JP2002270417A - Permanent magnet particle, its manufacturing method, and permanent magnet - Google Patents

Permanent magnet particle, its manufacturing method, and permanent magnet

Info

Publication number
JP2002270417A
JP2002270417A JP2001063476A JP2001063476A JP2002270417A JP 2002270417 A JP2002270417 A JP 2002270417A JP 2001063476 A JP2001063476 A JP 2001063476A JP 2001063476 A JP2001063476 A JP 2001063476A JP 2002270417 A JP2002270417 A JP 2002270417A
Authority
JP
Japan
Prior art keywords
particles
phase
soft magnetic
magnetic phase
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001063476A
Other languages
Japanese (ja)
Inventor
Takaaki Yasumura
隆明 安村
Shinji Yamashita
慎次 山下
Mitsuaki Ikeda
満昭 池田
Ryuichi Oguro
龍一 小黒
Koji Kamimura
浩司 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001063476A priority Critical patent/JP2002270417A/en
Publication of JP2002270417A publication Critical patent/JP2002270417A/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide permanent magnet particles which can be formed into a permanent magnet having a large maximum energy product, its manufacturing method, and a permanent magnet made of the same. SOLUTION: Particles of hard magnetic phase and other particles of soft magnetic phase which are not compatible with each other are made 10 to 100 nm in width and 10 to 2000 nm in length respectively, and the particles of one phase cover the surfaces of the other phase for the formation of permanent magnet particles. For example, an alloy melt composed of 6 mol% Nd, 91 mol% Fe, and 3 mol% B is filled in a nozzle 21 heated with a heating coil 24 and discharged out through the nozzle tip 22 at a proper flow rate onto the surface of the rotary metal roll which rotates at a high speed for forming amorphous thin pieces 25 through a quenching method. The amorphous thin piece 25 is micronized by irradiation with a YAG laser beam in a chamber 31, and the fine particles are crystallized through a thermal treatment. The crystallized particles are formed into a bonded magnet or a sintered magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硬磁性相と軟磁性
相が均一微細に混合した組織を有し、従来の磁石に比較
して磁気特性が高いボンド磁石および焼結磁石用の永久
磁石用粒子とその製造方法、およびその永久磁石用粒子
を用いた永久磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet for a bonded magnet or a sintered magnet having a structure in which a hard magnetic phase and a soft magnetic phase are uniformly and finely mixed, and having higher magnetic properties than conventional magnets. The present invention relates to particles for use, a method for producing the particles, and a permanent magnet using the particles for permanent magnets.

【0002】[0002]

【従来の技術】従来のNd−Fe−B系の焼結磁石にお
ける最大エネルギー積は470kJ/m3、樹脂結合に
より製造されたボンド磁石では239kJ/m3が限界
であるが、磁石応用製品の小型高性能化のためには、さ
らに最大エネルギー積の向上が望まれている。これに対
して硬磁性相と軟磁性相とがナノスケールでコンポジッ
ト化した組織からなる永久磁石である交換スプリング磁
石が提案され、理論エネルギー積として955kJ/m
3が予想されるため、研究開発が活発に行われている
が、この磁石の製造方法としては、 (1)アモルファス薄帯を熱処理によって軟磁性相と硬
磁性相を析出させて磁石を製造する急冷法(たとえば特
開平8−124730号) (2)蒸着法などにより層状に軟磁性相と硬磁性相を並
べることにより磁石を製造する薄膜法(たとえば特開平
9−237714号、特開平11−214219号) (3)針状鉄粉の表層に、希土類元素やB元素を拡散し
て製造する方法(たとえば特開平7−106110号、
特開平8−203715号、特開平8−335507
号) などが提案されている。
2. Description of the Related Art The conventional Nd-Fe-B based sintered magnet has a maximum energy product of 470 kJ / m 3 , and a bonded magnet manufactured by resin bonding has a limit of 239 kJ / m 3 . In order to achieve compactness and high performance, it is desired to further increase the maximum energy product. On the other hand, an exchange spring magnet, which is a permanent magnet having a structure in which a hard magnetic phase and a soft magnetic phase are composited on a nanoscale, has been proposed, and has a theoretical energy product of 955 kJ / m.
Research and development are being actively conducted because 3 is expected, but the method of manufacturing this magnet is as follows: (1) A magnet is manufactured by precipitating a soft magnetic phase and a hard magnetic phase by heat treatment of an amorphous ribbon. (2) A thin film method for producing a magnet by arranging a soft magnetic phase and a hard magnetic phase in layers by vapor deposition or the like (for example, JP-A-9-237714, JP-A-11-127) (No. 214219) (3) A method of diffusing a rare earth element or a B element into the surface layer of acicular iron powder to produce (for example, JP-A-7-106110,
JP-A-8-203715, JP-A-8-335507
No.) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかるに、これらの従
来の交換スプリング磁石の製造方法においては、次のよ
うな問題点があった。 (1)急冷法では、アモルファス薄帯を熱処理によって
軟磁性相と硬磁性相を析出させて磁石を製造するが、薄
帯寸法が大きいために、熱処理後の硬磁性相と軟磁性相
の大きさが不均一になり、nm〜μmオーダにばらつく
ため交換スプリング効果が不十分になり、交換スプリン
グ効果を示す寸法も不明確であった。その結果、所望の
磁気特性が得られず、異方化できないという問題点があ
った。したがって、磁束密度、保持力が低く、焼結磁石
としての最大エネルギー積は470kJ/m3程度から
大きくならず、ボンド磁石としての最大エネルギー積も
239kJ/m3未満であった。
However, these conventional methods for manufacturing a replacement spring magnet have the following problems. (1) In the quenching method, a magnet is manufactured by precipitating a soft magnetic phase and a hard magnetic phase by heat treatment of an amorphous ribbon, but the size of the hard magnetic phase and the soft magnetic phase after the heat treatment is large due to the large ribbon dimensions. The exchange spring effect became insufficient due to unevenness in the order of nm to μm, and the dimensions showing the exchange spring effect were unclear. As a result, there was a problem that desired magnetic characteristics could not be obtained and anisotropic conversion was not possible. Therefore, the magnetic flux density and coercive force were low, the maximum energy product as a sintered magnet did not increase from about 470 kJ / m 3 , and the maximum energy product as a bond magnet was less than 239 kJ / m 3 .

【0004】(2)薄膜法では、蒸着法などによりnm
オーダの層状に軟磁性相と硬磁性相を並べることにより
磁石を製造するが、形状に制約があり、ボンド磁石に用
いるための磁石粉やバルク形状の磁石を製作できず、ボ
ンド磁石や焼結磁石などのバルク状の磁石の製造が困難
であった。 (3)針状鉄粉の表層に希土類元素やB元素を拡散して
製造する場合は、磁気特性が安定した磁石を得られなか
った。すなわち、軟質磁性相に被覆後、拡散により表面
に硬質相をつくる方法では、硬質相の厚さが一定になら
ず、また均一に拡散しないので硬質相ができないことも
あり、実用化が難しい状態である。
(2) In the thin film method, nm
Magnets are manufactured by arranging a soft magnetic phase and a hard magnetic phase in the order of a layer, but the shape is limited, and it is not possible to manufacture magnet powder or bulk-shaped magnets for use in bonded magnets. It was difficult to manufacture bulk magnets such as magnets. (3) When manufacturing by diffusing a rare earth element or B element into the surface layer of acicular iron powder, a magnet having stable magnetic properties could not be obtained. In other words, in the method of forming a hard phase on the surface by diffusion after coating with a soft magnetic phase, the thickness of the hard phase is not constant, and the hard phase cannot be uniformly dispersed, so that the hard phase cannot be formed, making it difficult to put into practical use. It is.

【0005】本発明は、これらの問題点を解決するもの
で、最大エネルギー積が大きく、安定した磁気特性をそ
なえ、生産性、加工性に優れた永久磁石を得られる永久
磁石用粒子とその製造方法、およびこの永久磁石用粒子
からなる永久磁石を提供するものである。
The present invention solves these problems, and provides permanent magnet particles having a large maximum energy product, having stable magnetic properties, and capable of obtaining a permanent magnet excellent in productivity and workability. A method and a permanent magnet comprising the permanent magnet particles are provided.

【0006】[0006]

【課題を解決するための手段】このため、永久磁石用粒
子は、硬磁性相と軟磁性相とがナノスケールでコンポジ
ット化した組織からなるものにおいて、相互に固溶しな
い硬磁性相と軟磁性相の各相の幅が、10〜100n
m、長さが10〜2000nmであり、一方が他方の表
面を被覆した構成からなる1組または複数組の粒子で構
成している。前記硬磁性相として、R−Fe−B(Rは
Yを含む希土類元素のうちの少なくとも1種以上)組成
を有する合金、もしくは、R−Fe−N(Rは希土類元
素のうちの少なくとも1種以上)組成を有する合金、ま
たはFe−M(MはCo、Ni、Mnなど遷移金属のう
ちの少なくとも1種以上)合金を用い、軟磁性相とし
て、FeまたはFe−M−N(MはCo、Ni、Mnな
ど遷移金属のうちの少なくとも1種以上)またはFe−
N組成を有する合金を用いて構成することが望ましい。
For this reason, the permanent magnet particles are composed of a structure in which a hard magnetic phase and a soft magnetic phase are composited on a nanoscale. The width of each phase is 10 to 100 n
m, the length is 10 to 2000 nm, and one is composed of one or a plurality of particles having a configuration in which one surface covers the other surface. As the hard magnetic phase, an alloy having a composition of R—Fe—B (R is at least one of rare earth elements including Y) or R—Fe—N (R is at least one of rare earth elements) Alloy) or an Fe-M (M is at least one of transition metals such as Co, Ni, Mn) alloy, and Fe or Fe-M-N (M is Co , Ni, Mn, at least one of transition metals) or Fe-
It is desirable to use an alloy having an N composition.

【0007】また、このような永久磁石用粒子を製造す
るため、R2Fe14B(Rは希土類元素のうちの少なく
とも1種以上)金属間化合物相の組成割合よりFeが過
剰な組成の合金溶湯を急冷してアモルファス状態にした
後、このアモルファスをレーザーアブレーションによ
り、幅が20〜200nm、長さが10〜2000nm
の微粒子にし、さらにこの微粒子を熱処理によりR2
14B金属間化合物相とFe相を結晶化させる。なお、
2Fe14B(Rは希土類元素のうちの少なくとも1種
以上)金属間化合物相の組成割合よりFeが過剰な組成
で、超微粒子製造方法により幅が20〜200nm、長
さが10〜2000nmのアモルファス微粒子にし、さ
らにこの微粒子を熱処理によりR2Fe14B金属間化合
物相とFe相を結晶化させる。なお、前記熱処理を、磁
界中で行わせるのがよい。
Further, in order to produce such particles for permanent magnets, a molten alloy having a composition containing Fe in excess of the composition ratio of the intermetallic compound phase of R 2 Fe 14 B (R is at least one of rare earth elements) is quenched. After making the amorphous state by laser ablation, the amorphous state is 20 to 200 nm in width and 10 to 2000 nm in length.
Of fine particles of R 2 F
The e 14 B intermetallic compound phase and the Fe phase are crystallized. In addition,
R 2 Fe 14 B (R is at least one of rare earth elements) Fe is in excess of the composition ratio of the intermetallic compound phase, and has a width of 20 to 200 nm and a length of 10 to 2000 nm according to the ultrafine particle manufacturing method. And then heat-treating the fine particles to crystallize the R 2 Fe 14 B intermetallic compound phase and the Fe phase. Note that the heat treatment is preferably performed in a magnetic field.

【0008】また別の方法として、レーザーアブレーシ
ョンにより、R−Fe−B(RはYを含む希土類元素の
うち少なくとも1種以上)、またはR−Fe−N(Rは
希土類元素のうち少なくとも1種以上)からなる硬磁性
相を有する幅10〜100nm、長さ10〜2000n
mの微粒子を作成し、この微粒子にFe(OH)2コロ
イドを含むアルカリ溶液中でFeO(OH)を被覆し還
元して、厚さ10〜100nmの軟磁性相被覆を形成さ
せる。
As another method, R-Fe-B (R is at least one kind of rare earth element including Y) or R-Fe-N (R is at least one kind of rare earth element) by laser ablation. Having a hard magnetic phase consisting of 10 to 100 nm in width and 10 to 2000 n in length
m fine particles are prepared, and the fine particles are coated with FeO (OH) in an alkaline solution containing Fe (OH) 2 colloid and reduced to form a soft magnetic phase coating having a thickness of 10 to 100 nm.

【0009】また、レーザーアブレーションを用いて、
FeまたはFe−M(MはCo、Ni、Mnなど遷移金
属のうちの少なくとも1種以上)、またはFe−N組成
を有する合金、またはFe−M−N(MはCo、Ni、
Mnなど遷移金属のうちの少なくとも1種以上)、また
はFe−N組成を有する合金からなる軟磁性相を有する
幅10〜100nm、長さ10〜2000nmの微粒子
を作成し、この微粒子に、R(RはYを含む希土類元素
のうち少なくとも1種以上)、Fe、Bを含んだ加水分
解性金属化合物溶液中で被覆し還元することにより、厚
さ10〜100nmの硬磁性相被膜を形成させる。
Further, using laser ablation,
Fe or Fe-M (M is at least one of transition metals such as Co, Ni and Mn), an alloy having an Fe-N composition, or Fe-M-N (M is Co, Ni,
Fine particles having a width of 10 to 100 nm and a length of 10 to 2000 nm having a soft magnetic phase made of an alloy having an Fe—N composition are prepared. R is at least one of the rare earth elements containing Y), and coated and reduced in a hydrolyzable metal compound solution containing Fe and B to form a hard magnetic phase film having a thickness of 10 to 100 nm.

【0010】なお、レーザーアブレーションを用いるこ
とにより、硬磁性相と軟磁性相の一方を、10〜100
nm、長さ10〜2000nmの微粒子に作成し、この
微粒子の表面に、他方の磁性相をレーザーアブレーショ
ンによって厚さ10〜100nmの表面処理を行って永
久磁石用粒子を作成する。
Incidentally, by using laser ablation, one of the hard magnetic phase and the soft magnetic phase is
The particles are prepared into fine particles having a thickness of 10 to 2000 nm and the other magnetic phase is subjected to a surface treatment of 10 to 100 nm in thickness by laser ablation on the surface of the fine particles to prepare particles for permanent magnets.

【0011】また、pH4.5 以下の第一鉄塩水溶液中
で、FeO(OH)の種結晶を成長させ、還元ガス中で
還元することにより、幅10〜100nm、長さ10〜
2000nmの軟磁性相を有する微粒子を作成し、さら
に、この微粒子にR(RはYを含む希土類元素のうち少
なくとも1種以上)、Fe、Bを有する加水分解性金属
化合物溶液中で被覆し還元することにより、厚さが10
〜100nmの硬磁性相の被覆を形成させる。なお、前
記微粒子を、レーザーアブレーションにより、厚さが1
0〜100nmの硬磁性相の被覆を形成させてもよい。
Further, a seed crystal of FeO (OH) is grown in an aqueous ferrous salt solution having a pH of 4.5 or less and reduced in a reducing gas to obtain a width of 10 to 100 nm and a length of 10 to 100 nm.
Fine particles having a soft magnetic phase of 2000 nm are prepared, and the fine particles are coated with a hydrolyzable metal compound solution containing R (R is at least one of rare earth elements including Y), Fe, and B, and reduced. By doing, the thickness is 10
A coating of ~ 100 nm hard magnetic phase is formed. In addition, the fine particles have a thickness of 1 by laser ablation.
A coating of a hard magnetic phase of 0 to 100 nm may be formed.

【0012】さらに別の方法として、軟磁性相を有する
金属粒子の表面に、スパッタ法によって前記軟磁性金属
と固溶しない硬磁性相の金属層を形成させ、硬磁性相と
軟磁性相の各相の幅が10〜100nm、長さが10〜
2000nmである微粒子を構成させる。
As still another method, a metal layer of a hard magnetic phase that does not dissolve in the soft magnetic metal is formed on the surface of metal particles having a soft magnetic phase by a sputtering method. Phase width 10 ~ 100nm, length 10 ~ 10
Fine particles having a size of 2000 nm are formed.

【0013】また別の方法として、FeもしくはFe−
M(MはCo、Ni、Mnなど遷移金属のうちの少なく
とも1種以上)またはFe−N組成を有する軟磁性相金
属を急冷法によって厚さ10000nm以下の薄帯に形
成し、この薄帯の表面に、硬磁性相を、R(RはYを含
む希土類元素のうち少なくとも1種以上)、Feおよび
Bを含む加水分解性金属化合物溶液中で被覆し、還元し
て1000℃以下で熱処理することにより結晶を配向さ
せ、これを粉砕して永久磁石用粒子を形成させる。
As another method, Fe or Fe-
M (M is at least one of transition metals such as Co, Ni and Mn) or a soft magnetic phase metal having an Fe—N composition is formed into a ribbon having a thickness of 10,000 nm or less by a quenching method. The surface is coated with a hard magnetic phase in a solution of a hydrolyzable metal compound containing R (R is at least one of rare earth elements containing Y), Fe and B, reduced, and heat-treated at 1000 ° C. or less. This orients the crystals and pulverizes them to form particles for permanent magnets.

【0014】また、FeもしくはFe−M(MはCo、
Ni、Mnなど遷移金属のうちの少なくとも1種以上)
もしくはFe−N組成を有する軟磁性組成の合金と、R
−Fe−B(BはYを含む希土類元素のうちの少なくと
も1種以上)組成を有する硬磁性組成の合金の、いずれ
か一方を急冷法により厚さ10000nm以下の薄帯に
形成し、その表面に、表面処理により他方の合金の被覆
を形成させ、これを熱処理することにより結晶を配向さ
せ、これを粉砕する。
Further, Fe or Fe-M (M is Co,
At least one of transition metals such as Ni and Mn)
Or an alloy having a soft magnetic composition having an Fe—N composition;
Any one of alloys having a hard magnetic composition having a composition of -Fe-B (B is at least one of rare earth elements including Y) is formed into a ribbon having a thickness of 10,000 nm or less by a quenching method, and the surface thereof is formed. Next, a coating of the other alloy is formed by a surface treatment, and this is subjected to a heat treatment to orient the crystals, which are pulverized.

【0015】前記の永久磁石用粒子を、エポキシ樹脂も
しくはナイロン樹脂もしくはアクリル樹脂で結合させ
て、磁場形成を行い、硬化させてボンド磁石を製作す
る。また、前記の永久磁石用粒子を、1000℃以下で
焼結させ、磁場形成して焼結磁石を得られる。
The particles for permanent magnets are bonded with an epoxy resin, a nylon resin or an acrylic resin, a magnetic field is formed, and the magnetic field is cured to produce a bonded magnet. The permanent magnet particles are sintered at a temperature of 1000 ° C. or lower, and a magnetic field is formed to obtain a sintered magnet.

【0016】[0016]

【発明の実施の形態】以下、図に示す実施例について説
明する。図1は永久磁石用粒子および、その粒子により
永久磁石を成形する工程を示す実施例ブロック図で、1
は合金溶湯、2は急冷法によるアモルファス薄片の作製
工程、3は微粒子化工程、4は熱処理による結晶化工程
である。5は永久磁石製作の樹脂混合工程、6は磁場成
形工程、7は硬化硬化工程、8は固化磁場成形工程であ
る。図2はアモルファス薄片の作製装置を示す模式図
で、21はノズル、22はノズル口、23は回転金属ロ
ール、24は加熱コイル、25はアモルファス薄片であ
る。図3はアモルファス薄片を微粒子化する実施例とし
てレーザーアブレーションの装置を示す模式図で、31
は生成室、32はターゲット、33はターゲットホルダ
ー、34はマグネット、35はYAGレーザー、36は
排気口、37は生成室31にHeなどの不活性ガスを導
入するキャリアガス導入口、38は低圧動作電気移動度
分級装置、39はHeシースガス導入口、40は堆積
室、41は堆積基板、42はキャリアガス排出口であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiment shown in the drawings will be described below. FIG. 1 is a block diagram of an embodiment showing particles for permanent magnets and a step of forming a permanent magnet from the particles.
Is an alloy melt, 2 is a process for producing amorphous flakes by a quenching method, 3 is a micronization process, and 4 is a crystallization process by heat treatment. Reference numeral 5 denotes a resin mixing step for manufacturing a permanent magnet, 6 denotes a magnetic field forming step, 7 denotes a hardening and curing step, and 8 denotes a solidified magnetic field forming step. FIG. 2 is a schematic diagram showing an apparatus for producing an amorphous flake, in which 21 is a nozzle, 22 is a nozzle port, 23 is a rotating metal roll, 24 is a heating coil, and 25 is an amorphous flake. FIG. 3 is a schematic view showing an apparatus for laser ablation as an embodiment for atomizing amorphous flakes.
Is a generation chamber, 32 is a target, 33 is a target holder, 34 is a magnet, 35 is a YAG laser, 36 is an exhaust port, 37 is a carrier gas inlet for introducing an inert gas such as He into the generation chamber 31, and 38 is a low pressure. An operation electric mobility classifier, 39 is a He sheath gas inlet, 40 is a deposition chamber, 41 is a deposition substrate, and 42 is a carrier gas outlet.

【0017】たとえば、Nd6mol%、Fe91mo
l%、B3mol%の組成からなる合金溶湯1をノズル
21に注入し、ノズル21内で凝固しないように加熱コ
イル24で加熱し、ノズル口22から高速回転している
回転金属ロール23上に適量づつ排出させる。回転金属
ロール23の表面に落下した合金溶湯は急冷されてアモ
ルファス薄片25になる。このアモルファス薄片25を
ターゲット32として、生成室31内のターゲットホル
ダー33にセットし、ターゲットホルダー33の背面に
装着したマグネット34で吸着固定させる。生成室31
内の圧力を2.7kPa、 低圧動作電気移動度分級装置
38の印加電圧を15.0V、 堆積室40内の圧力を
2.5kPaに調整して、YAGレーザー35をアモル
ファス薄片のターゲット32に照射すると、アモルファ
ス薄片が微粒子化して低圧動作電気移動度分級装置38
に取り込まれ、分級されて堆積室40の堆積基板41上
に堆積する。こうして得られた幅20nm、長さ100
nmのアモルファス合金粉を、図示しない熱処理炉中で
磁界を印加しながら500℃に加熱すると、アモルファ
ス合金粉は、Nd2Fe14B相とFe相が混在した状態
に結晶化する。
For example, Nd 6 mol%, Fe 91 mo
An alloy melt 1 having a composition of 1% and 3 mol% of B is injected into a nozzle 21 and heated by a heating coil 24 so as not to be solidified in the nozzle 21, and an appropriate amount is placed on a rotating metal roll 23 rotating at a high speed from a nozzle port 22. Let them be discharged one by one. The alloy melt that has fallen on the surface of the rotating metal roll 23 is rapidly cooled to become amorphous flakes 25. The amorphous thin piece 25 is set as a target 32 on a target holder 33 in the generation chamber 31 and fixed by suction with a magnet 34 attached to the back of the target holder 33. Generation chamber 31
The YAG laser 35 is irradiated on the amorphous thin target 32 by adjusting the internal pressure to 2.7 kPa, the applied voltage of the low-pressure operation electric mobility classifier 38 to 15.0 V, and the pressure in the deposition chamber 40 to 2.5 kPa. Then, the amorphous flakes are turned into fine particles, and the low-pressure operation electric mobility classifier 38 is used.
And is classified and deposited on the deposition substrate 41 in the deposition chamber 40. The thus obtained width of 20 nm and length of 100
When an amorphous alloy powder having a thickness of nm is heated to 500 ° C. in a heat treatment furnace (not shown) while applying a magnetic field, the amorphous alloy powder crystallizes into a state in which the Nd 2 Fe 14 B phase and the Fe phase are mixed.

【0018】熱処理炉から取り出した結晶化された粒子
により、樹脂混合5、磁場成形6、硬化7の工程を経て
ボンド磁石を成形させる。また、結晶化された粒子によ
り、固化磁場成形8の工程を経て焼結磁石を成形させ
る。
The bonded magnet is formed from the crystallized particles taken out of the heat treatment furnace through the steps of resin mixing 5, magnetic field forming 6, and curing 7. In addition, a sintered magnet is formed from the crystallized particles through the step of solidifying magnetic field forming 8.

【0019】図4は微粒子化を行う別の実施例を示す模
式図で、50は原料合金、51は処理室、52はるつ
ぼ、53は加熱コイル、54はキャリアガス導入口、5
5は超微粒子捕集管、56は冷却付着板である。Nd4
mol%、Fe94mol%、B2mol%の組成から
なる原料合金50を、るつぼ52内に投入し、図示して
いない排気装置で処理室51内を真空にし、キャリアガ
ス導入口54からHeガスを導入して所定のガス圧に保
持させ、加熱コイル53でるつぼ52内の原料合金50
を溶解する。溶解した原料合金50は蒸発して対流不活
性ガスにより冷却されて超微粒子捕集管55に入り、冷
却付着板56に付着する。このようにして得られたアモ
ルファス状の超微粒子を回収し、熱処理炉で磁界を印加
しながら500℃に加熱すると、Nd2Fe14B相とF
e相が混在した状態に結晶化する。熱処理炉から取り出
した結晶化された微粒子により、ボンド磁石あるいは焼
結磁石を作成する。
FIG. 4 is a schematic view showing another embodiment for forming fine particles, 50 is a raw material alloy, 51 is a processing chamber, 52 is a crucible, 53 is a heating coil, 54 is a carrier gas inlet,
Reference numeral 5 denotes an ultra fine particle collecting tube, and reference numeral 56 denotes a cooling adhesion plate. Nd4
The raw material alloy 50 having a composition of mol%, 94 mol% of Fe, and 2 mol% of B is charged into the crucible 52, the inside of the processing chamber 51 is evacuated by an exhaust device (not shown), and He gas is introduced from the carrier gas inlet 54. The raw material alloy 50 in the crucible 52 is maintained at a predetermined gas pressure by the heating coil 53.
Dissolve. The melted raw material alloy 50 evaporates and is cooled by the convective inert gas, enters the ultrafine particle collecting tube 55, and adheres to the cooling adhesion plate 56. The amorphous ultrafine particles thus obtained are collected and heated to 500 ° C. while applying a magnetic field in a heat treatment furnace, whereby the Nd 2 Fe 14 B phase and the F
It crystallizes into a state in which the e phase is mixed. A bonded magnet or a sintered magnet is made from the crystallized fine particles taken out of the heat treatment furnace.

【0020】なお、図4の実施例では、ナノオーダーの
アモルファス微粒子を得る方法として、ガス中蒸発法を
用いたものを示したが、共沈法、ゾルゲル法などのよう
な化学的手法や、クラスタービームデポジション法など
の物理的手法、メカニカルアロイングのような機械的手
法の超微粒子製法を用いてもよい。
In the embodiment shown in FIG. 4, a method using a gas evaporation method is shown as a method for obtaining nano-order amorphous fine particles, but a chemical method such as a coprecipitation method, a sol-gel method, or the like, An ultrafine particle manufacturing method such as a physical method such as a cluster beam deposition method or a mechanical method such as mechanical alloying may be used.

【0021】図5は、別の製造工程を示すブロック図
で、11は合金化工程、12はレーザー熱分解工程、1
3は表面処理工程、14は還元工程、5はボンド磁石製
作のための樹脂混合工程、6は磁場成形工程、7は硬化
硬化工程、8は焼結磁石を製作する固化磁場成形工程で
ある。図6はそれぞれの工程における磁性微粒子の組織
を示す模式図で、61は硬磁性相の粉体、62は表面処
理された微粒子、63は還元された微粒子、64は磁場
成形もしくは固化磁場成形により固たられた状態、65
は永久磁石組織における粒子の状態を示している。合金
化工程11で、R−Fe−B(Rは希土類元素のうちの
少なくとも1種以上)組成を有する合金を作成し、レー
ザー熱分解工程12において、レーザーアブレーション
装置で幅が10〜100nm、長さが10〜2000n
mの微粒粉にする。レーザーアブレーション装置は、図
3で示している。
FIG. 5 is a block diagram showing another manufacturing process, in which 11 is an alloying process, 12 is a laser pyrolysis process,
3 is a surface treatment step, 14 is a reduction step, 5 is a resin mixing step for manufacturing a bonded magnet, 6 is a magnetic field forming step, 7 is a hardening and hardening step, and 8 is a solidification magnetic field forming step for manufacturing a sintered magnet. FIG. 6 is a schematic view showing the structure of magnetic fine particles in each step, 61 is a powder of a hard magnetic phase, 62 is fine particles subjected to surface treatment, 63 is reduced fine particles, and 64 is magnetic field molding or solidification magnetic field molding. Hardened, 65
Indicates the state of the particles in the permanent magnet structure. In the alloying step 11, an alloy having a composition of R—Fe—B (R is at least one of rare earth elements) is prepared. In the laser pyrolysis step 12, the width is 10 to 100 nm and the length is 10 to 100 nm by a laser ablation apparatus. 10 to 2000n
m fine powder. The laser ablation device is shown in FIG.

【0022】なお、微粒子の幅が10nm以下になる
と、レーザーアブレーションでの製作が困難であり、1
00nmより大きくなると磁束密度が低下し、交換スプ
リング効果が得られず、また、長さが10nmより小さ
いときも幅と同様に製作ができず、2000nmより大
きくすると保磁力が低下し磁石特性が低下する。この微
粒粉に、表面処理工程13により、M(Fe、Co、N
i、Mnなどの遷移金属のうちの少なくとも1種以上)
組成を有するM(OH)2コロイドを含むアルカリ溶液
の中で、MO(OH)を被覆させ、還元工程14で還元
する。この被膜が100nmより厚くなると、保磁力が
低下するため、100nm以下にしてある。
If the fine particles have a width of 10 nm or less, it is difficult to manufacture them by laser ablation.
When the length is larger than 00 nm, the magnetic flux density is reduced, and the exchange spring effect cannot be obtained. When the length is shorter than 10 nm, the same manufacturing as the width cannot be performed. I do. This fine powder is subjected to M (Fe, Co, N
i, at least one of transition metals such as Mn)
In an alkaline solution containing M (OH) 2 colloid having a composition, MO (OH) is coated and reduced in a reduction step 14. If the thickness of the coating is more than 100 nm, the coercive force is reduced.

【0023】また、Fe−B組成を有する合金を作成
し、レーザーアブレーションなどの装置中で、幅10〜
100nm、長さ10〜2000nmの微粒粉にし、こ
の微粒粉を、R−Fe−B(Rは希土類元素のうちの少
なくとも1種以上)組成を有する加水分解性金属化合物
溶液中で、100nm以下の厚さの被覆を行わせ、さら
に還元することにより、硬磁性相と軟磁性相をそなえた
磁性微粒子を作成することができる。また、Fe−B
(Rは希土類元素のうちの少なくとも1種以上)組成
と、R−Fe−B(Rは希土類元素のうちの少なくとも
1種以上)組成をレーザーアブレーションなどの装置中
で合金化して、硬磁性相と軟磁性相を有する磁性粉を作
成し、幅が10〜100nm、長さが10〜2000n
mの微粒子にする。この微粒粉を、熱加水分解性金属化
合物溶液の中で、厚さ100nm以下の被覆を形成さ
せ、還元することにより、硬固磁性相と軟磁性相をそな
えた永久磁石用の磁性微粒子を作成することができる。
Further, an alloy having an Fe—B composition is prepared, and the width of the alloy is 10 to 10 in an apparatus such as laser ablation.
A fine powder having a length of 100 nm and a length of 10 to 2000 nm is formed into a fine powder having a composition of 100 nm or less in a hydrolyzable metal compound solution having a composition of R—Fe—B (R is at least one of rare earth elements). By performing coating with a thickness and further reducing the thickness, magnetic fine particles having a hard magnetic phase and a soft magnetic phase can be produced. Also, Fe-B
(R is at least one kind of rare earth element) and R-Fe-B (R is at least one kind of rare earth element) are alloyed in a device such as laser ablation to form a hard magnetic phase. And a magnetic powder having a soft magnetic phase, having a width of 10 to 100 nm and a length of 10 to 2000 n
m particles. This fine powder is formed into a coating having a thickness of 100 nm or less in a thermally hydrolyzable metal compound solution, and reduced to produce magnetic fine particles for a permanent magnet having a hard magnetic phase and a soft magnetic phase. can do.

【0024】さらに別の形態として、Fe−B組成と、
R−Fe−B(Rは希土類元素のうちの少なくとも1種
以上)組成を有する合金を作成した後、レーザーアブレ
ーションで幅が10〜100nm、長さが10〜200
0nmの微粒粉にする。この微粒粉を、Fe(OH)2
コロイドを含むアルカリ溶液中で、FeO(OH)の表
面処理を行い、その表面処理を水素ガスで還元すること
により、厚さ100nm以下のFe表面処理を行った硬
固磁性相と軟磁性相を有する磁性微粒子を得ることがで
きる。
In still another embodiment, the Fe-B composition
After preparing an alloy having a composition of R-Fe-B (R is at least one of rare earth elements), the width is 10 to 100 nm and the length is 10 to 200 by laser ablation.
Make fine powder of 0 nm. This fine powder is converted to Fe (OH) 2
A hard-solid magnetic phase and a soft-magnetic phase having a thickness of 100 nm or less are subjected to a surface treatment of FeO (OH) in an alkali solution containing a colloid, and the surface treatment is reduced with hydrogen gas. Magnetic fine particles can be obtained.

【0025】また、第一鉄塩水溶液中でFeO(OH)
の種結晶を成長させて、大きさが100nm以下の微粒
粉を作成し、水素ガスで還元することにより、レーザー
アブレーションなどの装置を用いないで、同様の磁性微
粒粉を得ることができる。なお、第一鉄塩水溶液のpH
が4以上では、FeO(OH)の種結晶が得られないの
で、pHを4以下にしている。
In a ferrous salt aqueous solution, FeO (OH)
The same magnetic fine powder can be obtained without using a device such as laser ablation by growing a seed crystal and producing fine powder having a size of 100 nm or less and reducing it with hydrogen gas. The pH of the aqueous ferrous salt solution
If the pH is 4 or more, a seed crystal of FeO (OH) cannot be obtained, so the pH is set to 4 or less.

【0026】pHが8〜10のFeCO3コロイドを含
む弱アルカリ性水溶液から、FeCO3の酸化反応によ
り作成する方法、pH11以上のFeCO3コロイドを
含む強アルカリ性水溶液から、Fe(OH)2の酸化反
応により作成する方法も、同様のFeO(OH)粒子を
作成できる。
A method of preparing from a weakly alkaline aqueous solution containing a FeCO 3 colloid having a pH of 8 to 10 by an oxidation reaction of FeCO 3 , and a method of oxidizing Fe (OH) 2 from a strongly alkaline aqueous solution containing a FeCO 3 colloid having a pH of 11 or more Can produce the same FeO (OH) particles.

【0027】軟磁性相としてFe−N組成を有する合金
を用い、硬磁性相にR−Fe−N(Rは希土類元素のう
ちの少なくとも1種以上)組成を有する合金からなる磁
性微粒粉も、上記のFe−B、R−Fe−Bを用いた場
合と同様に作成することができる。
A magnetic fine powder made of an alloy having an Fe-N composition as a soft magnetic phase and an alloy having an R-Fe-N (R is at least one of rare earth elements) composition in a hard magnetic phase is also used. It can be prepared in the same manner as in the case where Fe-B and R-Fe-B are used.

【0028】図7は、スパッタ法による製造工程を示す
ブロック図で、15は軟磁性粒子、16はスパッタによ
る被覆工程、5は樹脂混合工程、6は磁場成形工程、7
は硬化工程、8は固化磁場成形工程である。図8は、ス
パッタ法による被覆工程16の装置を示す実施例で、7
1は回転バレル、72はターゲット、73はターゲット
に電圧を印加する電源、74はバレル71を回転させる
モータ、75は排気装置、76はガスボンベ、77は軟
磁性粒子である。FeO(OH)針状結晶を還元ロータ
リー炉内で還元処理した幅100nm、長さ2000n
mの針状Fe粒子を粉砕した幅10〜100nm、長さ
10〜2000nmの軟磁性粒子77を、回転バレル7
1に入れ、排気装置75で回転バレル71内を1×10
=3Pa以下に排気する。モータ74で回転バレル71を
回転させながらガスボンベ76からアルゴンガスを導入
し、約1Paになるように調節し、硬磁性相のNd−D
y−Fe−B合金をそなえたターゲット72に電源73
から−300Vの電圧を印加してスパッタを行う。
FIG. 7 is a block diagram showing a manufacturing process by a sputtering method, wherein 15 is a soft magnetic particle, 16 is a coating process by sputtering, 5 is a resin mixing process, 6 is a magnetic field forming process, and 7 is a magnetic field forming process.
Denotes a curing step, and 8 denotes a solidification magnetic field forming step. FIG. 8 is an embodiment showing an apparatus of the coating step 16 by the sputtering method.
1 is a rotary barrel, 72 is a target, 73 is a power supply for applying a voltage to the target, 74 is a motor for rotating the barrel 71, 75 is an exhaust device, 76 is a gas cylinder, and 77 is soft magnetic particles. FeO (OH) needle-shaped crystals reduced in a rotary rotary furnace with a width of 100 nm and a length of 2000 n
m soft magnetic particles 77 having a width of 10 to 100 nm and a length of 10 to 2000 nm, which are obtained by pulverizing needle-shaped Fe particles of m.
1 and the inside of the rotary barrel 71 is 1 × 10
= Exhaust to 3 Pa or less. While rotating the rotary barrel 71 with the motor 74, argon gas was introduced from the gas cylinder 76 and adjusted to about 1 Pa, and the hard magnetic phase Nd-D
A power source 73 is connected to a target 72 having a y-Fe-B alloy.
From -300 V is applied to perform sputtering.

【0029】図9は別の実施例で、真空槽78に軟磁性
粒子77を入れ、排気装置75で排気してアルゴンガス
を導入し、加振装置79により真空槽78を振動させて
スパッタを行うようにしている。図10は、さらに別の
実施例で、72はターゲット、73は電源、75は排気
装置、76はガスボンベ、77は軟磁性粒子、79は加
振装置、81は真空槽、82は供給器、83は回収器、
84はベルトコンベヤ、85は永久磁石、86はヒータ
である。軟磁性のFe粒子77を供給器82に入れ、図
8の実施例と同様に、排気装置75で真空槽81内の排
気をしてアルゴンガスを導入する。ベルトコンベヤ84
を図示しないモータで矢印方向に移動させ、電源73か
ら電圧を印加して加振装置79により供給器82を振動
させる。振動により跳ね上がった軟磁性粒子77は、永
久磁石85に吸引されてベルトコンベヤ84の表面に付
着し、ベルトコンベヤとともに移動しながら、ターゲッ
ト72に対向してスパッタにより、硬磁性相のNd−F
e−B合金が被覆され、回収器83上で永久磁石85の
吸引力が弱まって回収器83内に落下回収される。
FIG. 9 shows another embodiment, in which soft magnetic particles 77 are put in a vacuum chamber 78, evacuated by an exhaust device 75, and argon gas is introduced. I'm trying to do it. FIG. 10 shows still another embodiment, in which 72 is a target, 73 is a power source, 75 is an exhaust device, 76 is a gas cylinder, 77 is a soft magnetic particle, 77 is a vibration device, 81 is a vacuum tank, 82 is a supply device, 83 is a collector,
84 is a belt conveyor, 85 is a permanent magnet, and 86 is a heater. The soft magnetic Fe particles 77 are put in the supply device 82, and the gas in the vacuum chamber 81 is exhausted by the exhaust device 75 and argon gas is introduced as in the embodiment of FIG. Belt conveyor 84
Is moved in the direction of the arrow by a motor (not shown), and a voltage is applied from the power supply 73 to vibrate the supply device 82 by the vibration device 79. The soft magnetic particles 77 jumped up by the vibration are attracted by the permanent magnet 85 and adhere to the surface of the belt conveyor 84, and move with the belt conveyor, face the target 72, and are sputtered by the Nd-F of the hard magnetic phase by sputtering.
The e-B alloy is coated, and the attracting force of the permanent magnet 85 is weakened on the collecting device 83 to be dropped and collected in the collecting device 83.

【0030】なお、永久磁石85で吸引されベルトコン
ベヤ84で運ばれる軟磁性粒子77は、スパッタ時間が
長くなると、硬磁性被覆の厚さが増すとともに、永久磁
石85によって着磁され、回収器83に落ち難くなる。
この場合は、回収器83上部に対向する位置に、ヒータ
86を設け、ベルトコンベヤに付着したNd−Fe−B
合金を熱減磁して吸引力を低下させ、回収器83に確実
に落下させる。
The soft magnetic particles 77 attracted by the permanent magnet 85 and conveyed by the belt conveyor 84 increase in the thickness of the hard magnetic coating as the sputtering time increases, and are magnetized by the permanent magnet 85 to be collected by the collector 83. It is difficult to fall.
In this case, a heater 86 is provided at a position facing the upper part of the collecting device 83, and Nd-Fe-B adhered to the belt conveyor is provided.
The alloy is thermally demagnetized to reduce the attractive force, and is reliably dropped on the collector 83.

【0031】図11は、さらに異なる製法のブロック図
で、硬磁性相と軟磁性相のいずれかの薄帯に他方で表面
処理し、熱処理をした後に粉砕するもので、17は急冷
薄帯形成工程、18は軟磁性相のコーティング工程、1
9は熱処理工程、20は粉砕工程である。図12は図1
1のそれぞれの工程における結晶組織、図13は磁石粉
の結晶粒を拡大して示している。FeもしくはFe−M
(MはCo、Ni、Mnなど遷移金属のうちの少なくと
も1種以上)またはFe−N、Fe−B組成を有する軟
磁性相金属を作成し、図2で示した急冷金属ロールを用
いて、厚さ10000nm以下の薄帯91を形成させ
る。この薄帯91に、R−Fe−B(RはYを含む希土
類元素のうち少なくとも1種以上)を含む加水分解性金
属化合物溶液の中で、Nd−Fe−Bの被覆をコーティ
ングした薄帯92を作り、これを還元して700℃で熱
処理を行い、NdをFe中に拡散させた薄帯93の結晶
磁気異方性を矢印95の方向に配向させ、これを粉砕し
て微粒子94を作成した。硬磁性相96と軟磁性相97
のいずれか(図では硬磁性相96)の幅Wは10〜10
0nm、長さLは10〜2000nmである。
FIG. 11 is a block diagram of a further different manufacturing method, in which one of the ribbons of the hard magnetic phase and the soft magnetic phase is subjected to surface treatment with the other, and then pulverized after heat treatment. Step 18, coating step of soft magnetic phase, 1
9 is a heat treatment step, and 20 is a pulverization step. FIG. 12 shows FIG.
FIG. 13 shows the crystal structure of the magnet powder in each step of FIG. Fe or Fe-M
(M is at least one of transition metals such as Co, Ni, and Mn) or a soft magnetic phase metal having a Fe—N or Fe—B composition is prepared, and the quenched metal roll shown in FIG. A thin band 91 having a thickness of 10000 nm or less is formed. This ribbon 91 is coated with a coating of Nd—Fe—B in a hydrolyzable metal compound solution containing R—Fe—B (R is at least one of rare earth elements including Y). 92 is reduced, heat-treated at 700 ° C., and the crystal magnetic anisotropy of the ribbon 93 in which Nd is diffused in Fe is oriented in the direction of arrow 95. Created. Hard magnetic phase 96 and soft magnetic phase 97
(The hard magnetic phase 96 in the figure) has a width W of 10 to 10.
0 nm and the length L is 10 to 2000 nm.

【0032】また、Fe−BもしくはR−Fe−B(R
は希土類元素のうちの少なくとも1種以上)組成を有す
る合金を急冷金属ロールで薄帯に形成し、Fe−Bもし
くはR−Fe−B(Rは希土類元素のうち少なくとも1
種以上)を有する薄帯をレーザーアブレーションなどの
装置を用いて図12の92のように被覆し、さらに還
元、熱処理を行い、硬磁性相と軟磁性相を有する異方化
した磁石粉94を得られる。なお、レーザーアブレーシ
ョンなどの装置に代えて、スパッタ装置、蒸着、CV
D、プラズマCVD、イオンプレーティングでも同様の
効果が得られる。
Further, Fe—B or R—Fe—B (R
Is an alloy having a composition of at least one of the rare earth elements) is formed into a ribbon with a quenched metal roll, and Fe—B or R—Fe—B (R is at least one of the rare earth elements)
12) is coated using a device such as laser ablation as shown in FIG. 12 and further subjected to reduction and heat treatment to form an anisotropic magnet powder 94 having a hard magnetic phase and a soft magnetic phase. can get. It should be noted that, instead of a device such as laser ablation, a sputtering device, vapor deposition, CV
Similar effects can be obtained by D, plasma CVD, and ion plating.

【0033】前記製造方法は、Fe−N組成を有する軟
磁性相と、R−Fe−B(Rは希土類元素のうちの少な
くとも1種以上)組成を有する硬磁性相からなる磁石粒
子にも適用できる。合金を急冷金属ロールで薄帯に形成
し、Fe−BもしくはR−Fe−B(Rは希土類元素の
うち少なくとも1種以上)を有する薄帯をレーザーアブ
レーションなどの装置を用いて図12の92のように被
覆し、さらに還元、熱処理を行い、硬磁性相と軟磁性相
を有する異方化した磁石粉94を得られる。
The above manufacturing method is also applicable to magnet particles comprising a soft magnetic phase having an Fe—N composition and a hard magnetic phase having an R—Fe—B (R is at least one of rare earth elements) composition. it can. The alloy is formed into a ribbon by a quenched metal roll, and a ribbon having Fe—B or R—Fe—B (R is at least one of rare earth elements) is formed by using a device such as laser ablation at 92 in FIG. And further subjected to reduction and heat treatment to obtain anisotropic magnet powder 94 having a hard magnetic phase and a soft magnetic phase.

【0034】厚さ5000nmのNd−Fe−Bの薄帯
を作成し、Fe(OH)2コロイドを含むアルカリ性水
溶液でFe(OH)2の酸化反応によりFeO(OH)
の表面処理を行い、400℃の水素中で還元し、Feの
被覆をしたNd−Fe−Bの薄帯を700℃で熱処理
し、粉砕する。また、Fe−Bの軟磁性薄帯をNd(O
H)2の組成を持った加水分解性金属化合物溶液の中で
NdOの表面処理を行い、水素ガス中で還元し、熱処理
を行って粉砕する。また、レーザーアブレーションやス
パッタにより、Nd−Fe−Bの薄帯にFe−Bの表面
処理を行い、Fe−Bの軟磁性薄帯にNdの表面処理を
行うようにしてもよい。
A 5000 nm-thick ribbon of Nd—Fe—B was prepared, and FeO (OH) 2 was oxidized with an alkaline aqueous solution containing Fe (OH) 2 colloid to form FeO (OH) 2.
Is reduced in hydrogen at 400 ° C., and the Nd—Fe—B ribbon coated with Fe is heat-treated at 700 ° C. and pulverized. Further, the soft magnetic ribbon of Fe-B is formed by Nd (O
H) Surface treatment of NdO is performed in a hydrolyzable metal compound solution having the composition of 2 and reduced in hydrogen gas, heat-treated and pulverized. The Nd-Fe-B ribbon may be subjected to a surface treatment of Fe-B by laser ablation or sputtering, and the Fe-B soft magnetic ribbon may be subjected to a surface treatment of Nd.

【0035】[0035]

【実施例】図1ないし図3に示した実施例によって、そ
れぞれ4個のボンド磁石(試料1〜4)と焼結磁石(試
料5〜8)を作成し、この試料について最大エネルギー
積を測定した結果を表1に示している。
EXAMPLE Four bonded magnets (samples 1 to 4) and sintered magnets (samples 5 to 8) were prepared in accordance with the embodiments shown in FIGS. 1 to 3, and the maximum energy product was measured for the samples. The results obtained are shown in Table 1.

【表1】 ボンド磁石と焼結磁石のいずれも、従来の磁石に比べて
高い最大エネルギー積を示している。なお、永久磁石用
粒子の硬磁性相と軟磁性相の各相の幅あるいは長さが1
0nm未満であると、異方性の平均化により保磁力が小
さくなる。また、各相の幅が100nmを超えると、相
間の交換相互作用が弱くなって保磁力が小さくなり、各
相の長さが2000nmを超えると磁壁の形成により保
磁力が小さくなる。
[Table 1] Both the bonded magnet and the sintered magnet have a higher maximum energy product than the conventional magnet. The width or length of each phase of the hard magnetic phase and the soft magnetic phase of the permanent magnet particles is 1
If it is less than 0 nm, the coercive force will be reduced by averaging the anisotropy. When the width of each phase exceeds 100 nm, the exchange interaction between the phases becomes weak and the coercive force decreases, and when the length of each phase exceeds 2000 nm, the coercive force decreases due to the formation of domain walls.

【0036】また、この実施例によるボンド磁石20個
と、従来の例としてNd粉末、B粉末、針状鉄粉の混合
物を水素を含有する還元ガス雰囲気中で還元を行い、不
活性ガス中で熱処理した粉体によりボンド磁石を20個
作成して比較した結果を表2に示している。
Further, a mixture of 20 bonded magnets according to this embodiment and, as a conventional example, Nd powder, B powder, and needle-shaped iron powder were reduced in a reducing gas atmosphere containing hydrogen, and reduced in an inert gas. Table 2 shows the results of comparing 20 bonded magnets made of the heat-treated powder.

【表2】 このように、本発明の永久磁石は従来のものに比べて、
特性のばらつきが極めて小さくなっている。
[Table 2] Thus, the permanent magnet of the present invention is
The variation in characteristics is extremely small.

【0037】図5の実施例による試料として、生成室圧
力2.7kPa、低圧動作電気移動度分級装置の印加電
圧を15.0V、堆積室内の圧力を2.5kPaにしたレ
ーザーアブレーション法で作成した永久磁石用粒子を用
いて、つぎの試料を製作した。 (試料11)幅20nm、長さ100nmの、Nd−F
e−Bの硬磁性粉を作成し、Fe(OH)2コロイドを
含むアルカリ溶液中で、FeO(OH)の表面処理を行
い、水素ガス中で還元してFeの表面処理をした微粒子
を用い、固化成形法で製作した焼結磁石。 (試料12)幅20nm、長さ100nmの、Fe−B
の軟磁性粉を、Nd(OH)2の組成を持つ加水分解性
金属化合物溶液中で、NdOの表面処理を行い、水素ガ
ス中で還元した微粒子により、固化成形法で500℃×
10分間焼結した焼結磁石。 (試料13)幅20nm、長さ100nmの、Nd−F
e−Bの硬磁性粉と20nmのFe−B粉を用い、固化
成形法で製作した焼結磁石。 (試料14)幅20nm、長さ100nmの、Nd−F
e−Bの硬磁性粉に、Fe(OH)2コロイドを含むア
ルカリ溶液中で、Fe(OH)2の酸化反応によりFe
O(OH)の表面処理を行い、400℃の水素中で還元
処理し、Feの表面処理をした微粒子により、固化成形
法で製作した焼結磁石。 (試料15)幅20nm、長さ100nmの、Nd粉と
B粉、Fe粉を用い、固化成形法で製作した焼結磁石。
A sample according to the embodiment of FIG. 5 was prepared by a laser ablation method in which the pressure in the production chamber was 2.7 kPa, the voltage applied to the low-pressure operation electric mobility classifier was 15.0 V, and the pressure in the deposition chamber was 2.5 kPa. The following samples were produced using the particles for permanent magnets. (Sample 11) Nd-F having a width of 20 nm and a length of 100 nm
e-B hard magnetic powder was prepared and subjected to surface treatment of FeO (OH) in an alkaline solution containing Fe (OH) 2 colloid, and reduced in hydrogen gas to use Fe-treated fine particles. , Sintered magnets manufactured by solidification molding. (Sample 12) Fe-B having a width of 20 nm and a length of 100 nm
Soft magnetic powder is subjected to a surface treatment of NdO in a hydrolyzable metal compound solution having a composition of Nd (OH) 2 , and 500 ° C. ×
A sintered magnet sintered for 10 minutes. (Sample 13) Nd-F having a width of 20 nm and a length of 100 nm
A sintered magnet manufactured by solidification molding using eB hard magnetic powder and 20 nm Fe-B powder. (Sample 14) Nd-F having a width of 20 nm and a length of 100 nm
e-B hard magnetic powder is oxidized by Fe (OH) 2 in an alkaline solution containing Fe (OH) 2 colloid to form Fe (OH) 2.
A sintered magnet manufactured by solidification molding using fine particles that have been surface-treated with O (OH), reduced in hydrogen at 400 ° C., and surface-treated with Fe. (Sample 15) A sintered magnet having a width of 20 nm and a length of 100 nm, manufactured by solidification molding using Nd powder, B powder, and Fe powder.

【0038】(試料16)幅20nm、長さ100nm
の、Nd−Fe−Bの硬磁性粉を、Fe(OH)2コロ
イドを含むアルカリ溶液中で、FeO(OH)の表面処
理を行い、400℃の水素中で還元処理した微粒子によ
り、エポキシ系の硬化樹脂を添加して製作したボンド磁
石。 (試料17)幅20nm、長さ100nmの、Fe−B
の軟磁性粉を、NdO(OH)の組成を有する加水分解
性金属化合物溶液の中で、NdOの表面処理を行い、表
面を水素ガス中で還元した微粒子により、エポキシ樹脂
を添加して製作したボンド磁石。 (試料18)幅20nm、長さ100nmの、Nd−F
e−Bの硬磁性粉とFe−B粉の軟磁性粉を、固化成形
法で焼結して微粉砕した粒子を用い、エポキシ樹脂を添
加して製作したボンド磁石。 (試料19)幅20nm、長さ100nmの、Nd−F
e−Bの硬磁性粉に、Fe(OH)2コロイドを含むア
ルカリ溶液中で、FeO(OH)2の表面処理を行い、
400℃の水素中で還元処理しFeを被覆した微粒子に
より、エポキシ系の硬化樹脂を添加して製作したボンド
磁石。
(Sample 16) Width 20 nm, length 100 nm
The hard magnetic powder of Nd-Fe-B was subjected to a surface treatment of FeO (OH) in an alkaline solution containing a Fe (OH) 2 colloid, and reduced with hydrogen at 400 ° C. to obtain an epoxy-based material. Bonded magnet made by adding a cured resin. (Sample 17) Fe-B having a width of 20 nm and a length of 100 nm
Was prepared by subjecting NdO to surface treatment in a hydrolyzable metal compound solution having a composition of NdO (OH) and adding an epoxy resin to the fine particles whose surface was reduced in hydrogen gas. Bond magnet. (Sample 18) Nd-F having a width of 20 nm and a length of 100 nm
A bonded magnet manufactured by using particles obtained by sintering hard magnetic powder of eB and soft magnetic powder of Fe-B powder by a solidification molding method and adding an epoxy resin thereto. (Sample 19) Nd-F having a width of 20 nm and a length of 100 nm
e-B hard magnetic powder is subjected to a surface treatment of FeO (OH) 2 in an alkaline solution containing a Fe (OH) 2 colloid,
A bonded magnet manufactured by adding an epoxy-based cured resin to fine particles coated with Fe after being reduced in hydrogen at 400 ° C.

【0039】(試料20)幅20nm、長さ100nm
の、Nd粉とFe粉とB粉を混合し、固化成形法で焼結
し、エポキシ系の硬化樹脂を添加して製作したボンド磁
石。 (試料21)幅20nm、長さ100nmの、Sm−F
eの硬磁性粉を、Fe(OH)2コロイドを含むアルカ
リ性水溶液中で、酸化反応によりFeO(OH)の表面
処理を行い、400℃の水素中で還元処理しFeを被覆
した微粒子に、NH3とH2の混合ガスで窒化した粉体を
用い、エポキシ系の硬化樹脂を添加して製作したボンド
磁石。 (試料22)pH4.5以下の第一鉄塩水溶液中で、F
eO(OH)の種結晶を成長させて微粒粉を作成し、水
素ガスで還元させ、幅20nm、長さ100nmのFe
−Bの軟磁性粉を作成し、NdO(OH)の組成を持つ
加水分解性金属化合物溶液中でNdOの表面処理を行
い、表面を水素ガスで還元した粉体に、エポキシ樹脂を
添加して製作したボンド磁石。を製作した。
(Sample 20) Width 20 nm, length 100 nm
A bonded magnet manufactured by mixing Nd powder, Fe powder and B powder, sintering by solidification molding method, and adding an epoxy-based cured resin. (Sample 21) Sm-F having a width of 20 nm and a length of 100 nm
The hard magnetic powder of (e) is subjected to a surface treatment of FeO (OH) by an oxidation reaction in an alkaline aqueous solution containing Fe (OH) 2 colloid, and reduced in 400 ° C. hydrogen to give Fe-coated fine particles with NH. 3 and using the powder obtained by nitriding a mixed gas of H 2, epoxy bond magnet manufactured by adding a curing resin. (Sample 22) In an aqueous ferrous salt solution having a pH of 4.5 or less, F
A seed crystal of eO (OH) is grown to produce a fine powder, which is reduced with hydrogen gas to obtain a 20 nm wide, 100 nm long Fe.
-B soft magnetic powder is prepared, NdO is surface-treated in a hydrolyzable metal compound solution having a composition of NdO (OH), and an epoxy resin is added to the powder whose surface is reduced with hydrogen gas. The manufactured bonded magnet. Was produced.

【0040】また、(比較例1)として、幅20nm、
長さ100nmの、Fe−Bの軟磁性粉を、Nd(O
H)2の組成を有する加水分解性金属化合物溶液中で、
NdOの表面処理を行い、水素ガス中で還元した微粒子
を用い、固化成形法により500℃で10分間焼結した
焼結磁石を製作した。(比較例2)として、急冷法によ
りアモルファス薄帯を熱処理により軟磁性相と硬磁性相
に析出させ、エポキシ樹脂で結合させたボンド磁石を製
作した。なお、(従来例)として、蒸着法によって層状
に軟磁性相と硬磁性相を並べることにより焼結磁石を製
作した。この試料11〜22と比較例1、2および従来
例の磁気特性は、表3に示すように、本発明の試料は、
従来例や比較例に比べて、大きな最大エネルギー積が得
られ、バラツキが小さく安定した特性であることが明ら
かである。
As (Comparative Example 1), a width of 20 nm
A soft magnetic powder of Fe-B having a length of 100 nm was mixed with Nd (O
H) In a hydrolyzable metal compound solution having a composition of 2
Surface treatment of NdO was performed, and sintered magnets were manufactured by solidification molding at 500 ° C. for 10 minutes using fine particles reduced in hydrogen gas. As Comparative Example 2, a bonded magnet in which an amorphous ribbon was precipitated in a soft magnetic phase and a hard magnetic phase by heat treatment by a quenching method and bonded with an epoxy resin was manufactured. As a (conventional example), a sintered magnet was manufactured by arranging a soft magnetic phase and a hard magnetic phase in layers by a vapor deposition method. As shown in Table 3, the magnetic properties of Samples 11 to 22, Comparative Examples 1 and 2, and a conventional example are as follows.
It is apparent that a larger maximum energy product is obtained as compared with the conventional example and the comparative example, and the characteristics are small and stable.

【表3】 [Table 3]

【0041】熱処理温度は、いずれの場合も1000℃
より大きくなると、結晶粒が粗大化して磁束密度や保磁
力が低下するため、最大エネルギー積が低下する。図1
1における熱処理温度と処理時間の結晶粒径への影響
と、その時に得られた磁気特性を調べた結果を温度の関
係を表4に、処理時間との関係を表5に示している。
The heat treatment temperature is 1000 ° C. in each case.
If it becomes larger, the crystal grains become coarse and the magnetic flux density and the coercive force decrease, so that the maximum energy product decreases. Figure 1
Table 4 shows the effect of the heat treatment temperature and treatment time on the crystal grain size in Table 1 and the magnetic properties obtained at that time. Table 4 shows the relationship between the temperatures, and Table 5 shows the relationship with the treatment time.

【表4】 [Table 4]

【表5】 この結果から、熱処理は1000℃以下で、5時間以内
が望ましく、これ以上では特性の低下が見られる。
[Table 5] From these results, it is desirable that the heat treatment is performed at a temperature of 1000 ° C. or less and within 5 hours.

【0042】[0042]

【発明の効果】上述のように、本発明の永久磁石用粒子
は、硬磁性相と軟磁性相とがナノスケールでコンポジッ
ト化した組織からなり、相互に固溶しない硬磁性相と軟
磁性相を用い、各相の幅が、10〜100nm、長さが
10〜2000nmである構成からなる1組または複数
組の粒子で構成されているので、この粒子によって製作
した永久磁石は、硬磁性相と軟磁性相の寸法が交換スプ
リング効果を示す最適寸法になり、従来に比べて大きな
最大エネルギー積を有し、バラツキの小さい磁気特性を
そなえた永久磁石を得ることができる。
As described above, the permanent magnet particles of the present invention have a structure in which a hard magnetic phase and a soft magnetic phase are composited on a nanoscale, and the hard magnetic phase and the soft magnetic phase that do not form a solid solution with each other. , Each phase has a width of 10 to 100 nm and a length of 10 to 2000 nm, and is made up of one or more sets of particles. Thus, the size of the soft magnetic phase becomes the optimum size exhibiting the exchange spring effect, and a permanent magnet having a larger maximum energy product than the conventional one and having magnetic characteristics with small variations can be obtained.

【0043】また、前記硬磁性相がR−Fe−B(Rは
Yを含む希土類元素のうちの少なくとも1種以上)組成
を有する合金で、軟磁性相がFe、またはFe−M(M
はCo、Ni、Mnなど遷移金属のうちの少なくとも1
種以上)、またはFe−N組成を有する合金で永久磁石
用粒子を成形させ、この粒子により製作した永久磁石
は、温度特性の向上や飽和磁束密度の向上ができる。な
お、本発明の製造方法によれば、熱処理しても硬磁性相
と軟磁性相の寸法がナノオーダーより大きくならず、最
適の交換スプリング効果を示し、磁界中で熱処理するこ
とで各微粒子の磁気異方性が長手方向に揃い、より異方
性が高くなる効果がある。
Further, the hard magnetic phase is an alloy having a composition of R—Fe—B (R is at least one of rare earth elements including Y), and the soft magnetic phase is Fe or Fe—M (M
Represents at least one of transition metals such as Co, Ni and Mn.
Or more) or an alloy having an Fe—N composition to form particles for permanent magnets, and the permanent magnets made from these particles can improve the temperature characteristics and the saturation magnetic flux density. According to the manufacturing method of the present invention, the dimensions of the hard magnetic phase and the soft magnetic phase do not become larger than the nano-order even after the heat treatment, exhibit an optimal exchange spring effect, and are heat-treated in a magnetic field. There is an effect that the magnetic anisotropy is aligned in the longitudinal direction and the anisotropy becomes higher.

【0044】また、永久磁石用粒子を、エポキシ樹脂も
しくはナイロン樹脂もしくはアクリル樹脂で結合させる
ことにより磁気特性が安定し、磁石の生産性を向上さ
せ、磁石の形状に制約がなく応用範囲を広くすることが
でき、また、焼結温度を1000℃以下にすることで、
ナノスケールでコンポジット化した組織が粗大化するこ
となく固化され、大きな最大エネルギー積の永久磁石が
得ることができる。
Further, by combining the permanent magnet particles with an epoxy resin, a nylon resin, or an acrylic resin, the magnetic properties are stabilized, the productivity of the magnet is improved, and the shape of the magnet is not restricted and the range of application is widened. In addition, by setting the sintering temperature to 1000 ° C. or less,
The nano-scale composite structure is solidified without coarsening, and a permanent magnet having a large maximum energy product can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における工程を示すブロック図
である。
FIG. 1 is a block diagram showing steps in an embodiment of the present invention.

【図2】急冷法によるアモルファス薄片を作成する実施
例の模式図である。
FIG. 2 is a schematic view of an embodiment for producing an amorphous flake by a quenching method.

【図3】レーザーアブレーション装置を示す概略図であ
る。
FIG. 3 is a schematic view showing a laser ablation apparatus.

【図4】別の微粒子化装置の実施例を示す模式図であ
る。
FIG. 4 is a schematic view showing another embodiment of a fine particle forming apparatus.

【図5】本発明の別の実施例における工程を示すブロッ
ク図である。
FIG. 5 is a block diagram showing steps in another embodiment of the present invention.

【図6】それぞれの工程における磁性微粒子の組織を示
す模式図である。
FIG. 6 is a schematic view showing the structure of magnetic fine particles in each step.

【図7】さらに別の実施例における工程を示すブロック
図である。
FIG. 7 is a block diagram showing steps in still another embodiment.

【図8】スパッタ法による被覆工程の装置を示す概略図
である。
FIG. 8 is a schematic view showing an apparatus in a coating step by a sputtering method.

【図9】別のスパッタ法の装置を示す概略図である。FIG. 9 is a schematic view showing another sputtering apparatus.

【図10】さらに別のスパッタ法の装置を示す概略図で
ある。
FIG. 10 is a schematic view showing still another sputtering apparatus.

【図11】異なる製造法のブロック図である。FIG. 11 is a block diagram of a different manufacturing method.

【図12】図11の各工程における結晶組織を示す図で
ある。
FIG. 12 is a view showing a crystal structure in each step of FIG. 11;

【図13】図12における磁石粉の結晶粒を示す模式図
である。
FIG. 13 is a schematic diagram showing crystal grains of the magnet powder in FIG.

【符号の説明】[Explanation of symbols]

1 合金溶湯 2 急冷法によるアモルファス薄片の作製工程 3 微粒子化工程 4 熱処理による結晶化工程 5 樹脂混合工程 6 磁場成形工程 7 硬化工程 8 固化磁場成形工程 11 合金化工程 12 レーザー熱分解工程 13 表面処理工程 14 還元工程 16 スパッタによる被覆工程 17 薄帯作成工程 18 コーティング工程 19 熱処理工程 20 粉砕工程 21 ノズル 23 回転金属ロール 24 加熱コイル 25 アモルファス薄片 31 生成室 32 ターゲット 35 YAGレーザー 38 低圧動作電気移動度分級装置 40 堆積室 51 処理室 52 るつぼ 55 超微粒子捕集管 71 回転バレル 72 ターゲット 77 軟磁性粒子 78 真空槽 79 加振装置 81 真空槽 82 供給器 83 回収器 85 永久磁石 86 ヒータ DESCRIPTION OF SYMBOLS 1 Molten alloy 2 Manufacturing process of amorphous flakes by a quenching method 3 Micronization process 4 Crystallization process by heat treatment 5 Resin mixing process 6 Magnetic field forming process 7 Hardening process 8 Solidification magnetic field forming process 11 Alloying process 12 Laser pyrolysis process 13 Surface treatment Step 14 Reduction step 16 Coating step by sputtering 17 Thin strip forming step 18 Coating step 19 Heat treatment step 20 Crushing step 21 Nozzle 23 Rotating metal roll 24 Heating coil 25 Amorphous flake 31 Generation chamber 32 Target 35 YAG laser 38 Low pressure operation electric mobility classification Apparatus 40 Deposition chamber 51 Processing chamber 52 Crucible 55 Ultra fine particle collecting tube 71 Rotating barrel 72 Target 77 Soft magnetic particles 78 Vacuum tank 79 Vibration device 81 Vacuum tank 82 Supplier 83 Recoverer 85 Permanent magnet 86 Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 満昭 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 小黒 龍一 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 上村 浩司 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 4K018 AA27 BA13 BA18 BC01 BC09 BC12 BC22 BC24 BC25 BC40 BD01 GA04 KA45 KA46 5E040 AA04 AC05 CA01 HB11 HB17 NN06 5E062 CC05 CD06 CG03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mitsuaki Ikeda 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture Inside Yaskawa Electric Co., Ltd. (72) Ryuichi Oguro 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture Yaskawa Electric Co., Ltd. AA04 AC05 CA01 HB11 HB17 NN06 5E062 CC05 CD06 CG03

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 硬磁性相と軟磁性相とがナノスケールで
コンポジット化した組織からなる永久磁石用粒子におい
て、相互に固溶しない硬磁性相と軟磁性相の各相の幅
が、10〜100nm、長さが10〜2000nmであ
る構成からなる1組または複数組の粒子で構成されてい
ることを特徴とする永久磁石用粒子。
In a permanent magnet particle having a structure in which a hard magnetic phase and a soft magnetic phase are composited on a nanoscale, the width of each of the hard magnetic phase and the soft magnetic phase that do not form a solid solution with each other is 10 to 10. Particles for permanent magnets, comprising one or more sets of particles having a configuration of 100 nm and a length of 10 to 2000 nm.
【請求項2】 硬磁性相と軟磁性相とがナノスケールで
コンポジット化した組織からなる永久磁石用粒子におい
て、相互に固溶しない硬磁性相と軟磁性相の各相の幅
が、10〜100nm、長さが10〜2000nmであ
り、一方が他方の表面を被覆した構成からなる1組また
は複数組の粒子で構成されていることを特徴とする永久
磁石用粒子。
2. In permanent magnet particles comprising a structure in which a hard magnetic phase and a soft magnetic phase are composited on a nanoscale, the width of each of the hard magnetic phase and the soft magnetic phase that do not form a solid solution with each other is 10 to 10. 100. A permanent magnet particle having a length of 10 to 2000 nm and a length of 10 to 2000 nm, and one or a plurality of sets of particles each of which covers the other surface.
【請求項3】 前記硬磁性相がR−Fe−B(RはYを
含む希土類元素のうちの少なくとも1種以上)組成を有
する合金で、軟磁性相がFeまたはFe−M(MはC
o、Ni、Mnなど遷移金属のうちの少なくとも1種以
上)またはFe−N組成を有する合金である請求項1ま
たは2に記載した永久磁石用粒子。
3. The hard magnetic phase is an alloy having a composition of R—Fe—B (R is at least one of rare earth elements including Y), and the soft magnetic phase is Fe or Fe—M (M is C
The permanent magnet particles according to claim 1, wherein the particles are at least one of transition metals such as o, Ni, and Mn) or an alloy having a Fe—N composition.
【請求項4】 前記硬磁性相がR−Fe−N(Rは希土
類元素のうちの少なくとも1種以上)組成を有する合金
で、軟磁性相がFeまたはFe−M−N(MはCo、N
i、Mnなど遷移金属のうちの少なくとも1種以上)ま
たはFe−N組成を有する合金である請求項1または2
に記載した永久磁石用粒子。
4. The hard magnetic phase is an alloy having a composition of R—Fe—N (R is at least one of rare earth elements), and the soft magnetic phase is Fe or Fe—M—N (M is Co, N
3. An alloy having at least one of transition metals such as i and Mn) or an alloy having an Fe--N composition.
The particles for permanent magnets described in 1.
【請求項5】 R−Fe−B(Rは希土類元素のうち少
なくとも1種以上)金属間化合物相の組成割合より、F
eが過剰な組成の金属溶湯を急冷してアモルファス状に
した後、これを超微粒子製造方法により幅が20〜20
0nm、長さが10〜2000nmの微粒子にし、さら
にこの微粒子を熱処理によりR−Fe−B金属間化合物
相とFe相を結晶化させることを特徴とする永久磁石用
粒子の製造方法。
5. The composition ratio of R—Fe—B (R is at least one of rare earth elements) intermetallic compound phase,
e is quenched into an amorphous state by quenching the molten metal having an excessive composition, and then the width is adjusted to 20 to 20 by an ultrafine particle manufacturing method.
A method for producing particles for permanent magnets, comprising: forming fine particles having a thickness of 0 nm and a length of 10 to 2000 nm, and crystallizing the fine particles by heat treatment to form an R-Fe-B intermetallic compound phase and an Fe phase.
【請求項6】 R2Fe14B(Rは希土類元素のうち少
なくとも1種以上)金属間化合物相の組成割合よりFe
が過剰な組成の合金溶湯を急冷してアモルファス状態に
した後、このアモルファスをレーザーアブレーションに
より、幅が20〜200nm、長さが10〜2000n
mの微粒子にし、さらにこの微粒子を熱処理によりR−
Fe−B金属間化合物相とFe相を結晶化させることを
特徴とする永久磁石用粒子の製造方法。
6. The composition ratio of an intermetallic compound phase of R 2 Fe 14 B (R is at least one of rare earth elements)
Is quenched into an amorphous state by quenching the alloy melt having an excessive composition, and then the amorphous is subjected to laser ablation to have a width of 20 to 200 nm and a length of 10 to 2000 n.
m, and further heat-treating these fine particles into R-
A method for producing particles for permanent magnets, wherein the Fe-B intermetallic compound phase and the Fe phase are crystallized.
【請求項7】 前記熱処理を、磁界中で行うことを特徴
とする請求項5または6に記載した永久磁石用粒子の製
造方法。
7. The method for producing permanent magnet particles according to claim 5, wherein the heat treatment is performed in a magnetic field.
【請求項8】 レーザーアブレーションにより、R−F
e−B(RはYを含む希土類元素のうち少なくとも1種
以上)、またはR−Fe−N(Rは希土類元素のうち少
なくとも1種以上)組成を有する合金から硬磁性相を有
する幅10〜100nm、長さ10〜2000nmの微
粒子を作成し、この微粒子にFe(OH)2 コロイドを
含むアルカリ溶液中でFeO(OH)を被覆して還元す
ることにより、厚さ10〜100nmの軟磁性相皮膜を
形成させることを特徴とする永久磁石用粒子の製造方
法。
8. RF-RF by laser ablation
An alloy having a composition of eB (R is at least one of rare earth elements including Y) or R-Fe-N (R is at least one of rare earth elements) has a width of 10 to 10 having a hard magnetic phase. Fine particles of 100 nm in length and 10 to 2000 nm in length are prepared, and the fine particles are coated with FeO (OH) in an alkaline solution containing Fe (OH) 2 colloid and reduced to form a soft magnetic phase having a thickness of 10 to 100 nm. A method for producing particles for permanent magnets, comprising forming a film.
【請求項9】 レーザーアブレーションにより、Feま
たはFe−M(MはCo、Ni、Mnなど遷移金属のう
ちの少なくとも1種以上)、またはFe−M−N(Mは
Co、Ni、Mnなど遷移金属のうちの少なくとも1種
以上)、またはFe−N組成を有する合金から、軟磁性
相を有する幅10〜100nm、長さ10〜2000n
mの微粒子を作成し、この微粒子にR(RはYを含む希
土類元素のうち少なくとも1種以上)、Fe、Bを含ん
だ加水分解性金属化合物溶液中で被覆して還元すること
により、厚さ10〜100nmの硬磁性相被膜を形成さ
せることを特徴とする永久磁石用粒子の製造方法。
9. By laser ablation, Fe or Fe-M (M is at least one kind of transition metal such as Co, Ni, Mn) or Fe-MN (M is transition metal such as Co, Ni, Mn). At least one kind of metal) or an alloy having an Fe-N composition from a soft magnetic phase having a width of 10 to 100 nm and a length of 10 to 2000 n.
m are prepared and coated in a hydrolyzable metal compound solution containing R (R is at least one of rare earth elements including Y), Fe, and B to reduce the fine particles. A method for producing particles for permanent magnets, comprising forming a hard magnetic phase coating having a thickness of 10 to 100 nm.
【請求項10】 レーザーアブレーションにより、硬磁
性相と軟磁性相の一方を、10〜100nm、長さ10
〜2000nmの微粒子に作成し、この微粒子表面に、
他方をレーザーアブレーションにより厚さ10〜100
nmで表面処理を行い被覆することを特徴とする永久磁
石用粒子の製造方法。
10. One of a hard magnetic phase and a soft magnetic phase having a length of 10 to 100 nm and a length of 10
To 2000 nm fine particles, and on the surface of the fine particles,
The other has a thickness of 10 to 100 by laser ablation.
A method for producing particles for permanent magnets, characterized in that the particles are subjected to a surface treatment with nm and coated.
【請求項11】 pH4.5 以下の第一鉄塩水溶液中
で、FeO(OH)の種結晶を成長させ、還元ガス中で
還元することにより、幅10〜100nm、長さ10〜
2000nmの軟磁性相を有する微粒子を作成し、この
微粒子にR(RはYを含む希土類元素のうち少なくとも
1種以上)、Fe、Bを有する加水分解性金属化合物溶
液中で被覆して還元することにより、厚さ10〜100
nmで硬磁性相の被覆を作成することを特徴とする永久
磁石用粒子の製造方法。
11. A seed crystal of FeO (OH) is grown in an aqueous solution of ferrous salt having a pH of 4.5 or less, and reduced in a reducing gas to obtain a width of 10 to 100 nm and a length of 10 to 100 nm.
Fine particles having a soft magnetic phase of 2000 nm are prepared, and the fine particles are coated and reduced in a solution of a hydrolyzable metal compound having R (R is at least one of rare earth elements including Y), Fe, and B. By the thickness 10-100
A method for producing particles for permanent magnets, comprising forming a coating of a hard magnetic phase in nm.
【請求項12】 pH4.5 以下の第一鉄塩水溶液中
で、FeO(OH)の種結晶を成長させ、還元ガス中で
還元することにより、幅10〜100nm、長さ10〜
2000nmの軟磁性相を有する微粒子を作成し、この
微粒子にレーザーアブレーションにより、厚さ10〜1
00nmで硬磁性相の被覆を作成することを特徴とする
永久磁石用粒子の製造方法。
12. A seed crystal of FeO (OH) is grown in an aqueous solution of ferrous salt having a pH of 4.5 or less and reduced in a reducing gas to obtain a 10 to 100 nm wide and 10 to 10 nm long.
Fine particles having a soft magnetic phase of 2,000 nm were prepared, and the fine particles having a thickness of 10 to 1 were subjected to laser ablation.
A method for producing particles for permanent magnets, wherein a coating of a hard magnetic phase is formed at a thickness of 00 nm.
【請求項13】 軟磁性相を有する金属粒子の表面に、
スパッタ法によって前記軟磁性金属と固溶しない硬磁性
相の金属層を形成し、硬磁性相と軟磁性相の各相の幅が
10〜100nm、長さが10〜2000nmである微
粒子を構成させることを特徴とする永久磁石用粒子の製
造方法。
13. The surface of a metal particle having a soft magnetic phase,
A metal layer of a hard magnetic phase that does not form a solid solution with the soft magnetic metal is formed by a sputtering method, and fine particles having a width of each of the hard magnetic phase and the soft magnetic phase of 10 to 100 nm and a length of 10 to 2000 nm are formed. A method for producing permanent magnet particles.
【請求項14】 硬磁性合金を設けたスパッタ用のター
ゲットをそなえ、排気可能な気密回転バレルに、軟磁性
粒子を収納して回転撹拌させ、この軟磁性粒子の表面に
スパッタ法により硬磁性被覆を形成することを特徴とす
る請求項13に記載した永久磁石用粒子の製造方法。
14. A sputter target provided with a hard magnetic alloy is provided, and soft magnetic particles are housed in an airtight rotating barrel capable of being evacuated and rotationally stirred, and the surface of the soft magnetic particles is hard magnetically coated by sputtering. 14. The method for producing particles for permanent magnets according to claim 13, wherein:
【請求項15】 硬磁性合金を設けたスパッタ用のター
ゲットをそなえた真空槽に軟磁性粒子を収納し、この真
空槽を振動撹拌させ、前記軟磁性粒子の表面にスパッタ
法により硬磁性被覆を形成することを特徴とする請求項
13に記載した永久磁石用粒子の製造方法。
15. A soft magnetic particle is housed in a vacuum chamber provided with a sputtering target provided with a hard magnetic alloy, the vacuum chamber is vibrated and agitated, and the surface of the soft magnetic particle is coated with a hard magnetic coating by a sputtering method. The method for producing particles for permanent magnets according to claim 13, wherein the particles are formed.
【請求項16】 真空槽内に、硬磁性合金を設けたスパ
ッタ用のターゲットと、このターゲットに対向して配置
したベルトコンベヤと、ベルトコンベヤの内側に沿って
配置した永久磁石と、前記ベルトコンベヤ外側の一方端
側に設けて軟磁性粒子を供給する供給機と、前記供給機
に振動を与える加振装置と、前記ベルトコンベヤの他方
端側に設けて硬磁性層を被覆させた軟磁性粒子をコンベ
ヤ表面から回収する回収器をそなえ、この真空槽内のベ
ルトコンベヤ面に付着して運ばれる軟磁性粒子の表面
に、スパッタ法によって硬磁性被覆を形成させることを
特徴とする請求項13に記載した永久磁石用粒子の製造
方法。
16. A sputtering target provided with a hard magnetic alloy in a vacuum chamber, a belt conveyor arranged opposite to the target, a permanent magnet arranged along the inside of the belt conveyor, and the belt conveyor. A feeder provided on one outer side to supply soft magnetic particles, a vibrator for applying vibration to the feeder, and soft magnetic particles provided on the other end of the belt conveyor and coated with a hard magnetic layer Wherein a hard magnetic coating is formed by sputtering on the surface of the soft magnetic particles adhered to and conveyed to the belt conveyor surface in this vacuum chamber. A method for producing the described particles for permanent magnets.
【請求項17】 前記ベルトコンベヤの回収器と対向す
る位置にヒータを設け、ベルトコンベヤに付着した粒子
を熱減磁させることを特徴とする請求項15に記載した
永久磁石用粒子の製造方法。
17. The method for producing particles for permanent magnets according to claim 15, wherein a heater is provided at a position of the belt conveyor facing the collector and the particles attached to the belt conveyor are thermally demagnetized.
【請求項18】 FeもしくはFe−M(MはCo、N
i、Mnなど遷移金属のうちの少なくとも1種以上)ま
たはFe−N組成を有する軟磁性相金属からなる厚さ1
0000nm以下の急冷薄帯に、硬磁性相を、R(Rは
Yを含む希土類元素のうち少なくとも1種以上)、Fe
およびBを含む加水分解性金属化合物溶液中で、被覆し
還元して熱処理することにより結晶を配向させ、これを
粉砕することを特徴とする永久磁石用粒子の製造方法。
18. Fe or Fe-M (M is Co, N
i) at least one of transition metals such as Mn) or a soft magnetic phase metal having an Fe—N composition.
A hard magnetic phase, R (R is at least one of rare earth elements including Y), Fe,
A method for producing particles for permanent magnets, characterized in that crystals are oriented by coating, reducing and heat-treating in a hydrolyzable metal compound solution containing B and B, and then pulverized.
【請求項19】 FeもしくはFe−M(MはCo、N
i、Mnなど遷移金属のうちの少なくとも1種以上)も
しくはFe−N組成を有する軟磁性組成の合金と、R−
Fe−B(BはYを含む希土類元素のうちの少なくとも
1種以上)組成を有する硬磁性組成の合金の、いずれか
一方の合金からなる厚さ10000nm以下の急冷薄帯
の表面に、他方の合金により表面処理して被覆を形成さ
せ、これを熱処理することにより結晶を配向させ、これ
を粉砕することを特徴とする永久磁石用粒子の製造方
法。
19. Fe or Fe-M (M is Co, N
at least one of transition metals such as i and Mn) or an alloy having a soft magnetic composition having an Fe—N composition;
An alloy of a hard magnetic composition having an Fe-B (B is at least one of rare earth elements including Y) composition, a surface of a rapidly quenched ribbon having a thickness of 10,000 nm or less made of one of the alloys, A method for producing particles for permanent magnets, characterized in that a surface is treated with an alloy to form a coating, which is then heat-treated to orient crystals and pulverize the crystals.
【請求項20】 前記熱処理を、水素を含むガス中で行
うことを特徴とする請求項13または14に記載した永
久磁石用粒子の製造方法。
20. The method for producing permanent magnet particles according to claim 13, wherein the heat treatment is performed in a gas containing hydrogen.
【請求項21】 前記請求項1ないし4のいずれかに記
載した永久磁石用粒子に、エポキシ樹脂もしくはナイロ
ン樹脂もしくはアクリル樹脂のいずれかを混合して結合
させ、磁場形成したことを特徴とする永久磁石。
21. A permanent magnet, wherein a magnetic field is formed by mixing and bonding an epoxy resin, a nylon resin, or an acrylic resin to the permanent magnet particles according to any one of claims 1 to 4. magnet.
【請求項22】 前記請求項1ないし4のいずれかに記
載した永久磁石用粒子を、1000℃以下で焼結させる
ことを特徴とする永久磁石。
22. A permanent magnet, wherein the particles for a permanent magnet according to claim 1 are sintered at 1000 ° C. or lower.
JP2001063476A 2001-03-07 2001-03-07 Permanent magnet particle, its manufacturing method, and permanent magnet Abandoned JP2002270417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001063476A JP2002270417A (en) 2001-03-07 2001-03-07 Permanent magnet particle, its manufacturing method, and permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001063476A JP2002270417A (en) 2001-03-07 2001-03-07 Permanent magnet particle, its manufacturing method, and permanent magnet

Publications (1)

Publication Number Publication Date
JP2002270417A true JP2002270417A (en) 2002-09-20

Family

ID=18922466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001063476A Abandoned JP2002270417A (en) 2001-03-07 2001-03-07 Permanent magnet particle, its manufacturing method, and permanent magnet

Country Status (1)

Country Link
JP (1) JP2002270417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063662A (en) * 2005-08-29 2007-03-15 Samsung Electro-Mechanics Co Ltd Nanoparticle, electrically conductive ink, and wiring formation apparatus
JP2013219352A (en) * 2012-04-04 2013-10-24 Gm Grobal Technology Operations Llc Vibrator for performing powder coating
JP2015230978A (en) * 2014-06-05 2015-12-21 トヨタ自動車株式会社 Nanocomposite magnet and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063662A (en) * 2005-08-29 2007-03-15 Samsung Electro-Mechanics Co Ltd Nanoparticle, electrically conductive ink, and wiring formation apparatus
US7771624B2 (en) 2005-08-29 2010-08-10 Samsung Electro-Mechanics Co., Ltd. Nanoparticles, conductive ink and circuit line forming device
JP4520964B2 (en) * 2005-08-29 2010-08-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Nanoparticles, conductive ink and wiring forming apparatus
US8096263B2 (en) 2005-08-29 2012-01-17 Samsung Electro-Mechanics Co., Ltd. Nanoparticles, conductive ink and circuit line forming device
JP2013219352A (en) * 2012-04-04 2013-10-24 Gm Grobal Technology Operations Llc Vibrator for performing powder coating
JP2015230978A (en) * 2014-06-05 2015-12-21 トヨタ自動車株式会社 Nanocomposite magnet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN107251175B (en) The manufacturing method of R-T-B based sintered magnet
JP4811143B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
EP0898287B1 (en) Hard magnetic alloy having supercooled liquid region, sintered product thereof and applications
JP4962198B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
EP0284033B1 (en) A method for producing a rare earth metal-iron-boron anisotropic bonded magnet from rapidly-quenched rare earth metal-iron-boron alloy ribbon-like flakes
KR101687981B1 (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JP5744269B2 (en) Production of ND-Fe-B magnets using hot pressing with reduced dysprosium or terbium
KR20180106852A (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
CN105989983B (en) Permanent magnet
JP4055709B2 (en) Manufacturing method of nanocomposite magnet by atomizing method
JP5146552B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JP2003257763A (en) Manufacturing method for rare earth permanent magnet
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
Saito et al. High-coercivity Sm (Fe, V, Ti) 12 bulk magnets
JP2013042004A (en) METHOD OF MANUFACTURING α-Fe/R2TM14B SYSTEM NANOCOMPOSITE MAGNET
JP4560619B2 (en) Permanent magnet membrane
JP2002270417A (en) Permanent magnet particle, its manufacturing method, and permanent magnet
JP3991660B2 (en) Iron-based permanent magnet and method for producing the same
JP2004273101A (en) Thin film magnetic recording medium
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
CN105280320A (en) Anisotropic high-frequency microwave magnetic material and preparation method thereof
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
CN105938747A (en) High-coercivity and high-performance nanocomposite permanent magnet and preparation method thereof
JP3997764B2 (en) Exchange spring magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090709