WO2004083556A1 - Elemento modular multifuncional para la formación de un tejado - Google Patents

Elemento modular multifuncional para la formación de un tejado Download PDF

Info

Publication number
WO2004083556A1
WO2004083556A1 PCT/ES2004/000123 ES2004000123W WO2004083556A1 WO 2004083556 A1 WO2004083556 A1 WO 2004083556A1 ES 2004000123 W ES2004000123 W ES 2004000123W WO 2004083556 A1 WO2004083556 A1 WO 2004083556A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
modular element
perimeter
plates
folds
Prior art date
Application number
PCT/ES2004/000123
Other languages
English (en)
French (fr)
Inventor
Josep Garcia Cors
Original Assignee
Josep Garcia Cors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josep Garcia Cors filed Critical Josep Garcia Cors
Publication of WO2004083556A1 publication Critical patent/WO2004083556A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/24Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like
    • E04D3/30Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/503Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates, only one of which is plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention concerns in general a multifunctional modular element for the formation of a roof, and more particularly a modular element with a function of self-supporting element, of relatively large dimensions, for the formation of a roof, a variant of which can Optionally perform a solar energy collector function.
  • Document FR-A-2345672 describes a solar energy collector formed by a plate with undulations or parallel grooves facing and joined to another flat plate along the areas between undulations to constitute channels for the circulation of a heat transfer fluid.
  • said sensor in the memory of the aforementioned document, the use of said sensor as a self-supporting element constituting a roof is not described or suggested, and the aforementioned joints between the plates by adhesive would be weak if used for this function.
  • the construction by means of corrugated sheet leaves all the ends of the channels open, which must be connected, for example, to collector and distributor tubes for the operation of the collector, which means considerable work that increases the final cost of the product.
  • the utility model ES-A-235692 describes a solar energy sensing element formed by a pair of plates facing and joined by their edges by welding or crimping.
  • One of said plates is conformed with substantially parallel depressions connected to each other by their two ends with final transverse depressions, while the other of said plates is flat.
  • the joining of the zones between depressions of the first plate to the second plate by means of welding points or lines is envisaged.
  • the parallel depressions constitute a plurality of channels for a heat transfer fluid and the final transverse depressions act as a manifold and distributor.
  • the welding especially in the areas between depressions, is difficult and slow to perform and also causes excessive heating of the plates that can cause deformations.
  • Patent ES-A-479755 discloses an absorber for solar collector comprising two thin sheets, embedded, welded together along its periphery, the sheets being embedded according to a pattern of repeated shapes, geometrically distributed and displaced with respect to the shapes of the opposite plate, so that they constitute a network of channels for a heat transfer fluid.
  • the plates are also joined by a plurality of weld points distributed over the non-sunken, attached areas of the sheets.
  • the suggested embedded forms which are squares or rectangles separated, distributed geometrically by the plates, do not provide a significant increase in the flexural strength of each of the plates in any direction, so the increase
  • the stiffness of the two joined plates responds only to the sum of the resistance of the two superimposed sheets without two-dimensional cooperation between them to improve the resistance.
  • Patent application WO 99/63281 discloses a roof for buildings that at the same time performs a function as a solar energy collector.
  • said cover is constituted by adjacent panels, each of which comprises a plate that incorporates a plurality of longitudinal channels constituted at least in part by the plate material itself and connected at both ends to collector ducts and distributor.
  • the adjacent panels comprise configurations to couple the respective plates together. waterproof and some entrances and exits communicated respectively with the distributor and collector ducts for the connection of the ducts to each other and with a general circuit for a heat transfer fluid.
  • the geometric configuration of the other elements channels is designed to make the panel self-supporting.
  • the construction of each of said panels involves the manufacture, assembly and joining of multiple pieces, which makes the final product more expensive.
  • An objective of the present invention is to provide a multifunctional modular element for the formation of a roof, obtained from the assembly and joining of a few pieces by a cold-joining procedure without perforation, with relatively large dimensions and with a sufficient strength to be self-supporting, capable of performing a function as a roof and at the same time a function as a solar energy collector.
  • the present invention contributes to achieving the above and other objectives by providing a multifunctional modular element for the formation of a roof comprising first and second facing plates and joined together at least along a perimeter. At least one of said first or second plates includes, within said perimeter, one or more internally recessed conformations spaced apart from the other plate.
  • the joint between the first and second plates is obtained by a cold junction process without perforation, which comprises making a plurality of joining areas distributed at least along said perimeter.
  • Each of said joining areas comprises a convex deformed area of one of said first or second plates firmly trapped within a corresponding concave deformed area of the other of the first or second plates.
  • the first plate includes at least a first internally recessed conformation disposed within said joint perimeter so that its conformation increases the flexural stiffness of the first plate in a first direction.
  • the second plate includes at least a second internally recessed conformation, distanced from the first plate and at least partially facing said first internally recessed conformation, and disposed within said perimeter. This second internally recessed conformation is oriented so that its conformation increases the flexural stiffness of the second plate in a second direction, transverse to said first direction.
  • the modular element composed from the assembly and joining of the first and second plates has an increased flexural stiffness in two directions and a general stiffness to the increased torsion due to the cooperation of the conformations in said two addresses.
  • relatively light and relatively large self-supporting modular elements can be achieved, for example, approximately 3 m long and approximately 1 m wide, for the formation of a roof.
  • the first and second plates are of elongated rectangular plan and the first internally recessed conformation comprises a plurality of longitudinal grooves in the first plate, with end ends distanced from the periphery, while said second internally recessed conformation comprises a plurality of grooves transversal on the second plate, also with ends of the periphery.
  • Both a nas and other conformations are likely to be obtained, for example, by drawing.
  • longitudinal grooves can be advantageously shaped in a roller rolling operation, as explained below.
  • the modular element further comprises some of said areas where there are areas of the first plate located between said longitudinal grooves and areas of the second plate located between said transverse grooves are mutually attached.
  • the modular element according to the present invention can optionally perform a function as a solar energy collector in addition to the aforementioned function for the formation of a roof, that is, it can form a roof solar energy collector.
  • a function as a solar energy collector in addition to the aforementioned function for the formation of a roof, that is, it can form a roof solar energy collector.
  • the first plate which in this case is intended to be outside to receive solar radiation, is a good heat conductive material, such as a zinc metal sheet, with copper reading, a reading of aluminum, zero galvanized, stainless steel.
  • a continuous layer of a sealing material in combination with the joining areas is arranged between the first and second plates, at least along the said perimeter.
  • This layer of sealing material can be, for example, a layer of an adhesive applied in a liquid state or a layer of an elastomeric material, and cooperates with the joining areas to provide airtightness along the joint perimeter so that the Cross grooves form a tight reticule of channels for the circulation of a heat transfer fluid.
  • the layer of sealing material may also be disposed between the aforementioned areas of the first plate located between said longitudinal grooves and the areas of the second plate located between said transverse, mutually attached grooves.
  • an inlet splice nozzle and an outlet splice nozzle are fixed in communication with the longitudinal and / or transverse grooves, so that The modular element also functions as a solar energy collector, with a heat transfer fluid circulating through said sealed channel lattice between said inlet splice nozzle and said outlet splice nozzle.
  • the modular element includes some appendages to improve aspects of its functionality. For example, from respective longitudinal edges of the first plate, respective fins topped in folds extend upwards. conjugated, configured and arranged to overlap conjugate folds of adjacent modular elements, when several modular elements are used for roof formation. The aforementioned conjugated folds, once superimposed, are likely to be mutually crimped by means of a technique well known in the sector providing waterproof side joints.
  • a portion of the first plate extends slightly beyond one end of the second plate forming a cantilever capable of overlapping an end portion of an adjacent modular element. If the roof were sloping, the cantilever portion of the first plate would be at the lower level end of the modular element.
  • the second skirts are lowered in lower bends downwards, said inner skirts and bends acting as stiffening and support elements of the modular element.
  • the skirts advantageously include facing openings that provide passages for connecting pipes to the said inlet splice and / or outlet splice nozzles.
  • a plate of insulating material housed between the aforementioned skirts and supported superiorly on the inner folds thereof is a plate of insulating material that can constitute or include an interior finish when said roof that is seen internally.
  • the manufacture of the first plate fins and the skirts of the second plate can be obtained relatively easily and economically, for example, by cold rolling by rollers.
  • the longitudinal grooves of the first plate have a rounded profile in a relatively wide and shallow half-round, and can be obtained in the same rolling operation of the lateral fins by means of pairs of mobile rollers, opposite, conjugately shaped, which are applied to the first plate after the rolling of the lateral fins has started and they are removed before finishing the rolling of the fins.
  • This technique also provides smooth transitions between the shaped grooves and the flat areas at the ends of the first plate.
  • the transverse grooves of the second plate are sectional transverse relatively less wide and deeper than that of the longitudinal grooves, and in general they can be obtained by drawing before or after rolling the side skirts.
  • the said joining areas are arranged at a relatively high density in a relatively wide area along the perimeter, and preferably said convex deformed areas are formed in the second plate, intended to be on the lower face, to avoid the accumulation of water and dust Consequently, the dorsal parts of the concave deformed areas will be protruding from the outer face of the first plate, intended to be at the top.
  • the second plate is flat and one or more transverse grooves arranged in the first plate communicate with each other said longitudinal grooves.
  • one or more reinforcing ribs are arranged transversely between the mentioned lower skirts of the modular element.
  • Other features of this second embodiment are analogous to those described in relation to the first.
  • Fig. 1 is a top plan view of the first plate that is part of the multifunctional modular element according to a first embodiment of the present invention
  • Fig. 2 is an enlarged cross-sectional view taken from plane ll-ll of Fig. 1
  • Fig. 3 is a top plan view of the second plate that is part of the multifunctional modular element according to said first embodiment of the present invention
  • Fig. 4 is an enlarged cross-sectional view taken from the plane IV-IV of Fig. 3
  • Fig. 1 is a top plan view of the first plate that is part of the multifunctional modular element according to a first embodiment of the present invention
  • Fig. 3 is a top plan view of the second plate that is part of the multifunctional modular element according to said first embodiment of the present invention
  • Fig. 4 is an enlarged cross-sectional view taken from the plane IV-IV of Fig. 3
  • FIG. 5 is a top plan view of the multifunctional modular element according to the first embodiment of the present invention once assembled to act as a roof forming element;
  • Fig. 6 is an enlarged cross-sectional view taken from plane VI-VI of Fig. 5;
  • Fig. 7 is a cross-sectional view similar to that of Fig. 6 in which the modular element is assembled to act as a roof forming element and at the same time as a solar energy collector, and coupled to a modular element adjacent;
  • Fig. 8 is a cross-sectional view similar to that of Fig. 7 in which the modular element is assembled to act as a roof forming element and at the same time as a solar energy collector equipped with various accessories;
  • Fig. 6 is an enlarged cross-sectional view taken from plane VI-VI of Fig. 5
  • Fig. 7 is a cross-sectional view similar to that of Fig. 6 in which the modular element is assembled to act as a roof forming element and at the same time as a solar energy collector, and coupled
  • FIG. 9 is an enlarged partial cross-sectional view showing a junction zone in the assembled modular element of Fig. 6;
  • Fig. 10 is an enlarged partial cross-sectional view showing a junction zone in the assembled modular element of Fig. 7;
  • Fig. 11 is a top plan view of the multifunctional modular element assembled according to a second embodiment of the present invention;
  • Fig. 12 an enlarged cross-sectional view taken from plane XII-XII of Fig. 1;
  • Fig. 13 is an enlarged view of a detail XIII of Fig. 12.
  • Figs. 5 and 6 there is shown the multifunctional modular element for the formation of a roof according to a first embodiment of the present invention, which comprises first and second plates 1, 2 facing and joined together to! less along a perimeter.
  • Said first and second plates 1, 2 include, within said perimeter, one or more internally recessed conformations 3, 5 which are respectively distanced from the opposite plate.
  • the union between the first and second plates 1, 2 is obtained by a cold junction procedure without perforation, which will be described in detail below with reference to Figs. 9 and 10.
  • the combination of the respective internally recessed conformations 3, 5 of the first and second plates 1, 2 and a particular arrangement of joining areas 4 between the first and second plates 1, 2, provide the modular element for formation of a roof of the present invention high resistance to bending in two directions and resistance to torsion, which allows to form modular elements of comparatively larger dimensions than usual in roof elements of a single plate, and easier and cheaper to mount since they need less support boards to cover the same surface, and they don't need splinting.
  • Figs. 1 and 2 shows the configuration of the first plate 1, which is of elongated rectangular plan and is intended for the upper exposed face of the modular element.
  • the corresponding first internally recessed conformation 3 comprises a plurality of longitudinal grooves 3, with us ends spaced apart from the periphery in order to leave a flat perimeter zone between said longitudinal grooves 3 and the periphery of the plate.
  • said longitudinal grooves 3 increase the flexural stiffness of the first plate 1 in a first direction, that is, in the longitudinal direction of the plate.
  • the longitudinal grooves 3 of the first plate 1 have a rounded cross-sectional profile in half-round, relatively wide and shallow, and areas of the first plate 1 arranged between the longitudinal grooves 3 remain at the same level as the mentioned flat perimeter zone.
  • respective fins 9, 10 are topped up, topped in conjugated folds 9a, 10a, the utility of which will be explained below with reference to Fig. 7.
  • the corresponding second internally recessed conformation 5 comprises a plurality of transverse grooves 5, which, like the longitudinal grooves 3 of the first plate 1, have their ends spaced apart from the periphery in order to leave a flat perimeter zone between said grooves transverse 5 and the periphery of the plate.
  • transverse grooves 5 increase the flexural stiffness of the second plate 2 in a second direction, that is, in the transverse direction of the plate.
  • FIG. 4 the cross section of the second plate 2 is shown along one of said transverse grooves 5, which are relatively narrow and deeper compared to the longitudinal grooves 3 of the first plate 1. Between the grooves transverse 5 are arranged large areas of the second plate 2, which are at the same level as said flat perimeter zone. From respective longitudinal edges of the second plate 2, respective skirts 11, 12 extend downwardly in interior folds 11a, 12a, downwards, the function of which will be explained below in relation to Fig. 7.
  • Figs. 5 and 6 show the first and second plates 1, 2 mutually assembled to form the modular element of the invention.
  • the first and second plates 1, 2 have substantially the same width, although the first plate 1 is slightly longer than the second plate 2, and they are facing so that their perimeters coincide with the two long sides and one of the short sides, while that in the other short length the first plate 1 has a cantilever portion 1b protruding from the second plate 2 and capable of overlapping an adjacent modular element end portion when using several modular elements to form a cover. Since, when the first and second plates 1, 2 are assembled, the longitudinal grooves 3 delap rimera plate 1 and the transverse grooves 5 of the second plate 2 are arranged in cross-directions substantially perpendicular to each other, the element Modular features increased flexural stiffness in two directions and greater overall torsional stiffness.
  • the said fins 9, 10 which extend upwardly from the longitudinal edges of the first plate 1 and the skirts 11, 12 which extend downwardly from the longitudinal edges of the second plate 2 are substantially aligned, as can be seen better in Fig. 6, and act as additional stiffening elements in the longitudinal direction.
  • the said cold joining procedure of the two plates 1, 2 without perforation thereof consists in providing a plurality of very localized joining areas 4, most of which are distributed along said flat surrounding perimeter. the longitudinal and transverse grooves 3, 5.
  • some of said joining areas 4 are also located in those areas in which said areas of the first plate 1 located between said longitudinal grooves 3 and said areas of the second plate 2 located between said transverse grooves 5 they are mutually attached. With this, the rigidity of the modular element is further increased.
  • Fig. 9 one of said joining areas 4 is shown schematically by means of a simple apparatus applying an example of a cold and non-perforated mechanical joining procedure known in the art as "clinching".
  • the result is the junction zone 4, which has a convex deformed area 2a of the second plate 2 firmly trapped within a corresponding concave deformed area 1a of the first plate 1.
  • the convex deformed area could be formed in the first plate 1 instead of the second plate 2, but then an undesirable cavity would remain in the exposed part of the modular element.
  • the distribution pattern and the density of the joining areas are selected depending on the types of plates and the application.
  • the modular element of the present invention is multifunctional, since it can perform a roof forming function and, optionally, with a simple variation, an additional solar energy collector function.
  • Fig. 7 the modular element of the present invention adapted as forming element of a solar energy collector roof is shown.
  • the first plate 1 which is intended to be exposed to the outside, is of a good heat conductive material, and at least along said perimeter around the longitudinal and / or transverse grooves 3, 5, between the first and second plates 1, 2 there is a continuous layer of a sealing material 6, which, in combination with the joining areas 4, provides a sealed cavity formed by the cross-linked longitudinal and / or transverse grooves 3, 5 and communicated with each other in the crossing areas.
  • an inlet splice nozzle 7 and an outlet splice nozzle 8 are connected in communication with the longitudinal grooves and / or transverse 3, 5.
  • the cavity integrated by the longitudinal and transverse grooves 3, 5 is in the form of a sealed reticule of channels for the circulation of a heat transfer fluid between said inlet and outlet junction nozzles 7, 8.
  • Said sealing material 6 can be, for example, a layer of an adhesive applied in a liquid state or a layer of an elastomeric material, and is advantageously disposed between the first and second plates 1, 2 before carrying out the mechanical bonding.
  • Fig. 10 it is shown schematically how the sealing material layer 6 is arranged between the convex deformed area 2a of the second plate 2 and the concave deformed area 1a of the first plate 1 in one of the joining areas 4 made by the "clinching" procedure described above, where the joint is cold and without drilling the first and second plates 1, 2 or the layer of sealing material 6, ensuring a good sealing of the cavity through which the liquid circulates heat carrier
  • the folds 9a, 10a are conjugated so that the fold 10a is configured and arranged to overlap the conjugate fold 9a of an adjacent modular element. Said conjugate folds 9a, 10a, once superimposed, are likely to be mutually crimped in accordance with a conventional reversible procedure. Obviously, the folds 9a, 10a may be conjugated in an appropriate manner for other methods of sealing between edges of two sheets, such as riveting and bending.
  • the inner folds 11a, 12a that finish the respective skirts 11, 12 act as stiffening and support elements of the modular element, and as a support for a plate of insulating material 15, which is housed between the skirts 11, 12 and supported superiorly in the interior folds 11a, 12a.
  • the skirts 11, 12 include facing openings 13, 14 that provide passages for connecting tubes T to the inlet splice nozzles 7 and / or outlet splice 8 in order to communicate the cavities of adjacent modular elements forming a single circuit for the heat transfer fluid.
  • the insulating material plate 15 acts as a visual screen hiding the second plate 2 and the tubes T and splice nozzles 7, 8, and may have a trim layer applied to its underside.
  • the assembly shown in Fig. 8 is adapted as a forming element of a solar energy collector roof in a manner analogous to that shown in Fig. 7, except that here the assembly incorporates one or more plates of a transparent material 16 arranged at a certain height above the first plate 1, that is, the side of the modular element exposed to solar radiation, and one or more finishing plates 17 arranged below the insulating material plate 15. Said plate of a material transparent 16 is placed on crosspieces 18, which are supported on fins 9, 10 and fastened thereto by flanges 19 or other fastening means. When the conjugate folds 9a, 10a of two adjacent modular elements are crimped, the crosspieces 18 may be supported and fastened thereto in the same manner.
  • the plates of transparent material 16 may be, for example, polycarbonate, and be attached to the crossbars 18 by means of flanges or the like arranged at regular intervals.
  • the aforementioned finishing plates 17 can be arranged below the insulating material plate 15 and with its edges simply resting on the upper part of the inner folds 11a, 12a of the skirts 11, 12 (arrangement not shown). However, it is preferred that the edges of the finishing plates 17 are fastened to the inner folds 11a, 12a in order to act as braces that prevent the skirts 11, 12 have a tendency to open when a relatively heavy load (for example, the weight of a person) is applied to the upper central part of the modular element, thereby increasing its rigidity.
  • a relatively heavy load for example, the weight of a person
  • the edges of the finishing plates 17 are applied below the inner folds 11a, 12a and fastened thereto by fixing screws 20, although they could also be arranged between the plates of insulating material 15 and the upper face of the inner folds 11a, 12a, and attached thereto in the same manner.
  • the first plate 1 is, for example, of elongated rectangular plan and is intended for the exposed upper face of the modular element.
  • the corresponding first internally recessed conformation 3 comprises a plurality of longitudinal grooves 3, with us ends spaced apart from the periphery in order to leave a flat perimeter zone between said longitudinal grooves 3 and the periphery of the plate.
  • said longitudinal grooves 3 increase the flexural stiffness of the first plate 1 in a first direction, that is, in the longitudinal direction of the plate.
  • the ends of the longitudinal grooves 3 are communicated with each other by transverse grooves 3a.
  • the longitudinal grooves 3 of the first plate 1 have a rounded cross-sectional profile in half-round, relatively wide and shallow, while the second plate 2 is substantially flat and closes by the bottom of the longitudinal and transverse grooves 3, 3a existing in the first plate.
  • the first and second plates 1, 2 are joined together by a pair of parallel rows of joining areas 4 arranged along a perimeter that surrounds the longitudinal and transverse grooves 3, 3a. In other areas of the first plate 1 located between said longitudinal grooves 3 and some areas of the second plate 2 attached to the first there are other joining areas 4.
  • sealing material may be constituted only by said continuous layer 6, only by continuous cord 6a, or by a combination of both, and applied equally to both the first embodiment and the second example of realization.
  • said perimeter regatta 22 is advantageously located between the two rows of parallel joining areas 4, whereby said continuous bead 6a is pressed between the first and second plates 1, 2 making a joint of airtightness along said perimeter.
  • the longitudinal and transverse grooves 3, 3a form a sealed reticule of channels that can be used for the circulation of a heat transfer fluid between an inlet and outlet splice nozzles (not shown in Figs. 11 to 13) analogous to those described above in relation to the first embodiment.
  • the modular element of this second embodiment works as a solar energy collector.
  • the modular element of the present invention comprises a security perimeter conduit 25 constituted by at least one perimeter groove formed in at least one of the first and second plates 1, 2, as shown in Figs. 11, 12 and 13.
  • This safety perimeter conduit 25 is sealed and is connected to a drain outlet conduit (not shown) to evacuate any possible loss of heat transfer fluid from the modular element circuit.
  • a drain outlet conduit not shown
  • this perimeter security conduit 25 may be arranged in combination with the continuous bead 6a, in which case it will be arranged on the outside thereof, and applied to both the first embodiment and the second embodiment.
  • support elements 23 are mounted to hold one or more plates 16 of a translucent or transparent material above the first plate 1 at a distance therefrom.
  • These support elements are alternative and interchangeable with the mentioned cross-members 18 shown in Fig. 8, and can also be used with the first and second embodiment.
  • the modular element includes one of such reinforcing ribs 24 at one end, another at the other end and one or more arranged in intermediate positions, and between them portions of insulating material plate 15 (not shown in Fig.
  • This second embodiment also supports other features. analogous to those described in relation to the first embodiment, provided they are compatible with having the second flat plate 2.
  • said plate 26 could also be implemented in the embodiment described in relation to Figs. 1 to 7

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

Comprende unas primera y segunda planchas (1, 2) enfrentadas y unidas entre sí al menos a lo largo de un perímetro. Al menos una de dichas primera o segunda planchas (1) incluye adentro de dicho perímetro uno o más conformaciones interiormente ahuecadas (3), distanciadas de la otra plancha. La mencionada unión entre las primera y segunda planchas (1, 2) está obtenida por un procedimiento de unión en frío sin perforación, conocido como “clinchado”. Dicha unión comprende una pluralidad de zonas de unión (4) distribuidas al menos a lo largo de dicho perímetro, donde cada una de dichas zonas de unión (4) comprende una área deformada convexa de una de dichas primera o segunda planchas (2) firmemente atrapada en el seno de una correspondiente área deformada cóncava de la otra de las primera o segunda planchas (1).

Description

ELEMENTO MODULAR MULTIFUNCIONAL PARA LA FORMACIÓN DE UN
TEJADO
Ámbito de la invención
La presente invención concierne en general a un elemento modular multifuncional para la formación de un tejado, y más en particular a un elemento modular con una función de elemento autoportante, de dimensiones relativamente grandes, para la formación de un tejado, una variante del cual puede realizar opcionalmente una función de captador de energía solar.
Estado de la técnica anterior
El documento FR-A-2345672 describe un captador de energía solar formado por una plancha con ondulaciones o acanaladuras paralelas enfrentada y unida a otra plancha plana a lo largo de las zonas entre ondulaciones para constituir unos canales para la circulación de un fluido caloportador. En la memoria del citado documento no se describe ni se sugiere la utilización de dicho captador como elemento autoportante constitutivo de un tejado, y las mencionadas uniones entre las planchas mediante adhesivo resultarían débiles si se usara para esta función. Como captador solar, la construcción mediante chapa ondulada deja todos los extremos de los canales abiertos, los cuales deben ser conectados, por ejemplo, a unos tubos colector y distribuidor para la operatividad del colector, lo que significa un trabajo considerable que aumenta el coste final del producto.
El modelo de utilidad ES-A-235692 describe un elemento captador de energía solar formado por un par de planchas enfrentadas y unidas por sus bordes mediante soldadura o engatillado. Una de dichas planchas está conformada con unas depresiones substancialmente paralelas entre sí comunicadas por sus dos extremos con unas depresiones transversales finales, mientras que la otra de dichas planchas es plana. Se prevé la unión de las zonas entre depresiones de la primera plancha a la segunda plancha por medio de puntos o líneas de soldadura. Las depresiones paralelas constituyen una pluralidad de canales para un fluido caloportador y las depresiones transversales finales actúan a modo de colector y distribuidor. Sin embargo, la soldadura, especialmente en las zonas entre las depresiones, resulta difícil y lenta de realizar y además ocasiona un calentamiento excesivo de las planchas que puede producir deformaciones. Además, la soldadura en línea a lo largo de la periferia presenta una relativa dificultad a la hora de garantizar un cordón hermético. Por otro lado, el engatillado sólo de los bordes periféricos no proporcionaría al conjunto una resistencia suficiente para realizar una función de elemento de tejado autoportante, y no garantizaría la estanqueidad entre los canales con el elemento actuando como captador solar.
La patente ES-A-479755 da a conocer un absorbedor para captador solar que comprende dos chapas delgadas, embutidas, unidas por soldadura a lo largo de su periferia, estando las chapas embutidas según un patrón de formas repetidas, distribuidas geométricamente y desplazadas respecto a las formas de la plancha opuesta, de manera que constituyen un entramado de canales para un fluido caloportador. Las chapas están unidas además mediante una pluralidad de puntos de soldadura distribuidos por las zonas no hundidas, adosadas, de las chapas. En esta construcción persisten los inconvenientes asociados con la soldadura citados más arriba; es decir, operación de soldadura costosa en tiempo y dinero, dificultad de verificación de la estanqueidad y calentamiento excesivo de las planchas. Por otra parte, las formas embutidas sugeridas, las cuales son cuadrados o rectángulos separados, distribuidos geométricamente por las planchas, no proporcionan un aumento de significativo de la resistencia a la flexión de cada una de las planchas en ninguna dirección, por lo que el aumento de rigidez de las dos planchas unidas responde sólo a la suma de la resistencia de las dos chapas superpuestas sin que se produzca una cooperación bidimensional entre ambas para mejorar la resistencia.
La solicitud de patente WO 99/63281 da a conocer una cubierta para edificios que realiza al mismo tiempo una función como captador de energía solar. Según un aspecto, dicha cubierta está constituida por unos paneles adyacentes, cada uno de los cuales comprende una plancha que incorpora una pluralidad de canales longitudinales constituidos al menos en parte por el propio material de la plancha y conectados por ambos extremos a unos conductos colector y distribuidor. Los paneles adyacentes comprenden unas configuraciones para acoplar las respectivas planchas entre sí de manera impermeable y unas entras y salidas comunicadas respectivamente con los conductos distribuidor y colector para la conexión de los conductos entre sí y con un circuito general para un fluido caloportador. La configuración geométrica de los canales demás elementos está diseñada para que el panel sea autoportante. Sin embargo, la construcción de cada uno de dichos paneles implica la fabricación, ensamblado y unión de múltiples piezas, lo que encarece el producto final.
Un objetivo de la presente invención es el de aportar un elemento modular multifuncional para la formación de un tejado, obtenido a partir del ensamblaje y unión de unas pocas piezas por un procedimiento de unión en frío sin perforación, con unas dimensiones relativamente grandes y con una resistencia suficiente como para ser autoportante, susceptible de realizar una función como tejado y al mismo tiempo una función como captador de energía solar.
Exposición de la invención
La presente invención contribuye a alcanzar el anterior y otros objetivos aportando un elemento modular multifuncional para la formación de un tejado que comprende unas primera y segunda planchas enfrentadas y unidas entre sí al menos a lo largo de un perímetro. Al menos una de dichas primera o segunda planchas incluye, dentro de dicho perímetro, una o más conformaciones interiormente ahuecadas distanciadas de la otra plancha. La unión entre las primera y segunda planchas está obtenida por un procedimiento de unión en frío sin perforación, que comprende realizar una pluralidad de zonas de unión distribuidas al menos a lo largo de dicho perímetro. Cada una de dichas zonas de unión comprende una área deformada convexa de una de dichas primera o segunda planchas firmemente atrapada en el seno de una correspondiente área deformada cóncava de la otra de las primera o segunda planchas. Este procedimiento de unión, el cual es bien conocido en la técnica del sector de la planchistería con el término "clinchado", derivado del inglés, es un procedimiento rápido, susceptible de ser realizado con un equipo relativamente ligero y económico, y proporciona unas zonas de unión mecánica sin perforación de las planchas, con una resistencia equiparable a la soldadura sin los inconvenientes asociados a los aumentos de temperatura que implica esta última.
Ventajosamente, la primera plancha incluye al menos una primera conformación interiormente ahuecada dispuesta dentro de dicho perímetro de unión de manera que su conformación incrementa la rigidez a la flexión de la primera plancha en una primera dirección. Según un ejemplo de realización, de manera análoga, la segunda plancha incluye al menos una segunda conformación interiormente ahuecada, distanciada de la primera plancha y al menos parcialmente enfrentada a dicha primera conformación interiormente ahuecada, y dispuesta dentro de dicho perímetro. Esta segunda conformación interiormente ahuecada está orientada de manera que su conformación incrementa la rigidez a la flexión de la segunda plancha en una segunda dirección, transversal a la citada primera dirección. De este modo, el elemento modular compuesto a partir del ensamblado y unión de las primera y segunda planchas presenta una rigidez a la flexión aumentada en dos direcciones y una rigidez general a la torsión aumentada en virtud de la cooperación de las conformaciones en las citadas dos direcciones. Mediante esta construcción se pueden conseguir elementos modulares autoportantes relativamente ligeros y de dimensiones relativamente grandes, por ejemplo, de aproximadamente 3 m de largo por aproximadamente 1 m de ancho, para la formación de un tejado.
Preferiblemente, las primera y segunda planchas son de planta rectangular alargada y la primera conformación interiormente ahuecada comprende una pluralidad de acanaladuras longitudinales en la primera plancha, con unos extremos finales distanciados de la periferia, mientras que dicha segunda conformación interiormente ahuecada comprende una pluralidad de acanaladuras transversales en la segunda plancha, igualmente con unos extremos d istanciados d e l a periferia. Tanto u nas como otras conformaciones son susceptibles de ser obtenidas, por ejemplo, por embutición. Sin embargo, las acanaladuras longitudinales pueden ser ventajosamente conformadas en una operación de laminado por rodillos, según se explica más abajo. Para una mejor rigidez mecánica, el elemento modular comprende además algunas de dichas zonas d e u nión allí donde unas zonas de la primera plancha situadas entre dichas acanaladuras longitudinales y unas zonas de la segunda plancha situadas entre dichas acanaladuras transversales están mutuamente adosadas. El elemento modular de acuerdo con la presente invención puede realizar, opcionalmente, una función como captador de energía solar además de la mencionada función para la formación de un tejado, es decir, puede formar un tejado captador de energía solar. Para ello, al menos la primera plancha, la cual en este caso está destinada a quedar en el exterior para recibir la radiación solar, es de un material buen conductor del calor, como por ejemplo una chapa metálica d e zinc, a leación d e cobre, a leación d e a luminio, a cero galvanizado, acero inoxidable. Además, entre las primera y segunda planchas está dispuesta, al menos a lo largo del citado perímetro de unión, una capa continua de un material de hermetización en combinación con las zonas de unión. Esta capa de material de hermetización puede ser, por ejemplo, una capa de un adhesivo aplicado en estado líquido o una capa de un material elastómero, y coopera con las zonas de unión para proporcionar hermeticidad a lo largo del perímetro de unión de manera que las acanaladuras cruzadas forman una retícula estanca de canales para la circulación de un fluido caloportador. Si se desea, la capa de material de hermetización también puede estar dispuesta entre las citadas zonas de la primera plancha situadas entre dichas acanaladuras longitudinales y las zonas de la segunda plancha situadas entre dichas acanaladuras transversales, mutuamente adosadas. Finalmente, en la primera plancha y/o segunda plancha, aunque más preferiblemente en segunda plancha, están fijadas una boquilla de empalme de entrada y una boquilla de empalme de salida en comunicación con l as a canaladuras longitudinales y/o transversales, de manera que el elemento modular funciona además como un captador de energía solar, con un fluido caloportador circulando por dicha retícula estanca de canales entre dicha boquilla de empalme de entrada y dicha boquilla de empalme de salida.
Tanto si el elemento modular se emplea sólo para la formación de un tejado como si además se emplea como captador de energía solar, el elemento modular incluye unos apéndices para mejorar aspectos de su funcionalidad. Por ejemplo, desde unos bordes longitudinales de la primera plancha se extienden hacia arriba unas respectivas aletas rematadas superiormente en unas dobleces conjugadas, configuradas y dispuestas para superponerse a dobleces conjugadas de elementos modulares adyacentes, cuando se usan varios elementos modulares para la formación de un tejado. Las mencionadas dobleces conjugadas, una vez superpuestas, son susceptibles de ser mutuamente engatilladas mediante una técnica bien conocida en el sector proporcionando unas uniones laterales impermeables. Además, una porción de la primera plancha se extiende ligeramente más allá de un extremo de la segunda plancha formando un voladizo susceptible de solapar una porción final de un elemento modular adyacente. Si el tejado hiciera pendiente, la porción en voladizo de la primera plancha estaría en el extremo a más bajo nivel del elemento modular.
Asimismo, d esde u nos b ordes I ongitudinales d é l a s egunda p lancha s e extienden hacia abajo unos respectivos faldones rematados inferiormente en unas dobleces interiores, actuando dichos faldones y dobleces interiores como elementos de rigidización y apoyo del elemento modular. Los faldones incluyen ventajosamente unas aberturas enfrentadas que proporcionan unos pasajes para unos tubos de conexión a las mencionadas boquillas de empalme de entrada y/o de empalme de salida. Opcionalmente, alojada entre los citados faldones y apoyada superiormente en las dobleces interiores de los mismos se encuentra una placa de material aislante que puede constituir o incluir un acabado interior cuando dicho tejado que interiormente visto.
La fabricación de las aletas de primera plancha y de los faldones de la segunda plancha se puede obtener de manera relativamente fácil y económica, por ejemplo, por laminado en frío mediante rodillos. Las acanaladuras longitudinales de la primera plancha son de perfil redondeado en media caña relativamente ancho y poco profundo, y pueden ser obtenidas en la misma operación de laminado de las aletas laterales mediante unas parejas de rodillos móviles, opuestos, conformados conjugadamente, los cuales son aplicados a la primera plancha después de que se haya iniciado el laminado de las aletas laterales y son retirados antes de finalizar el laminado de las aletas. Esta técnica proporciona además unas transiciones suaves entre las acanaladuras conformadas y las zonas planas en los extremos de la primera plancha. Las acanaladuras transversales de la segunda plancha son de perfil de sección transversal relativamente menos ancho y más profundo que el de las acanaladuras longitudinales, y en general pueden ser obtenidas por embutición antes o después del laminado de los faldones laterales.
Las mencionadas zonas de unión se disponen a una densidad relativamente elevada en una zona relativamente amplia a lo largo del perímetro, y preferiblemente las citadas áreas deformadas convexas están formadas en la segunda plancha, destinada a quedar en la cara inferior, para evitar la acumulación de agua y polvo. Por consiguiente, las partes dorsales de las áreas deformadas cóncavas quedarán sobresaliendo por la cara externa de la primera plancha, destinada a quedar en la parte superior.
Según otro ejemplo de realización, las segunda plancha es plana y una o más acanaladuras transversales dispuestas en la primera plancha comunican entre sí las citadas acanaladuras longitudinales. Preferiblemente, entre los mencionados faldones inferiores del elemento modular están dispuestas transversalmente una o más costillas de refuerzo. Otras características de este segundo ejemplo de realización son análogas a las descritas en relación con el primero.
Breve descripción de los dibujos Estas y otras ventajas y características se comprenderán mejor a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, en los que: la Fig. 1 es una vista en planta superior de la primera plancha que forma parte del elemento modular multifuncional según un primer ejemplo de realización de la presente invención; la Fig. 2 es una vista en sección transversal ampliada tomada por del plano ll-ll de la Fig. 1 ; la Fig. 3 es una vista en planta superior de la segunda plancha que forma parte del elemento modular multifuncional según dicho primer ejemplo de realización de la presente invención; la Fig. 4 es una vista en sección transversal ampliada tomada por del plano IV-IV de la Fig. 3; la Fig. 5 es una vista en planta superior del elemento modular multifuncional según el primer ejemplo de realización de la presente invención una vez ensamblado para actuar como elemento formador de un tejado; la Fig. 6 es una vista en sección transversal ampliada tomada por del plano VI-VI de la Fig. 5; la Fig. 7 es una vista en sección transversal similar a la de la Fig. 6 en la que el elemento modular está ensamblado para actuar como elemento formador de un tejado y al mismo tiempo como captador de energía solar, y acoplado a un elemento modular adyacente; la Fig. 8 es una vista en sección transversal similar a la de la Fig. 7 en la que el elemento modular está ensamblado para actuar como elemento formador de un tejado y al mismo tiempo como captador de energía solar equipado con varios accesorios; la Fig. 9 es una vista parcial en sección transversal ampliada que muestra una zona de unión en el elemento modular ensamblado de la Fig. 6; la Fig. 10 es una vista parcial en sección transversal ampliada que muestra una zona de unión en el elemento modular ensamblado de la Fig. 7; la Fig. 11 es una vista en planta superior del elemento modular multifuncional ensamblado según un segundo ejemplo de realización de la presente invención; la Fig. 12 una vista en sección transversal ampliada tomada por del plano XII-XII de la Fig. 1 ; y la Fig. 13 es una vista ampliada de un detalle XIII de la Fig. 12.
Descripción detallada de unos ejemplos de realización
Haciendo en primer lugar referencia a las Figs. 5 y 6, en ellas se muestra el elemento modular multifuncional para la formación de un tejado de acuerdo con un primer ejemplo de realización de la presente invención, el cual comprende unas primera y segunda planchas 1 , 2 enfrentadas y unidas entre sí a! menos a lo largo de un perímetro. Dichas primera y segunda planchas 1 , 2 incluyen, dentro de d icho perímetro, una o m ás conformaciones interiormente ahuecadas 3, 5, las cuales quedan respectivamente distanciadas de la plancha opuesta. La unión entre las primera y segunda planchas 1 , 2 está obtenida por un procedimiento de unión en frío sin perforación, que será descrito en detalle más abajo con referencia a las Figs. 9 y 10. La combinación de las respectivas conformaciones interiormente ahuecadas 3, 5 de las primera y segunda planchas 1, 2 y una particular disposición de unas zonas de unión 4 entre las primera y segunda planchas 1, 2, proporcionan al elemento modular para la formación de un tejado de la presente invención unas elevadas resistencia a la flexión en dos direcciones y resistencia a la torsión, lo que permite formar elementos modulares de dimensiones comparativamente mayores que las usuales en elementos de cubierta de una única plancha, y más fáciles y económicos de montar puesto que necesitan menos tablones de apoyo para cubrir una misma superficie, y no necesitan entablillado.
Hay que tener en cuenta que, en las figuras, se han exagerado los grosores de las planchas y otros elementos para una mayor claridad del dibujo. En las Figs. 1 y 2 se muestra la configuración de la primera plancha 1 , la cual es de planta rectangular alargada y está destinada a la cara superior, expuesta, del elemento modular. La correspondiente primera conformación interiormente ahuecada 3 comprende una pluralidad de acanaladuras longitudinales 3, con u nos extremos distanciados de la periferia con el fin de dejar una zona perimetral llana entre dichas acanaladuras longitudinales 3 y la periferia de la plancha. Como es obvio para un experto en la materia, las citadas acanaladuras longitudinales 3 incrementan la rigidez a la flexión de la primera plancha 1 en una primera dirección, es decir, en la dirección longitudinal de la plancha.
Tal como se puede observar en la Fig. 2, las acanaladuras longitudinales 3 de la primera plancha 1 tienen un perfil de sección transversal redondeado en media caña, relativamente ancho y poco profundo, y unas zonas de la primera plancha 1 dispuestas entre las acanaladuras longitudinales 3 quedan al mismo nivel que la citada zona perimetral llana. Desde unos bordes longitudinales de la primera plancha 1 se extienden hacia arriba unas respectivas aletas 9, 10 rematadas superiormente en unas dobleces conjugadas 9a, 10a, cuya utilidad de explicará más abajo con referencia a la Fig. 7.
A continuación se hace referencia a las Figs. 3 y 4, en las que se muestra la configuración de la segunda plancha 2 destinada a la cara inferior, no expuesta, del elemento modular, y la cual también es de planta rectangular alargada. La correspondiente segunda conformación interiormente ahuecada 5 comprende una pluralidad de acanaladuras transversales 5, las cuales, al igual que las acanaladuras longitudinales 3 de la primera plancha 1, tienen sus extremos distanciados de la periferia con el fin de dejar una zona perimetral llana entre dichas acanaladuras transversales 5 y la periferia de la plancha. Como es obvio para un experto en la materia, las acanaladuras transversales 5 incrementan la rigidez a la flexión de la segunda plancha 2 en una segunda dirección, es decir, en la dirección transversal de la plancha. En la Fig. 4 se muestra la sección transversal de la segunda plancha 2 a lo largo de una de dichas acanaladuras transversales 5, las cuales son relativamente estrechas y más profundas en comparación con las acanaladuras longitudinales 3 de la primera plancha 1. Entre las acanaladuras transversales 5 quedan dispuestas unas amplias zonas de la segunda plancha 2, las cuales están al mismo nivel que la citada zona perimetral llana. Desde unos bordes longitudinales de la segunda plancha 2 se extienden hacia abajo unos respectivos faldones 11 , 12 rematados inferiormente en unas dobleces interiores 11a, 12a, la función de las cuales será explicada más abajo en relación con la Fig. 7. En las Figs. 5 y 6 se muestran las primera y segunda planchas 1 , 2 mutuamente ensambladas para formar el elemento modular de la invención. Las primera y segunda planchas 1, 2 tienen substancialmente la misma anchura, aunque la primera plancha 1 es ligeramente más larga que la segunda plancha 2, y están enfrentadas de manera que sus perímetros coinciden los dos lados largos y uno de los lados cortos, mientras que en el otro largo corto la primera plancha 1 tiene una porción en voladizo 1b que sobresale de la segunda plancha 2 y susceptible de solapar una porción de extremo de elemento modular adyacente cuando emplean varios elementos modulares para formar una cubierta. Dado que, cuando las primera y segunda planchas 1, 2 están ensambladas las acanaladuras longitudinales 3 d e l a p rimera plancha 1 y las acanaladuras transversales 5 de l a segunda plancha 2 q uedan dispuestas en direcciones cruzadas substancialmente perpendiculares entre sí, el elemento modular presenta una rigidez a la flexión aumentada en dos direcciones y una mayor rigidez general a la torsión. Además, las mencionadas aletas 9, 10 que se extienden hacia arriba desde los bordes longitudinales de la primera plancha 1 y los faldones 11, 12 que se extienden hacía abajo desde los bordes longitudinales de la segunda plancha 2 quedan substancialmente alineados, tal como se aprecia mejor en la Fig. 6, y actúan como elementos de rigidización adicional en la dirección longitudinal.
El mencionado procedimiento de unión en frío de las dos planchas 1 , 2 sin perforación de las mismas consiste en proporcionar una pluralidad de zonas de unión 4, muy localizadas, la mayoría de las cuales están d istribuidas a lo largo del mencionado perímetro llano que rodea las acanaladuras longitudinales y transversales 3, 5. Ventajosamente, algunas de dichas zonas de unión 4 también se encuentran situadas en aquellas áreas en las que dichas zonas de la primera plancha 1 situadas entre dichas acanaladuras longitudinales 3 y dichas zonas de la segunda plancha 2 situadas entre dichas acanaladuras transversales 5 están mutuamente adosadas. Con ello, la rigidez del elemento modular queda todavía más incrementada.
En la Fig. 9 se muestra esquemáticamente una de dichas zonas de unión 4 realizada mediante un sencillo aparato aplicando un ejemplo de procedimiento de unión mecánica en frío y sin perforación conocido en la técnica del sector como "clinchado". El resultado es la zona de unión 4, la cual presenta una área deformada convexa 2a de la segunda plancha 2 firmemente atrapada en el seno de una correspondiente área deformada cóncava 1a de la primera plancha 1. Obviamente, el área deformada convexa podría estar formada en la primera plancha 1 en vez de en la segunda plancha 2, pero entonces quedaría una cavidad indeseable en la parte expuesta del elemento modular. El patrón de distribución y la densidad de las zonas de unión están seleccionadas en función de los tipos de planchas y de la aplicación.
El elemento modular de la presente invención es multifuncional, puesto que puede hacer una función de formación de un tejado y, opcionalmente, con una sencilla variación, una función adicional de captador de energía solar.
En la Fig. 7 se muestra el elemento modular de la presente invención adaptado como elemento formador de un tejado captador de energía solar. Para ello, al menos la primera plancha 1 , la cual está destinada a quedar expuesta al exterior, es de un material buen conductor del calor, y al menos a lo largo del citado perímetro alrededor de las acanaladuras longitudinales y/o transversales 3, 5, entre las primera y segunda planchas 1, 2 está dispuesta una capa continua de un material de hermetización 6, la cual, en combinación con las zonas de unión 4, proporciona una cavidad estanca formada por las acanaladuras longitudinales y/o transversales 3, 5 entrecruzadas y comunicadas entre sí en las zonas de cruce. En unas zonas de dicha cavidad, preferiblemente en la segunda plancha 2 (aunque igualmente podría ser en la primera plancha 1), están fijadas una boquilla de empalme de entrada 7 y una boquilla de empalme de salida 8 en comunicación con las acanaladuras longitudinales y/o transversales 3, 5. Con ello, la cavidad integrada por las acanaladuras longitudinales y transversales 3, 5 tiene la forma de una retícula estanca de canales para la circulación de un fluido caloportador entre dichas boquillas de empalme de entrada y salida 7, 8.
El mencionado material de hermetización 6 puede ser, por ejemplo, una capa de un adhesivo aplicado en estado líquido o una capa de un material elastómero, y ventajosamente se dispone entre las primera y segunda planchas 1 , 2 antes de efectuar la unión mecánica. En la Fig. 10 se muestra esquemáticamente como queda dispuesta la capa de material de hermetización 6 entre el área deformada convexa 2a de la segunda plancha 2 y el área deformada cóncava 1a de la primera plancha 1 en una de las zonas de unión 4 realizada por el procedimiento de "clinchado" descrito más arriba, donde la unión queda realizada en frío y sin perforar ni las primera y segunda planchas 1 , 2 ni la capa de material de hermetización 6, asegurando una buena estanqueidad de la cavidad por donde circula el líquido caloportador.
Volviendo a la Fig. 7, las dobleces 9a, 10a están conjugadas de manera que la doblez 10a está configurada y dispuesta para superponerse a la doblez conjugada 9a de un elemento modular adyacente. Dichas dobleces conjugadas 9a, 10a, una vez superpuestas, son susceptibles de ser mutuamente engatilladas de acuerdo con un procedimiento convencional reversible. Evidentemente, las dobleces 9a, 10a pueden estar conjugadas de manera apropiada para otros métodos de unión estanca entre bordes de dos chapas, como por ejemplo por remachado y doblado. En la parte inferior del elemento modular, las dobleces interiores 11a, 12a que rematan los respectivos faldones 11 , 12 actúan como elementos de rigidización y apoyo del elemento modular, y como soporte de una placa de material aislante 15, la cual queda alojada entre los faldones 11, 12 y apoyada superiormente en las dobleces interiores 11a, 12a. Los faldones 11 , 12 incluyen unas aberturas enfrentadas 13, 14 que proporcionan unos pasajes para unos tubos T de conexión a las boquillas de empalme de entrada 7 y/o de empalme de salida 8 con el fin de comunicar las cavidades de los elementos modulares adyacentes formando un único circuito para el fluido caloportador. La placa de material aislante 15 actúa como una pantalla visual ocultando la segunda plancha 2 y los tubos T y boquillas de empalme 7, 8, y puede tener una capa embellecedora aplicada a su cara inferior vista.
El conjunto mostrado en la Fig. 8 está adaptado como elemento formador de un tejado captador de energía solar de una manera análoga a la mostrada en la Fig. 7, excepto en que aquí el conjunto incorpora una o más placas de un material transparente 16 dispuestas a una cierta altura por encima de la primera plancha 1, es decir, el lado del elemento modular expuesto a la radiación solar, y una o más placas de acabado 17 dispuestas por debajo de la placa de material aislante 15. Dicha placa de un material transparente 16 está colocada sobre unos travesanos 18, los cuales están apoyados sobre las aletas 9, 10 y sujetados a las mismas por unas bridas 19 u otros medios de sujeción. Cuando las dobleces conjugadas 9a, 10a de dos elementos modulares adyacentes están engatilladas, los travesanos 18 pueden estar apoyados y sujetados a las mismas de igual manera. Las placas de material transparente 16 pueden ser, por ejemplo, de policarbonato, y estar sujetadas a los travesanos 18 mediante bridas o similares dispuestas a intervalos regulares.
Las mencionadas placas de acabado 17 pueden estar dispuestas por debajo de la placa de material aislante 15 y con sus bordes simplemente apoyados en la parte superior de las dobleces interiores 11a, 12a de los faldones 11, 12 (disposición no mostrada). Sin embargo, se prefiere que los bordes de las placas de acabado 17 estén sujetados a las dobleces interiores 11a, 12a con el fin de actuar como unos tirantes que impiden que los faldones 11, 12 tengan tendencia a abrirse cuando una carga relativamente pesada (por ejemplo, el peso de una persona) es aplicada a la parte central superior del elemento modular, incrementando así la rigidez del mismo. En la Fig. 8, los bordes de las placas de acabado 17 están aplicados por debajo de las dobleces interiores 11a, 12a y sujetados a las mismas mediante unos tornillos 20 de fijación, aunque podrían estar igualmente dispuestos entre las placas de material aislante 15 y la cara superior de las dobleces interiores 11a, 12a, y sujetados a las mismas de igual manera.
En referencia ahora con las Figs. 11 a 13 se describe un segundo ejemplo de realización del elemento modular de la presente invención. De acuerdo con este segundo ejemplo de realización, la primera plancha 1 es, por ejemplo, de planta rectangular alargada y está destinada a la cara superior, expuesta, del elemento modular. La correspondiente primera conformación interiormente ahuecada 3 comprende una pluralidad de acanaladuras longitudinales 3, con u nos extremos distanciados de la periferia con el fin de dejar una zona perimetral llana entre dichas acanaladuras longitudinales 3 y la periferia de la plancha. Como es obvio para un experto en la materia, las citadas acanaladuras longitudinales 3 incrementan la rigidez a la flexión de la primera plancha 1 en una primera dirección, es decir, en la dirección longitudinal de la plancha. Los extremos de las acanaladuras longitudinales 3 están comunicados entre sí mediante unas acanaladuras transversales 3a.
Tal como se puede observar en la Fig. 12, las acanaladuras longitudinales 3 de la primera plancha 1 tienen un perfil de sección transversal redondeado en media caña, relativamente ancho y poco profundo, mientras que la segunda plancha 2 es substancialmente plana y cierra por la parte inferior las acanaladuras longitudinales y transversales 3, 3a existentes en la primera plancha. Las primera y segunda planchas 1, 2 están unidas entre sí mediante un par de hileras paralelas de zonas de unión 4 dispuestas a lo largo de un perímetro que circunda las acanaladuras longitudinales y transversales 3, 3a. En unas zonas de la primera plancha 1 situadas entre dichas acanaladuras longitudinales 3 y unas zonas de la segunda plancha 2 adosadas a la primera están situadas otras zonas de unión 4. Entre las primera y segunda planchas 1 , 2 está dispuesto un material de hermetización que, en el ejemplo ilustrado en las Fígs. 11 a 13, es en la forma de un cordón continuo 6a alojado parcialmente en una regata perimetral 22 formada en la primera plancha 1 , aunque igualmente podría estar formada en la segunda plancha 2.
Hay que señalar que el material de hermetización puede estar constituido sólo por la citada capa continua 6, sólo por el cordón continuo 6a, o por una combinación de ambos, y ser aplicada de igual manera tanto al primer ejemplo de realización como al segundo ejemplo de realización.
Tal como muestra mejor la Fig. 13, la mencionada regata perimetral 22 está situada ventajosamente entre las dos hileras de zonas de unión 4 paralelas, con lo que dicho cordón continuo 6a queda presionado entre las primera y segunda planchas 1 , 2 efectuando una junta de hermeticidad a lo largo de dicho perímetro. Gracias a ello, las acanaladuras longitudinales y transversales 3, 3a forman una retícula estanca de canales que pueden ser utilizados para la circulación de un fluido caloportador entre unas boquillas de empalme de entrada y salida (no mostradas en las Figs. 11 a 13) análogas a las descritas más arriba en relación con el primer ejemplo de realización. De esta manera, el elemento modular de este segundo ejemplo de realización funciona como un captador de energía solar.
Preferiblemente, el elemento modular de la presente invención comprende un conducto perimetral de seguridad 25 constituido por al menos una acanaladura perimetral formada en al menos una de las primera y segunda planchas 1 , 2, tal como se muestra en las Figs. 11 , 12 y 13. Este conducto perimetral de seguridad 25 es estanco y está conectado a un conducto de salida de drenaje (no mostrado) para evacuar cualquier posible pérdida de fluido caloportador del circuito del elemento modular. Para asegurar la estanqueidad del conducto perimetral de seguridad 25, el mismo está preferiblemente situado entre unas zonas de las primera y segunda planchas 1 , 2 unidas por dicha capa continua 6 de material de estanqueidad. Evidentemente, este conducto perimetral de seguridad 25 puede estar dispuesto en combinación con el cordón continuo 6a, en cuyo caso estará dispuesto por la parte exterior del mismo, y aplicado tanto al primer ejemplo de realización como al segundo ejemplo de realización. Hay que señalar que las soluciones del material de hermeticidad en forma de capa continua 6 ( Fig. 1 0) y e n forma de cordón continuo 6a ( Fig. 1 3) son intercambiables entre sí en cuanto a su aplicación al primer ejemplo de realización y al segundo. Haciendo referencia a la Fig. 12, y de manera análoga a la descrita par el primer ejemplo de realización, desde unos bordes longitudinales de la primera plancha 1 se extienden hacia arriba u nas respectivas aletas 9 , 1 0 rematadas superiormente en unas dobleces conjugadas 9a, 10a configuradas y dispuestas para superponerse a dobleces conjugadas 9a, 10a de elementos modulares adyacentes. Una vez superpuestas, estas dobleces conjugadas 9a, 10a son susceptibles de ser mutuamente engatilladas. Sobre las aletas 9, 10 están montados unos elementos de soporte 23 para sostener una o más placas 16 de un material translúcido o transparente por encima de la primera plancha 1 a una distancia de la misma. Estos elementos de soporte son alternativos e intercambiables con los mencionados travesanos 18 mostrados en la Fig. 8, y pueden ser utilizados igualmente con el primer y el segundo ejemplo de realización.
Desde unos bordes longitudinales de la segunda plancha 2 se extienden hacia abajo unos respectivos faldones 11 , 12 rematados inferiormente en unas dobleces interiores 11a, 12a. Estos faldones 11 , 12, junto con dichas dobleces interiores 11a, 12a, actúan como elementos de rigidización y apoyo del elemento modular. Dado que, en este segundo ejemplo de realización, sólo la primera plancha 1 tiene acanaladuras longitudinales 3 que incrementan la rigidez a la flexión en la dirección longitudinal, se han previsto una o más costillas de refuerzo 24 dispuesta transversalmente entre dichos faldones 11 , 12 por debajo de la segunda plancha 2 que incrementan la rigidez a la flexión en la dirección transversal. Preferiblemente, el elemento modular incluye una de tales costillas de refuerzo 24 en un extremo, otra en el otro extremo y una o más dispuestas en posiciones intermedias, y entre las mismas pueden estar dispuestas porciones de placa de material aislante 15 (no mostradas en la Fig. 13) alojadas entre los faldones 11 , 12 y apoyada superiormente en las dobleces interiores 11a, 12a, de manera análoga a la descrita en relación con las Figs. 7 y 8. Este segundo ejemplo de realización admite también otras características análogas a las descritas en relación con el primer ejemplo de realización siempre que sean compatibles con el hecho de tener la segunda plancha 2 plana.
Para un mejor acabado del elemento modular, por la parte exterior de dichas dobleces interiores 11a, 12a de los faldones 11, 12 está fijada al menos una placa 26 de un material adecuado para proporcionar una o más de las siguientes funciones: una barrera frente al vapor, una rotura de posibles puentes térmicos, un aumento de la resistencia al fuego, y un aislamiento acústico del conjunto. Evidentemente, la mencionada placa 26 podría ser implementada igualmente en el ejemplo de realización descrito en relación con las Figs. 1 a 7.
Un experto en la materia será capaz de introducir variaciones y modificaciones al ejemplo de realización descrito e ilustrado sin salirse del alcance de la presente invención según está definido en las reivindicaciones adjuntas.

Claims

REIVINDICACIONES
1.- Elemento modular multifuncional para la formación de un tejado, del tipo que comprende unas primera y segunda planchas (1, 2) enfrentadas y unidas entre sí al menos a lo largo de un perímetro, incluyendo al menos una de dichas primera o segunda planchas (1 , 2) dentro de dicho perímetro una o más conformaciones interiormente ahuecadas (3, 5) distanciadas de la otra plancha, caracterizado porque dicha unión entre las primera y segunda planchas (1 , 2) está obtenida por un procedimiento de unión en frío sin perforación, la cual comprende una pluralidad de zonas de unión (4) distribuidas al menos a lo largo de dicho perímetro, comprendiendo cada una de dichas zonas de unión (4) una área deformada convexa (2a) de una de dichas primera o segunda planchas (2) firmemente atrapada en el seno de una correspondiente área deformada cóncava (1a) de la otra de las primera o segunda planchas (1).
2.- Elemento modular, de acuerdo con la reivindicación 1 , caracterizado porque la primera plancha (1) incluye al menos una primera conformación interiormente ahuecada (3) dispuesta dentro de dicho perímetro de manera que incrementa la rigidez a la flexión de la primera plancha (1) en una primera dirección, y la segunda plancha (2) incluye al menos una segunda conformación interiormente ahuecada (5) distanciada de la otra plancha y al menos parcialmente enfrentada a dicha primera conformación interiormente ahuecada (3), estando dicha segunda conformación interiormente ahuecada (5) dispuesta dentro de dicho perímetro de manera que incrementa la rigidez a la flexión de la segunda plancha (2) en una segunda dirección transversal a la citada primera dirección, por lo que el elemento modular presenta una rigidez a la flexión aumentada en dos direcciones y una rigidez general a la torsión aumentada.
3.- Elemento modular, de acuerdo con la reivindicación 2, caracterizado porque las primera y segunda planchas (1 , 2) son de planta rectangular alargada y dicha primera conformación interiormente ahuecada (3) comprende una pluralidad de acanaladuras longitudinales (3) en la primera plancha (1), con unos extremos distanciados de la periferia, mientras que dicha segunda conformación interiormente ahuecada (5) comprende una pluralidad de acanaladuras transversales (5) en la segunda plancha (2), igualmente con unos extremos distanciados de la periferia.
4.- Elemento modular, de acuerdo con la reivindicación 3, caracterizado porque comprende además algunas de dichas zonas de unión (4) donde unas zonas de la primera plancha (1) situadas entre dichas acanaladuras longitudinales (3) y unas zonas de la segunda plancha (2) situadas entre dichas acanaladuras transversales (5) están mutuamente adosadas.
5.- Elemento modular, de acuerdo con la reivindicación 4, caracterizado porque al menos la primera plancha (1 ), la cual está destinada al exterior, es de un material buen conductor del calor; al menos a lo largo del citado perímetro entre las primera y segunda planchas (1 , 2) está dispuesto un material de hermetización (6, 6a); y en la primera y/o segunda plancha (1 , 2) están fijadas una boquilla de empalme de entrada (7) y una boquilla de empalme de salida (8) en comunicación con las acanaladuras longitudinales y/o transversales (3, 5), de manera que el elemento modular funciona como un captador de energía solar con las acanaladuras longitudinales y transversales (3, 5) formando una retícula estanca de canales para la circulación de un fluido caloportador entre dichas boquillas de empalme de entrada (7) y de empalme de salida (8).
6.- Elemento modular, de acuerdo con la reivindicación 5, caracterizado porque dicho material de hermeíización comprende una capa continua (6) en combinación con las zonas de unión (4).
7.- Elemento modular, de acuerdo con la reivindicación 5 ó 6, caracterizado porque dicho material de hermetización comprende un cordón continuo (6a) alojado parcialmente en una regata perimetral (22) formada en al menos una de las primera y segunda planchas (1 , 2).
8.- Elemento modular, de acuerdo con la reivindicación 6, caracterizado porque comprende un conducto perimetral de seguridad (25) constituido por al menos una acanaladura perimetral formada en al menos una de las primera y segunda planchas (1 , 2) entre zonas de las primera y segunda planchas (1 , 2) unidas por dicha capa continua (6), estando dicho conducto perimetral de seguridad (25) conectado a un conducto de salida de drenaje.
9.- Elemento modular, de acuerdo con la reivindicación 6, caracterizado porque dicho material de hermetización comprende un cordón continuo (6a) alojado parcialmente en una regata perimetral (22) formada en al menos una de las primera y segunda planchas (1 , 2), y porque comprende un conducto perimetral de seguridad (25) constituido por al menos una acanaladura perimetral formada en al menos una de las primera y segunda planchas (1 , 2) entre zonas d e las primera y segunda planchas (1 , 2 ) unidas por dicha capa continua (6), estando dicho conducto perimetral de seguridad (25) conectado a un conducto de salida de drenaje.
10.- Elemento modular, de acuerdo con la reivindicación 1 , caracterizado porque la primera plancha (1) incluye al menos una primera conformación interiormente ahuecada (3) dispuesta dentro de dicho perímetro.
11.- Elemento modular, de acuerdo con la reivindicación 10, caracterizado porque las primera y segunda planchas (1 , 2) son alargadas, la primera conformación interiormente ahuecada (3) comprende una pluralidad de acanaladuras longitudinales (3) en l a p rimera plancha ( 1), con unos extremos distanciados de la periferia y al menos una acanaladura transversal (3a) comunicando entre sí dicha pluralidad de acanaladuras longitudinales (3), mientras que la segunda plancha (2) es plana.
12.- Elemento modular, de acuerdo con la reivindicación 11 , caracterizado porque comprende además algunas de dichas zonas de unión (4) donde unas zonas de la primera plancha (1) situadas entre dichas acanaladuras longitudinales (3) y unas zonas de la segunda plancha (2) están mutuamente adosadas.
13.- Elemento modular, de acuerdo con la reivindicación 12, caracterizado porque al menos la primera plancha (1), la cual está destinada al exterior, es de un material buen conductor del calor; al menos a lo largo del citado perímetro entre las primera y segunda planchas (1 , 2) está dispuesto un material de hermetización (6, 6a); y en la primera y/o segunda plancha (1 , 2) están fijadas una boquilla de empalme de entrada (7) y una boquilla de empalme de salida (8) en comunicación con las acanaladuras longitudinales y/o transversales (3, 3a), de manera que el elemento modular funciona como un captador de energía solar con las acanaladuras longitudinales y transversales (3, 3a) formando una retícula estanca de canales para la circulación de un fluido caloportador entre dichas boquillas de empalme de entrada (7) y de empalme de salida (8).
14.- Elemento modular, de acuerdo con la reivindicación 13, caracterizado porque dicho material de hermetización comprende una capa continua (6) en combinación con las zonas de unión (4).
15.- Elemento modular, de acuerdo con la reivindicación 13 ó 14, caracterizado porque dicho material de hermetización comprende un cordón continuo (6a) alojado parcialmente en una regata perimetral (22) formada en al menos una de las primera y segunda planchas (1 , 2).
16.- Elemento modular, de acuerdo con la reivindicación 14, caracterizado porque comprende un conducto perimetral de seguridad (25) constituido por al menos una acanaladura perimetral formada en al menos una de las primera y segunda planchas (1 , 2) entre zonas de las primera y segunda planchas (1 , 2) unidas por dicha capa continua (6), estando dicho conducto perimetral de seguridad (25) conectado a un conducto de salida de drenaje.
17.- Elemento modular, de acuerdo con la reivindicación 14, caracterizado porque dicho material de hermetización comprende un cordón continuo (6a) alojado parcialmente en una regata perimetral (22) formada en al menos una de las primera y segunda planchas (1 , 2), y porque comprende un conducto perimetral de seguridad (25) constituido por al menos una acanaladura perimetral formada en al menos una de las primera y segunda planchas (1 , 2) entre zonas d e las primera y segunda planchas (1 , 2 ) unidas por dicha capa continua (6), estando dicho conducto perimetral de seguridad (25) conectado a un conducto de salida de drenaje.
18.- Elemento modular, de acuerdo con la reivindicación 1 , caracterizado porque desde unos bordes longitudinales de la primera plancha (1) se extienden hacia arriba unas respectivas aletas (9, 10) rematadas superiormente en unas dobleces conjugadas (9a, 10a) configuradas y dispuestas para superponerse a dobleces conjugadas (9a, 10a) de elementos modulares adyacentes, siendo dichas dobleces conjugadas (9a, 10a), una vez superpuestas, susceptibles de ser mutuamente engatilladas.
19.- Elemento modular, de acuerdo con la reivindicación 5 u 13, caracterizado porque desde u nos bordes longitudinales de l a p rimera plancha (1) se extienden hacia arriba unas respectivas aletas (9, 10) rematadas superiormente en unas dobleces conjugadas (9a, 10a) configuradas y dispuestas para superponerse a dobleces conjugadas (9a, 10a) de elementos modulares adyacentes, siendo dichas dobleces conjugadas (9a, 10a), una vez superpuestas, susceptibles de ser mutuamente engatilladas, estando montados sobre dichas aletas (9, 10) unos elementos de soporte (18, 23) para sostener una o más placas (16) de un material translúcido o transparente por encima de la primera plancha (1) a una distancia de la misma.
20.- Elemento modular, de acuerdo con la reivindicación 1 , caracterizado porque la primera plancha (1 ) es ligeramente más larga que la segunda plancha (2) y tiene una porción en voladizo (1 b) susceptible de solapar una porción de extremo de elemento modular adyacente.
21.- Elemento modular, de acuerdo con la reivindicación 1, caracterizado porque desde unos bordes longitudinales de la segunda plancha (2) se extienden hacia abajo unos respectivos faldones (11, 12) rematados inferiormente en unas dobleces interiores (11a, 12a), actuando dichos faldones (11 , 12) y dobleces interiores (11a, 12a) como elementos de rigidización y apoyo del elemento modular.
22.- Elemento modular, de acuerdo con la reivindicación 21 , caracterizado porque una placa de material aislante (15) está alojada entre los faldones (11, 12) y apoyada superiormente en las dobleces interiores (11a, 12a).
23.- Elemento modular, de acuerdo con la reivindicación 1 , caracterizado porque desde unos bordes longitudinales de la segunda plancha (2) se extienden hacia abajo unos respectivos faldones (11, 12) rematados inferiormente en unas dobleces interiores (11a, 12a), actuando dichos faldones (11, 12) y dobleces interiores (11a, 12a) como elementos de rigidización y apoyo del elemento modular, y estando al menos una costilla de refuerzo (24) dispuesta transversalmente entre dichos faldones (11 , 12).
24.- Elemento modular, de acuerdo con la reivindicación 23, caracterizado porque fijada exteriormente a dichas dobleces interiores (11a, 12a) está fijada al menos una placa (26) de un material adecuado para proporcionar una barrera frente al vapor, y/o una rotura de posibles puentes térmicos, y/o un aumento de la resistencia al fuego, y/o un aislamiento acústico del conjunto.
25.- Elemento modular, de acuerdo con la reivindicación 5 ó 13, caracterizado porque desde unos bordes longitudinales de la segunda plancha (2) se extienden hacia abajo unos respectivos faldones (11 , 12) rematados inferiormente en unas dobleces interiores (11a, 12a), actuando dichos faldones (11, 12) y dobleces interiores (11a, 12a) como elementos de rigidización y apoyo del elemento modular, incluyendo los faldones (11, 12) unas aberturas enfrentadas (13, 14) que proporcionan unos pasajes para unos tubos (T) de conexión a las boquillas de empalme de entrada (7) y/o de empalme de salida
(8).
26.- Elemento modular, de acuerdo con la reivindicación 3, caracterizado porque las acanaladuras longitudinales (3) de la primera plancha (1) son de perfil de sección transversal redondeado en media caña relativamente ancho y poco profundo, y las acanaladuras transversales (5) de la segunda plancha (2) son de perfil de sección transversal relativamente menos ancho y más profundo.
27.- Elemento modular, de acuerdo con la reivindicación 13, caracterizado porque las acanaladuras longitudinales (3) de la primera plancha (1) son de perfil de sección transversal redondeado en media caña relativamente ancho y poco profundo.
PCT/ES2004/000123 2003-03-17 2004-03-17 Elemento modular multifuncional para la formación de un tejado WO2004083556A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200300662U ES1054282Y (es) 2003-03-17 2003-03-17 Elemento modular multifuncional para la formacion de un tejado
ESU200300662 2003-03-17

Publications (1)

Publication Number Publication Date
WO2004083556A1 true WO2004083556A1 (es) 2004-09-30

Family

ID=8503344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000123 WO2004083556A1 (es) 2003-03-17 2004-03-17 Elemento modular multifuncional para la formación de un tejado

Country Status (2)

Country Link
ES (1) ES1054282Y (es)
WO (1) WO2004083556A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715261A1 (en) * 2005-04-07 2006-10-25 Josep Garcia Cors Solar energy collecting modular element for enclosure, and modular system for forming solar energy collecting enclosures on buildings
WO2009040454A1 (es) 2007-09-24 2009-04-02 Petra Inventum, S.L. Panel de cerramiento arquitectónico colector de energía solar, cubierta colectora de energía solar transitable
WO2010069608A1 (fr) * 2008-12-18 2010-06-24 Lalive Francois Absorbeur pour panneau solaire thermique
EP2801766A1 (de) * 2013-05-10 2014-11-12 voestalpine Polynorm BV Solarkollektor zur Erwärmung eines Wärmeträgers
WO2015057091A1 (en) * 2013-10-18 2015-04-23 Iq-Energy S.A. Self-supporting thermal panel
US11067312B2 (en) 2014-07-03 2021-07-20 Tyll Solar, Llc Solar energy system
US11283400B2 (en) 2018-08-11 2022-03-22 Tyll Solar, Llc Solar energy system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010733A (en) * 1975-06-03 1977-03-08 The United States Of America As Represented By The United States Energy Research And Development Administration Structurally integrated steel solar collector
FR2345672A1 (fr) * 1976-01-27 1977-10-21 Saint Gobain Capteurs pour la recuperation d'energie solaire
ES235692U (es) * 1978-04-07 1978-06-16 Construcciones Mecanicas M. Subirana, S. A. Elemento para la captacion de energia solar.
GB2045423A (en) * 1979-03-22 1980-10-29 Hoelter H Solar energy collector
DE3040844A1 (de) * 1980-10-30 1982-06-03 Kurt 8900 Augsburg Kircheis Dachelement mit einer oberseitig aus metall bestehenden abdeckung
GB2147407A (en) * 1983-09-29 1985-05-09 Janson Goesta Solar heaters
US4858594A (en) * 1988-03-28 1989-08-22 K-S-H Canada Inc. Solar heating panel with curvilinear passageway
DE19540500A1 (de) * 1995-10-31 1997-05-07 Ladwig Karl Heinz Bauplattenkollektor zur solaren Erwärmung von Flüssigkeiten
WO2001014080A1 (de) * 1999-08-20 2001-03-01 Max Roth Wärmetauscher

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010733A (en) * 1975-06-03 1977-03-08 The United States Of America As Represented By The United States Energy Research And Development Administration Structurally integrated steel solar collector
FR2345672A1 (fr) * 1976-01-27 1977-10-21 Saint Gobain Capteurs pour la recuperation d'energie solaire
ES235692U (es) * 1978-04-07 1978-06-16 Construcciones Mecanicas M. Subirana, S. A. Elemento para la captacion de energia solar.
GB2045423A (en) * 1979-03-22 1980-10-29 Hoelter H Solar energy collector
DE3040844A1 (de) * 1980-10-30 1982-06-03 Kurt 8900 Augsburg Kircheis Dachelement mit einer oberseitig aus metall bestehenden abdeckung
GB2147407A (en) * 1983-09-29 1985-05-09 Janson Goesta Solar heaters
US4858594A (en) * 1988-03-28 1989-08-22 K-S-H Canada Inc. Solar heating panel with curvilinear passageway
DE19540500A1 (de) * 1995-10-31 1997-05-07 Ladwig Karl Heinz Bauplattenkollektor zur solaren Erwärmung von Flüssigkeiten
WO2001014080A1 (de) * 1999-08-20 2001-03-01 Max Roth Wärmetauscher

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715261A1 (en) * 2005-04-07 2006-10-25 Josep Garcia Cors Solar energy collecting modular element for enclosure, and modular system for forming solar energy collecting enclosures on buildings
ES2343290B1 (es) * 2007-09-24 2011-07-22 Petra Inventum Mejoras introducidas en el objeto de la patente principal n. 200702501por "panel de cerramiento arquitectonico colector de energia solar, ycubierta colectora de energia solar transitable".
ES2328774B1 (es) * 2007-09-24 2011-03-10 Petra Inventum Panel de cerramiento arquitectonico colector de energia solar, y cubierta colectora de energia solar transitable.
EP2218979A4 (en) * 2007-09-24 2014-02-19 Inventum S L Petra ARCHITECTURAL CLOSURE PLATE AS SUN COLLECTOR AND MOBILE SOLAR COLLECTOR ROOF
US20100175338A1 (en) * 2007-09-24 2010-07-15 Petra Inventum, S.L. Solar energy-collecting architectural enclosure panel and walkable solar energy-collecting roof
AU2008303493B2 (en) * 2007-09-24 2012-03-15 Petra Inventum, S.L. Architectural closure panel that collects solar energy and a movable solar energy collector roof
EP2218979A1 (en) * 2007-09-24 2010-08-18 S.L. Petra Inventum Architectural closure panel that collects solar energy and a movable solar energy collector roof
ES2328774A1 (es) * 2007-09-24 2009-11-17 Petra Inventum Panel de cerramiento arquitectonico colector de energia solar, y cubierta colectora de energia solar transitable.
WO2009040454A1 (es) 2007-09-24 2009-04-02 Petra Inventum, S.L. Panel de cerramiento arquitectónico colector de energía solar, cubierta colectora de energía solar transitable
ES2343290A1 (es) * 2007-09-24 2010-07-27 Petra Inventum Mejoras en el objeto de la patente principal n. 200702501 por "panel de cerramiento arquitectonico colector de energia solar, y cubierta colectora de energia solar transitable".
WO2010069608A1 (fr) * 2008-12-18 2010-06-24 Lalive Francois Absorbeur pour panneau solaire thermique
US8757144B2 (en) 2008-12-18 2014-06-24 Francois Lalive Absorber for a thermal solar panel
EP2801766A1 (de) * 2013-05-10 2014-11-12 voestalpine Polynorm BV Solarkollektor zur Erwärmung eines Wärmeträgers
WO2015057091A1 (en) * 2013-10-18 2015-04-23 Iq-Energy S.A. Self-supporting thermal panel
US11067312B2 (en) 2014-07-03 2021-07-20 Tyll Solar, Llc Solar energy system
US11283400B2 (en) 2018-08-11 2022-03-22 Tyll Solar, Llc Solar energy system
US11870392B2 (en) 2018-08-11 2024-01-09 Tyll Solar, Llc Solar energy system

Also Published As

Publication number Publication date
ES1054282Y (es) 2003-10-16
ES1054282U (es) 2003-07-01

Similar Documents

Publication Publication Date Title
ES2328774B1 (es) Panel de cerramiento arquitectonico colector de energia solar, y cubierta colectora de energia solar transitable.
ES2389414T3 (es) Elemento modular de cerramiento captador de energía solar, y sistema modular para formar cerramientos captadores de energía solar en edificios
ES2264988T3 (es) Tejado termico solar.
ES2252868T3 (es) Pared calorifuga.
US20090144892A1 (en) Insulation for Above Ground Swimming Pools
ES2322667T3 (es) Conjunto de tejado que presenta una resistencia elevada para su utilizacion en tejados de edificios industriales y residenciales.
ES2274670B1 (es) Estructura de pared estanca y tanque provisto de esta estructura.
JPS5949518B2 (ja) 熱交換器及びパネル
JP2005517893A (ja) フィン付き低プロファイル熱交換器
US8184962B2 (en) Mobile device for heating rooms
ES2334876B1 (es) Panel de cubierta captador de energia solar.
WO2004083556A1 (es) Elemento modular multifuncional para la formación de un tejado
EA036699B1 (ru) Теплоизоляционное воздухоопорное сооружение
ES2832741T3 (es) Conector de enchufe y conexión de enchufe
KR100763076B1 (ko) 방음요소 및 방음벽
ES2233047T3 (es) Cubierta captadora de energia solar para edificios y panel integrante de la misma.
WO2012001198A2 (es) Panel de cubierta captador de energia solar.
ES2272536T5 (es) Elemento estructural para el sellado de techos planos
WO1999063280A1 (es) Cubierta para edificios captadora de energia solar
JP3156372B2 (ja) 積層パネルの構造
CN213015595U (zh) 洗浴保温屋
JPS5942423Y2 (ja) 太陽熱利用の屋根板体
ES2787017T3 (es) Intercambiador de calor
ES2222215T3 (es) Plancha de recubrimiento de caballete o de cumbrera de tejado.
EP0738863A1 (en) Heating body and method of manufacturing such heating body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase