WO2004084324A1 - Organische leuchtdiode mit integriertem bild - Google Patents

Organische leuchtdiode mit integriertem bild Download PDF

Info

Publication number
WO2004084324A1
WO2004084324A1 PCT/EP2004/001626 EP2004001626W WO2004084324A1 WO 2004084324 A1 WO2004084324 A1 WO 2004084324A1 EP 2004001626 W EP2004001626 W EP 2004001626W WO 2004084324 A1 WO2004084324 A1 WO 2004084324A1
Authority
WO
WIPO (PCT)
Prior art keywords
structures
substrate
oled
height
organic light
Prior art date
Application number
PCT/EP2004/001626
Other languages
English (en)
French (fr)
Inventor
Wolfgang Rogler
Marcus Scheffel
Carsten Tschamber
Original Assignee
Osram Opto Semiconductors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors filed Critical Osram Opto Semiconductors
Publication of WO2004084324A1 publication Critical patent/WO2004084324A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/221Static displays, e.g. displaying permanent logos
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light

Definitions

  • the invention relates to an organic light-emitting diode with self-illuminating grayscale and / or color images.
  • OLEDs Organic light-emitting diodes
  • Typical areas of application for OLEDs are pixelated display instruments and / or large-area elements for lighting purposes.
  • OLEDs are also suitable for displaying constant image content, for example in advertisements. So far, however, complex control technologies have been necessary.
  • an organic light-emitting diode with structured image content the image content being created by selective passivation of individual surface areas.
  • photoresist is applied to a large-area anode (typically ITO). This is replaced by appropriate exposure and development at the points where the light emission is to take place.
  • the active organic layers and a cathode are then deposited over a large area. When the two electrodes are contacted, a current flow through the non-conductive photoresist structures is prevented. Light emission only occurs at the photoresist-free structures.
  • the disadvantage of this technology is that one of the active layers (typically the anode, ITO) must first be applied to the substrate over a large area before the definition of the Image information is done by photolithography. Pre-structuring of the substrate is not possible, which is why the comparatively complex procedure described above is necessary in order to arrive at pre-structured images.
  • ITO anode
  • Another technology is the structuring of the active layers themselves. This can be done, for example, by “soft lithography * (see T. Granlund, et. Al .: Patterning of Polymer Light-E itting Diodes with Soft Lithography, Adv. Mater. 2000, 12, 269). Luminous areas with an expansion of 100x100 ⁇ 2 are achieved. This technology is more suitable for small active areas. Since this technology structures the active layers themselves, short circuits can easily occur in the event of process errors and the entire component can fail.
  • the object of the present invention is therefore to provide an OLED with a constant image content, which can be produced simply, reliably and inexpensively.
  • the invention relates to an OLED, a substrate, a first electrode on top of which subsequently comprises at least one emitting layer of predominantly organic material and in turn subsequently a second electrode, at least one layer being integrated between the lower first electrode and the substrate and / or in the substrate is arranged with a height structure.
  • the film formation is carried out such that the organic active len OLED layers, which are deposited on the height of structures, or applied, in particular on their flanks, are thinner than at the other Stel ⁇ of the substrate , This results in a higher current flow at the structures and a higher luminance at the locations of the height structure.
  • a bright emission results from densely packed height structures.
  • the structured areas of the substrate are emitted with a significantly lower luminance.
  • a “dithering effect” can thus be achieved by adapting the structure density. If the structures are small enough and / or the viewer is far enough from the illuminated surface, the individual structures can no longer be recognized with the naked eye. This creates the impression of an average brightness. The closer the structures are placed next to each other, the brighter the surface appears at this point.
  • a grayscale image can thus be generated by varying the structure density over the active display area. If the grayscale images are combined with a color filter structure, permanent color images can also be created.
  • the technology can be used for OLEDs with a conventional structure (transparent substrate, transparent first electrode (anode), active layer (s), reflective opaque second electrode) or for OLEDs with an inverted structure (for example with an opaque substrate).
  • the two OLED electrodes can be laid out over a large area and cover the entire image area. Since the layers are not interrupted at any point, the entire image can be controlled and illuminated by applying an operating voltage to a contact.
  • the structures or height structures can, for example, be conical, drop-shaped, pyramidal or polygonal.
  • the height of the structures is, for example, 100 nm to
  • the lateral extent of the structures should be less than 100 ⁇ m, in particular less than 20 ⁇ m, so that the human eye can no longer resolve them.
  • This information relates to the smallest structural unit - the structures can also be related, as in the exemplary embodiment.
  • the gray effects are caused by the density of the height-structured partial areas on the OLED. (See figure)
  • the structures can, for example, be produced photolithographically, printed and / or embossed into the substrate.
  • Suitable materials are, for example, positive or negative resist materials which are known from semiconductor technology.
  • Coatings customary in microelectronics / semiconductor technology, for example based on acrylate-epoxy resin or phenolic resin, are also suitable for embossing or printing processes. The prerequisite is that they do not impair the construction and operation of OLEDs. For example, they must not excrete volatile substances that damage OLEDs.
  • the structuring process can also be carried out after the processing of the OLED:
  • the OLED layers are deposited on a planar substrate.
  • a structure is then embossed into the overall layer structure using a suitable method. In this way, layer thickness inhomogeneities can in turn be achieved, which lead to different brightnesses when a voltage is applied.
  • a suitable structuring method for this purpose would be hot stamping, for example.
  • Suitable substrates are customary glass substrates (flexible or rigid) and flexible plastic films that can be used in particular for OLEDs, for example based on PET, PEN, PC or PES.
  • the height structures can already be generated during the manufacturing process, for example by hot stamping.
  • Substrates to which color filters known from LCD technology are applied are also suitable.
  • These color filter structures are usually covered with a top coat in which the height structures according to the invention are also can be brought. Furthermore, it is possible to create the structures in the color filter material itself.
  • an OLED was processed as follows: structures with lateral dimensions in the range from 2 to 20 ⁇ m were produced on a glass substrate by means of photolithography.
  • ITO was then deposited on a large area and structured.
  • 80 nm PEDOT (hole transport material), 60 nm polyfluorene derivative (emitter material), 5 nm calcium, 200 nm aluminum were deposited thereon.
  • the height-structured areas shine brighter than the non-structured areas.
  • FIG. 2 shows the same diode in a microscopic picture, again it can be seen that structured areas show a higher luminance.
  • FIG. 3 Another embodiment is shown in Figure 3.
  • a glass substrate was coated with a commercially available photoresist based on methacrylate and exposed through a mask which, as shown in FIG. 3, allows the creation of areas with different densities of height structures.
  • photoresist height structures After exposure to UV radiation and development with an alkaline developer solution, photoresist height structures with a height of approximately 600 nm and a lateral dimension of approximately 10 ⁇ m remained.
  • An OLED was built and contacted on these structures analogously to the example described above. When a voltage of 6 V was applied, the display illuminated with the layout shown in FIG. 3.
  • EXIT lies on an area with a high height structure density and is therefore particularly bright;
  • the arrow and the rectangle lie on areas of medium height structure density and therefore shine less than the word “EXIT” but still much more strongly than the background, which either has no height structure or only a very low density of height structure.
  • the electrodes do not have to be structured to display the image content, so they can be applied consistently over the entire active area. Accordingly, only one contact at one point of the active area is necessary.
  • the image information itself can be reduced by inexpensive methods such as Embossing can be introduced into the substrate. In contrast to the methods described in the introduction as prior art, all active layers can be applied in succession. The passivation (covering) of an electrode before the deposition of the other active layers can thus be avoided.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Die Erfindung betrifft eine organische Leuchtdiode mit selbstleuchtenden Graustufenbildern.

Description

Organische Leuchtdiode mit integriertem Bild
Die Erfindung betrifft eine organische Leuchtdiode mit selbstleuchtenden Graustufen- und/oder Farbbildern.
Organische Leuchtdioden (OLEDs) haben seit dem ersten Nachweis der Elektrolu ineszenz in dünnen organischen Schichten eine rasante technische Weiterentwicklung vollzogen. Die Verfügbarkeit vieler Emissionsfarben, gute Effizienzen, geringe Einsatzspannungen, schnelle Schaltbarkeit, geringe Dicke und die Möglichkeit der Verwendung biegsamer Substrate sind einige der herausragenden Merkmale dieser Technologie. Typische Anwendungsgebiete von OLEDs sind pixelierte Anzeigeinstrumente und/oder großflächige Elemente für Beleuchtungszwecke.
Aufgrund ihrer Vorteile sind OLEDs aber auch zur Darstellung von gleichbleibenden Bildinhalten beispielsweise bei Anzeigen geeignet. Dazu sind bislang allerdings aufwendige Ansteuertechnologien nötig.
Bekannt sind im wesentlichen zwei Technologien, um eine organische Leuchtdiode mit strukturiertem Bildinhalt zu erzeugen, wobei der Bildinhalt durch selektive Passivierung einzelner Flächenbereiche geschaffen wird. Zum einen wird auf eine großflächige Anode (typischerweise ITO) Photolack aufgebracht. Dieser wird durch entsprechende Belichtung und Entwicklung an den Stellen wieder abgelöst, an denen die Lichtemission stattfinden soll- Im Anschluss werden die aktiven organischen Schichten sowie eine Kathode großflächig ab- geschieden. Bei Kontaktierung der beiden Elektroden wird ein Stro fluss durch die nichtleitenden Photolackstrukturen unterbunden. Nur an den photolackfreien Strukturen kommt es zur Lichtemission.
Nachteil dieser Technologie ist, dass zuerst eine der aktiven Schichten (typischerweise die Anode, ITO) großflächig auf das Substrat aufgebracht werden muss, bevor die Definition der Bildinformation durch Photolithographie erfolgt. Eine Vor- strukturierung des Substrats ist nicht möglich, deshalb ist die oben beschriebene, vergleichsweise aufwendige Vorgehensweise, nötig, um zu vorstrukturierten Bildern zu kommen.
Eine weitere Technologie ist die Strukturierung der aktiven Schichten selbst. Dies kann z.B. durch „Soft Lithography* erfolgen (siehe T. Granlund, et. al.: Patterning of Polymer Light-E itting-Diodes with Soft Lithography, Adv. Mater. 2000, 12, 269) . Es werden leuchtende Bereiche mit einer Ausdehnung von 100x100 μ 2 erzielt. Diese Technologie ist eher für kleine aktive Flächen einsetzbar. Da mit dieser Technik die aktiven Schichten selbst strukturiert werden, kann es bei Prozessfehlern leicht zu Kurzschlüssen und damit zum Ausfall des gesamten Bauteils kommen.
Aufgabe der vorliegenden Erfindung ist es daher, eine OLED mit gleichbleibendem Bildinhalt zu schaffen, die einfach, zuverlässig und kostengünstig herstellbar ist.
Gegenstand der Erfindung ist eine OLED, ein Substrat, darauf eine erste Elektrode anschließend zumindest eine emittierende Schicht aus vorwiegend organischem Material und wiederum anschließend eine zweite Elektrode umfassend, wobei zwischen der unteren ersten Elektrode und dem Substrat und/oder in das Substrat integriert zumindest eine Schicht mit Höhenstruktur angeordnet ist.
Bei der Prozessierung der OLED-Materialien auf einem Substrat mit Höhenstrukturen erfolgt die Schichtbildung dergestalt, dass die organischen aktiven OLED-Schichten, die auf den Höhenstrukturen abgeschieden oder aufgebracht werden, insbesondere auf deren Flanken, dünner sind als an den übrigen Stel¬ len des Substrats. Daraus resultiert ein an den Strukturen höherer Stromfluss und eine damit verbundene höhere Leuchtdichte an den Stellen der Höhenstruktur. Bei dicht gepackten Höhenstrukturen ergibt sich eine helle Emission. An nicht hö- henstrukturierten Stellen des Substrats erfolgt die Emission mit deutlich geringerer Leuchtdichte. Durch Anpassung der Strukturdichte kann somit ein „Dithering - Effekt erzielt werden. Sind die Strukturen klein genug und/oder der Betrach- ter weit genug von der leuchtenden Fläche entfernt, können die einzelnen Strukturen nicht mehr mit bloßem Auge erkannt werden. Somit entsteht der Eindruck einer ge ittelten Helligkeit. Je dichter die Strukturen nebeneinander gesetzt werden, desto heller erscheint die Fläche an dieser Stelle. Durch Va- riation der Strukturdichte über die aktive Anzeigenfläche kann somit ein Graustufenbild erzeugt werden. Werden die Graustufenbilder mit einem Farbfilteraufbau kombiniert, so können auch permanente Farbbilder entstehen.
Die Technik kann bei OLED mit herkömmlichem Aufbau (transparentes Substrat, transparente erste Elektrode (Anode) , aktive Schicht (en), reflektierende undurchsichtige zweite Elektrode) oder bei OLED mit invertiertem Aufbau (beispielsweise mit opakem Substrat) angewendet werden.
Die beiden OLED-Elektroden können dabei großflächig ausgelegt werden und die gesamte Bildfläche überdecken. Da die Schichten an keiner Stelle unterbrochen werden, kann durch Anlegen einer Betriebsspannung an einem Kontakt das gesamte Bild an- gesteuert und zum Leuchten gebracht werden.
Die Strukturen oder Höhenstrukturen können beispielsweise kegelförmig, tropfenförmig, pyramidisch oder polygonal sein.
Die Höhe der Strukturen beträgt beispielsweise 100 nm bis
10 μm. Die laterale Ausdehnung der Strukturen sollte geringer als 100 μm sein, insbesondere kleiner 20μm, um vom menschlichen Auge nicht mehr aufgelöst werden zu können. Diese Angaben beziehen sich auf die kleinste Struktureinheit - die Strukturen können wie im Ausführungsbeispiel auch zusammenhängen. Die Graueffekte werden durch die Dichte der höhenstrukturierten Teilbereiche auf der OLED bewirkt. (Vgl. Figur)
Die Strukturen können beispielsweise photolithographisch er- zeugt, gedruckt und/oder in das Substrat eingeprägt werden. Als Materialien eignen sich beispielsweise positive oder negative Resistmaterialien, die aus der Halbleitertechnologie bekannt sind. Als geeignet haben sich beispielsweise handelsübliche Photolacke auf Acrylat- bzw. Novolakharzbasis erwie- sen. Für Präge- bzw. Druckprozesse eigenen sich ebenfalls in der Mikroelektronik/Halbleitertechnologie übliche Coatings beispielsweise auf Acrylat- Epoxidharz bzw. Phenolharzbasis. Voraussetzung ist, dass sie den Aufbau und den Betrieb von OLEDs nicht beeinträchtigen. So dürfen sie beispielsweise keine flüchtigen, die OLEDs schädigenden Substanzen ausscheiden.
Alternativ kann der Strukturierungsprozess auch nach der Prozessierung der OLED durchgeführt werden: Auf ein planares Substrat werden die OLED-Schichten abgeschieden. Danach wird in den Gesamtschichtaufbau durch ein geeignetes Verfahren eine Struktur eingeprägt. Auf diese Weise lassen sich wiederum Schichtdickeninhomogenitäten erzielen, die zu unterschiedlichen Helligkeiten beim Anlegen einer Spannung führen. Ein ge- eignetes Strukturierungsverfahren für diesen Zweck wäre beispielsweise Heißprägen.
Als Substrate eignen sich übliche Glassubstrate (flexibel oder starr) und insbesondere für OLEDs einsetzbare flexible Kunststoff-Folien basierend beispielsweise auf PET, PEN, PC oder PES . Die Höhenstrukturen können dabei bereits beim Her- stellprozess beispielsweise durch Heißprägen generiert werden. Ebenfalls geeignet sind Substrate, auf die aus der LCD- Technik bekannte Farbfilter aufgebracht sind. Diese Farbfil- terstrukturen werden üblicherweise mit einem Topcoat überschichtet, in den auch erfindungsgemäße Höhenstrukturen ein- gebracht werden können. Weiterhin ist es möglich, die Strukturen in dem Farbfiltermaterial selbst zu erzeugen.
Im folgenden wird die Erfindung noch anhand dreier Figuren, die reale Bilder von erfindungsgemäß hergestellten OLEDs darstellen, belegt:
In Figur 1 wurde eine OLED wie folgt prozessiert: Auf ein Glassubstrat wurden mittels Photolithographie Strukturen mit lateralen Abmessungen im Bereich von 2 bis 20 μm erzeugt.
Darauf wurde großflächig ITO abgeschieden und dieses strukturiert. Darauf wurden 80nm PEDOT (Lochtransportmaterial), 60nm Polyfluoren-Derivat (Emittermaterial), 5nm Kalzium, 200nm Aluminium abgeschieden. Beim Anlegen einer Spannung leuchten die höhenstrukturierten Bereiche heller als die nichtstrukturierten Bereiche. Figur 2 zeigt die gleiche Diode in einer mikroskopischen Aufnahme, wiederum ist ersichtlich, dass strukturierte Bereiche eine höhere Leuchtdichte zeigen.
Ein weiteres Ausführungsbeispiel wird in Figur 3 gezeigt. Ein Glassubstrat wurde mit einem handelsüblichen Photolack auf Methacrylatbasis beschichtet und durch eine Maske belichtet, die wie in Figur 3 gezeigt, die Erzeugung von Bereichen mit unterschiedlicher Dichte an Höhenstrukturen erlaubt. Nach Belichtung mit UV-Strahlung und Entwicklung mit einer alkalischen Entwicklerlösung verblieben Photoresist-Höhenstrukturen mit einer Höhe von ca. 600 nm und einer lateralen Ausdehnung von ca. 10 μm. Auf diese Strukturen wurde analog dem oben beschriebenen Beispiel eine OLED aufgebaut und kontaktiert. Beim Anlegen einer Spannung von 6 V leuchtete die Anzeige mit dem in Figur 3 gezeigten Layout. Das Wort "EXIT" liegt auf einem Bereich mit hoher Höhenstrukturdichte und ist deshalb besonders hell; Der Pfeil und das Rechteck liegen auf Bereichen mittlerer Höhenstrukturdichte und leuchten deshalb ge- ringer als das Wort "EXIT" aber immer noch wesentlich stärker als der Hintergrund, der entweder keine Höhenstruktur hat oder nur eine sehr geringe Dichte an Höhenstruktur. Mit dem hier erstmals offenbarten Verfahren können selbstleuchtende Graustufenbilder aus OLEDs hergestellt werden. Zur Darstellung der Bildinformation ist nur eine einfache Spannungsquelle erforderlich (keine Treiberelektronik) .
Die Elektroden müssen zur Darstellung des Bildinhaltes nicht strukturiert werden, können also durchgängig über die ganze aktive Fläche aufgebracht werden. Entsprechend ist nur eine Kontaktierung an einer Stelle der aktiven Fläche notwendig. Die Bildinformation selbst kann durch kostengünstige Verfahren wie z.B. Prägen in das Substrat eingebracht werden. Im Gegensatz zu den als Stand der Technik in der Einleitung beschriebenen Verfahren können alle aktiven Schichten hintereinander aufgebracht werden. Die Passivierung (Abdeckung) ei- ner Elektrode vor dem Abscheiden der anderen aktiven Schichten kann somit vermieden werden.

Claims

Patentansprüche
1. OLED, ein Substrat, darauf eine erste Elektrode anschlie- ßend zumindest eine emittierende Schicht aus vorwiegend organischem Material und wiederum anschließend eine zweite Elektrode umfassend, wobei zwischen der unteren ersten Elektrode und dem Substrat und/oder in das Substrat integriert zumindest eine Schicht mit Höhenstruktur ange- ordnet ist.
2. OLED nach Anspruch 1, wobei die Schicht mit Höhenstruktur mit einem Farbfilter und/oder in einen Farbfilter integriert ist.
OLED nach Anspruch 1 oder 2, bei der durch die Anordnung und Dichte der Strukturen der strukturierten Bereiche eine OLED mit einem permanenten Bild entsteht.
PCT/EP2004/001626 2003-03-19 2004-02-19 Organische leuchtdiode mit integriertem bild WO2004084324A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10312217.6 2003-03-19
DE10312217 2003-03-19

Publications (1)

Publication Number Publication Date
WO2004084324A1 true WO2004084324A1 (de) 2004-09-30

Family

ID=33015914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001626 WO2004084324A1 (de) 2003-03-19 2004-02-19 Organische leuchtdiode mit integriertem bild

Country Status (1)

Country Link
WO (1) WO2004084324A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008037614A2 (de) * 2006-09-26 2008-04-03 Siemens Aktiengesellschaft Verfahren zum herstellen einer organischen leuchtdiode und organische leuchtdiode
DE102004053631B4 (de) * 2004-11-01 2008-04-30 Samsung Sdi Germany Gmbh Anzeigeelement auf Basis organischer lichtemittierender Materialien
DE102009022902A1 (de) * 2009-03-30 2010-10-07 Osram Opto Semiconductors Gmbh Organisches optoelektronisches Bauteil und Verfahren zur Herstellung eines organischen optoelektronischen Bauteils
US8314541B2 (en) 2008-02-26 2012-11-20 Osram Opto Semiconductors Gmbh Radiation-emitting arrangement
DE102014104979A1 (de) * 2014-04-08 2015-10-08 Osram Opto Semiconductors Gmbh Organische Leuchtdiode mit mehreren Leuchtsegmenten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040584A (ja) * 1998-07-23 2000-02-08 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子
JP2002184577A (ja) * 2000-12-18 2002-06-28 Fuji Electric Co Ltd 色変換フィルタ基板、および該色変換フィルタ基板を具備する色変換カラーディスプレイ
WO2002082561A1 (en) * 2001-04-03 2002-10-17 Seiko Epson Corporation Patterning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040584A (ja) * 1998-07-23 2000-02-08 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子
JP2002184577A (ja) * 2000-12-18 2002-06-28 Fuji Electric Co Ltd 色変換フィルタ基板、および該色変換フィルタ基板を具備する色変換カラーディスプレイ
WO2002082561A1 (en) * 2001-04-03 2002-10-17 Seiko Epson Corporation Patterning method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 05 14 September 2000 (2000-09-14) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 10 10 October 2002 (2002-10-10) *
YANG Y ET AL: "ORGANIC/POLYMERIC ELECTROLUMINESCENT DEVICES PROCESSED BY HYBRID INK-JET PRINTING", JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS, CHAPMAN AND HALL, LONDON, GB, vol. 11, no. 2, March 2000 (2000-03-01), pages 89 - 96, XP001032490, ISSN: 0957-4522 *
YANG Y ET AL: "PYRAMID-SHAPED PIXELS FOR FULL-COLOR ORGANIC EMISSIVE DISPLAYS", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 77, no. 7, 14 August 2000 (2000-08-14), pages 936 - 938, XP000963384, ISSN: 0003-6951 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053631B4 (de) * 2004-11-01 2008-04-30 Samsung Sdi Germany Gmbh Anzeigeelement auf Basis organischer lichtemittierender Materialien
WO2008037614A2 (de) * 2006-09-26 2008-04-03 Siemens Aktiengesellschaft Verfahren zum herstellen einer organischen leuchtdiode und organische leuchtdiode
WO2008037614A3 (de) * 2006-09-26 2008-05-29 Siemens Ag Verfahren zum herstellen einer organischen leuchtdiode und organische leuchtdiode
US8314541B2 (en) 2008-02-26 2012-11-20 Osram Opto Semiconductors Gmbh Radiation-emitting arrangement
DE102009022902A1 (de) * 2009-03-30 2010-10-07 Osram Opto Semiconductors Gmbh Organisches optoelektronisches Bauteil und Verfahren zur Herstellung eines organischen optoelektronischen Bauteils
US9466797B2 (en) 2009-03-30 2016-10-11 Osram Oled Gmbh Organic optoelectronic component and method for producing an organic optoelectronic component
DE102009022902B4 (de) 2009-03-30 2023-10-26 Pictiva Displays International Limited Organisches optoelektronisches Bauteil und Verfahren zur Herstellung eines organischen optoelektronischen Bauteils
DE102014104979A1 (de) * 2014-04-08 2015-10-08 Osram Opto Semiconductors Gmbh Organische Leuchtdiode mit mehreren Leuchtsegmenten
US10326098B2 (en) 2014-04-08 2019-06-18 Osram Oled Gmbh Organic light-emitting diode having a plurality of light-emitting segments

Similar Documents

Publication Publication Date Title
DE60201689T2 (de) Verfahren zur Herstellung einer Kohlenstoffnanoröhren-Feldemissionsanordnung mit Triodenstruktur
DE69735483T3 (de) Organisches lichtemittierendes bauelement und dessen herstellung
DE69726211T2 (de) Dünnschicht Elektronenemitter-Vorrichtung und Anwendungsgerät
EP0910128B1 (de) Herstellung von organischen elektrolumineszierenden Bauteilen
DE10157945C2 (de) Verfahren zur Herstellung eines organischen, elektrolumineszierenden Displays sowie ein organisches, elektrolumineszierendes Display
DE60200369T2 (de) Verfahren zur Herstellung einer Feldemissionsanzeige unter Verwendung von Kohlenstoffnanoröhren
DE19935527A1 (de) Aktive Folie für Chipkarten mit Display
DE102005028489A1 (de) Verfahren und Vorrichtung zum Herstellen eines Flachtafeldisplays
DE10219905B4 (de) Optoelektronisches Bauelement mit organischen funktionellen Schichten und zwei Trägern sowie Verfahren zur Herstellung eines solchen optoelektronischen Bauelements
WO2009052980A1 (de) Mikrolinsen-array mit integrierter beleuchtung
EP1407638A1 (de) Organisches, farbiges, elektrolumineszierendes display und dessen herstellung
DE10236854B4 (de) Verfahren und Vorrichtung zur Strukturierung von Elektroden von organischen lichtemittierenden Elementen
DE10133686C2 (de) Organisches, elektrolumineszierendes Display und dessen Herstellung
DE102020103287A1 (de) Anordnung von Mikro-Leuchtdioden und deren Herstellverfahren
WO2004084324A1 (de) Organische leuchtdiode mit integriertem bild
DE10353992B4 (de) Verfahren zur Herstellung eines organischen Leuchtflächenelements und organisches Leuchtflächenelement
EP1825512A1 (de) Elektronisches bauelement mit pixeln auf organischer basis
DE102008059214B4 (de) Anzeige zur Darstellung eines Musters und ein Verfahren zum Herstellen einer Anzeige
DE10258712A1 (de) Bauelement für ein Aktiv-Matrix-OLED-Display mit integrierter Energieerzeugung
EP1438749B1 (de) Organisches elektrolumineszierendes display
EP1438758A1 (de) Verfahren zum grossflächigen aufbringen von mechanisch empfindlichen schichten auf ein substrat
WO2004084259A2 (de) Organische leuchtdiode mit verbesserter lichtauskopplung
DE102006045294A1 (de) Verfahren zum Herstellen einer organischen Leuchtdiode und organische Leuchtdiode
DE10134462B4 (de) Verfahren zur Planarisierung der Oberfläche eines Halbleiterwafers und Vorrichtung zur Durchführung dieses Verfahrens
DE102008033705A1 (de) Optoelektronische Projektionsvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase