 m) をそれぞれ表している。 なお成膜時間は 4分間で一定とした。 これより 81 /m inの流速で約 4分間の噴射により 45 /m以上の膜厚が得られており、 これよ り算出される成膜速度は 10 im/mi n以上であることから、 A D法により高速で成 膜がなされていることがわかる o  FIG. 6 shows the gas flow rate dependence of the thickness of the SmFeN film produced by the AD method in the AD method. The horizontal axis of FIG. 6 represents the gas flow rate (lZmin) in the AD method, and the vertical axis represents the film thickness (1 m). The film formation time was fixed at 4 minutes. From this, a film thickness of 45 / m or more was obtained by jetting at a flow rate of 81 / min for about 4 minutes, and the film formation rate calculated from this was 10 im / min or more. O shows that the film was formed at high speed by the method.o
第 7図に、 SmFeN 膜の,の AD 法における成膜時間依存性を示した。 第 7図の横 軸は AD法における成膜時間 (min)、 縦軸は膜厚 (jum) をそれぞれ表している。 これより成膜時間が長くなるほど膜厚が厚くなり、 さらに 81Zm inの方が 41Z m i nの膜厚よりも厚いことからその成膜速度はガス流量が多い条件ほど高いことが 判明した。 また、 この膜厚の厚膜は、 焼結磁石を切削加工して作製することは難しく、 また 4分間という短時間で厚膜が形成できる本法の優位性が伺える。  Figure 7 shows the dependence of the SmFeN film on the deposition time in the AD method. The horizontal axis in FIG. 7 shows the film formation time (min) in the AD method, and the vertical axis shows the film thickness (jum). From this, it was found that the longer the film formation time, the thicker the film thickness, and the film thickness of 81Zmin was larger than the film thickness of 41Zmin. In addition, it is difficult to produce a thick film of this thickness by cutting a sintered magnet, and the superiority of this method, which can form a thick film in a short time of 4 minutes, can be seen.
第 8図および第 9図に、 ガス流量 61/m in成膜時間 4分間の条件で AD法にて 得られた SmFeN 膜の光学顕微鏡組織および走査電子顕微鏡組織を示す。 これより得ら れた厚膜は数十 nmから数// mの粒子が結合して形成されているのがわかる。 焼結法で は高温の焼結により結晶粒成長が生じ、 5 m以上に結晶粒が成長してしまうことを考 えると、 本法は微細結晶から構成される厚膜の作製が可能な方法であるといえる。  FIGS. 8 and 9 show the optical microscopic structure and the scanning electron microscopic structure of the SmFeN film obtained by the AD method under the conditions of a gas flow rate of 61 / min and a film forming time of 4 minutes. It can be seen that the obtained thick film is formed by bonding particles of several tens nm to several // m. In view of the fact that high-temperature sintering causes crystal grain growth in the sintering method and crystal grains grow to 5 m or more, this method is a method that can produce a thick film composed of fine crystals. You can say that.
第 10図に、 得られた成膜時間 4分間の条件で AD法にて作製した SmFeN 厚膜のマ イクロビヅカース硬度に及ぼす AD法におけるガス流量の影響を示した。 縦軸はピツカ ース硬度 HV、 横軸にはガス流量 gfr(l/min)を示している。 ガス流量によって HVはさほ ど変化せず、 600〜800の高い硬度を示している。  Fig. 10 shows the effect of the gas flow rate in the AD method on the micro Vickers hardness of the SmFeN thick film produced by the AD method under the conditions of the obtained film formation time of 4 minutes. The vertical axis shows the picker hardness HV, and the horizontal axis shows the gas flow rate gfr (l / min). The HV does not change much depending on the gas flow rate, indicating a high hardness of 600 to 800.
第 11図は、磁気測定結果を示す図である。第 11図では、横軸が磁界強度〃。 H ( T )、 縦軸は磁気分極 J (T) をそれぞれ表している。 AD法を用いて形成した膜厚 18〃m の SmFeN膜について磁気特性を行った。得られた保磁力〃。 H は 1. 7Tであり、 形成した SmFe N膜は、 第 3図に示した原料粉末の保磁力よりも高い保磁力を示して いる。  FIG. 11 is a diagram showing the results of magnetic measurement. In FIG. 11, the horizontal axis represents the magnetic field intensity 〃. H (T) and the vertical axis indicate the magnetic polarization J (T), respectively. Magnetic properties of SmFeN film with a thickness of 18 μm formed by AD method were measured. The obtained coercive force 〃. H is 1.7 T, and the formed SmFeN film shows a higher coercive force than the coercive force of the raw material powder shown in FIG.
第 12図は、 磁気特性のガス流量依存性を示している。 横軸は AD法におけるガス流 min), 縦軸は飽和磁気分極 J s (T)、 残留磁束密度 B r (T)、 保磁力//。 Hcj (T) をそれそれ表している。 これより全てのガス流量において 1. 8Τ程度の 保磁力が得られていることがわかる。 Fig. 12 shows the gas flow rate dependence of the magnetic properties. The horizontal axis is the gas flow in the AD method min), the vertical axis is the saturation magnetic polarization J s (T), the residual magnetic flux density B r (T), the coercive force //. Hcj (T) is represented. This indicates that a coercive force of about 1.8 mm was obtained at all gas flow rates.
第 13図に、 ガス流量 41/m in, 81/m i nで成膜した SmFeM 厚膜の磁気 特の成膜時間依存性を示した。 これよりほぼ全ての時間において 1. 8 T程度の保磁力 が得られていることがわかる。 第 12図、 第 13図から判断して本 AD法で作成した SmFeN 厚膜は、 ホストの磁性粉末よりも高い保磁力を示しているといえ、 これは第 8 図、 9図に示したように形成された厚膜が微細粒子から構成されていることに関係して いると推察される。  Fig. 13 shows the dependence of the magnetic properties of the SmFeM thick film deposited at a gas flow rate of 41 / min and 81 / min on the deposition time. From this, it can be seen that a coercive force of about 1.8 T was obtained at almost all times. Judging from Figs. 12 and 13, the SmFeN thick film prepared by this AD method can be said to have a higher coercive force than the magnetic powder of the host, as shown in Figs. 8 and 9. It is presumed to be related to the fact that the thick film formed in the above is composed of fine particles.
また、 この時、 実験に用いたノズル (開口:0.4 X 5mm) から噴射される SmFeN 原 料粒子の飛行速度は、 ガス流量の増加に対応し増加するが、 文献 (JVSTA) に記載の飛 行時間差法で測定すると、 上記ガス流量: 41ノ111 i nで 20 OmZs e cである。 従って、 良好な成膜体を得るには、 SmFeN 原料粒子の飛行速度 (噴射速度) は、 少 なくとも 20 Om/s e c以上が必要であることが明らかになった。  At this time, the flight speed of the SmFeN raw material particles injected from the nozzle (opening: 0.4 X 5 mm) used in the experiment increases in response to the increase in gas flow rate, but the flight speed described in the literature (JVSTA) is increased. When measured by the time difference method, the gas flow rate is 20 OmZsec at 41 in 111 in. Therefore, it was clarified that the flying speed (injection speed) of the SmFeN material particles must be at least 20 Om / sec to obtain a good film.
また、 磁性粉末として SmFeN などの希土類磁石粉末ではなく、 フェライト磁石粉末 の原料である M型フェライト粉末 (平均粉末粒径 1. 3 zm) を用い、 上記と同様、 41/m i nから 101/m i nのガス流量、 成膜時間 4分間にて厚膜を作製したと ころ、 第 15図のような 0. 14〜0. 25 Tの保磁力が得られた。 これより本 AD法 では、 希土類磁石粉末以外にもフェライト磁石粉末で保磁力を発生する厚膜磁石を作製 できることがわかる。 したがって本法は、 さまざまな磁石材料においても高保磁力厚膜 磁石を作製できる方法であるといえる。  In addition, instead of using rare earth magnet powder such as SmFeN as the magnetic powder, M-type ferrite powder (average powder particle size 1.3 zm), which is a raw material for ferrite magnet powder, is used. When a thick film was produced with a gas flow rate and a film formation time of 4 minutes, a coercive force of 0.14 to 0.25 T as shown in Fig. 15 was obtained. This indicates that this AD method can produce a thick-film magnet that generates coercive force with ferrite magnet powder in addition to rare-earth magnet powder. Therefore, this method can be said to be a method that can produce high coercivity thick film magnets even with various magnet materials.
また、 以上の結果を総合すると本 AD法は、 従来のボンド磁石よりも薄型の磁石を高 速で作成することができる方法であるといえる。 産業上の利用可能性  In addition, taking the above results into consideration, it can be said that this AD method is a method that can produce thinner magnets at a higher speed than conventional bonded magnets. Industrial applicability
以上ように、 永久磁石膜形成に A D法を用いることにより従来のスパヅ夕法で困難で あった膜厚 以上、 また従来のボンド磁石で困難であった 300〃m以下の磁性膜 を効率的かつ低コス卜で形成することができる。 特に将来薄型化に望まれている 2〃m 以上で 200〃m以下の範囲の膜厚の磁性膜を形成することができる。 また、 AD法に よる磁性膜形成は低温プロセスであるため、 膜形成される被成膜物への影響が少ない。 さらに、 低温での成形のため得られる膜の結晶粒サイズは数〃 mから数百 nm、 あるい は 1 0 O nm以下のサイズとなり、 磁性粒子間で交換結合が大きく作用して高い磁気特 性を発現する磁性膜を得ることができる。 さらにまた、 AD法により形成された磁性膜 は形成前に仕込む粉末の組成にほぼ一致するようになるため、 従来のスパヅ夕法に比較 して磁性膜の組成自由度を格段に向上させることができるとともに、 安定した組成の磁 性膜を容易に形成できる。 また、 A D法で得られた磁性膜は被成膜物との密着強度が大 きい。 さらに、 従来のスパッ夕のように光学のターゲットを必要としないため低コスト で磁性膜の形成が可能である。 さらにまた、 磁性粒子を高飽和磁化を示す F e、 C o、 F e C oなどのソフト磁性相とハード磁性相を混合することによって、 両相がナノメー 夕オーダーで析出したナノコンポジヅト磁石厚膜の製造も可能である。 As described above, by using the AD method to form the permanent magnet film, it is possible to efficiently and efficiently form a magnetic film with a thickness of 300 mm or less, which was difficult with the conventional sputter method, and which was difficult with the conventional bonded magnet. It can be formed at low cost. In particular, it is possible to form a magnetic film having a film thickness in the range of 2 to 200 μm, which is expected to be thinner in the future. In addition, the AD method Since the formation of the magnetic film by this is a low-temperature process, the influence on the film formation object is small. In addition, the crystal grain size of the film obtained by molding at low temperature is from several μm to several hundred nm, or less than 10 O nm, and the exchange coupling between magnetic particles has a large effect and high magnetic characteristics. A magnetic film exhibiting properties can be obtained. Furthermore, since the magnetic film formed by the AD method almost matches the composition of the powder to be charged before the formation, the degree of freedom in the composition of the magnetic film can be remarkably improved as compared with the conventional sputter method. And a magnetic film having a stable composition can be easily formed. In addition, the magnetic film obtained by the AD method has a large adhesion strength to a film-forming object. Further, since an optical target is not required unlike the conventional sputtering, a magnetic film can be formed at low cost. Furthermore, by mixing the magnetic particles with a soft magnetic phase such as Fe, Co, or FeCo exhibiting high saturation magnetization and a hard magnetic phase, both phases are deposited on the order of nanometers to form a nanocomposite magnet thick film. Manufacturing is also possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 永久磁石能を有する永久磁石膜の製造方法において、 永久磁石材料粉末をエアロゾ ル化して被成膜物に噴射することにより永久磁石膜を形成することを特徴とする永久磁1. A method for manufacturing a permanent magnet film having permanent magnet capability, wherein a permanent magnet film is formed by aerosolizing a permanent magnet material powder and spraying the powder on an object to be formed.
5石膜の製造方法。 5 Method of manufacturing stone film.
2 . 永久磁石材料粉末を、 金属磁性体粉末若しくはフヱライ卜化合物粉末、 又は金属磁 性体粉末及びフェライト化合物粉末の混合体、 金属磁性体粉末及び高分子材料粉末の混 合体、 フヱライト化合物粉'末及び高分子材料粉末の混合体、 金属磁性体粉末、 フェライ ト化合物粉末及び高分子材料粉末の混合体から構成することを特徴とする請求の範囲第 2. Permanent magnet material powder may be used as metal magnetic powder or filler compound powder, a mixture of metal magnetic powder and ferrite compound powder, a mixture of metal magnetic powder and polymer powder, And a mixture of a polymer material powder, a metal magnetic material powder, a ferrite compound powder and a polymer material powder.
10 1項記載の永久磁石膜の製造方法。 10. The method for producing a permanent magnet film according to item 1.
3 . 永久磁石膜の形成を常温下で行うことを特徴とする請求の範囲第 1項又は請求の範 囲第 2項記載の永久磁石膜の製造方法。  3. The method for producing a permanent magnet film according to claim 1 or claim 2, wherein the permanent magnet film is formed at room temperature.
4 . 永久磁石能を有する金属磁性体粉末からなる永久磁石膜において、 金属磁性体粉末 の結晶粒間に 2 0 nm以下の非結晶層を含む磁性相を有し、 ビッカース硬度が 2 0 0〜 4. A permanent magnet film made of a metal magnetic powder having a permanent magnet capability, has a magnetic phase including an amorphous layer of 20 nm or less between crystal grains of the metal magnetic powder, and has a Vickers hardness of 200 to
15 1 0 0 O H vであり、 保磁力が 0 . 2 T以上であることを特徴とする永久磁石膜。 15. A permanent magnet film, which is characterized by having a coercive force of at least 0.2 T and having a coercive force of at least 0.2 T.
5 . 永久磁石能を有するフェライト化合物粉末からなる永久磁石膜において、 フェライ ト化合物粉末の結晶粒間に 2 0 n m以下の酸化物層を含む磁性相を有し、 ビヅ力一ス硬 度が 2 0 0〜1 0 0 O H vであり、 保磁力が 0 . 2 T以上であることを特徴とする永久 磁石膜。  5. A permanent magnet film made of ferrite compound powder having permanent magnet capability, has a magnetic phase containing an oxide layer of 20 nm or less between crystal grains of the ferrite compound powder, and has a Viscos hardness. A permanent magnet film having a coercive force of from 200 to 100 OH v and a coercive force of 0.2 T or more.
20 6 . 永久磁石能を有する金属磁性体粉末及びフェライ ト化合物粉末の混合体からなる永 久磁石膜において、 金属磁性体粉末の結晶粒間に 2 O nm以下の非結晶層を含む磁性相 とフェライト化合物粉末の結晶粒間に 2 O nm以下の酸化物層を含む磁性相との混相を 有し、 ビヅカース硬度が 2 0 0〜1 0 0 O H vであり、 保磁力が 0 . 2 T以上であるこ とを特徴とする永久磁石膜。 20 6. In a permanent magnet film made of a mixture of a magnetic metal powder having a permanent magnet function and a ferrite compound powder, a magnetic phase including an amorphous layer of 2 O nm or less between crystal grains of the metal magnetic powder. It has a mixed phase with a magnetic phase containing an oxide layer of 2 O nm or less between crystal grains of the ferrite compound powder, a Vickers hardness of 200 to 100 OH v, and a coercive force of 0.2 T or more. A permanent magnet film characterized by the following.
5 7 . 永久磁石能を有する金属磁性体粉末及び高分子材料粉末の混合体からなる永久磁石 膜において、 金属磁性 末の結晶粒間に高分子層を含む磁性相を有することを特徴と する永久磁石膜。  57. A permanent magnet film comprising a mixture of a magnetic metal powder having a permanent magnet function and a polymer material powder, wherein the permanent magnet film has a magnetic phase including a polymer layer between crystal grains of the metal magnetic powder. Magnet membrane.
8 . 金属磁性体粉末を 1種又は 2種以上の金属磁性体粉末から構成することを特徴とす る請求の範囲第 4項、 請求の範囲第 6項又は請求の範囲第 Ί項記載の永久磁石膜。 8. The permanent magnet according to claim 4, wherein the metal magnetic material powder is composed of one or more kinds of metal magnetic material powders. Magnet membrane.
9. フェライト化合物粉末を 1種又は 2種以上のフェライト化合物粉末から構成するこ とを特徴とする請求の範囲第 5項又請求の範囲第 6項記載の永久磁石膜。 9. The permanent magnet film according to claim 5, wherein the ferrite compound powder is composed of one or more ferrite compound powders.
10. 請求の範囲第 5項乃至請求の範囲第 3項のいずれか 1項に記載の方法により製造 された請求の範囲第 5項乃至請求の範囲第 9項のいずれか 1項に記載の永久磁石膜。  10. The permanent device according to any one of claims 5 to 9 manufactured by the method according to any one of claims 5 to 3. Magnet membrane.
11. 永久磁石膜の厚さが 2 /π!〜 500 imであることを特徴とする請求の範囲第 4 項乃至請求の範囲第 11項のいずれか 1項に記載の永久磁石膜。  11. The thickness of the permanent magnet film is 2 / π! The permanent magnet film according to any one of claims 4 to 11, wherein the permanent magnet film has a thickness of from 500 to 500 im.
12. 永久磁石膜の厚さが 2 zm〜 300 zmであることを特徴とする請求の範囲第 4 項乃至請求の範囲第 1 1項のいずれか 1項に記載の永久磁石膜。  12. The permanent magnet film according to any one of claims 4 to 11, wherein the thickness of the permanent magnet film is 2 zm to 300 zm.
13. 永久磁石膜の厚さが 2 m〜 200〃mであることを特徴とする請求の範囲第 4 項乃至請求の範囲第 1 1項のいずれか 1項に記載の永久磁石膜。  13. The permanent magnet film according to any one of claims 4 to 11, wherein the thickness of the permanent magnet film is 2 m to 200 m.
14. 厚さ 200〃m以下の S i¾反、 金属基板又は樹脂基板上にバインダーレスで形 成されたことを特徴とする請求の範囲第 4項乃至請求の範囲第 13項のいずれか 1項に 記載の永久磁石膜。  14. Any one of claims 4 to 13, characterized in that it is formed on a metal substrate or a resin substrate in a binderless manner, having a thickness of 200 mm or less. 3. The permanent magnet film according to claim 1.
15. S i基板、 金属基板又は樹脂基板上に 50 MP a以上の密着強度で形成されたこ とを特徴とする請求の範囲第 4項乃至請求の範囲第 13項のいずれか 1項に記載の永久 磁石膜。  15. The method according to any one of claims 4 to 13, wherein the substrate is formed on an Si substrate, a metal substrate, or a resin substrate with an adhesion strength of 50 MPa or more. Permanent magnet film.
PCT/JP2004/004229 2003-03-26 2004-03-25 Permanent magnetic film WO2004086430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-084710 2003-03-26
JP2003084710A JP4560619B2 (en) 2003-03-26 2003-03-26 Permanent magnet membrane

Publications (1)

Publication Number Publication Date
WO2004086430A1 true WO2004086430A1 (en) 2004-10-07

Family

ID=33094998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004229 WO2004086430A1 (en) 2003-03-26 2004-03-25 Permanent magnetic film

Country Status (2)

Country Link
JP (1) JP4560619B2 (en)
WO (1) WO2004086430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043079A1 (en) * 2017-08-31 2019-03-07 Siemens Aktiengesellschaft Method for producing a permanent magnet, permanent magnet, electric machine, medical device and electric vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868583B2 (en) * 2006-09-04 2012-02-01 Necトーキン株式会社 Inductor and manufacturing method thereof
ITTO20080462A1 (en) * 2008-06-13 2009-12-14 Torino Politecnico METHOD FOR THE PRODUCTION OF NANOSTRUCTURED MACROSCOPIC MAGNETS WITH HIGH DENSITY OF MAGNETIC ENERGY AND RELATED MAGNETS
JP5267665B2 (en) * 2009-06-18 2013-08-21 トヨタ自動車株式会社 Magnetic powder manufacturing method and manufacturing apparatus thereof
JP2013135071A (en) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd Rare earth magnet compact and low temperature solidifying molding method
DE102018212761A1 (en) * 2018-07-31 2020-02-06 Siemens Aktiengesellschaft Method for manufacturing a permanent magnet, electrical machine and vehicle, in particular hybrid-electric aircraft
WO2022154058A1 (en) * 2021-01-14 2022-07-21 パウダーテック株式会社 Magnetic composite

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435900A (en) * 1977-08-15 1979-03-16 Philips Nv Method of forming magnetooptical polycrystalline cobalt ferrite layer on substrate
JP2002049318A (en) * 2000-08-02 2002-02-15 Dainippon Ink & Chem Inc Flexible magnet sheet
WO2002036855A1 (en) * 2000-10-23 2002-05-10 National Institute Of Advanced Industrial Science And Technology Composite structure and method for manufacture thereof
JP2002313615A (en) * 2001-04-09 2002-10-25 Enplas Corp Plastic magnet composition
JP2003297628A (en) * 2002-03-29 2003-10-17 Sony Corp Magnetic film and its forming method
JP2003297629A (en) * 2002-03-29 2003-10-17 Sony Corp Magnetic film
JP2004124126A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Film-forming apparatus and film-forming method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435900A (en) * 1977-08-15 1979-03-16 Philips Nv Method of forming magnetooptical polycrystalline cobalt ferrite layer on substrate
JP2002049318A (en) * 2000-08-02 2002-02-15 Dainippon Ink & Chem Inc Flexible magnet sheet
WO2002036855A1 (en) * 2000-10-23 2002-05-10 National Institute Of Advanced Industrial Science And Technology Composite structure and method for manufacture thereof
JP2002313615A (en) * 2001-04-09 2002-10-25 Enplas Corp Plastic magnet composition
JP2003297628A (en) * 2002-03-29 2003-10-17 Sony Corp Magnetic film and its forming method
JP2003297629A (en) * 2002-03-29 2003-10-17 Sony Corp Magnetic film
JP2004124126A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Film-forming apparatus and film-forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043079A1 (en) * 2017-08-31 2019-03-07 Siemens Aktiengesellschaft Method for producing a permanent magnet, permanent magnet, electric machine, medical device and electric vehicle

Also Published As

Publication number Publication date
JP2004296609A (en) 2004-10-21
JP4560619B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
WO2013099495A1 (en) Molded rare-earth magnet and low-temperature solidification and molding method
US20200157689A1 (en) Cold spray of brittle materials
JP2003049204A (en) Iron based rare earth alloy powder, compound containing iron based rare earth alloy powder and permanent magnet using the same
KR20130009942A (en) Rare-earth permanent magnetic powder,bonded magnet,and device comprising the bonded magnet
WO2013084606A1 (en) Thick rare earth magnet film, and low-temperature solidification molding method
JP4055709B2 (en) Manufacturing method of nanocomposite magnet by atomizing method
JP2013161829A (en) Rare earth magnet compact and manufacturing method of the same, and magnet motor with rare earth magnet
Sugimoto et al. Magnetic properties of Sm-Fe-N thick film magnets prepared by the aerosol deposition method
JP2009212466A (en) Soft magnetic film, and method of manufacturing the same
JP2003257763A (en) Manufacturing method for rare earth permanent magnet
WO2004086430A1 (en) Permanent magnetic film
WO1998036428A1 (en) Thin plate magnet having microcrystalline structure
JP2001353560A (en) Cooling roll, strip-like magnet material, magnet powder and bond magnet
JPH11288807A (en) Flat leaf-like rare earth-iron-boron magnet alloy particle powder for bonded magnet, manufacture thereof and the bonded magnet
JP4000768B2 (en) Manufacturing method of kneaded material, kneaded material and bonded magnet
JP2013042004A (en) METHOD OF MANUFACTURING α-Fe/R2TM14B SYSTEM NANOCOMPOSITE MAGNET
JP2015198170A (en) Magnet molded body and method for manufacturing magnet molded body
JP3861276B2 (en) Cooling roll, magnet material manufacturing method, ribbon magnet material, magnet powder, and bonded magnet
JP3991660B2 (en) Iron-based permanent magnet and method for producing the same
JP2000003808A (en) Hard magnetic material
JP4039112B2 (en) Rare earth alloy powder for bonded magnet, compound for bonded magnet, and bonded magnet using the same
JP2004273101A (en) Thin film magnetic recording medium
KR100453422B1 (en) Cooling roll, production method for magnet material, thin-band-like magnet material, magnet powder and bond magnet
JP3695964B2 (en) Rare earth magnetic powder for bonded magnet and method for producing the same
CN111411325A (en) Samarium iron nitrogen or neodymium iron nitrogen anisotropic bonded magnetic powder and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase