WO2004079884A1 - In-vacuum drive device and substrate transportation system using the same - Google Patents

In-vacuum drive device and substrate transportation system using the same Download PDF

Info

Publication number
WO2004079884A1
WO2004079884A1 PCT/JP2004/002773 JP2004002773W WO2004079884A1 WO 2004079884 A1 WO2004079884 A1 WO 2004079884A1 JP 2004002773 W JP2004002773 W JP 2004002773W WO 2004079884 A1 WO2004079884 A1 WO 2004079884A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
mover
field
movable element
armature
Prior art date
Application number
PCT/JP2004/002773
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuichiro Tominaga
Takao Fujii
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO2004079884A1 publication Critical patent/WO2004079884A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the present invention relates to a robot, a wafer stage, and a robot that transports a wafer substrate using a second movable element disposed in a vacuum by combining one or a plurality of in-vacuum driving devices realized as a linear motor or a rotary motor.
  • a substrate transfer device including a transfer means such as the above, and also in this substrate transfer device, eliminate any wiring in the vacuum chamber and significantly reduce generation of gas and particles in the vacuum chamber.
  • the present invention relates to an in-vacuum drive device having a simple configuration and a substrate transfer device using the same.
  • devices that transport semiconductor wafers in semiconductor manufacturing equipment used in processes such as chemical vapor deposition (CVD) for manufacturing semiconductor devices are in a vacuum environment. Driven below. Equipment used in this clean vacuum environment is required to generate gas particles and have a small rise in temperature. The generation of gas and particles lowers the required cleanliness, and the rise in temperature has an adverse effect on temperature-manufacturing processes for semiconductors and the like.
  • CVD chemical vapor deposition
  • an armature A can-liner motor has been proposed in which the winding is directly cooled by a refrigerant.
  • the canned linear motor has a moving coil type in which an armature is used as a movable element and a field is used as a stator (Japanese Patent Laid-Open No. 2001-238428), and a field is used as a movable element and the armature is used as a stator.
  • Movable magnet type Japanese Patent Application No. 2001-367067.
  • FIG. 7 shows a movable coil type.
  • FIG. 7 is a perspective view showing the whole of a conventional movable coil type linear motor.
  • 51 is a mover
  • 52 is a mover base
  • 53 is a can
  • 54 is a refrigerant supply port
  • 55 is a refrigerant outlet
  • 56 is a cable for power supply and signal
  • 58 is a stator base
  • 59 is a field yoke
  • 60 is a field magnet.
  • the mover 51 has a T-shape.
  • the mover base 52, the can 53 supported downward by the mover base 52, and the can 53 are sealed.
  • a header (not shown), a winding fixed frame (not shown) provided in a space formed by the can 53 and the header, and a coreless three-phase armature winding fixed to the winding fixed frame. (Not shown) and a refrigerant passage (not shown) passing through the can.
  • the mover 51 is supported by a linear guide (not shown) or the like.
  • the mover 51 also has a refrigerant supply port 54 and a refrigerant discharge port 55 for passing the refrigerant, and supplies the refrigerant from the refrigerant supply port 54 and discharges it from the refrigerant discharge port 55. This allows the refrigerant to flow through the cold passage between the armature winding and the can 53.
  • stator 57 includes a field magnet 60 arranged so as to face the armature portion via a magnetic gap, a plate-shaped field yoke 59 holding the field magnet 60, and , Is composed of
  • the canned linear motor has a power line for supplying electric power to the armature coil, a cable 56 such as a signal line for a position sensor, or a cooling pipe (not shown) provided in a vacuum chamber. It is drawn out of the vacuum chamber via the introduction port.
  • the armature winding of the armature By passing a predetermined current through the armature winding of the armature in such a configuration, it acts on the magnetic field generated by the field magnet 60 to generate thrust on the mover 51 and travel in the direction indicated by the arrow. It is possible to move to. Then, the armature winding generated by the copper loss is cooled by the refrigerant to suppress the temperature rise on the mover surface.
  • a linear motor As a countermeasure against gas generation, a linear motor has a magnetic field provided with a Ni plating or a Cu plating (Japanese Patent Application Laid-Open No. 8-167665).
  • the present invention has been made to solve the above-described problems, and has a simple configuration of a vacuum having no partakes without laying a motor lead wire, a signal wire, a cooling pipe, etc. in a vacuum chamber. It is an object to provide an internal drive device and a substrate transfer device using the same.
  • a vacuum drive device is provided on the atmosphere side facing the wall surface of the vacuum chamber, and is arranged to move independently via a sliding portion.
  • control means for supplying power to the armature so as to match the position command of the first mover and correcting the position command signal so as to suppress the phase difference detected by the phase difference detection means. It is characterized by having provided.
  • the control means controls the power supplied to the armature so that the position of the first mover detected by the encoder matches the position command. If a phase shift in the thrust direction occurs between the first mover and the second mover, an output corresponding to the phase shift is output to the phase difference detection means, so that the position command signal is controlled so as to suppress the phase shift. By performing the correction, the second mover is controlled so as to match the position command.
  • the invention according to claim 2 is characterized in that the drive unit is constituted by a linear motor, and the field of the first mover has a plate-shaped first field yoke and polarities alternate in the longitudinal direction of the first field yoke.
  • a first field magnet in which a plurality of magnetic poles are arranged so as to be different from each other
  • the field of the second mover is a plate-shaped second field yoke and a longitudinal axis of the second field yoke.
  • a second field magnet in which a plurality of magnetic poles are arranged so that the polarities are alternately different in the direction.
  • the armature is configured by an armature coil including a plurality of smooth coil groups. Characterize.
  • the in-vacuum driving device is constituted by a linear motor.
  • the invention according to claim 3 is characterized in that the drive unit is constituted by a rotary motor, and the field of the first movable element is formed by forming a plurality of magnetic poles such that polarities are alternately different in a circumferential direction.
  • the field of the second mover is formed of a plate-shaped first field magnet, and the field of the second mover is a disk-shaped second field magnet having a plurality of magnetic poles formed so that the polarities are alternately different in the circumferential direction.
  • the armature comprises an armature coil comprising a plurality of ring-shaped coil groups.
  • the in-vacuum driving device is constituted by a rotary motor.
  • the invention according to claim 4 is characterized in that a magnetic sensor that detects a magnetic flux in a thrust direction and a magnetic flux in an I gap direction is used as the phase difference detecting means.
  • the phase shift between the first mover and the second mover is caused by the thrust It is detected as a change in directional magnetic flux.
  • the invention according to claim 5 is characterized in that a transmission type optical sensor is used as the phase difference detecting means.
  • the phase shift between the first mover and the second mover is output as a change in the duty ratio of the output of the optical sensor.
  • the invention according to claim 6 is characterized in that the encoder is provided on the first movable element in opposition to the optical linear scale, the optical linear scale being disposed on the atmosphere side of the wall surface of the vacuum chamber.
  • An optical encoder comprising the sensor head for detecting the linear scale.
  • the relative position change between the wall surface of the vacuum chamber and the first mover is detected by the sensor head, and is fed back to the control means as a position signal.
  • the invention according to claim 7 is characterized in that a rolling bearing is provided on the sliding portion, and molybdenum disulfide and / or molybdenum disulfide are provided on all or a part of the sliding surface of the inner ring and the outer ring of the rolling bearing arranged on the vacuum side. It is characterized in that a thin film of a solid lubricant composed of any one of tundastene sulfide and silver is formed.
  • the sliding surface is peeled off due to sliding and particles are generated due to scattering of particles. Can be suppressed.
  • a substrate transfer device is a transfer device for transferring a wafer substrate by the second movable element using the in-vacuum drive device including the drive unit according to any one of claims 1 to 7. 'Is provided.
  • a substrate transfer device including the transfer means can be realized.
  • FIG. 1 is a side sectional view of a linear motor according to a first embodiment of the present invention
  • FIG. 2 is a front sectional view of a linear motor according to the first embodiment
  • FIG. 3 is a sectional view according to the first embodiment
  • FIG. 4 is a cross-sectional view of a rotary motor according to a second embodiment of the present invention
  • FIG. 5 is a plan view of a substrate transfer device according to a third embodiment of the present invention.
  • FIG. 6 is a front view of a substrate transfer device according to a third embodiment
  • FIG. 7 is a perspective view showing a configuration of a conventional canned linear motor.
  • 1 in the figure is the first field yoke
  • 2 is the second field yoke
  • 3 is the armature
  • 4 is the magnetic sensor
  • 5, 5, and 5 are the chamber walls
  • 6 is the linear guide
  • 7 is the symbol.
  • 8 is the 1st mover
  • 9 is the linear guide
  • 10 is the 2nd field magnet
  • 1 is the 2nd mover
  • 1 is the sensor head
  • 13 is the linear scale
  • 30 is a coil
  • 31 is an armature
  • 32 is an encoder
  • 41 is a first stage
  • 42 is a second stage
  • 43 is a hand for holding a wafer
  • 43 is an armature holder. Is shown.
  • FIG. 1 is a side sectional view of a reducer motor according to a first embodiment of the present invention
  • FIG. 2 is a front sectional view thereof
  • FIG. 3 is an operation explanatory view.
  • a vacuum chamber wall (hereinafter, referred to as a chamber wall) 5 is provided on the atmosphere side through a linear guide 6 which is a sliding portion.
  • the first field yoke 1 is slidably arranged, and a plurality of first field magnets 7 are arranged in the longitudinal direction of the first field yoke 1 so that the polarities are alternately different.
  • a first mover 8 is constituted by the first field yoke 1 and the first field magnet 7.
  • the second field yoke 2 is slidably disposed on the vacuum side of the champ wall 5 via a linear guide 9 which is a sliding portion, and the polarity is alternately different in the longitudinal direction of the second field yoke 2.
  • a plurality of second field magnets 10 are arranged as described above.
  • the second mover 11 is constituted by the second field yoke 2 and the second field magnet 10.
  • a stator including an armature 3 which is arranged to face the first field magnet 7 via a magnetic gap.
  • a magnetic sensor 4 for detecting a thrust-direction magnetic flux Bx and a gap-direction magnetic flux Bz is provided on the first movable arm 8 as a phase difference detecting means for detecting a relative phase difference with the second movable element 11. Installed. Further, the first mover 8 is provided with an encoder including a sensor head 12 and a linear scale 13 for detecting the position of the first mover 8 in the slide direction with respect to the vacuum champer.
  • rolling bearings are used as the linear guides 6 and 9 which are sliding portions of the linear motor.
  • the inner ring, outer ring, and balls of the rolling bearing are made of iron-based metal materials such as SUJ2 and SUS440C.
  • the inner ring of the rolling bearing arranged on the vacuum side and the outer ring facing it are All or some of the sliding surfaces of the balls inserted between the V-shaped transfer grooves provided on each surface of the inner ring and the outer ring have a thin film of solid lubricant such as molybdenum disulfide, tungsten disulfide, silver, etc. Is formed using a sputtering process or the like.
  • a rear air motor can be formed with a structure in which only the second mover 11 and the linear guide 9 are provided in the vacuum chamber.
  • the empty linear guide 9 disposed in the vacuum chamber is a rolling bearing, and at least all or some of the rolling surfaces of the inner ring, the outer ring, and the balls of the rolling bearing are provided with at least one rolling surface.
  • phase difference detecting means an example in which a magnetic sensor is used as the phase difference detecting means has been described, but an optical sensor including a slit and a light emitting device and a light receiving device arranged so as to sandwich the slit is used. You can also.
  • FIG. 4 is a sectional view of a rotary motor according to a second embodiment of the present invention.
  • a sliding portion is attached to a first housing 21 provided on the atmosphere side of a vacuum chamber wall surface (hereinafter referred to as a chamber wall surface) 5 '.
  • a shaft 23 is rotatably supported via a certain bearing 22, and a first rotor 24 is attached to the shaft 23.
  • Permanent magnets are arranged in the circumferential direction of the first rotor 24 so that the polarities N and S are alternately different.
  • a permanent magnet may be magnetized on the first rotor 24 itself.
  • a shaft 27 is rotatably supported by a second housing 25 provided on the vacuum side of the chamber wall surface 5, via a bearing 26 as a sliding portion.
  • Two rotors 28 are installed. Permanent magnets are arranged in the circumferential direction of the second rotor 28 so that the polarities N and S are alternately different. 2nd row The permanent magnet may be magnetized on the tab 28 itself.
  • An armature 31 including a stator yoke 29 and a coil 30 is provided on the champer wall surface 5 ′′, facing the first rotor 24 with a magnetic gap therebetween.
  • An encoder 32 for detecting the position of the first rotor 24 in the rotation direction with respect to the chamber wall surface 5 ' is provided on the shaft 23 of the first rotor 24.
  • a magnetic sensor as a phase detecting means is provided at the air core of the coil 30.
  • the alternating current of a predetermined phase, frequency and amplitude is applied to the coil 30 of the armature 31 provided on the atmosphere side of the chamber wall 5 '. Is applied, the first port 24 arranged through the gap operates following the command. At this time, the second rotor 28 disposed in the vacuum chamber also operates following the current of the armature 31 and the magnetic flux of the first rotor 24.
  • the magnetic flux in the thrust direction of the magnetic sensor is ideally zero.
  • the rotation position of the second rotor 28 in the vacuum chamber is controlled by inputting the signal of the magnetic sensor to the host controller and correcting the position command.
  • a rotary motor can be configured with a structure in which only the second rotor 28 and the bearing 26 are provided in the vacuum chamber.
  • FIGS. 5 and 6 show a substrate transfer apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a plan view thereof
  • FIG. 6 is a front view thereof.
  • 4 1 is the first stage
  • 4 2 is the second stage
  • 4 3 is ⁇
  • 44 is an armature holder.
  • the linear motor of the first embodiment is used as the moving mechanism of the first stage 41, and the second embodiment is used for the rotating mechanism of the wafer gripping hand 43.
  • Rotary motor is used.
  • the armature 31 and the first housing 21 of the second embodiment are not fixed to the champ wall 5 but are fixed to the first mover 8 on the linear motor side by the armature holder 44.
  • the second housing 25 is not provided, and the bearing 26 is attached to the second mover 11.
  • the second mover 11 of the linear motor and the second rotor 28 of the rotary motor are arranged on the vacuum side of the chamber wall 5, and the first mover 8 and the first rotor 24 are arranged on the atmosphere side. Is placed.
  • first mover 8 and the first rotor 24 are driven in accordance with the position command, and the second mover 11 and the second rotor 28 are controlled so that there is no phase shift. Control is performed so that the mover 11 and the second rotor 28 are driven as instructed.
  • a port-wafer stage for transferring a substrate in a clean environment such as a wafer manufacturing apparatus can be realized with a configuration capable of significantly suppressing generation of particles and heat.
  • optical encoder used in the present embodiment has been described as an example, a magnetic encoder may be used instead.
  • phase difference detecting means used in the present embodiment has been described using a magnetic sensor as an example, but a transmission type optical sensor may be used instead.
  • a light emitting unit and a light receiving unit are provided on the first movable element provided on the air side of the motor, and a transmission window for transmitting light emitted from the light emitting unit is provided on the wall of the vacuum chamber.
  • a reflector for reflecting light is provided on the second movable element provided on the vacuum side of the motor, and a phase difference caused by the movement of the first movable element and the second movable element is detected by the light receiving section. To detect.
  • the present invention is suitable for an apparatus for transferring a semiconductor wafer in a semiconductor manufacturing apparatus used in a process such as CVD (Chemical Vapor Deposition) for manufacturing a semiconductor element in a vacuum environment.
  • CVD Chemical Vapor Deposition
  • What It is useful as an in-vacuum drive device and a substrate transfer device using the same.

Abstract

An in-vacuum drive device has a first movable element (8) provided on the atmosphere side opposite a vacuum-chamber wall (5) and having a magnetic field system movably provided through a sliding portion, a second movable element (11) provided on the vacuum side opposite the vacuum-chamber wall (5) and having a magnetic field system movably provided on the vacuum side through a sliding portion, a drive portion fixed on the atmosphere side of the vacuum chamber wall (5) and having a stator with an armature (3) provided opposite the first movable element (8) with a magnetic gap in between, an encoder provided on the first movable element (8) and constituted of a sensor head (12) and a linear scale (13) that are used for detecting the position of the first movable element (8) in the movement direction with respect to the vacuum chamber, and phase difference-detecting means (magnetic sensor (4)) provided on the first movable element (8) and detecting a phase displacement between the first movable element (8) and the second movable element (11). Electric power is supplied to the armature (3) so that a position command signal is in accordance with a position command of the first movable element (8) detected by the encoder. Control means (not shown) is provided, and the means corrects a position command signal so as to reduce a phase difference detected by the phase difference-detecting means.

Description

明細書  Specification
真空内駆動装置およびこれを用いた基板搬送装置 隱分野]  In-vacuum driving device and substrate transfer device using the same
本発明は、 リニァモータや回転形モータとして実現される真空内駆動装置の 単数または複数を組み合わせることにより、真空内に配置されている第 2可動 子を用いて、 ウェハ基板を搬送するロボット、 ウェハステージなどの搬送手段 を含む基板搬送装置を実現することができると共に、 この基板搬送装置におい ても、 真空チャンバ内に一切の配線をなくし、真空チャンバ内でのガスやパー ティクルの発生を著しく低減することができる、簡単な構成の真空内駆動装置 およびこれを用いた基板搬送装置に関する。  The present invention relates to a robot, a wafer stage, and a robot that transports a wafer substrate using a second movable element disposed in a vacuum by combining one or a plurality of in-vacuum driving devices realized as a linear motor or a rotary motor. In addition to this, it is possible to realize a substrate transfer device including a transfer means such as the above, and also in this substrate transfer device, eliminate any wiring in the vacuum chamber and significantly reduce generation of gas and particles in the vacuum chamber. The present invention relates to an in-vacuum drive device having a simple configuration and a substrate transfer device using the same.
[背景技術]'  [Background]
従来、 半導体素子を製造するための CVD (Ch em i c a l Va p o r D e o s i t i o n) などの工程で使用される半導体製造装置における半 導体ウェハの搬送を行う装置、例えばそれらの駆動源であるモータは真空環境 下で駆動される。 このクリーンな真空環境下で使用される機器には、 ガスゃパ 一ティクルの発生おょぴ温度上昇が少ないことが要求される。ガスやパーティ クルの発生は、 要求されるクリーン度を低下させ、 また温度上昇は、 温度管理 された半導体等の製造工程に悪影響を及ぼすからである。  Conventionally, devices that transport semiconductor wafers in semiconductor manufacturing equipment used in processes such as chemical vapor deposition (CVD) for manufacturing semiconductor devices, for example, motors that drive these devices are in a vacuum environment. Driven below. Equipment used in this clean vacuum environment is required to generate gas particles and have a small rise in temperature. The generation of gas and particles lowers the required cleanliness, and the rise in temperature has an adverse effect on temperature-manufacturing processes for semiconductors and the like.
従来、 真空内でリニアモータを駆動する場合の例として、 例えば、 特開 20 0 1 -238428号公報および特願 2001— 36 706 7号明細書に開 示されているように、電機子の電機子卷線を冷媒によって直接冷却するキャン ド · リニァモータが提案されている。 該キャンド · リニアモータは、 電機子を 可動子とし、 界磁を固定子とする可動コイル形のもの (特開 2001 -238 428号公報) と、 界磁を可動子とし、 電機子を固定子とする可動マグネット 形のもの (特願 2001-367067号明細書) とがある。 このうち、 図 7 に可動コィル形のものを示す。 図 7は従来の可動コィル形のリニアモータ全体 を示す斜視図である。 ' 図 7において、 51は可動子、 52は可動子ベース、 53はキャン、 54は 冷媒供給口、 55は冷媒排出口、 56は給電および信号などのケーブル、 57 は固定子、 5 8は固定子ベース、 5 9は界磁ヨーク、 6 0は界磁マグネットで ある。 Conventionally, as an example of driving a linear motor in a vacuum, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-238428 and Japanese Patent Application No. 2001-367067, an armature A can-liner motor has been proposed in which the winding is directly cooled by a refrigerant. The canned linear motor has a moving coil type in which an armature is used as a movable element and a field is used as a stator (Japanese Patent Laid-Open No. 2001-238428), and a field is used as a movable element and the armature is used as a stator. Movable magnet type (Japanese Patent Application No. 2001-367067). Fig. 7 shows a movable coil type. FIG. 7 is a perspective view showing the whole of a conventional movable coil type linear motor. '' In Fig. 7, 51 is a mover, 52 is a mover base, 53 is a can, 54 is a refrigerant supply port, 55 is a refrigerant outlet, 56 is a cable for power supply and signal, 57 Is a stator, 58 is a stator base, 59 is a field yoke, and 60 is a field magnet.
可動子 5 1は T字形の形状を成しており、 可動子ベース 5 2と、 可動子べ一 ス 5 2に下向きに支持されているキャン 5 3と、 このキャン 5 3を密封してい るヘッダ (不図示) と、 このキャン 5 3およびヘッダで作られる空間内に配備 される卷線固定枠 (不図示) およびこの卷線固定枠に固定されるコアレス型の 3相の電機子卷線 (不図示) およびキャンの中を通過する冷媒通路 (不図示) と、 より構成されている。  The mover 51 has a T-shape. The mover base 52, the can 53 supported downward by the mover base 52, and the can 53 are sealed. A header (not shown), a winding fixed frame (not shown) provided in a space formed by the can 53 and the header, and a coreless three-phase armature winding fixed to the winding fixed frame. (Not shown) and a refrigerant passage (not shown) passing through the can.
そして、 可動子 5 1は図示しないリニアガイド等によって支持されている。 それから、 可動子 5 1は冷媒を通すための、 冷媒供給口 5 4と冷媒排出口 5 5 を各々備えており、冷媒を冷媒供給口 5 4より供給して冷媒排出口 5 5より排 出することにより、冷媒は電機子卷線とキャン 5 3の間にある冷 通路を流れ るようになつている。  The mover 51 is supported by a linear guide (not shown) or the like. The mover 51 also has a refrigerant supply port 54 and a refrigerant discharge port 55 for passing the refrigerant, and supplies the refrigerant from the refrigerant supply port 54 and discharges it from the refrigerant discharge port 55. This allows the refrigerant to flow through the cold passage between the armature winding and the can 53.
また、 固定子 5 7は、 電機子部分と磁気的ャップを介して対向するように配 顰された界磁マグネット 6 0と、界磁マグネット 6 0を保持する平板状の界磁 ヨーク 5 9と、 より構成されている。  Further, the stator 57 includes a field magnet 60 arranged so as to face the armature portion via a magnetic gap, a plate-shaped field yoke 59 holding the field magnet 60, and , Is composed of
図 7に示すように、 キャンド · リニアモータは、 電機子のコイルに電力を供 給する動力線や、位置センサの信号線等のケーブル 5 6あるいは冷却配管 (不 図示) を真空チャンバに設けた導入ポートを介して、 真空チャンバ外部に引き 出している。  As shown in FIG. 7, the canned linear motor has a power line for supplying electric power to the armature coil, a cable 56 such as a signal line for a position sensor, or a cooling pipe (not shown) provided in a vacuum chamber. It is drawn out of the vacuum chamber via the introduction port.
このような構成で所定の電流を該電機子の電機子卷線に流すことにより、界 磁マグネット 6 0の作る磁界と作用し、可動子 5 1に推力を発生して矢印で示 す進行方向に移動可能となっている。 そして、銅損によって発熱した電機子卷 線を冷媒により冷却し、 可動子表面の温度上昇を低く抑えている。  By passing a predetermined current through the armature winding of the armature in such a configuration, it acts on the magnetic field generated by the field magnet 60 to generate thrust on the mover 51 and travel in the direction indicated by the arrow. It is possible to move to. Then, the armature winding generated by the copper loss is cooled by the refrigerant to suppress the temperature rise on the mover surface.
また、 発ガス対策として、 リニアモータの界磁部には N iメツキあるいは C uメツキを施したものある (特開平 8— 1 0 7 6 6 5号公報) 。  As a countermeasure against gas generation, a linear motor has a magnetic field provided with a Ni plating or a Cu plating (Japanese Patent Application Laid-Open No. 8-167665).
ところが、 このような従来の構造では、 動力線や信号線等のケーブルは、 合 成樹脂の被覆が施されているため発ガス対策が必要となり、また発熱部の冷却 対策が必要となる。 リユアモータが可動コィル形の場合、可動コィルを真空チヤンパ内に配置す る構造となるため、 モータのリード線、 信号線、 冷却用配管を真空チャンバ内 で引き回すことになり、 そのため、 パーティクルの発生が避けられない。 また、 リニアモータを可動マグネット形とした場合も、 可動子側に、 スト口 —ク +可動子の長さのリニアスケールを設ける力 可動子側にセンサへッドを 設け、 信号線を引き回す必要があり、 信号線からのパーティクルが発生する。 また、 リニアモータは冷却装置を必要としているので、 構成が複雑となる。 本発明は、 上記課題を解決するためになされたものであり、 モータのリード 線、 信号線、 冷却用配管等を真空チャンバ内で引き回すことなく、 パーテイク ルの発生のない、簡単な構成の真空内駆動装置およびこれを用いた基板搬送装 置を提供することを目的とする。 However, in such a conventional structure, since cables such as power lines and signal lines are coated with synthetic resin, measures for generating gas are required, and measures for cooling the heat-generating portion are required. If the reversing motor is a movable coil type, the movable coil is placed in the vacuum chamber, so that the motor leads, signal lines, and cooling pipes are routed in the vacuum chamber, and as a result, particles are generated. Inevitable. In addition, even when the linear motor is a movable magnet type, it is necessary to provide a sensor head on the mover side and to route the signal line on the mover side. Particles are generated from the signal line. In addition, since the linear motor requires a cooling device, the configuration is complicated. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has a simple configuration of a vacuum having no partakes without laying a motor lead wire, a signal wire, a cooling pipe, etc. in a vacuum chamber. It is an object to provide an internal drive device and a substrate transfer device using the same.
[発明の開示]  [Disclosure of the Invention]
上記課題を解決するために、 請求項 1記載の発明に係る真空駆動装置は、 真 空チヤンバの壁面に対向する大気側に設けられ、 かつ、 摺動部を介して移動自 在に配置された界磁を有する第 1可動子と、前記真空チャンバの壁面を介して 真空側に摺動部を介して移動自在に配置された界磁を有する第 2可動子と、前 記真空チャンバの壁面の大気側に固定され、前記第 1可動子と磁気的ギヤップ を介して対向配置された電機子からなる固定子とよりなる駆動部と、前記第 1 可動子に設けられ、前記真空チャンバに対する前記第 1可動子の移動方向の位 置を検出するエンコーダと、 前記第 1可動子に設けられ、 前記第 1可動子と前 記第 2可動子との間の位相ずれを検出する位相差検出手段とを備え、位置指令 信号に対して前記エンコーダで検出された前記第 1可動子の位置指令に一致 するように前記電機子に電力を供給すると共に、前記位相差検出手段で検出さ れた位相差を抑制するように前記位置指令信号を補正する制御手段を設けた ことを特徴する。  In order to solve the above problem, a vacuum drive device according to the invention of claim 1 is provided on the atmosphere side facing the wall surface of the vacuum chamber, and is arranged to move independently via a sliding portion. A first movable element having a magnetic field, a second movable element having a magnetic field movably disposed on the vacuum side via a sliding portion via the wall surface of the vacuum chamber, and A drive unit fixed to the atmosphere and comprising a stator comprising an armature opposed to the first mover via a magnetic gap; and a drive unit provided on the first mover and provided to the vacuum chamber. (1) an encoder that detects a position of the mover in the moving direction; and a phase difference detection unit that is provided on the first mover and detects a phase shift between the first mover and the second mover. And the position command signal is detected by the encoder. Control means for supplying power to the armature so as to match the position command of the first mover and correcting the position command signal so as to suppress the phase difference detected by the phase difference detection means. It is characterized by having provided.
この請求項 1記載の真空駆動装置においては、上位コントローラ等から位置 指令が入力されると制御手段により電力が電機子に供給され、移動磁界が発生 する。 この移動磁界と、 第 1可動子おょぴ第 2可動干のそれぞれの界磁との間 の磁気作用により、 第 1可動子および第 2可動子が所定の方向に移動する。 制 御手段は、エンコーダで検出された第 1可動子の位置が位置指令と一致するよ うに電機子に供給される電力を制御する。第 1可動子と第 2可動子の間に推力 方向の位相ずれが生じると、位相差検出手段にはその位相ずれに応じた出力が 出るので、 その位相ずれを抑制するように位置指令信号を補正することで、 第 2可動子は位置指令と一致するように制御される。 In the vacuum drive device according to the first aspect, when a position command is input from a host controller or the like, power is supplied to the armature by the control means, and a moving magnetic field is generated. Due to the magnetic action between the moving magnetic field and the respective fields of the first mover and the second mover, the first mover and the second mover move in a predetermined direction. System The control means controls the power supplied to the armature so that the position of the first mover detected by the encoder matches the position command. If a phase shift in the thrust direction occurs between the first mover and the second mover, an output corresponding to the phase shift is output to the phase difference detection means, so that the position command signal is controlled so as to suppress the phase shift. By performing the correction, the second mover is controlled so as to match the position command.
真空チャンパの内部には、 第 2可動子と摺動部のみが配置され、 リード線を 有する電機子や、配線を伴う位相差検出手段およびエンコーダは真空チャンバ の外部に配置されるため、真空チャンバ内でのパーティクルの発生は著しく少 なくなる。  Only the second armature and the sliding part are arranged inside the vacuum chamber, and the armature having lead wires, the phase difference detecting means and the encoder with wiring are arranged outside the vacuum chamber, so the vacuum chamber Particle generation in the interior is significantly reduced.
請求項 2に係る発明は、 前記駆動部をリニアモータで構成し、 前記第 1可動 子の界磁は、平板状の第 1界磁ヨークと前記第 1界磁ヨークの長手方向に極性 が交互に異なるように複数個の磁極を配置した第 1界磁マグネットとで構 され、 前記第 2可動子の界磁は、 平板状の第 2界磁ヨークと前記第 2界磁ョ一 クの長手方向に極性が交互に異なるように複数個の磁極を配置した第 2界磁 マグネットとで構成され、 前記電機子は、 平滑形の複数のコィル群よりなる電 機子コィルで構成されたことを特徴する。  The invention according to claim 2 is characterized in that the drive unit is constituted by a linear motor, and the field of the first mover has a plate-shaped first field yoke and polarities alternate in the longitudinal direction of the first field yoke. A first field magnet in which a plurality of magnetic poles are arranged so as to be different from each other, and the field of the second mover is a plate-shaped second field yoke and a longitudinal axis of the second field yoke. And a second field magnet in which a plurality of magnetic poles are arranged so that the polarities are alternately different in the direction.The armature is configured by an armature coil including a plurality of smooth coil groups. Characterize.
この請求項 2においては、請求項 1記載の真空内駆動装置は、 リニアモータ で構成されることになる。  According to the second aspect, the in-vacuum driving device according to the first aspect is constituted by a linear motor.
請求項 3に係る発明は、 前記駆動部を回転形のモータで構成し、 前記第 1可 動子の界磁は、 円周方向に極性が交互に異なるように複数個の磁極を形成した 円板状の第 1界磁マグネットで構成され、 前記第 2可動子の界磁は、 円周方向 に極性が交互に異なるように複数個の磁極を形成した円板状の第 2界磁マグ ネッ 1、で構成され、 前記電機子は、 リング状の複数のコイル群よりなる電機子 コイルで構成されたことを特徴する。  The invention according to claim 3 is characterized in that the drive unit is constituted by a rotary motor, and the field of the first movable element is formed by forming a plurality of magnetic poles such that polarities are alternately different in a circumferential direction. The field of the second mover is formed of a plate-shaped first field magnet, and the field of the second mover is a disk-shaped second field magnet having a plurality of magnetic poles formed so that the polarities are alternately different in the circumferential direction. Wherein the armature comprises an armature coil comprising a plurality of ring-shaped coil groups.
この請求項 3においては、 請求項 1記載の真空内駆動装置は、 回転形モータ で構成されることになる。  According to the third aspect, the in-vacuum driving device according to the first aspect is constituted by a rotary motor.
請求項 4に係る発明は、 前記位相差検出手段に、 推力方向磁束と Iギャップ方 向磁束を検出する磁気センサを用いたことを特徴とする。  The invention according to claim 4 is characterized in that a magnetic sensor that detects a magnetic flux in a thrust direction and a magnetic flux in an I gap direction is used as the phase difference detecting means.
この請求項 4においては、 第 1可動子と第 2可動子の間の位相ずれは、推力 方向磁束の変化として検出される。 ' 請求項 5に係る発明は、 前記位相差検出手段に、透過形の光学センサを用い たことを特徴とする。 , In this claim 4, the phase shift between the first mover and the second mover is caused by the thrust It is detected as a change in directional magnetic flux. 'The invention according to claim 5 is characterized in that a transmission type optical sensor is used as the phase difference detecting means. ,
この請求項 5においては、 第 1可動子と第 2可動子の間の位相ずれは、 光学 センサの出力のデューティ比の変化として出力される。  According to the fifth aspect, the phase shift between the first mover and the second mover is output as a change in the duty ratio of the output of the optical sensor.
請求項 6に係る発明は、 前記エンコーダは、 前記真空チャンバの壁面の大気 側に配設された光学式リニアスケールと、前記光学式リニアスケールに対向し て前記第 1可動子に配設されて前記リニアスケールを検出するセンサへッド とから構成される光学式ェンコーダであることを特徴とする。  The invention according to claim 6 is characterized in that the encoder is provided on the first movable element in opposition to the optical linear scale, the optical linear scale being disposed on the atmosphere side of the wall surface of the vacuum chamber. An optical encoder comprising the sensor head for detecting the linear scale.
この請求項 6においては、真空チャンバの壁面と第 1可動子との間の相対的 な位置変化を、 センサへッドにより検出し、位置信号として制御手段にフィー ドバックする。  In the present invention, the relative position change between the wall surface of the vacuum chamber and the first mover is detected by the sensor head, and is fed back to the control means as a position signal.
請求項 7に係る発明は、 前記摺動部に転がり軸受を設け、 真空側に配置され た転がり軸受の内輪、外輪おょぴボールの全部または一部の摺動面に二硫化モ リブデン、二硫化タンダステンまたは銀のうちの何れか 1つからなる固体潤滑 剤の薄膜が形成されていることを特徴とする。  The invention according to claim 7 is characterized in that a rolling bearing is provided on the sliding portion, and molybdenum disulfide and / or molybdenum disulfide are provided on all or a part of the sliding surface of the inner ring and the outer ring of the rolling bearing arranged on the vacuum side. It is characterized in that a thin film of a solid lubricant composed of any one of tundastene sulfide and silver is formed.
この請求項 7においては、真空側に配置された摺動面に上記の材料の固体潤 滑剤の薄膜を形成することにより、摺動による摺動面の剥がれや粒子の飛散に よるパーティクルの発生が抑えられる。  In this aspect, by forming a thin film of the solid lubricant of the above-mentioned material on the sliding surface arranged on the vacuum side, the sliding surface is peeled off due to sliding and particles are generated due to scattering of particles. Can be suppressed.
請求項 8に係る基板搬送装置は、請求項 1〜 7の何れかに記載の前記駆動部 よりなる真空内駆動装置を用いて、前記第 2可動子によりウェハ基板を搬送す るための搬送手段を'備えたことを特徴とする。  A substrate transfer device according to claim 8 is a transfer device for transferring a wafer substrate by the second movable element using the in-vacuum drive device including the drive unit according to any one of claims 1 to 7. 'Is provided.
この請求項 8においては、前記の真空内駆動装置の単数または複数を組み合 わせることにより、 真空内に配置されている第 2可動子を用いて、 ウェハ基板 を搬送するロボット、 ウェハステージなどの搬送手段を含む基板搬送装置を実 現することができる。  In this claim 8, by combining one or more of the in-vacuum driving devices, a robot, a wafer stage, etc., for transporting the wafer substrate using the second movable element arranged in the vacuum. Thus, a substrate transfer device including the transfer means can be realized.
[図面の簡単な説明]  [Brief description of drawings]
図 1は、本発明の第 1の実施の形態に係るリニァモータの側断面図、図 2は、 第 1の形態に係るリニアモータの正断面図、 図 3は、 第 1の実施の形態に係る リニアモータの動作説明図、 図 4は、 本発明の第 2の実施の形態に係る回転形 モータの断面図、 図 5は、 本発明の第 3の実施の形態に係る基板搬送装置の平 面図、 図 6は、 第 3の実施の形態に係る基板搬送装置の正面図、 図 7は、 従来 のキャンド' リニアモータの構成を示す斜視図である。 なお、 図における符号 については、 1は第 1界磁ヨーク、 2は第 2界磁ヨーク、 3は電機子、 4は磁 気センサ、 5、 5, はチャンバ壁面、 6はリニアガイド、 7は第 1界磁マグネ ット、 8は第 1可動子、 9はリニァガイド、 1 0は第 2界磁マグネット、 1 1 は第 2可動子、 1 2はセンサヘッド、 1 3はリニアスケール、 2 1は第 1ハウ ジング、 2 2は軸受、 2 3はシャフト、 2 4は第 1ロータ、 2 5は第 2ハウジ ング、 2 6は軸受、 2 7はシャフト、 2 8は第 2ロータ、 2 9はステ一タョー ク、 3 0はコイル、 3 1は電機子、 3 2はエンコーダ、 4 1は第 1ステージ、 4 2は第 2ステージ、 4 3はウェハ把持用ハンド、 4 4は電機子ホルダーを示 している。 FIG. 1 is a side sectional view of a linear motor according to a first embodiment of the present invention, FIG. 2 is a front sectional view of a linear motor according to the first embodiment, and FIG. 3 is a sectional view according to the first embodiment. FIG. 4 is a cross-sectional view of a rotary motor according to a second embodiment of the present invention, and FIG. 5 is a plan view of a substrate transfer device according to a third embodiment of the present invention. FIG. 6 is a front view of a substrate transfer device according to a third embodiment, and FIG. 7 is a perspective view showing a configuration of a conventional canned linear motor. In addition, 1 in the figure is the first field yoke, 2 is the second field yoke, 3 is the armature, 4 is the magnetic sensor, 5, 5, and 5 are the chamber walls, 6 is the linear guide, and 7 is the symbol. 1st field magnet, 8 is the 1st mover, 9 is the linear guide, 10 is the 2nd field magnet, 1 is the 2nd mover, 1 is the sensor head, 13 is the linear scale, 2 1 Is the first housing, 22 is the bearing, 23 is the shaft, 24 is the first rotor, 25 is the second housing, 26 is the bearing, 27 is the shaft, 28 is the second rotor, 29 Is a state, 30 is a coil, 31 is an armature, 32 is an encoder, 41 is a first stage, 42 is a second stage, 43 is a hand for holding a wafer, and 43 is an armature holder. Is shown.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
以下、 本発明の実:^の形態を図に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[第 1の実施の形態]  [First Embodiment]
図 1は本発明の第 1の実施の形態に係るリユアモータの側断面図、図 2はそ の正断面図、 図 3は動作説明図である。  FIG. 1 is a side sectional view of a reducer motor according to a first embodiment of the present invention, FIG. 2 is a front sectional view thereof, and FIG. 3 is an operation explanatory view.
図 1および図 2に示されているように、 第 1の実施の形態においては、 真空 チャンバの壁面 (以下、 チャンバ壁面という) 5の大気側に、 摺動部であるリ ニァガイド 6を介してスライド自在に第 1界磁ヨーク 1が配置され、第 1界磁 ヨーク 1の長手方向に極性が交互に異なるように複数の第 1界磁マグネット 7が配置されている。 この第 1界磁ヨーク 1と第 1界 ¾マグネット 7により第 1可動子 8が構成されている。  As shown in FIGS. 1 and 2, in the first embodiment, a vacuum chamber wall (hereinafter, referred to as a chamber wall) 5 is provided on the atmosphere side through a linear guide 6 which is a sliding portion. The first field yoke 1 is slidably arranged, and a plurality of first field magnets 7 are arranged in the longitudinal direction of the first field yoke 1 so that the polarities are alternately different. A first mover 8 is constituted by the first field yoke 1 and the first field magnet 7.
一方、 チャンパ壁面 5の真空側には、 摺動部であるリニアガイド 9を介して スライド自在に第 2界磁ヨーク 2が配置され、第 2界磁ヨーク 2の長手方向に 極性が交互に異なるように複数の第 2界磁マグネット 1 0が配置されている。 この第 2界磁ヨーク 2と第 2界磁マグネット 1 0により第 2可動子 1 1が構 成されている。 チャンパ壁面 5の大気側には、第 1界磁マグネット 7と磁気的ギャップを介 して対向配置された電機子 3からなる固定子が設けられている。 On the other hand, the second field yoke 2 is slidably disposed on the vacuum side of the champ wall 5 via a linear guide 9 which is a sliding portion, and the polarity is alternately different in the longitudinal direction of the second field yoke 2. A plurality of second field magnets 10 are arranged as described above. The second mover 11 is constituted by the second field yoke 2 and the second field magnet 10. On the atmosphere side of the champ wall 5, there is provided a stator including an armature 3 which is arranged to face the first field magnet 7 via a magnetic gap.
第 1可動チ 8には、第 2可動子 1 1との相対的な位相差を検出する位相差検 出手段として、推力方向磁束 B xとギャップ方向磁束 B zを検出する磁気セン サ 4が取り付けられている。 また第 1可動子 8には、真空チャンパに対する第 1可動子 8のスライ ド方向の位置を検出するセンサへッド 1 2とリニアスケ ール 1 3とからなるエンコーダが設けられている。  A magnetic sensor 4 for detecting a thrust-direction magnetic flux Bx and a gap-direction magnetic flux Bz is provided on the first movable arm 8 as a phase difference detecting means for detecting a relative phase difference with the second movable element 11. Installed. Further, the first mover 8 is provided with an encoder including a sensor head 12 and a linear scale 13 for detecting the position of the first mover 8 in the slide direction with respect to the vacuum champer.
また、 リニアモータの摺動部であるリニアガイド 6、 9として、 転がり軸受 を用いることとする。  In addition, rolling bearings are used as the linear guides 6 and 9 which are sliding portions of the linear motor.
転がり軸受の内輪、 外輪およびボールの材料は、 S U J 2や S U S 4 4 0 C などの鉄系金属材料が用いられ、 このうち、 真空側に配置された転がり軸受の 内輪およびそれに対向する外輪と、 内輪と外輪のそれぞれの面に設けた V形転 送溝間に揷入されたボールの全部または一部の摺動面には、二硫化モリプデン、 二硫化タングステン、銀などの固体潤滑剤の薄膜をスパッタ処理等を用いて形 成する。  The inner ring, outer ring, and balls of the rolling bearing are made of iron-based metal materials such as SUJ2 and SUS440C. Of these, the inner ring of the rolling bearing arranged on the vacuum side and the outer ring facing it are All or some of the sliding surfaces of the balls inserted between the V-shaped transfer grooves provided on each surface of the inner ring and the outer ring have a thin film of solid lubricant such as molybdenum disulfide, tungsten disulfide, silver, etc. Is formed using a sputtering process or the like.
このように、真空中でリニアモータの摺動部に固体潤滑剤を被膜した転がり 軸受を用いることにより、 軸受寿命を長くすることができると共に、 軸受から 真空中へのパーティクルの飛散による汚染の影響も防止することができる。 次に、 本第 1の実施の形態に係るリユアモータの動作を説明する。  In this way, by using a rolling bearing with a solid lubricant coating on the sliding part of a linear motor in a vacuum, the life of the bearing can be prolonged, and the effect of contamination due to scattering of particles from the bearing into the vacuum can be achieved. Can also be prevented. Next, the operation of the lower motor according to the first embodiment will be described.
上位コントローラ (不図示) からの位置指令とリニアスケール 1 3の位置情 報により、チヤンバ壁面 5の大気側に設けた電機子 3に所定の位相と周波数お よび振幅の交流電流を印加すると、空隙を介して配置した第 1界磁ヨーク 1が 指令に追従して動作する。 この時、 真空チャンパ内に配置した第 2界磁ヨーク 2も、 電機子 3の電流および第 1界磁ヨーク 1の磁束に追従して動作する。 図 3 ( a ) に示すように、 第 1界磁ヨーク 1と第 2界磁ヨーク 2が位置ずれ を起こすことなく動作している場合、磁気センサ 4の推力方向磁束は理想的に は 0となる。 図 3 ( b ) に示すように、 第 2界磁ヨーク 2の負荷が大きく、 第 1界磁ヨーク 1との位置ずれが発生すると、磁気センサ 4の推力方向磁束 B X が増加する。 そこで、 磁気センサ 4の信号を上位コントローラに入力し、 図示 しない制御手段を介して位置指令を補正することで、真空チャンバ内の第 2界 磁ヨーク 2の位置制御を行うようにする。 When an AC current having a predetermined phase, frequency and amplitude is applied to the armature 3 provided on the atmosphere side of the chamber wall 5 based on the position command from the host controller (not shown) and the position information of the linear scale 13, the gap The first field yoke 1 arranged via the switch operates following the command. At this time, the second field yoke 2 arranged in the vacuum champ also operates following the current of the armature 3 and the magnetic flux of the first field yoke 1. As shown in FIG. 3 (a), when the first field yoke 1 and the second field yoke 2 are operating without any positional displacement, the magnetic flux in the thrust direction of the magnetic sensor 4 is ideally 0. Become. As shown in FIG. 3 (b), when the load on the second field yoke 2 is large and a positional displacement with the first field yoke 1 occurs, the magnetic flux BX in the thrust direction of the magnetic sensor 4 increases. Therefore, the signal of the magnetic sensor 4 is input to the host controller and The position control of the second field yoke 2 in the vacuum chamber is performed by correcting the position command through a control unit that does not perform the control.
以上のように、真空チヤ バ内に配置される構造物を第 2可動子 1 1とリニ ァガイド 9のみとする構造で、 リエアモータを形成することができる。  As described above, a rear air motor can be formed with a structure in which only the second mover 11 and the linear guide 9 are provided in the vacuum chamber.
したがって、 真空チャンバ内には一切の配線が不要となり、 磁気センサ 4に より第 2界磁ヨーク 2の位置情報もフィードバックされるので、脱調の恐れが なく、 パーティクル、 発ガスが少ない。 また、 従来の真空用リニアモータに比 ベ冷却装置を不要にすることができるので、構成が簡単になるなどの効果があ る。  Therefore, no wiring is required in the vacuum chamber, and the position information of the second field yoke 2 is also fed back by the magnetic sensor 4, so that there is no risk of loss of synchronism, and particles and gas generation are small. In addition, since a cooling device can be dispensed with as compared with the conventional vacuum linear motor, there is an effect that the configuration is simplified.
さらに、 上述したように、 真空チャンバ内に配置される寘空側のリニア.ガイ ド 9を転がり軸受とし、 その転がり軸受の内輪、 外輪およびボールの全部また は一部の搢動面に、 少なくとも二硫化モリブデン、 二硫化タングステンまたは 銀からなる固体潤滑剤の簿膜を形成することにより、パーティクル発生をより 一層抑えることができる。  Further, as described above, the empty linear guide 9 disposed in the vacuum chamber is a rolling bearing, and at least all or some of the rolling surfaces of the inner ring, the outer ring, and the balls of the rolling bearing are provided with at least one rolling surface. By forming a solid lubricant film composed of molybdenum disulfide, tungsten disulfide or silver, the generation of particles can be further suppressed.
なお、 本実施の形態においては、 位相差検出手段として磁気センサを用いた 例を示したが、 スリットと、 このスリットを挟むように配置された発光器と受 光器からなる光学センサを用いることもできる。  In the present embodiment, an example in which a magnetic sensor is used as the phase difference detecting means has been described, but an optical sensor including a slit and a light emitting device and a light receiving device arranged so as to sandwich the slit is used. You can also.
[第 2の実施の形態]  [Second embodiment]
図 4は本発明の第 2の実施の形態に係る回転形モータの断面図である。 同図に示されているように、 第 2の実施の形態においては、 真空チャンバの 壁面 (以下、 チャンバ壁面という) 5 ' の大気側に設けられた第 1ハウジング 2 1に、摺動部である軸受 2 2を介してシャフト 2 3が回転自在に支持されて おり、 このシャフト 2 3に第 1ロータ 2 4が取り付けられている。 第 1ロータ 2 4の円周方向には極性 N、 Sが交互に異なるように永久磁石が配置されてい る。 第 1ロータ 2 4自体に永久磁石が着磁されていてもよい。  FIG. 4 is a sectional view of a rotary motor according to a second embodiment of the present invention. As shown in the figure, in the second embodiment, a sliding portion is attached to a first housing 21 provided on the atmosphere side of a vacuum chamber wall surface (hereinafter referred to as a chamber wall surface) 5 '. A shaft 23 is rotatably supported via a certain bearing 22, and a first rotor 24 is attached to the shaft 23. Permanent magnets are arranged in the circumferential direction of the first rotor 24 so that the polarities N and S are alternately different. A permanent magnet may be magnetized on the first rotor 24 itself.
一方、 チャンバ壁面 5, の真空側に設けられた第 2ハウジング 2 5に、 摺動 部である軸受 2 6を介してシャフト 2 7が回転自在に支持されており、 このシ ャフト 2 7に第 2ロータ 2 8が取り付けられている。 第 2ロータ 2 8の円周方 向には極性 N、 Sが交互に異なるように永久磁石が配置されている。 第 2ロー タ 2 8自体に永久磁石が着磁されていてもよい。 On the other hand, a shaft 27 is rotatably supported by a second housing 25 provided on the vacuum side of the chamber wall surface 5, via a bearing 26 as a sliding portion. Two rotors 28 are installed. Permanent magnets are arranged in the circumferential direction of the second rotor 28 so that the polarities N and S are alternately different. 2nd row The permanent magnet may be magnetized on the tab 28 itself.
チャンパ壁面 5 ' 'には、 第 1ロータ 2 4と磁気的ギャップを介して対向配置 されたステータヨーク 2 9とコイル 3 0からなる電機子 3 1が設けられてい る。  An armature 31 including a stator yoke 29 and a coil 30 is provided on the champer wall surface 5 ″, facing the first rotor 24 with a magnetic gap therebetween.
第 1ロータ 2 4のシャフト 2 3には、 チャンバ壁面 5 ' に対する第 1ロータ 2 4の回転方向の位置を検出するエンコーダ 3 2が設けられている。  An encoder 32 for detecting the position of the first rotor 24 in the rotation direction with respect to the chamber wall surface 5 'is provided on the shaft 23 of the first rotor 24.
なお、位相検出手段としての磁気センサは図示していないが、 コイル 3 0の 空心部に設けられている。  Although not shown, a magnetic sensor as a phase detecting means is provided at the air core of the coil 30.
次に、 本第 2の実施の形態に係る回転形モータの動作を説明する。  Next, the operation of the rotary motor according to the second embodiment will be described.
上位コントローラ (不図示) からの位置指令とエンコーダ 3 2の位置情報に より、 チャンバ壁面 5 ' の大気側に設けた電機子 3 1のコイル 3 0に所定の位 相と周波数および振幅の交流電流を印加すると、空隙を介して配置した第 1口 ータ 2 4が指令に追従して動作する。 この時、 真空チヤンバ内に配置した第 2 ロータ 2 8も、電機子 3 1の電流および第 1ロータ 2 4の磁束に追従して動作 する。  Based on the position command from the host controller (not shown) and the position information of the encoder 32, the alternating current of a predetermined phase, frequency and amplitude is applied to the coil 30 of the armature 31 provided on the atmosphere side of the chamber wall 5 '. Is applied, the first port 24 arranged through the gap operates following the command. At this time, the second rotor 28 disposed in the vacuum chamber also operates following the current of the armature 31 and the magnetic flux of the first rotor 24.
第 1ロータ 2 4と第 2ロータ 2 8が位置ずれなく動作している場合、磁気セ ンサの推力方向磁束は理想的には 0となる。 第 2ロータ 2 8の負荷が大きく、 第 1ロータ 2 4との位置ずれが発生すると、磁気センサの推力方向磁束が増加 する。 そこで、 磁気センサの信号を上位コントローラに入力し、 位置指令を補 正することで、真空チャンバ内の第 2ロータ 2 8の回転位置制御を行うように する。  When the first rotor 24 and the second rotor 28 operate without displacement, the magnetic flux in the thrust direction of the magnetic sensor is ideally zero. When the load on the second rotor 28 is large and a positional deviation from the first rotor 24 occurs, the magnetic flux in the thrust direction of the magnetic sensor increases. Therefore, the rotation position of the second rotor 28 in the vacuum chamber is controlled by inputting the signal of the magnetic sensor to the host controller and correcting the position command.
以上のようにして、真空チャンバ内に配置される構造物を第 2ロータ 2 8と 軸受 2 6のみとする構造で、 回転形モータを構成することができる。  As described above, a rotary motor can be configured with a structure in which only the second rotor 28 and the bearing 26 are provided in the vacuum chamber.
なお、 その他の構成おょぴ変形例については、 第 1の実施の形態と同様であ るので説明を省略する。  Note that other configurations and modifications are the same as those of the first embodiment, and thus description thereof is omitted.
[第 3の実施の形態]  [Third embodiment]
図 5およぴ図 6は本発明の第 3の実施の形態に係る基板搬送装置を示すも のであり、 図 5はその平面図、 図 6はその正面図である。  FIGS. 5 and 6 show a substrate transfer apparatus according to a third embodiment of the present invention. FIG. 5 is a plan view thereof, and FIG. 6 is a front view thereof.
これらの図において、 4 1は第 1ステージ、 4 2は第 2ステージ、 4 3はゥ ェハ把持用ハンド、 4 4は電機子ホルダーである。 In these figures, 4 1 is the first stage, 4 2 is the second stage, 4 3 is ゥ The hand for holding the wafer, 44 is an armature holder.
本実施の形態の基板搬送装置においては、第 1ステージ 4 1の移動機構とし ては第 1の実施の形態のリニアモータを、 ウェハ把持用ハンド 4 3の回転機構 には第 2の実施の形態の回転形モータを用いている。 この場合、 第 2の実施の 形態の電機子 3 1と第 1ハウジング 2 1はチャンパ壁面 5には固定せず、 リニ ァモータ側の第 1可動子 8側に、 電機子ホルダー 4 4により固定する。 また、 第 2ハウジング 2 5は設けず、 軸受 2 6は第 2可動子 1 1に取り付ける。 この実施の形態では、チヤンバ壁面 5の真空側にリニァモータの第 2可動子 1 1および回転形モータの第 2ロータ 2 8を配置し、大気側に第 1可動子 8お よび第 1ロータ 2 4を配置している。 そして、 第 1可動子 8およぴ第 1ロータ 2 4を位置指令に従って駆動するとともに、第 2可動子 1 1および第 2ロータ 2 8との位相ずれが無くなるように制御することで、第 2可動子 1 1および第 2ロータ 2 8が指令通りに駆動されるように制御する。  In the substrate transfer device of the present embodiment, the linear motor of the first embodiment is used as the moving mechanism of the first stage 41, and the second embodiment is used for the rotating mechanism of the wafer gripping hand 43. Rotary motor is used. In this case, the armature 31 and the first housing 21 of the second embodiment are not fixed to the champ wall 5 but are fixed to the first mover 8 on the linear motor side by the armature holder 44. . Also, the second housing 25 is not provided, and the bearing 26 is attached to the second mover 11. In this embodiment, the second mover 11 of the linear motor and the second rotor 28 of the rotary motor are arranged on the vacuum side of the chamber wall 5, and the first mover 8 and the first rotor 24 are arranged on the atmosphere side. Is placed. Then, the first mover 8 and the first rotor 24 are driven in accordance with the position command, and the second mover 11 and the second rotor 28 are controlled so that there is no phase shift. Control is performed so that the mover 11 and the second rotor 28 are driven as instructed.
これにより、 ウェハ製造装置等のクリーン環境における基板搬送のための口 ポットゃウェハステージを、パーティクルの発生おょぴ熱の発生著しく抑制す ることのできる構成で実現することができる。  As a result, a port-wafer stage for transferring a substrate in a clean environment such as a wafer manufacturing apparatus can be realized with a configuration capable of significantly suppressing generation of particles and heat.
なお、本実施の形態で用いたエンコーダは光学式のものを例にとって説明し たが、 これに代えて磁気式のものでも構わな 、。  Although the optical encoder used in the present embodiment has been described as an example, a magnetic encoder may be used instead.
また、本実施の形態で用いた位相差検出手段は、 磁気センサを例にとって説 明したが、 これに代えて、 透過形の光学センサを用いても構わない。 この光学 センサを適用する場合、モータの大 '気側に設けた第 1可動子に発光部と受光部 を設け、 また真空チャンバの壁面に発光部から発光される光を透過させるため の透過窓を設け、 そして、 モータの真空側に設けた第 2可動子に光を反射させ るリフレクタ一板を設けるようにし、第 1可動子と第 2可動子の移動に伴って 生じる位相差を受光部で検出するようにする。  Further, the phase difference detecting means used in the present embodiment has been described using a magnetic sensor as an example, but a transmission type optical sensor may be used instead. When this optical sensor is applied, a light emitting unit and a light receiving unit are provided on the first movable element provided on the air side of the motor, and a transmission window for transmitting light emitted from the light emitting unit is provided on the wall of the vacuum chamber. And a reflector for reflecting light is provided on the second movable element provided on the vacuum side of the motor, and a phase difference caused by the movement of the first movable element and the second movable element is detected by the light receiving section. To detect.
[産業上の利用可能性]  [Industrial applicability]
以上のように本発明は、 例えば真空環境下で半導体素子を製造するための C VD ( C h e m i c a l V a p o r D e p o s i t i o n ) などの工程で 使用される半導体製造装置における半導体ウェハの搬送を行う装置に好適な 真空内駆動装置およびこれを用いた基板搬送装置として有用である。 As described above, the present invention is suitable for an apparatus for transferring a semiconductor wafer in a semiconductor manufacturing apparatus used in a process such as CVD (Chemical Vapor Deposition) for manufacturing a semiconductor element in a vacuum environment. What It is useful as an in-vacuum drive device and a substrate transfer device using the same.

Claims

請求の範囲 The scope of the claims
1 . 真空チャンパの壁面に対向する大気側に設けられ、 かつ、 摺動部を介して 移動自在に配置された界磁を有する第 1可動子と、  1. a first movable element having a magnetic field, which is provided on the atmosphere side facing the wall surface of the vacuum champer and is movably disposed via a sliding portion;
前記真空チャンバの壁面を介して真空側に摺動部を介して移動自在に配置 された界磁を有する第 2可動子と、  A second movable element having a magnetic field movably disposed on the vacuum side via a sliding portion via a wall surface of the vacuum chamber,
前記真空チャンバの壁面の大気側に固定され、前記第 1可動子と磁気的ギヤ ップを介して対向配置された電機子からなる固定子と ' よりなる駆動部と、 .  A drive unit comprising a stator, which is fixed to the atmosphere side of the wall of the vacuum chamber and comprises an armature disposed opposite to the first mover via a magnetic gap;
前記第 1可動子に設けられ、前記真空チャンバに対する前記第 1可動子の移 動方向の位置を検出するエンコーダと、  An encoder provided on the first mover for detecting a position of the first mover in a moving direction with respect to the vacuum chamber;
前記第 1可動子に設けられ、前記第 1可動子と前記第 2可動子との間の位相 ずれを検出する位相差検出手段とを備え、  Phase difference detecting means provided on the first mover, for detecting a phase shift between the first mover and the second mover,
位置指令信号に対して前記エンコーダで検出された前記第 1可動子の位置 指令に一致するように前記電機子に電力を供給すると共に、前記位相差検出手 段で検出された位相差を抑制するように前記位 ¾指令信号を補正する制御手 段を設けたことを特徴する真空内駆動装置。  Power is supplied to the armature so as to match a position command of the first mover detected by the encoder with respect to a position command signal, and a phase difference detected by the phase difference detection means is suppressed. A drive means for correcting the position command signal as described above.
2 · 前記駆動部をリニァモータで構成し、  2 · The drive unit is composed of a linear motor,
前記第 1可動子の界磁は、平板状の第 1界磁ヨークと前記第 1界磁ヨークの 長手方向に極性が交互に異なるように複数個の磁極を配置した第 1界磁マグ ネットとで構成され、  The field of the first mover is a plate-shaped first field yoke and a first field magnet in which a plurality of magnetic poles are arranged so that the polarities are alternately different in the longitudinal direction of the first field yoke. Consists of
前記第 2可動子の界磁は、平板状の第 2界磁ヨークと前記第 2界磁ヨークの 長手方向に極性が交互に異なるように複数個の磁極を配置した第 2界磁マグ ネットとで構成され、  The field of the second mover is composed of a plate-shaped second field yoke and a second field magnet in which a plurality of magnetic poles are arranged so that the polarities are alternately different in the longitudinal direction of the second field yoke. Consists of
前記電機子は、平滑形の複数のコイル群よりなる電機子コイルで構成された ことを特徴する請求項 1記載の真空内駆動装置。  2. The in-vacuum drive device according to claim 1, wherein the armature is configured by an armature coil including a plurality of smooth coil groups.
3 . 前記駆動部を回転形のモータで構成し、  3. The drive unit is composed of a rotary motor,
前記第 1可動子の界磁は、 円周方向に極性が交互に異なるように複数個の磁 極を形成した円板状の第 1界磁マグネットで構成され、  The field of the first mover is constituted by a disk-shaped first field magnet having a plurality of magnetic poles formed so that the polarities are alternately different in a circumferential direction,
前記第 2可動子の界磁は、 円周方向に極性が交互に異なるように複数個の磁 極を形成した円板状の第 2界磁マグネットで構成され、 The field of the second mover is formed by a plurality of magnetic fields such that the polarities are alternately different in the circumferential direction. It is composed of a disc-shaped second field magnet with poles,
前記電機子は、 リング状の複数のコィル群よりなる電機子コィルで構成され たことを特徴する請求項 1記載の真空内駆動装置。  2. The in-vacuum drive device according to claim 1, wherein the armature is configured by an armature coil including a plurality of ring-shaped coil groups.
4 . 前記位相差検出手段に、 推力方向磁束とギャップ方向磁束を検出する磁気 センサを用いたことを特徴とする請求項 1から 3のいずれかの項に記載の真 空内駆動装置。  4. The vacuum drive apparatus according to claim 1, wherein a magnetic sensor that detects a magnetic flux in a thrust direction and a magnetic flux in a gap direction is used as the phase difference detecting unit.
5 . 前記位相差検出手段に、 透過形の光学センサを用いたことを特徴とする請 求項 1から 3のいずれかの項に記載の真空内駆動装置。  5. The in-vacuum drive device according to any one of claims 1 to 3, wherein a transmission type optical sensor is used as the phase difference detection means.
6 . 前記エンコーダは、 前記真空チャンバの壁面の大気側に配設きれた光学式 リニァスケールと、前記光学式リニアスケールに対向して前記第 1可動子に配 設されて前記リニアスケールを検出するセンサへッドとから構成される光学 式エンコーダであることを特徴とする請求項 2に記載の真空内駆動装置。 6. The encoder includes an optical linear scale disposed on the atmosphere side of a wall surface of the vacuum chamber, and a sensor disposed on the first mover opposite to the optical linear scale to detect the linear scale. 3. The in-vacuum drive device according to claim 2, wherein the drive device is an optical encoder including a head.
7 . 前記摺動部に転がり軸受を設け、 真空側に配置された転がり軸受の内輪、 外輪およびボールの全部または一部の摺動面に二硫化モリブデン、二硫化タン グステンまたは銀のうちの何れか 1つからなる固体潤滑剤の薄膜が形成され ていることを特徴とする請求項 1から 6のいずれかの項に記載の真空内駆動 装置。 7. A rolling bearing is provided on the sliding part, and all or some of the sliding surfaces of the inner ring, outer ring and ball of the rolling bearing arranged on the vacuum side are molybdenum disulfide, tungsten disulfide or silver. 7. The in-vacuum drive device according to claim 1, wherein a thin film of at least one solid lubricant is formed.
8 .請求項 1〜 7の何れか 1項に記載の前記駆動部よりなる真空内駆動装置を 用いて、前記第 2可動子によりウェハ基板を搬送するための搬送手段を備えた ことを特徴とする基板搬送装置。  8.Using the in-vacuum drive device comprising the drive unit according to any one of claims 1 to 7, further comprising a transfer unit for transferring a wafer substrate by the second movable element. Substrate transfer device.
PCT/JP2004/002773 2003-03-07 2004-03-04 In-vacuum drive device and substrate transportation system using the same WO2004079884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-62446 2003-03-07
JP2003062446A JP4363064B2 (en) 2003-03-07 2003-03-07 In-vacuum drive device and substrate transfer device using the same

Publications (1)

Publication Number Publication Date
WO2004079884A1 true WO2004079884A1 (en) 2004-09-16

Family

ID=32959008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002773 WO2004079884A1 (en) 2003-03-07 2004-03-04 In-vacuum drive device and substrate transportation system using the same

Country Status (3)

Country Link
JP (1) JP4363064B2 (en)
TW (1) TW200509504A (en)
WO (1) WO2004079884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145065A1 (en) * 2006-04-24 2017-03-22 Magnomatics Limited Electrical machines

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988398B2 (en) 2002-07-22 2011-08-02 Brooks Automation, Inc. Linear substrate transport apparatus
US7959395B2 (en) 2002-07-22 2011-06-14 Brooks Automation, Inc. Substrate processing apparatus
JP4581757B2 (en) * 2005-03-11 2010-11-17 日本精工株式会社 Motor system
JP2007060748A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd Superconducting multishaft motor and vehicle equipped therewith
JP4660434B2 (en) * 2006-07-21 2011-03-30 株式会社安川電機 Conveying mechanism and processing apparatus having the same
JP2010040945A (en) * 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Vacuum processing device
JP2010040946A (en) * 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Vacuum treatment device
US8602706B2 (en) 2009-08-17 2013-12-10 Brooks Automation, Inc. Substrate processing apparatus
DE102010031245B4 (en) * 2010-07-12 2013-04-11 Von Ardenne Anlagentechnik Gmbh Substrate treatment plant
JP5689047B2 (en) 2011-10-12 2015-03-25 東京エレクトロン株式会社 Substrate transfer device for substrate processing system
JP5956324B2 (en) * 2012-12-13 2016-07-27 東京エレクトロン株式会社 Transport base and transport system
CN109699190B (en) * 2017-08-24 2023-04-28 应用材料公司 Non-contact conveying device and method in vacuum processing system
CN112758696B (en) * 2021-01-19 2023-07-11 埃特曼半导体技术有限公司 Vacuum sample driving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108381U (en) * 1991-02-26 1992-09-18 住友特殊金属株式会社 Magnetic precision moving device
JPH0664748A (en) * 1992-08-13 1994-03-08 Ebara Corp Magnetic levitation vacuum conveyer
JPH06100164A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Magnetically coupled carrying device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108381U (en) * 1991-02-26 1992-09-18 住友特殊金属株式会社 Magnetic precision moving device
JPH0664748A (en) * 1992-08-13 1994-03-08 Ebara Corp Magnetic levitation vacuum conveyer
JPH06100164A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Magnetically coupled carrying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145065A1 (en) * 2006-04-24 2017-03-22 Magnomatics Limited Electrical machines

Also Published As

Publication number Publication date
JP2004274889A (en) 2004-09-30
TW200509504A (en) 2005-03-01
JP4363064B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
US11799346B2 (en) Sealed robot drive
WO2004079884A1 (en) In-vacuum drive device and substrate transportation system using the same
US8008884B2 (en) Substrate processing apparatus with motors integral to chamber walls
JP4660434B2 (en) Conveying mechanism and processing apparatus having the same
KR101496654B1 (en) Motor stator with lift capability and reduced cogging characteristics
JP7161012B2 (en) Hermetically-switched reluctance motor
WO2020167956A1 (en) Modular material handling robot platform
JP4711216B2 (en) Transport device
TWI688457B (en) Transport apparatus
WO2020126040A1 (en) Magnetic levitation system, carrier for a magnetic levitation system, vacuum system, and method of transporting a carrier
TWI742414B (en) Sealed switched reluctance motor
JP2009038911A (en) Brushless motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase