WO2004076520A1 - Einkomponentige polyurethan-beschichtungssysteme enthaltend vierwertige vanadium-katalystoren - Google Patents

Einkomponentige polyurethan-beschichtungssysteme enthaltend vierwertige vanadium-katalystoren Download PDF

Info

Publication number
WO2004076520A1
WO2004076520A1 PCT/EP2004/001424 EP2004001424W WO2004076520A1 WO 2004076520 A1 WO2004076520 A1 WO 2004076520A1 EP 2004001424 W EP2004001424 W EP 2004001424W WO 2004076520 A1 WO2004076520 A1 WO 2004076520A1
Authority
WO
WIPO (PCT)
Prior art keywords
systems according
vanadium
compounds
component
vanadate
Prior art date
Application number
PCT/EP2004/001424
Other languages
English (en)
French (fr)
Inventor
Christoph Gürtler
Jan Mazanek
Joachim Petzoldt
Heinz Schmidt
Stephan Nowak
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to JP2006501852A priority Critical patent/JP4705013B2/ja
Priority to ES04710864T priority patent/ES2384383T3/es
Priority to EP20040710864 priority patent/EP1599524B1/de
Priority to CA 2516835 priority patent/CA2516835A1/en
Priority to MXPA05008970A priority patent/MXPA05008970A/es
Priority to KR1020057015758A priority patent/KR101153543B1/ko
Publication of WO2004076520A1 publication Critical patent/WO2004076520A1/de
Priority to HK06106566A priority patent/HK1086581A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/638Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers characterised by the use of compounds having carbon-to-carbon double bonds other than styrene and/or olefinic nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to new one-component polyurethane systems, their production and use for the production of lacquers, paints and adhesives.
  • One-component (IC) emulsion systems based on polyurethane are raw materials that are stable at room temperature and heat-curable for the production of lacquers, paints and adhesives. They generally consist of blocked polyisocyanates which, during thermal curing, react with hydroxyl-containing polyesters, polyacrylates, other hydroxy-functional polymers or mixtures of different polymers. Another possibility of obtaining raw materials for stoving enamels which are stable at room temperature is the partial blocking of the isocyanate groups of polymers which contain both blocked isocyanate and hydroxyl groups.
  • the most important compounds used to block polyisocyanates or IC stoving systems are ⁇ -caprolactam, methyl ethyl ketoxime (butanone oxime), secondary amines and triazole and pyrazole derivatives, such as those e.g. in EP-A 0 576 952, EP-A 0 566 953, EP-A 0 159 117, US-A 4 482 721, WO 97/12924 or EP-A 0 744 423.
  • Blocking with malonic ester is also possible. With this type of blocking, however, the blocking agent is not cleaved back, but rather a transesterification reaction takes place on the malonic acid diethyl residue.
  • temperatures of 100-160 ° C are used in the manufacture of coatings from the lK-PUR stoving systems.
  • the selection of the suitable blocking agent for the respective system is not only based on the baking temperature. Other factors such as the tendency to yellowing, odor and storage stability of the systems also play an important role. Since efforts have recently been made to keep the stoving temperature of coating systems as low as possible, a compromise must be found with regard to the composition of the coatings and the properties of the coating. From this it can be seen that there is a need for new stoving systems that already have optimal application properties at lower stoving temperatures.
  • EP-A 0 761 705 claims organic bismuth compounds for the catalysis of partially or completely blocked polyisocyanates.
  • US Pat. No. 5,859,165 describes reaction products of manganese, cobalt, nickel, copper, zinc, germanium, antimony or bismuth or their oxides as catalysts for blocked poly (thio) isocyanates.
  • EP-A 0 726 284 general Metal salts and / or metal complexes for catalyzing the reaction of blocked polyisocyanates with polyols are described, but in the examples only dibutyltin dilaurate and acetate are specifically disclosed.
  • the common catalysts that are used in solvent-based IC systems can therefore not be used regularly in so-called aqueous systems.
  • Known representatives of such catalysts which have a high effectiveness (i.e. a significant reduction in the stoving temperatures) are e.g. Bismuth 2-ethylhexanoate or organic Zmn-IV compounds such as e.g. Dibutyltin dilaurate (DBTL).
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilaurate
  • DBTL Dibutyltin dilau
  • WO 00/47642 contains a reference to a catalyst for aqueous one-component systems which is based on the reaction of bismuth oxide with a carboxylic acid with a carbon chain length of C ⁇ to C 3 6. In this system there is also hydrolysis of the catalyst, but at relatively high stoving temperatures of more than 165 ° C. to 180 ° C. the catalyst should again form from the components and have a high catalytic activity.
  • this catalyst system is linked to very special resins or alcohol components.
  • cationically hydrophilized resins i.e. those that have been implemented e.g. of a bisphenol A-containing epoxy resin with an amine.
  • amines primary, secondary, tertiary
  • quaternary ammonium groups can also be formed.
  • the resin is therefore basically amine-containing, which is unsuitable for the development of an automotive filler which is said to have low yellowing and good long-term durability.
  • an aqueous 1-component PUR system could be produced by adding surface-active substances or emulsifiers.
  • the catalyst system presented there is not described for such a paint system.
  • Hydrophilization with e.g. anionic hydrophilizations (e.g. by carboxylic acids) or nonionic hydrophilizations such as possible with polyether (built into the resin and not as an individual component as with the emulsifiers) to produce an aqueous 1-component system.
  • anionic hydrophilizations e.g. by carboxylic acids
  • nonionic hydrophilizations such as possible with polyether (built into the resin and not as an individual component as with the emulsifiers) to produce an aqueous 1-component system.
  • polyether built into the resin and not as an individual component as with the emulsifiers
  • cationic hydrophilization can e.g. act as a ligand for stabilization by ammonium salts. This stabilizing effect does not apply to IC systems that are not cationically hydrophilized.
  • catalysts which enable the curing of a one-component system at temperatures of up to 140 ° C., preferably at an even lower temperature.
  • the object was therefore to find a general-purpose catalyst which is effective at low stoving temperatures and which works with a large number of blocking agents and resins and hydrophilizing agents. At the same time, ecological considerations should be taken into account.
  • vanadium compounds for the catalysis of blocked polyisocyanates or one-component stoving systems was previously unknown.
  • the compounds of vanadium in their higher oxidation states are particularly suitable for use as a catalyst.
  • Compounds of vanadium e.g. in the oxidation state + 5 e.g. vanadium oxide triethylate as vanadium ester for the production of polyurethanes
  • vanadium oxide triethylate for the production of polyurethanes
  • DE-A 1 921 952 also excludes the use of vanadium compounds in water-containing systems (due to the hydrolysis tendency of the vanadium oxide alcoholates) and describes only the vanadium oxide trialcoholates. Accelerating the reaction of blocked isocyanates with e.g. Polyols in the presence of vanadium compounds have therefore not been suggested by the prior art.
  • the stoving temperature can be reduced by approximately 20 ° C. depending on the blocking agent used. This enables low baking temperatures of approx. 130 ° C to be achieved.
  • the catalysts according to the invention are sufficiently active even at a low temperature, for example of 120 ° C., as is shown in the following examples.
  • the present invention relates to one-component stoving systems based on polyurethane, characterized in that they contain one or more organic and / or inorganic compounds of vanadium in which the vanadium has an oxidation state of at least +4.
  • (c) contain one or more organic and / or inorganic compounds of vanadium in which the vanadium has an oxidation state of at least +4,
  • the invention also relates to processes for producing the one-component stoving systems of the general composition (a) to (e).
  • Another object of the invention is the use of the one-component stoving systems according to the invention for the production of lacquers, paints and other stoving systems such as adhesives or elastomers and the coatings produced from them.
  • the IC combustion systems according to the invention contain, as crosslinking component, blocked polyisocyanates (a) such as are obtainable in a manner known per se by reacting any organic polyisocyanates A) with any blocking agents B) and optionally further structural components C).
  • Suitable polyisocyanates A) for the preparation of the blocked polyisocyanates (a) are any organic polyisocyanates known from the classic polyurethane systems for crosslinking compounds with active hydrogen, ie aliphatic including the cycloaliphatic, aromatic and heterocyclic polyisocyanates with at least two isocyanate groups and mixtures thereof.
  • Suitable polyisocyanates A) are aliphatic isocyanates such as di- or triisocyanates, for example butane diisocyanate (BDI), pentane diisocyanate, hexane diisocyanate (HDI), 4-isocyanatomethyl-l, 8-octane diisocyanate (triisocyanatononane, TEST) or cyclic systems such as 4,4'-methylene-bis (cyclohexylisocyanate) (Desmodur ® W, Bayer AG, Leverkusen), 3,5,5-trimethyl-l-isocyanato-3-isocyanatomethyl ylcyclohexane (IPDI) and ⁇ , ⁇ '-diisocyanato-l, 3-dimethylcyclohexane (H ⁇ XDI).
  • BDI butane diisocyanate
  • HDI hexane diisocyanate
  • HDI hex
  • aromatic polyisocyanates examples include 1,5-naphthalene diisocyanate, diisocyanato-diphenylmethane (MDI) or crude MDI, diisocyanatomethylbenzene (TDI), in particular the 2,4 and 2,6-isomers, and technical mixtures of the two isomers and 1 , 3-bis (isocyanato-methyl) benzene (XDI).
  • MDI diisocyanato-diphenylmethane
  • TDI diisocyanatomethylbenzene
  • XDI 3-bis (isocyanato-methyl) benzene
  • polyisocyanates which are obtainable by reacting the di- or triisocyanates with themselves via isocyanate groups, such as uretdiones or carbodiimide compounds or such as isocyanurates or iminoxadiazinediones which are formed by reaction of three isocyanate groups.
  • polyisocyanates are oligomeric polyisocyanates with biuret, allophanate and acylurea structural elements, and any mixtures of the polyisocyanates mentioned. Mixtures of polyisocyanates with the above-mentioned structural elements or mixtures of the modified polyisocyanates with the monomeric isocyanates can also be used.
  • the polyisocyanates modified in this way can also be partially prepolymerized with other groups which are reactive toward isocyanates. Modified polyisocyanates are quite
  • Polyisocyanate prepolymers which have on average more than one isocyanate group per molecule are also very suitable. They are obtained by pre-reacting a molar excess, for example one of the di, tri or polyisocyanates and modified polyisocyanates mentioned above, with an organic material which has at least two active hydrogen atoms per molecule, for example in the form of hydroxyl groups. They can be prepolymerized in a similar proportion to that described in the next section.
  • low molecular weight polyisocyanates containing urethane groups are also suitable, as can be obtained by reacting excess diisocyanates, preferably IPDI or TDI, with simple polyhydric alcohols in the molecular weight range 62-300, in particular with trimethylolpropane or glycerol.
  • Suitable polyisocyanates A) are also the known prepolymers containing terminal isocyanate groups, as are accessible in particular by reacting the simple polyisocyanates mentioned above, especially diisocyanates, with inadequate amounts of organic compounds having at least two functional groups which are reactive toward isocyanates.
  • the ratio of isocyanate groups to hydrogen atoms reactive towards NCO corresponds to 1.05: 1 to 10: 1, preferably 1.1: 1 to 3: 1, the hydrogen atoms preferably originating from hydroxyl groups.
  • the type and proportions of the starting materials used in the production of NCO prepolymers are preferably chosen such that the NCO prepolymers preferably have a medium NCO Functionality of 2 to 3 and a number average molecular weight of 500-10000, preferably 800-4000.
  • Preferred polyisocyanates A) are those which contain a uretdione, isocyanurate, iminooxadiazü dione, acylurea, urethane, biuret or allophanate structure, those polyisocyanates based on 1,6-hexamethylene diisocyanate, 3.5, 5-trimethyl-l-isocyanato-3-isocyanato-methylcyclohexane (IPDI), ⁇ , ⁇ '-diisocyanato-l, 3-dimethylcyclohexane (H 6 XDI) and 4,4'-methyl-bis (cyclohexyl isocyanate) (Desmodur ® W, Bayer AG, Leverkusen) are preferred.
  • IPDI 5-trimethyl-l-isocyanato-3-isocyanato-methylcyclohexane
  • H 6 XDI 3-dimethylcyclohexane
  • polyisocyanates A) in the invention are those polymers containing free isocyanate groups based on polyurethane, polyester and / or polyacrylate and, if appropriate, mixtures thereof, in which only some of the free isocyanate groups are reacted with blocking agents, while the remaining part is reacted with an excess of hydroxyl-containing polyesters, polyurethanes and / or polyacrylates and, if appropriate, their mixtures, so that a polymer containing free hydroxyl groups is formed which, when heated to suitable usinem temperatures, crosslinks groups reactive with isocyanate groups without the addition of further components ( self-crosslinking one-component stoving systems).
  • All of the polyisocyanates mentioned can also be used as any mixtures with one another or with other crosslinking agents such as with melamine resins for the production of lacquers, paints and other formulations.
  • Suitable blocking agents B) are N-H or O-H functional compounds which react with isocyanates and, at a suitable temperature, permit a crosslinking reaction with a further N-H or O-H functional compound.
  • suitable blocking agents are dimethylpyrazole, diisopropylamine, tert-burylbenzylamine, butanone oxime, ⁇ -caprolactam, ethoxyethanol, isopropoxyethanol and other alcohols such as carbitols.
  • Secondary amines such as e.g. Dibutylamine or other oximes such as e.g. Cyclohexanone oxime or acetone oxime can be used.
  • An overview of suitable blocking agents in principle can be found e.g.
  • the ratio of isocyanate groups to the blocking agent is generally 1: 1, but can also have a value of 0.5: 1 to 2: 1.
  • a ratio of 0.9: 1 to 1.1: 1 is preferred, particularly preferably from 0.95: 1 to 1: 1.
  • the blocked polyisocyanates (a) can be prepared by methods known per se. For example, one or more polyisocyanates can be introduced and the blocking agent can be metered in (for example for about 10 minutes) with stirring. The mixture is stirred until free isocyanate can no longer be detected. It is also possible to block one or more polyisocyanates with a mixture of two or more (possibly also not according to the invention) blocking agents.
  • the blocked polyisocyanates can of course also be prepared in solvents. These can either be distilled off again in the further production steps or else they remain in the product.
  • blocked polyisocyanates (a) used according to the invention are hydrophilized ionically, nonionically or by both methods according to methods known per se and are dissolved or dispersed in this after the addition of water. Catalysts, cosolvents and other auxiliaries and additives can also be used in the preparation of the polyisocyanates.
  • the aqueous one-component stoving systems can also be produced by mixing non-blocked or only partially blocked polyisocyanates with polyesters, polyacrylates, polyacrylate- and polyurethane-modified polyesters containing hydrophilic groups and then converting them into a dispersion.
  • Ionic or potentially ionic compounds C1) and / or compounds C2 as nonionic hydrophilizing agents are suitable as further structural components C.
  • Ionic or potentially ionic compounds Cl are, for example, mono- and dihydroxycarboxylic acids, mono- and diaminocarboxylic acids, mono- and dihydroxysulfonic acids, mono- and diaminosulfonic acids as well as mono- and dihydroxyphosphonic acids or mono- and diaminophosphonic acids and their salts such as dimethylolpropionic acid, hydroxypivalic acid, N - (2-Aminoethyl) -ß-alanine, 2- (2-amino ⁇ efhyl-amino) -ethanesulfonic acid, ethylenediamine-propyl- or butylsulfonic acid, 1,2- or 1,3-propylene-diamine-ß-ethylsulfonic acid, lysine , 3,5-diaminobenzoic acid, the
  • Preferred ionic or potential ionic compounds C1 are those which have carboxy or carboxylate and / or sulfonate groups and / or ammonium groups.
  • Particularly preferred ionic compounds are those which contain carboxyl and / or sulfonate groups as ionic or potentially ionic groups, such as the salts of N- (2-aminoethyl) -ß-alanine, 2- (2-aminoethylamino) ethanesulfonic acid, the hydrophilizing agent according to Example 1 from EP-A 0 916 647 and dimethylolpropionic acid.
  • Construction components C3 which are described below as compounds (b) can also be used.
  • the hydroxy components covered by the components C1, C2 and C3 described can contain double bonds which can originate, for example, from long-chain aliphatic carboxylic acids or fatty alcohols. Functionalization with olefinic double bonds is possible, for example, by incorporating allylic groups or acrylic acid or methacrylic acid and their respective esters. This results in the possibility of using these substances for subsequent oxidative crosslinking using siccatives (Co +3 ) in the presence of atmospheric oxygen compounds or by UV radiation for further crosslinking.
  • PUR dispersions after dispersion in or with water, which by their nature are aqueous 1-component PU coating systems.
  • PUR dispersions can also contain nonionically hydrophilic compounds C2 such as Polyoxyalkylene ethers containing at least one hydroxyl or amino group.
  • C2 nonionically hydrophilic compounds
  • polyethers contain from 30% by weight to 100% by weight of building blocks which are derived from ethylene oxide.
  • Linear polyethers with a functionality between 1 and 3 are suitable, but also compounds of the general formula (VI)
  • R 1 and R 2 each independently represent a divalent aliphatic, cycloaliphatic or aromatic radical having 1 to 18 carbon atoms, which can be interrupted by oxygen and / or nitrogen atoms, and
  • R 3 stands for a non-hydroxyterated polyester or preferably polyether.
  • R 3 particularly preferably represents an alkoxy-terminated polyethylene oxide radical.
  • Compounds which have a nonionic hydrophilization and are used as further structural component C2 are, for example, monovalent polyalkylene oxide polyether alcohols which have a statistical average of 5 to 70, preferably 7 to 55, ethylene oxide units per molecule, as are obtainable in a manner known per se by alkoxylation of suitable starter molecules (eg in Ullmann's Encyclopedia of Technical Chemistry, 4th edition, Volume 19, Verlag Chemie, Weinheim pp. 31-38).
  • Suitable starter molecules are, for example, saturated monoalcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, the isomeric pentanols, hexanols, octanols and nonanols, n-decanol, n-dodecanol, n-tetradecanol, n - Hexadecanol, n-octadecanol, cyclohexanol, the isomeric methylcyclohexanols or hydroxymethylcyclohexane, 3-ethyl-3-hydroxymethyloxetane, or tetrahydrofurfuryl alcohol; Diethylene glycol monoalkyl ethers such as diethylene glycol monobutyl ether; unsaturated alcohols such as allyl alcohol, 1,1-dimethylallyl
  • Preferred starter molecules are saturated monoalcohols and diethylene glycol monoalkyl ethers.
  • Diethylene glycol monobutyl or methyl ether is particularly preferably used as the starter molecule.
  • Alkylene oxides suitable for the alkoxylation reaction are, in particular, ethylene oxide and propylene oxide, which can be used in the alkoxylation reaction in any order or in a mixture.
  • the polyalkylene oxide polyether alcohols are either pure polyethylene oxide polyethers or mixed polyalkylene oxide polyesters whose alkylene oxide units consist of at least 30 mol%, preferably at least 40 mol%, of ethylene oxide units.
  • Preferred nonionic compounds are monofunctional mixed polyalkylene oxide polymers which have at least 40 mol% of ethylene oxide and at most 60 mol% of propylene oxide units.
  • Combinations of ionic and nonionic hydrophilizing agents can also be used to hydrophilize the PUR dispersions according to the invention.
  • cationic hydrophilizing agents can also be used. If the former is the case, combinations of anionic and nonionic hydrophilizing agents are preferably used.
  • the polyisocyanates are either self-crosslinking polymers or else crosslinking agents for any compounds having groups (b) which are reactive toward polyisocyanates.
  • Suitable compounds of the type (b) mentioned which can also be used as mixtures are: Polymers containing polyhydroxy polyesters, polyhydroxy polyethers or hydroxyl groups, for example the polyhydroxy polyacrylates known per se.
  • the compounds generally have a hydroxyl number of 20 to 200, preferably 50 to 130, based on 100% products.
  • polyhydroxyl polyacrylates are known copolymers of styrene with simple esters of acrylic acid and / or methacrylic acid, with the purpose of introducing the hydroxyl groups into hydroxyalkyl esters, such as, for example, the 2-hydroxyethyl, 2-hydroxypropyl, 2-, 3- or 4-hydroxybutyl esters of these acids can also be used.
  • Suitable polyether polyols are the ethoxylation and / or propoxylation products of suitable 2- to 4-valent starter molecules known per se from polyurethane chemistry, e.g. Water, ethylene glycol, propanediol, tri-methylolpropane, glycerin and / or pentaeiyfhrite.
  • polyester polyols are, in particular, the reaction products of polyhydric alcohols known per se in polyurethane chemistry, for example alkane polyols of the type just mentioned with excess amounts of polycarboxylic acids or polycarboxylic anhydrides, in particular dicarboxylic acids or dicarboxylic anhydrides.
  • Suitable polycarboxylic acids or polycarboxylic acid anhydrides are, for example, adipic acid, phthalic acid, isophthalic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, maleic acid, maleic acid anhydride, their Diels-Alder adducts with cyclopereic acid or dimeric fatty acids, fumaric acids or fumaric acids, fumaric acids or fumaric acids, dimeric or dimeric fatty acids, dimeric or dimeric fatty acids, fumaric acids or fumaric acids, dimeric or dimeric fatty acids, fumaric acids or fumaric acids, dimeric or dimeric fatty acids, fumaric acids or fumaric acids, dimeric or dimeric fatty acids, fumaric acids or fumaric acids, dimeric or dimeric fatty acids, fumaric acids or fumaric acids, dimeric or dimeric fatty acids, fumaric acids or fumaric acids, di
  • polyester polyols are produced by known methods, e.g. in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 2, G. Thieme-Verlag, 1963, pages 1 to 47.
  • the hydrophilic modification of these polyhydroxyl compounds which may be required is carried out according to methods known per se, such as are disclosed, for example, in EP-A 0 157 291 or EP-A 0 427 028.
  • polyol component (b) in the one-component systems according to the invention are 2- to 6-valent alcohols and / or mixtures thereof which have no ester groups.
  • Typical examples are ethanediol-1,2, propanediol-1,2 and 1,3, butanediol-1,4, -1,2 or -2,3, Hexanediol-1,6, 1,4-dihydroxycyclohexane, glycerol, trimethylolethane, trimethylolpropane, pentaerythritol and sorbitol:
  • alcohols with ionic groups or groups which can be converted into ionic groups can also be used.
  • 1,4- or 1,3-butanediol, 1,6-hexanediol and / or trimethylolpropane are also be used.
  • component (b) compounds (such as ethanolamine and its derivatives) containing amino groups can also be used as component (b).
  • Diamines such as hexamethylenediamine, ethylenediamine, isophoronediamine or hydrazine and / or its derivatives can also be used.
  • the ratio of the groups which are reactive towards the blocked isocyanates to the blocked isocyanates can be varied within a wide range and will generally be 0.5: 1 to 2: 1. A ratio of 1: 1 or 1.5: 1 is preferred.
  • the one-component stoving enamels according to the invention contain organic and / or inorganic vanadium compounds as catalysts (c).
  • vanadium compounds in which the latter has an oxidation state greater than or equal to + 4 are suitable as vanadium compounds. They could be soluble as well as partially soluble or insoluble in the emcomponent stoving system to be catalyzed. They can be organic or inorganic in nature; mixtures of different vanadium compounds can also be used, as can mixtures of the vanadium compounds with other catalysts such as amines and / or tin or bismuth compounds.
  • Examples of preferred vanadium compounds are ammonium, lithium, sodium, potassium vanadate, lithium, sodium, potassium orthovanadate, magnesium vanadate, calcium vanadate, vanadyl (IV) acetylacetonate (NO (C 5 H 7 0 5 ) 2 ), Nanadyl-bis-tetramethylheptadionate NO (TMHD) 2 , nanadic acid.
  • vanadium in the oxidation state + 4 and + 5 are preferred.
  • Derivatives of vanadium acid or orthovanadium acid are therefore preferred.
  • vanadium compounds, especially orthovanadates can carry out condensation reactions without experiencing a change in the oxidation number of the vanadium.
  • the use of these polyvanadium anions is also according to the invention.
  • orthovanadates with very different amounts of water of crystallization may occur, which would impair their effectiveness as catalysts.
  • these can be complexes with alcohols, phenols, sugars, organic acids, (poly) ethers, etc. Lithium and sodium vanadate are particularly preferred.
  • the vanadium compounds are used in amounts of 0.01 to 5% by weight, preferably 0.1 to 2% by weight, particularly preferably 0.2 to 1% by weight, based on the sum of components (a), ( b) and (e) added.
  • the addition can be made to any component (a), (b), (d) or (e) or mixtures thereof, both during production and subsequently to the respective component or to the finished lacquer. It is preferred to add either component (a) or (b) or mixtures thereof during the preparation.
  • the vanadium compounds according to the invention are particularly preferably added to the respective components before the dispersing water is added.
  • the vanadium compounds according to the invention can be added as a finely ground solid, as a suspension in any liquids or as a solution.
  • the one-component braking systems according to the invention contain water and / or organic solvents or mixtures thereof as solvents (d).
  • solvents can be used as organic solvents.
  • the solvents used in the paint industry such as xylene, butyl acetate, ethyl acetate, butyl glycol acetate are preferred, methoxypropyl acetate, hydrocarbons such as Solvesso ® (Exxon Mobile Chemicals) 100, N-methylpyrrolidone.
  • customary additives and other auxiliaries e.g. pigments, fillers, leveling agents, defoamers, catalysts
  • further catalysts other than (c) can also be added to the formulations.
  • the lacquers, paints and other formulations are produced from the one-component stoving systems according to the invention by methods known per se. Regardless of the manufacturing method chosen, the one-component stoving systems according to the invention contain the individual components (a) to (e) described above, the amounts of (a) + (b) being from 20 to 89.9 parts by weight, (c) from 0, 01 to 5 parts by weight, the amount of (d) from 10 to 75 parts by weight and of (e) 0 to 10 parts by weight, with the proviso that the sum of the parts by weight of the individual components (a) to (e ) Is 100.
  • the one-component penetration systems according to the invention preferably contain the above-described individual components (a) to (e), with the proviso that a total of 100 parts by weight results, the amounts of (a) + (b) 30 to 69, 9 parts by weight, (c) from 0.01 to 2 parts by weight, the amount of (d) from 30 to 70 parts by weight and (e) from 0 to 8 parts by weight.
  • the one-component stoving systems according to the invention are used for the production of stoving lacquers, e.g. used for industrial painting and automotive painting. These stove enamels can e.g. Primers, fillers and top coats.
  • the stoving lacquers can contain pigments or be pure top coats.
  • the coating compositions according to the invention can be applied by rakehi, dipping, spray application such as compressed air or airless spraying, and by electrostatic application, for example high-speed rotary bell application.
  • the dry film layer thickness can be, for example, 10-120 ⁇ m.
  • the dried films are cured by baking in temperature ranges from 90-160 ° C, preferably 110-140 ° C, particularly preferably at 120-130 ° C.
  • the substrates coated with coatings obtainable from preparations based on the one-component stoving systems according to the invention are likewise the subject of the present invention.
  • a polyester polyacrylate made from a polyester polyol from 1,6-hexanediol, trimethylolpropane, peanut oil fatty acid, maleic anhydride and phthalic acid anhydride and an OH number of 136 were grafted with a mixture of butyl acrylate, Methyl methacrylate and hydroxypropyl methacrylate and acrylic acid, added and stirred for 20 minutes. Then 115.5 g (1.296 eq) of dimethylethanolamine were added and stirring was continued for 10 minutes.
  • vanadium catalysts can result in better chemical resistance.
  • the pendulum hardness also increases.
  • the crosslinking temperature is reduced by approx. 20 ° C.
  • the comparative example shows the clear increase in pendulum hardness and the solvent resistance of the coating system after curing through the catalysis of vanadate compounds.
  • Examples 5 to 11 show the clear increase in pendulum hardness and the solvent resistance of the coating system after curing through the catalysis of vanadate compounds.
  • the employed blocked polyisocyanate is hexamethylene diisocyanate trimer blocked with 3,5-dimethylpyrazole (Desmodur ® VP LS 2253, Bayer AG).
  • the polyol used was a polyester polyacrylate composed of a polyester polyol composed of 1,6-hexanediol, trimethylolpropane, peanut oil fatty acid, maleic anhydride and phthalic anhydride and an OH number of 136, grafted with a mixture of butyl acrylate, methyl methacrylate and hydroxypropyl methacrylate and acrylic acid.
  • the employed blocked polyisocyanate is hexamethylene diisocyanate trimer blocked with 3,5-dimethylpyrazole (Desmodur ® VP LS 2253, Bayer AG), to the proportionately diisocyanate isophorone the (JJPDI) Z4470, Bayer AG, Leverkusen, was added (by prereaction with the PES-PUR polyol described below.
  • PES-PUR polyol is used as the polyol (Bayhydrol VP LS 2056, Bayer AG, Leverkusen, OH content 1.7% by weight), consisting of Neopentylglycol, propylene glycol, trimethylolpropane, adipic acid, isophthalic acid, dimethylolpropionic acid, hexamethylene diisocyanate, N-methylpyrrolidone, dimethylethanolamine, and water.
  • the solids content is 47%.
  • Examples 6 to 15 show that the stoving temperatures of the aqueous IK systems can be reduced by approximately 20 ° C. in the presence of the vanadium catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Einkomponenten-Polyurethan-Systeme, deren Herstellung und Verwendung zur Herstellung von Lacken, Farben und Klebstoffen.

Description

EINKOMPONENTIGE POLYURETHAN-BESCHICHTIGUNGSSYSTEME ENTHALTEND VIERWERTIGE VANADIUM- KATALYSATOREN
Die vorliegende Erfindung betrifft neue Einkomponenten-Polyurethan-Systeme, deren Herstellung und Verwendung zur Herstellung von Lacken, Farben und Klebstoffen.
Einkomponenten(lK)-Embremιsysteme auf Polyurethanbasis sind bei Raumtemperatur lager- stabile, in der Hitze härtbare Rohstoffe zur Herstellung von Lacken, Farben und Klebstoffen. Sie bestehen in der Regel aus blockierten Polyisocyanaten, die bei der thermischen Aushärtung mit Hydroxylgruppen enthaltenden Polyestern, Polyacrylaten, anderen hydroxyfunktionalen Polymeren bzw. Gemischen verschiedener Polymere abreagieren. Eine andere Möglichkeit, Rohstoffe für bei Raumtemperatur lagerstabile Einbrennlacke zu erhalten, ist die teilweise Blockierung der Isocyanatgruppen von Polymeren, die sowohl blockierte Isocyanat- als auch Hydroxylgruppen enthalten.
Die wichtigsten Verbindungen, die zur Blockierung von Polyisocyanaten bzw. lK-Einbrenn- systemen eingesetzt werden, sind ε-Caprolactam, Methyl-ethyl-ketoxim (Butanonoxim), sekundäre Amine sowie Triazol- und Pyrazolderivate, so wie sie z.B. in EP-A 0 576 952, EP-A 0 566 953, EP-A 0 159 117, US-A 4 482 721, WO 97/12924 oder EP-A 0 744 423 beschrieben sind. Auch eine Blockierung mit Malonsäureester ist möglich. Bei dieser Art der Blockierung wird jedoch nicht das Blockierungsmittel zurückgespalten, sondern es erfolgt eine Umesterungsreaktion am Malonsäurediethylester Rest.
Je nach verwendetem Blockierungsmittel werden bei der Herstellung von Beschichtungen aus den lK-PUR-Einbrennsy stemen Temperaturen von 100-160°C verwendet. Die Auswahl des geeigneten Blockierungsmittels beim jeweiligen System erfolgt aber nicht nur nach der Einbrenntemperatur. Auch andere Faktoren wie beispielsweise Vergilbungsneigung, Geruch und Lagerstabilität der Systeme spielen eine wichtige Rolle. Da man gerade in letzter Zeit bestrebt ist, die Einbrenntemperatur von Lacksystemen möglichst niedrig zu halten, muss jeweils ein Kompromiss bezüglich der Zusammensetzung der Lacke und den Eigenschaften der Beschichtung gefunden werden. Daraus erkennt man, dass ein Bedarf an neuen Einbrennsystemen besteht, die bereits bei niedrigeren Einbrenntemperaturen optimale anwendungstechnische Eigenschaften aufweisen.
In der Vergangenheit wurden schon viele Versuche unternommen, die Einbrenntemperatur von lK-Systemen durch den Einsatz von Katalysatoren herabzusetzen. So werden z.B. in der EP- A 0 761 705 organische Wismut- Verbindungen für die Katalyse von teilweise oder ganz blockierten Polyisocyanaten beansprucht. Die US-A 5 859 165 beschreibt Reaktionsprodukte von Mangan, Kobalt, Nickel, Kupfer, Zink, Germanium, Antimon oder Wismut bzw. deren Oxiden als Katalysatoren für blockierte Poly(thio-)isocyanate. In der EP-A 0 726 284 werden allgemein Metallsalze und/oder Metallkomplexe zur Katalyse der Reaktion von blockierten Polyisocyanaten mit Polyolen beschrieben, in den Beispielen werden allerdings lediglich Dibutylzinndilaurat und -acetat konkret offenbart.
Um die Verwendung von organischen Lösungsmitteln zu reduzieren und damit die Emission dieser Lösungsmittel in die Umwelt zu reduzieren, und um die Arbeitsbedingungen in der Lackierstrasse durch eine verringerte Lösungsmittelemission zu verbessern, wurden in den letzten Jahren 1K Beschichtungssysteme entwickelt, die als überwiegenden Lösemittelbestandteil das Lösungsmittel Wasser enthalten. Einen Überblick über diese Technik geben D. A. Wicks und Z. W. Wicks in Progress in Organic Coatings 2001, 41(1-3), 1-83. Diese Technik befindet sich in zunehmender Verbreitung. Die Gegenwart des Lösungsmittels bzw. des Dispergiermittels Wasser stellt an die Verwendung von Katalysatoren andere Ansprüche, als dies bei sogenannten Lösungsmittel- haltigen Systemen der Fall ist. So muss bei letzteren bei der Verwendung der Katalysatoren nicht darauf geachtet werden, dass der verwendete Katalysator Wasser- bzw. Hydrolyse-stabil ist. Die gängigen Katalysatoren, die in lösungsmittelhaltigen lK-Systemen Anwendung finden, können daher nicht regelmäßig in sogenannten wässrigen Systemen eingesetzt werden. Bekamite Vertreter derartiger Katalysatoren, die über eine hohe Wirksamkeit (also eine deutliche Absenkung der Ein- brenntemperaturen) verfügen sind z.B. Wismut-2-ethylhexanoat oder organische Zmn-IV-Verbin- dungen wie z.B. Dibutylzinndilaurat (DBTL). Daneben sind eine Reihe weiterer Verbindungen bekannt geworden, die in dem oben zitierten Artikel von Wicks et al. beschrieben wurden. Es ist ebenso bekannt, dass Wismut-carboxylate in Wasser hydrolysiert werden.
Bislang sind nur wenige Katalysatoren für die Beschleunigung der Aushärtung von wässrigen EinKomponenten Systemen bekannt geworden. In der WO 95/04093 werden Systeme auf Organo- Zinn-Basis geschildert. Es handelt sich hierbei um Katalysatoren, die insbesondere in Systemen für die Elektrotauchlackierung eingesetzt werden, bei der die Aushärtung üblicherweise bei hohen Temperaturen von ca. 170°C und mehr erfolgt. Die jeweils verwendeten Blockierungsmittel und Polyisocyanate sind in den Beispielen nicht genannt. Allerdings ist die Verwendung von Organo- Zinn Katalysatoren aufgrund ökologischer Erwägungen nicht wünschenswert. Die Wirksamkeit dieser und anderer Katalysatoren im Vergleich zu anderen Katalysatorsystemen wird auch in der folgenden Anmeldung beschrieben.
Es werden in der Beschreibung der WO 00/47642, Seite 4, sehr spezielle Beispiele für Katalysatoren für 1K- Wasser Anwendungen genannt. So werden Organo-Zinn- und Bleiverbindungen beschrieben, deren Einsatz in Beschichtungen aus ökologischen Gesichtspunkten jedoch nicht wünschenswert ist. Weiterhin findet sich in der WO 00/47642 ein Hinweis auf einen Katalysator für wässrige Ein- komponenten Systeme, der auf der Umsetzung von Wismutoxid mit einer Carbonsäure mit einer Kohlenstoff-Kettenlänge von Cπ bis C36 basiert. Zwar findet bei diesem System auch eine Hydrolyse des Katalysators statt, allerdings soll sich der Katalysator bei den relativ hohen Einbrenntemperaturen von mehr als 165°C bis zu 180°C wieder aus den Bestandteilen bilden und über eine hohe katalytische Aktivität verfügen. Die Verwendung dieses Katalysatorsystems ist jedoch an sehr spezielle Harze bzw. Alkoholkomponenten gekoppelt.
Die Wirksamkeit des beschriebenen Katalysatorsystems ist nur für spezielle, in diesem Fall kationisch hydrophilierte Harze beschrieben, d.h. solche, die durch Umsetzung z.B. eines Bisphenol A haltigen Expoxydliarzes mit einem Amin erhalten werden. Je nach verwendetem Amin (primär, sekundär, tertiär) und in Gegenwart eines Überschusses des Epoxydharzes und in Gegenwart von Wasser und Neutralisationssäure kann es auch zur Bildung von quartären Ammoniumgruppen kommen. Somit ist das Harz grundsätzlich aminhaltig, was für die Entwicklung eines Automobil- Füllers, der eine niedrige Vergilbung und eine gute Langzeitbeständigkeit haben soll, ungeeignet ist.
Ein wässriges 1K-PUR System könnte alternativ zur kationischen Hydrophilierung durch den Zusatz von oberflächenaktiven Substanzen oder Emulgatoren hergestellt werden. Für ein so derartiges Lacksystem ist das dort vorgestellte Katalysatorsystem nicht beschrieben.
Weiterhin ist ein Hydrophilierung mit z.B. anionischen Hydophilierungen (z.B. durch Carbon- säuren) oder nichtionische Hydrophilierungen wie z.B. durch Polyether (eingebaut in das Harz und nicht wie bei den Emulgatoren als einzelner Bestandteil) zur Herstellung eines wässrigen 1K- Systems möglich. Für ein solches Lacksystem ist das dort vorgestellte Katalysatorsystem jedoch ebenfalls nicht beschrieben worden.
Aufgrund der unterschiedlichen Möglichkeiten der Hydrophilierung von lK-Systemen (kationisch, durch Emulgatoren, durch anionische oder nichtionische Hydrophilierung) ist die Verwendung und Wirksamkeit des in der WO 00/47642 beschriebenen Katalysatorsystems in anderen als kationisch hydrophilierten Systemen nicht naheliegend. So kann die kationische Hydrophilierung z.B. durch Ammoniumsalze als Ligand zur Stabilisierung wirken. Diese stabilisierende Wirkung entfällt bei den lK-Systemen, die nicht kationisch hydrophiliert sind.
Weiterhin werden in der vorgenannten Publikation nur Alkohol-blockierte Isocyanate beschrieben. Ein typisches Blockierungsmittel für die Blockierung des dort ausschließlich beschriebenen Iso- cyanats (polymeres) MDI (Methylenphenyldiisocyanat) ist das Butoxyethoxyethanol (Butyl Carbitol). Daneben sind auch 2-Ethoxy-ethanol und 2-Methoxyethanol genannt. Die Abspaltung dieses Blockierungsmittels (eigentlich handelt es sich um eine Urethanspaltung) erfordert hohe Temperaturen, es wird bei Temperaturen von 165-180°C über einen Zeitraum von 20 Minuten eingebrannt.
Für die angestrebte Verwendung als Beschichtungsmittel für Automobile ist es wünschenswert, Katalysatoren zu finden, die die Aushärtung eines Ein-Komponenten Systems bei Temperaturen von maximal 140°C ermöglichen, vorzugsweise bei noch niedrigerer Temperatur.
Somit ist derzeit kein Katalysator bekannt, dessen Einsatz m wässrigen Systemen auf Basis einer großen Bandbreite von Blockierungsmitteln, blockierten (Poly-)Isocyanaten und Hydrophilierungs- methoden es ermöglichen würde, die Einbrenntemperaturen auf das gewünschte Maß abzusenken.
Es bestand damit die Aufgabe, einen allgemein verwendbaren Katalysator zu finden, der bei niedrigen Einbrenntemperaturen wirksam ist und mit einer Vielzahl von Blockierungsmitteln und Harzen und Hydrophilierungsmitteln wirkt. Gleichzeitig sollten ökologische Gesichtspunkte berücksichtigt werden.
Diese Aufgabe wurde mit der Bereitstellung der erfϊndungsgemäßen Katalysatoren auf der Basis von bestimmten Vanadiumverbindungen gelöst.
Die Verwendung von Vanadiumverbindungen zur Katalyse von blockierten Polyisocyanaten bzw. Einkomponenten-Einbrennsystemen war bisher nicht bekannt. Für die Verwendung als Katalysator kommen insbesondere die Verbindungen des Vanadiums in ihren höheren Oxidationsstufen in Frage. Verbindungen des Vanadiums z.B. in der Oxidationsstufe + 5 (z.B. Vanadiumoxidtriethylat als Vanadiumsäureester zur Herstellung von Polyurethanen) (siehe auch DE-A 1 921 952) oder auch in Saunders/Frisch: High Polymers, Vol. XVI (1962), S. 169) wurden zur Katalyse der Reaktionen von nicht blockierten Isocyanaten mit Alkoholen eingesetzt. DE-A 1 921 952 schließt aber zugleich die Verwendung von Vanadiumverbindungen in Wasser enthaltenden Systemen aus (aufgrund der Hydrolysetendenz der Vanadiumoxidalkoholate) und beschreibt nur die Vanadium- oxidtrialkoholate. Die Beschleunigung der Reaktion von blockierten Isocyanaten mit z.B. Polyolen in Gegenwart von Vanadiumverbindungen wurde somit vom Stand der Technik nicht nahegelegt.
Es wurde gefunden, dass durch die Verwendung der erfindungsgemäßen Katalysatoren in lK- Systemen auf Basis von blockierten Isocyanaten die Einbrenntemperatur je nach eingesetztem Blockierungsmittel um ca. 20°C abgesenkt werden kann. Damit können niedrige Einbrenntempe- raturen von ca. 130°C erreicht werden. Die erfϊndungsgemäßen Katalysatoren smd allerdings bereits bei einer niedrigen Temperatur, beispielsweise von 120°C, ausreichend aktiv, wie in den folgenden Beispielen gezeigt wird. Gegenstand der vorliegenden Erfindung sind Einkomponenten-Einbrennsysteme auf Polyurethanbasis, dadurch gekennzeichnet, dass sie eine oder mehrere organische und/oder anorganische Verbindungen des Vanadiums enthalten, in welchen das Vanadium eine Oxidationsstufe von mindestens +4 hat.
Vorzugsweise sind diese Einkomponentensysteme dadurch gekennzeichnet, dass sie
(a) blockierte Polyisocyanate,
(b) Polymere mit gegenüber Polyisocyanaten reaktiven Gruppen,
(c) eine oder mehrere organische und/oder anorganische Verbindungen des Vanadiums enthalten, in welchen das Vanadium eine Oxidationsstufe von mindestens +4 hat,
(d) Wasser und/oder organische Lösemittel oder Lösemittelgemische und
(e) gegebenenfalls weitere Zusatzstoffe und Hilfsmittel
enthalten, wobei die Mengen an (a) + (b) 20 bis 89,9 Gew.-Teile, (c) 0,01 bis 5 Gew.-Teile, (d) 10 bis 70 Gew.-Teile und (e) 0 bis 10 Gew.-Teile betragen und die Summe der Gew.-Teile der Komponenten (a) bis (e) 100 beträgt.
Gegenstand der Erfindung sind auch Verfahren zur Herstellung der Einkomponenten-Einbrennsysteme der allgemeinen Zusammensetzung (a) bis (e).
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Einkomponenten-Einbrennsysteme zur Herstellung von Lacken, Farben und anderen Einbrennsystemen wie Klebstoffen oder Elastomeren und die daraus hergestellten Beschichtungen.
Die erfmdungsgemäßen lK-Einbrermsysteme enthalten als Veraetzerkomponente blockierte Poly- isocyante (a) wie sie in an sich bekannter Weise durch Umsetzung beliebiger organischer Polyisocyanate A) mit beliebigen Blockierungsmitteln B) und gegebenenfalls weiteren Aufbaukomponenten C) erhältlich sind. Geeignete Polyisocyanate A) zur Herstellung der blockierten Polyisocyanate (a) sind beliebige organische Polyisocyanate, die aus den klassischen Polyurethansystemen zur Vernetzung von Verbindungen mit aktivem Wasserstoff bekannt sind, d.h. aliphatische inklusive der cycloaliphatischen, aromatische und heterocyclische Polyisocyanate mit mindestens zwei Isocyanatgruppen und Gemische davon. Typische Beispiele für geeignete Polyisocyanate A) sind aliphatische Isocyanate wie Di- oder Triisocyanate, z.B. Butandiisocyanat (BDI), Pentandiiso- cyanat, Hexandiisocyanat (HDI), 4-Isocyanatomethyl-l,8-octandiisocyanat (Triisocyanatononan, TEST) oder cyclische Systeme, wie 4,4'-Methylen-bis(cyclohexylisocyanat) (Desmodur® W, Bayer AG, Leverkusen), 3,5,5-Trimethyl-l-isocyanato-3-isocyanatometl ylcyclohexan (IPDI) sowie ω,ω'- Diisocyanato-l,3-dimethylcyclohexan (HβXDI). Beispiele für aromatische Polyisocyanate sind 1,5- Naphthalendiisocyanat, Diisocyanato-diphenylmethan (MDI) bzw. Roh-MDI, Diisocyanatomethyl- benzol (TDI), insbesondere das 2,4 und das 2,6-Isomere und technische Gemische der beiden Isomeren sowie l,3-Bis(isocyanato-methyl)benzol (XDI). Ebenfalls gut geeignet sind auch Polyisocyanate, die durch Umsetzung der Di- oder Triisocyanate mit sich selbst über Isocyanatgruppen erhältlich sind, wie Uretdione oder Carbodiimidverbindungen oder wie Isocyanurate oder Imino- oxadiazindione, die durch Reaktion dreier Isocyanatgruppen gebildet werden.
Als Polyisocyanate geeignet sind auch oligomere Polyisocyanate mit Biuret-, Allophanat- und Acylharnstoff-Strukturelementen sowie beliebige Gemische der genanten Polyisocyanate. Es können auch Gemische von Polyisocyanaten mit den genannten Struktureinlieiten bzw. Gemische der modifizierten Polyisocyanate mit den monomeren Isocyanaten verwendet werden. Die so modifizierten Polyisocyanate können auch anteilig mit anderen gegenüber Isocyanaten reaktionsfähigen Gruppen präpolymerisiert sein. Anteilig modifizierte Polyisocyanate sind durchaus
1 ' bevorzugt! Gut geeignet sind ebenfalls Polyisocyanatpräpolymere, die durchschnittlich mehr als eine Isocyanatgruppe pro Molekül aufweisen. Sie werden durch Vorreaktion eines molaren Überschusses beispielsweise eines der obengenannten di, Tri- oder Polyisocyanate und modifizierter Polyisocyanate mit einem organischen Material erhalten, das mindestens zwei aktive Wasserstoffatome pro Molekül aufweist, z.B. in Form von Hydroxygruppen. Sie können ähnlich anteilig präpolymerisiert sein wie im nächsten Abschnitt beschrieben.
Weiterhin geeignet sind niedermolekulare, Urethangruppen enthaltende Polyisocyanate, wie sie durch Umsetzung von im Überschuss eingesetztem Diisocyanate, vorzugsweise IPDI oder TDI, mit einfachen mehrwertigen Alkoholen des Molekulargewichtsbereiches 62-300, insbesondere mit Trimethylolpropan oder Glycerin, erhalten werden können.
Geeignete Polyisocyanate A) sind ferner die bekannten, endständige Isocyanatgruppen aufweisenden Prepolymere, wie sie insbesondere durch Umsetzung der oben genannten einfachen Polyisocyanate, vor allem Diisocyanate, mit unterschüssigen Mengen an organischen Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen funktionellen Gruppen zugänglich sind. In diesen bekannten Prepolymeren entspricht das Verhältnis von Isocyanatgruppen zu gegenüber NCO reaktiven Wasserstoffatomen 1,05 : 1 bis 10 : 1, vorzugsweise 1,1 : 1 bis 3 : 1, wobei die Wasserstoffatome vorzugsweise aus Hydroxylgruppen stammen. Die Art und Mengenverhältnisse der bei der Herstellung von NCO-Prepolymeren eingesetzten Ausgangsmaterialien werden im übrigen vorzugsweise so gewählt, dass die NCO-Prepolymeren vorzugsweise eine mittlere NCO- Funktionalität von 2 bis 3 und eine zahlenmittlere Molmasse von 500-10000, vorzugsweise 800- 4000 aufweisen.
Bevorzugte Polyisocyanate A) sind solche, die eine Uretdion-, Isocyanurat-, Iminooxadiazü dion-, Acylharnstoff-, Urethan-, Biuret- oder Allophanatstruktur entl alten, wobei diejenigen Polyiso- cyanate auf Basis von 1,6-Hexamethylendiisocyanat, 3,5,5-Trimethyl-l-isocyanato-3-isocyanato- methylcyclohexan (IPDI), ω,ω'-Diisocyanato-l,3-dimethylcyclohexan (H6XDI) sowie 4,4'- Metl ylen-bis(cyclohexylisocyanat) (Desmodur® W, Bayer AG, Leverkusen) bevorzugt sind.
Weiterhin sind als Polyisocyanate A) im Sim e der Erfindung solche freie Isocyanat-gmppen enthaltenden Polymere auf Polyurethan-, Polyester- und /oder Polyacrylat-Basis sowie gegebenenfalls deren Gemische geeignet, bei denen nur ein Teil der freien Isocyanatgruppen mit Blockierungsmitteln umgesetzt wird, während der restliche Teil mit einem Überschuss an Hydroxylgruppen enthaltenden Polyestera, Polyurethanen und/oder Polyacrylaten sowie gegebenenfalls deren Gemischen umgesetzt wird, so dass ein freie Hydroxygruppen enthaltendes Polymer entsteht, das beim Erhitzen auf geeignete Embrem temperaturen ohne Zugabe weiterer Komponenten Isocyanat- gruppen reaktionsfähigen Gruppen vernetzt (selbstvernetzende Einkomponenten-Einbrenn- systeme).
Es können alle genannten Polyisocyanate auch als beliebige Gemische untereinander oder auch mit anderen Vernetzern wie mit Melaminharzen zur Herstellung von Lacken, Farben und anderen Formulierungen eingesetzt werden.
Als Blockierungsmittel B) kommen N-H oder O-H funktionale Verbindungen in Betracht, die mit Isocyanaten abreagieren und bei geeigneter Temperatur eine Vernetzungsreaktion mit einer weiteren N-H oder O-H funktionalen Verbindung gestatten. Beispiele für geeignete Blockierungsmittel sind Dimethylpyrazol, Diisopropylamin, tert.-Burylbenzylamin, Butanonoxim, ε-Capro- lactam, Ethoxyethanol, Isopropoxyethanol und andere Alkohole wie Carbitolen. Weiterhin können sekundäre Amine wie z.B. Dibutylamin oder andere Oxime wie z.B. Cyclohexanonoxim oder auch Acetonoxim eingesetzt werden. Eine Übersicht prinzipiell geeigneter Blockierungsmittel findet sich z.B. bei Wicks et al. in Progress in Organic Coatings 1975, 3, S. 73-79, 1981, 9, S. 3-28 und 1999, 36, S. 148-172. Bevorzugt ist die Verwendung von 3,5-Dimethylprazol, Diisopropylamin, tert.-Butylbenzylamin, Butanonoxim sowie Ethoxyethanol.
Das Verhältnis von Isocyanatgruppen zum Blockierungsmittel beträgt im Regelfall 1:1, kann aber auch einen Wert von 0,5:1 bis 2:1 annehmen. Bevorzugt ist ein Verhältnis von 0,9:1 bis 1,1:1, besonders bevorzugt von 0,95:1 bis 1:1. Die Herstellung der blockierten Polyisocyanate (a) kann nach an sich bekannten Methoden erfolgen. Beispielsweise können ein oder mehrere Polyisocyanate vorgelegt und das Blockierungsmittel (beispielsweise während etwa 10 Min.) unter Rühren zudosiert werden. Es wird so lange gerührt, bis kein freies Isocyanat mehr nachweisbar ist. Es ist auch möglich, ein oder mehrere Polyisocyanate mit einem Gemisch aus zwei oder mehreren (gegebenenfalls auch nicht erfindungsgemäßen) Blockierungsmitteln zu blockieren. Die Herstellung der blockierten Polyisocyanate kann selbstverständlich auch in Lösungsmitteln erfolgen. Diese können entweder bei den weiteren Herstellschritten wieder abdestilliert werden oder aber sie verbleiben im Produkt.
Eine weitere Möglichkeit zur Herstellung der erfϊndungsgemäß eingesetzten blockierten Poly- isocyanate (a) besteht darin, dass sie nach an sich bekanntem Verfaliren ionisch, nichtionisch oder nach beiden Methoden hydrophiliert und nach Zugabe von Wasser in diesem gelöst oder disper- giert werden. Bei der Herstellung der Polyisocyanate können auch Katalysatoren, Colöser und andere Hilfsmittel und Additive verwendet werden. Die Herstellung der wässrigen Einkom- ponenten-Einbrennsysteme kann auch so erfolgen, dass nicht oder nur teilweise blockierte Poly- isocyanate mit hydrophile Gruppen enthaltenden Polyestern, Polyacrylaten, Polyacrylat- und Poly- urethan-modifϊzierten Polyestern vermischt und anschließend in eine Dispersion überführt werden.
Als weitere Aufbaukompoήenten C geeignet sind ionische oder potentiell ionische Verbindungen Cl) und/oder als nichtionische Hydrophilierungsmittel Verbindungen C2. Ionische oder potentiell ionische Verbindungen Cl sind z.B. Mono- und Dihydroxy carbonsäuren, Mono- und Diamino- carbonsäuren, Mono- und Dihydroxysulfonsäuren, Mono- und Diaminosulfonsäuren sowie Mono- und Dihydroxyphosphonsäuren bzw. Mono- und Diaminophosphonsäuren und ihre Salze wie Dimethylolpropionsäure, Hydroxypivalinsäure, N-(2-Aminoethyl)-ß-alanin, 2-(2-Amino~efhyl- amino)-ethansulfonsäure, Ethylendiamin-propyl- oder butylsulfonsäure, 1,2- oder 1,3-Propylen- diamin-ß-ethylsulfonsäure, Lysin, 3,5-Diaminobenzoesäure, das Hydrophilierungsmittel gemäß Beispiel 1 aus der EP-A 0 916 647 und deren Alkali- und/oder Ammoniumsalze; das Addukt von Natriumbisulfit an Buten-2-diol-l,4, Polyethersulfonat, das propoxylierte Addukt aus 2-Butendiol und NaHS03 (z.B. in der DE-A 2 446 440, Seite 5-9, Formel I-ILT) sowie in kationische Gruppen überführbare Bausteine wie N-Methyl-diethanolamin als hydrophile Aufbaukomponenten.
Bevorzugte ionische oder potentielle ionische Verbindungen Cl sind solche, die über Carboxy- oder Carboxylat- und/oder Sulfonatgruppen und/oder Ammoniumgruppen verfügen. Besonders bevorzugte ionische Verbindungen sind solche, die Carboxyl- und/oder Sulfonatgruppen als ionische oder potentiell ionische Gruppen enthalten, wie die Salze von N-(2-Aminoethyl)-ß-alanin, 2-(2-Amino-ethylamino)-ethansulfonsäure, des Hydrophilierungsmittels gemäß Beispiel 1 aus EP- A 0 916 647 sowie der Dimethylolpropionsäure. Als Aufbaukomponenten C3 können auch solche eingesetzt werden, die im folgenden als Verbindungen (b) beschrieben werden.
Die unter die beschriebenen Komponenten Cl, C2 und C3 fallenden Hydroxy-Komponenten können Doppelbindungen enthalten, die z.B. aus langkettigen aliphatischen Carbonsäuren oder Fettalkoholen stammen können. Eine Funktionalisierung mit olefinischen Doppelbindungen ist beispielsweise durch den Einbau allylischer Gruppen oder von Acrylsäure oder Methacrylsäure sowie deren jeweiligen Estern möglich. Hiermit ergibt sich die Möglichkeit, diese Substanzen für eine anschließende oxidative Vernetzung unter Verwendung von Siccativen (Co+3) in Gegenwart von Luftsauerstoff Verbindungen oder durch UV Bestrahlung für eine weitere Vernetzung zu nutzen.
Durch die Wechselwirkung bzw. die Reaktion der Komponenten (a) bis (e) werden nach Disper- gieren in bzw. mit Wasser sogenannte PUR-Dispersionen erhalten, die ihrem Wesen nach wässrige 1K-PUR Lacksysteme sind. Diese PUR-Dispersionen können weiterhin nichtionisch hydro- philierend wirkende Verbindungen C2 wie z.B. Polyoxyalkylenether mit mindestens einer Hydroxy- oder Aminogruppe, enthalten. Diese Polyether enthalten einen Anteil von 30 Gew.-% bis 100 Gew.-% an Bausteinen, die vom Ethylenoxid abgeleitet sind. In Frage kommen linear aufgebaute Polyether einer Funktionalität zwischen 1 und 3, aber auch Verbindungen der allgemeinen Formel (VI),
Figure imgf000010_0001
in welcher
R1 und R2 unabhängig voneinander jeweils einen zweiwertigen aliphatischen, cycloali- phatischen oder aromatischen Rest mit 1 bis 18 C- Atomen, die durch Sauerstoff und/oder Stickstoffatome unterbrochen sein können, bedeuten und
R3 für einen nicht-hydroxyter inierten Polyester oder bevorzugt Polyether steht. Besonders bevorzugt steht R3 für einen alkoxyterminierten Polyethylenoxidrest.
Nichtionisch hydrophilierend wirkende Verbindungen, die als weitere Aufbaukomponente C2 eingesetzt werden, sind beispielsweise auch einwertige, im statistischen Mittel 5 bis 70, bevorzugt 7 bis 55 Etl ylenoxideinheiten pro Molekül aufweisende Polyalkylenoxidpolyetheralkohole, wie sie in an sich bekannter Weise durch Alkoxylierung geeigneter Startermoleküle zugänglich sind (z.B. in Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Band 19, Verlag Chemie, Weinheim S. 31-38). Geeignete Startermoleküle sind beispielsweise gesättigte Monoalkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, sec-Butanol, die isomeren Pentanole, Hexanole, Octanole und Nonanole, n-Decanol, n-Dodecanol, n-Tetradecanol, n- Hexadecanol, n-Octadecanol, Cyclohexanol, die isomeren Methylcyclohexanole oder Hydroxy- methylcyclohexan, 3-Ethyl-3-hydroxymethyloxetan, oder Tetrahydrofurfurylalkohol; Diethylen- glykol-monoalkylether wie beispielsweise Diethylenglykolmonobutylether; ungesättigte Alkohole wie Allylalkohol, 1,1-Dimethylallylalkohol oder Oleinalkohol, aromatische Alkohole wie Phenol, die isomeren Kresole oder Methoxyphenole, araliphatische Alkohole wie Benzylalkohol, Anisalkohol oder Zimtalkohol; sekundäre Monoamine wie Dimethylamin, Diethylamin, Dipropylamin, Diisopropylamin, Dibutylamin, Bis-(2-ethylhexyl)-amin, N-Methyl- und N-Ethylcyclohexylamm oder Dicyclohexylamin sowie heterocyclische sekundäre Amine wie Morpholin, Pyrrolidin, Piperidin oder lH-Pyrazol.
Bevorzugte Startermoleküle sind gesättigte Monoalkohole sowie Diethylenglykol-monoalkylether. Besonders bevorzugt wird Diethylenglykolmonobutyl- oder methy lether als Startermolekül ver- wendet.
Für die Alkoxylierungsreaktion geeignete Alkylenoxide sind insbesondere Ethylenoxid und Propylenoxid, die in beliebiger Reihenfolge oder auch im Gemisch bei der Alkoxylierungsreaktion eingesetzt werden können.
Bei den Polyalkylenoxidpolyetheralkoholen handelt es sich entweder um reine Polyethylenoxid- polyether oder gemischte Polyalkylenoxidpolyetlier, deren Alkylenoxideinheiten zu mindestens 30 mol-% bevorzugt zu mindestens 40 mol-% aus Ethylenoxideinheitβn bestehen. Bevorzugte nichtionische Verbindungen sind monofunktionelle gemischte Polyalkylenoxidpolyetlier, die mindestens 40 mol-% Ethylenoxid- und maximal 60 mol-% Propylenoxideinheiten aufweisen.
Zur Hydrophilierung der erfindungsgemäßen PUR-Dispersionen können auch Kombinationen von ionischen und nichtionischen Hydrophilierungsmitteln verwendet werden. Alternativ können auch kationische Hydrophilierungsmittel verwendet werden. Ist ersteres der Fall, so werden bevorzugt Kombinationen aus anionischen und nichtionischen Hydrophilierungsmitteln eingesetzt.
Die Polyisocyanate sind, wie oben beschrieben, entweder selbstvernetzende Polymere oder aber Vernetzer für beliebige Verbindungen mit gegenüber Polyisocyanaten reaktiven Gruppen (b). Als Verbindungen des genannten Typs (b), die auch als Gemische eingesetzt werden können, kommen in Betracht: Polyhydroxypolyester, Polyhydroxypolyether oder Hydroxylgruppen aufweisende Polymerisate, z.B. die an sich bekannten Polyhydroxypolyacrylate. Die Verbindungen weisen im allgemeinen eine Hydroxylzahl von 20 bis 200, vorzugsweise von 50 bis 130, bezogen auf 100 %ige Produkte, auf.
Bei den Polyhydroxylpolyacrylaten handelt es sich um an sich bekannte Mischpolymerisate von Styrol mit einfachen Estern der Acrylsäure und/oder Methacrylsäure, wobei zwecks Einführung der Hydroxylgruppen Hydroxyalkylester, wie beispielsweise die 2-Hydroxyethyl-, 2-Hydroxy- propyl-, 2-,3- oder 4-Hydroxybutylester dieser Säuren mitverwendet werden.
Geeignete Polyetherpolyole sind die aus der Polyurethanchemie an sich bekannten Ethoxylierungs- und/oder Propoxylierungsprodukte geeigneter 2- bis 4-wertiger Startermoleküle wie z.B. Wasser, Ethylenglykol, Propandiol, Tri-methylolpropan, Glycerin und/oder Pentaeiyfhrit.
Beispiele geeigneter Polyesterpolyole sind insbesondere die in der Polyurethanchemie an sich bekannten Umsetzungsprodukte von mehrwertigen Alkoholen, beispielsweise von Alkanpolyolen der soeben beispielhaft genannten Art mit überschüssigen Mengen Polycarbonsäuren bzw. Polycarbonsäureanhydriden, insbesondere Dicarbonsäuren bzw. Dicarbonsäureanhydriden. Geeignete Polycarbonsäuren bzw. Polycarbonsäureanhydride sind beispielsweise Adipinsäure, Phthalsäure, Isophthalsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydro- phthalsäureanhydrid, Maleinsäure, Maleinsäureanliydrid, deren Diels-Alder-Addukte mit Cyclo- pentadien, Fumarsäure oder dimere bzw. trimere Fettsäuren. Bei der Herstellung der Polyester- polyole können selbstverständlich beliebige Gemische der beispielhaft genannten mehrwertigen Alkohole oder beliebige Gemische der beispielhaft genannten Säuren bzw. Säurβanhydride eingesetzt werden.
Die Herstellung der Polyesterpolyole erfolgt nach bekannten Methoden, wie z.B. in Houben-Weyl, Methoden der organischen Chemie, Band XIV/2, G. Thieme-Verlag, 1963, Seiten 1 bis 47 be- schrieben sind. Die gegebenenfalls erforderliche hydrophile Modifizierung dieser Polyhydroxyl- verbindungen erfolgt nach an sich bekannten Methoden, wie sie beispielsweise in EP-A 0 157 291 oder EP-A 0 427 028 offenbart sind.
Es können auch Gemische dieser Polyole oder aber andere Kombinationen, Polyacrylat- und/oder Polyurethan-modifizierte Polyester eingesetzt werden.
Als Polyolkomponente (b) kommen in den erfϊndungsgemäßen Einkomponenten-Systemen auch 2- bis 6-wertige Alkohole und/oder deren Gemische in Betracht, die keine Ester-Gruppen aufweisen. Typische Beispiele sind Ethandiol-1,2, Propandiol- 1,2 und 1,3, Butandiol-1,4, -1,2 oder -2,3, Hexandiol-1,6, 1,4-Dihydroxycyclohexan, Glycerin, Trimethylolethan, Trimethylolpropan, Pentaerythrit und Sorbit: Selbstverständlich kömien auch Alkohole mit ionischen oder in ionische Gruppen überführbare Gruppen eingesetzt werden. Bevorzugt smd beispielsweise 1,4- oder 1,3- Butandiol, 1,6-Hexandiol und/oder Trimethylolpropan.
Bei der Herstellung der erfϊndungsgemäßen Einkomponenten-Einbreimsysteme können als Komponente (b) auch Aminogruppen enthaltende Verbindungen wie Ethanolamin und dessen Derivate eingesetzt werden. Auch Diamine wie Hexamethylendiamin, Ethylendiamin, Isophorondiamin oder Hydrazin und/oder seine Derivate können eingesetzt werden.
Das Verhältnis der gegenüber den blockierten Isocyanaten reaktiven Gruppen zu den blockierten Isocyanaten kann in einem weiten Bereich variiert werden und wird im Regelfall 0,5:1 bis 2:1 betragen. Bevorzugt wird in einem Verhältnis von 1:1 bzw. 1,5:1 gearbeitet.
Die erfihdungsgemäßen Einkomponenten Einbrennlacke enthalten zur Beschleunigung der Vernetzungsreaktion als Katalysatoren (c) organische und/oder anorganische Vanadiumver- bindungen.
Als Vanadiumverbindungen kommen alle bekannten Verbmdungen des Vanadiums in Frage, in denen dieses eine Oxidationsstufe größer gleich + 4 hat. Sie kömien sowohl löslich als auch partiell löslich oder aber unlöslich in dem zu katalysierenden Emkomponenten-Einbrennsystem sein. Sie können organischer oder aber anorganischer Natur sein; man kann auch Gemische verschiedener Vanadiumverbindungen einsetzen, ebenso Gemische der Vanadiumverbindungen mit anderen Katalysatoren wie Aminen und/oder Zinn- oder Wismutverbindungen.
Beispiele für bevorzugte Vanadiumverbindungen sind Ammonium-, Lithium-, Natrium-, Kalium- vanadat, Lithium-, Natrium-, Kaliumorthovanadat, Magnesiumvanadat, Calciumvanadat, Vanadyl- (IV)-acetylacetonat (NO(C5H705)2), Nanadyl-bis-tetramethylheptadionat NO(TMHD)2, Nanadium- säure.
Bevorzugt im Sinne der Erfindung sind Verbindungen des Vanadiums in der Oxidationsstufe + 4 und + 5. Bevorzugt sind somit Derivate der Vanadiumsäure bzw. der Orthovanadiumsäure. Vanadiumverbindungen, speziell Orthovanadate können in Abhängigkeit vom pH- Wert der Lösung mit sich Kondensationsreaktionen durchführen, ohne eine Wechsel der Oxidationszahl des Vanadiums zu erfahren. Der Einsatz dieser Polyvanadiumanionen ist ebenfalls erfindungsgemäß. Ebenso kömien Orthovanadate mit sehr unterschiedlichen Mengen Kristallwasser anfallen, olme dass dies die Wirksamkeit als Katalysatoren beeinträchtigen würde. Besonders bevorzugt sind Lithiumvanadat Li3V04, Natriumvanadat Na3V04, und Kaliumvanadat K3V0 bzw. Lithium- metavanadat LiV03, Natriummetavanadat NaV03 und Kaliummetavanadat KV03.
Außer den oben genannten Verbindungen kann es sich dabei um Komplexe mit Alkoholen, Phenolen, Zuckern, organischen Säuren, (Poly)ethern usw. handehi. Besonders bevorzugt sind Lithium- und Natriumvanadat.
Die Vanadiumverbindungen werden in Mengen von 0,01 bis 5 Gew.-%, bevorzugt 0,1 bis 2 Gew.-%, besonders bevorzugt 0,2 bis 1 Gew.-%, bezogen auf die Summe der Komponenten (a), (b) und (e), zugegeben. Die Zugabe kann zu beliebiger Komponente (a), (b), (d) oder (e) oder deren Gemischen erfolgen und zwar sowohl während der Herstellung als nachträglich zu der jeweiligen Komponente oder zum fertigen Lack. Bevorzugt ist die Zugabe während der Herstellung entweder der Komponente (a) oder (b) oder deren Gemische. In wässrigen Systemen erfolgt die Zugabe der erfindungsgemäßen Vanadiumverbindungen zu den jeweiligen Komponenten besonders bevorzugt vor der Zugabe des Dispergierwassers. Die erfindungsgemäßen Vanadiumverbindungen können als feingemahlener Feststoff, als Suspension in beliebigen Flüssigkeiten oder als Lösung zugegeben werden.
Die erfindungsgemäßen Einkomponenten Einbremisysteme enthalten als Lösungsmittel (d) Wasser und/oder organische Lösemittel oder deren Gemische.
Als organische Lösungsmittel können alle bekannten Lösemittel verwendet werden. Bevorzugt sind die in der Lackindustrie verwendeten Lösemittel wie Xylol, Butylacetat, Ethylacetat, Butyl- glykolacetat, Methoxypropylacetat, Kohlenwasserstoffe wie Solvesso® (Exxon Mobile Chemicals) 100, N-Methylpyrrolidon.
Außer den blockierten Polyisocyanaten (a) und Polyolen (b) können den Formulierungen üblichen Zusatzstoffe und andere Hilfsmittel (e) (z.B. Pigmente, Füllstoffe, Verlaufsmittel, Entschäumer, Katalysatoren) und gegebenenfalls auch weitere von (c) verschiedene Katalysatoren zugesetzt werden.
Die Herstellung der Lacke, Farben und anderen Formulierungen aus den erfindungsgemäßen Einkomponenten-Einbrennsystemen erfolgt nach an sich bekannten Methoden. Unabhängig von der gewählten Herstellmethode enthalten die erfindungsgemäßen Einkomponenten Einbrennsysteme die vorstehend beschriebenen Einzelkomponenten (a) bis (e), wobei die Mengen von (a) + (b) von 20 bis 89,9 Gew.-Teile, (c) von 0,01 bis 5 Gew.-Teile, die Menge an (d) von 10 bis 75 Gew.-Teile und an (e) 0 bis 10 Gewichtsteile betragen, mit der Maßgabe, dass die Summe der Gewichtsteile der Einzelkomponenten (a) bis (e) 100 beträgt. Bevorzugt enthalten die erfindungsgemäßen Einkomponenten-Einbrermsysteme die vorstehend beschriebenen Einzelkomponenten (a) bis (e) mit der Maßgabe, dass sich zusammen eine Summe von 100 Gew.-Teilen ergibt, wobei die Mengen von (a) + (b) 30 bis 69,9 Gew.-Teile, (c) von 0,01 bis 2 Gew.-Teile, die Menge an (d) von 30 bis 70 Gew.-Teile und (e) von 0 bis 8 Gewichtsteile betragen.
Die erfindungsgemäßen Einkomponenten-Einbrennsysteme werden zur Herstellung von Einbrennlacken, z.B. für die Industrielackierung und bei der Automobilerstlackierung verwendet. Diese Einbrennlacke können z.B. Grundierungen, Füller sowie Decklacke sein. Die Einbrennlacke können Pigmente enthalten oder reine Decklacke sein. Hierzu kömien die erfindungsgemäßen Überzugsmittel durch Rakehi, Tauchen, Spritzauftrag wie Druckluft- oder Airless-Spritzen, sowie durch elektrostatischen Auftrag, beispielsweise Hochrotationsglockenauftrag, aufgetragen werden. Die Trockenfilm-Schichtdicke kann beispielsweise bei 10-120 um liegen. Das Aushärten der getrockneten Filme erfolgt durch Einbrennen in Temperaturbereichen von 90-160°C, bevorzugt 110-140°C, besonders bevorzugt bei 120-130°C.
Die mit aus Zubereitungen auf Basis der erfϊndungsgemäßen Einkomponenten-Einbrennsysteme erhältlichen Beschichtungen beschichteten Substrate sind ebenfalls Gegenstand der vorliegenden Erfindung.
Die nachfolgenden Beispiele erläutern die Erfindung näher.
Beispiele
In den folgenden Beispielen beziehen sich alle Prozentangaben auf das Gewicht.
Herstellung des Selbstvernetzers für Beispiele 1-4
Zu 789,8 g (3,71 Val NCO) eines aliphatischen Polyisocyanats (HDI-Trimerisat, Desmodur® N 3300, Bayer AG, D - Leverkusen) wurden 336,7 g N-Methylpyrrolidon zugegeben. Unter Rühren wurden 374,9 g (3,71 Val) Diisopropylamin innerhalb von 60 Minuten so zugegeben, dass die Temperatur 70°C nicht überstieg. Es wurde 60 Minuten bei 70°C nachgerührt; danach waren IR- spektroskopisch keine Isocyanatgruppen mehr nachweisbar. Bei 70°C wurden 2311 g (5,29 Val Hydroxylgruppen) eines Polyesterpolyacrylats aus einem Polyesterpolyol aus 1,6-Hexandiol, Tri- methylolpropan, Erdnussölfettsäure, Maleinsäureanhydrid und Phthalsäureanliydrid und einer OH- Zahl von 136, gepfropft mit einem Gemisch aus Butylacrylat, Methylmethacrylat und Hydroxy- propylmethacrylat sowie Acrylsäure, zugegeben und 20 Minuten gerührt. Dann wurden 115,5 g (1,296 Val) Dimethylethanolamin zugegeben und 10 Minuten nachgerührt.
Zu je 614 g dieses Reaktionsgemisches wurden bei 70°C die in Tabelle 6 angegebenen Mengen fein pulverisiertes Natriumortliovanadat zugegeben und 30 Minuten nachgerührt. Danach wurden jeweils 581 g 70°C warmes entionisiertes Wasser unter starkem Rühren zugegeben, 60 Minuten nachgerührt und unter Rühren abkühlen gelassen. Die erhaltenen Dispersionen besaßen einen Feststoffgehalt von 45 % und weitere nachfolgende Eigenschaften:
Man sieht, dass durch die Verwendung der Vanadiumkatalysatoren eine bessere Chemikalien- beständigkeit herbeigeführt werden kann. Auch die Pendelhärte nimmt zu. Die Absenkung der Vernetzungstemperatur beträgt ca. 20°C.
Beispiele 1 bis 4:
Figure imgf000017_0001
Das Vergleichsbeispiel belegt die deutliche Zunalime der Pendelhärte und der Lösungsmittelbeständigkeit des Lacksystems nach der Härtung durch die Katalyse von Vanadatverbindungen. Beispiele 5 bis 11:
Figure imgf000018_0001
Bei dem eingesetzten blockierten Polyisocyanat handelt es sich um ein Hexamethylendiisocyanat Trimer, das mit 3,5-Dimethylpyrazol blockiert wurde (Desmodur® VP LS 2253, Bayer AG). Als Polyol fand ein Polyesterpolyacrylats aus einem Polyesterpolyol aus 1,6-Hexandiol, Trimethylolpropan, Erdnussölfettsäure, Maleinsäureanhydrid und Phthalsäureanliydrid und einer OH-Zahl von 136, gepfropft mit einem Gemisch aus Butylacrylat, Methylmethacrylat und Hydroxypropyl- methacrylat sowie Acrylsäure, Verwendung.
Beispiele 12 bis 14:
Figure imgf000019_0001
Bei dem eingesetzten blockierten Polyisocyanat handelt es sich um ein Hexamethylendiisocyanat Trimer, das mit 3,5-Dimethylpyrazol blockiert wurde (Desmodur® VP LS 2253, Bayer AG), zu dem anteilig das Isophoron-diisocyanat (JJPDI) Z4470, Bayer AG, Leverkusen, hinzugefügt wurde (durch Vorreaktion mit dem nachfolgend beschriebenen PES-PUR-Polyol. Als Polyol findet hierbei ein sogenanntes PES-PUR Polyol Verwendung (Bayhydrol VP LS 2056, Bayer AG, Leverkusen, OH Gehalt 1,7 Gew.-%), bestehend aus Neopentylglykol, Propylenglykol, Trimethylolpropan, Adipinsäure, Isophthalsäure, Dimethylolpropionsäure, Hexamethylendiisocyanat, N-Methylpyrrolidon, Dimethylethanolamin, sowie Wasser Verwendung. Der Festkörpergehalt beträgt 47 %.
Bei den Beispielen 6 bis 15 zeigt sich, dass die Einbrenntemperaturen der wässrigen IK-Systeme in Gegenwart der Vanadiumkatalysatoren um ca. 20°C abgesenkt werden kann.

Claims

Patentansprüche
1. Einkomponenten-Einbrennsysteme auf Polyurethanbasis, dadurch gekennzeichnet, dass sie eine oder mehrere organische und/oder anorganische Verbindungen des Vanadiums enthalten, in welchen das Vanadium eine Oxidationsstufe von mindestens + 4 hat.
2. Systeme gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Verbindungen des Vanadiums um Verbindungen ausgewählt aus der Gruppe bestehend aus Ammonium-, Lithium-, Natrium-, Kaliumvanadat, Lithium-, Natrium-, Kaliumorthovanadat, Magnesiumvanadat, Calciumvanadat, Vanadyl-(IN)-acetylacetonat (VO(C5H7θ5)2), Vanadyl-bis-tetramethylheptadionat VO(TMHD)2 und Vanadiumsäure handelt.
3. Systeme gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Verbindungen des Vanadiums um Verbindungen ausgewählt aus der Gruppe bestehend aus Lithium- vanadat Li3V04, Natriumvanadat Na V04, Kalimnvanadat K3VO4, Lithiuimnetavanadat L1VO3, Natriummetavanadat NaV03 und Kaliummetavanadat KVO3 handelt.
4. Systeme gemäß Anspruch 1, dadurch gekeimzeichnet, dass es sich bei den Verbindungen des Vanadiums um Lithium- oder Natriumvanadat handelt.
5. Systeme gemäß Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass sie
(a) blockierte Polyisocyanate
(b) Polymere mit gegenüber Polyisocyanaten reaktiven Gruppen
(c) eine oder mehrere organische und/oder anorganische Verbindungen des Vana- diums enthalten, in welchen das Vanadium eine Oxidationsstufe von mindestens
+ 4 hat
(d) Wasser und/oder organische Lösemittel oder Lösemittelgemische und
(e) gegebenenfalls weitere Zusatzstoffe und Hilfsmittel
enthalten, wobei die Mengen an (a) + (b) 20 bis 89,9 Gew.-Teile, (c) 0,01 bis 5 Gew.- Teile, (d) 10 bis 70 Gew.-Teile und (e) 0 bis 10 Gew.-Teile betragen und die Summe der
Gew.-Teile der Komponenten (a) bis (e) 100 beträgt.
6. Systeme gemäß Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass als blockierte Polyisocyanate (a) aliphatische Isocyanate verwendet werden.
7. Systeme gemäß Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass" als blockierte Polyisocyanate (a) aromatische Isocyanate verwendet werden.
8. Systeme gemäß Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass als blockierte Polyisocyanate (a) solche auf Basis von Hexamethylendiisocyanat, Isophorondiisocyanat, 4,4'- Diisocyanatodicyclohexylmethan, deren Derivaten und/oder Gemischen eingesetzt werden.
9. Systeme gemäß Ansprüchen 1 bis 8, dadurch gekennzeiclmet, dass die Polyisocyanate (a) hydrophiliert sind.
10. Systeme gemäß Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass als Nandadium- verbindung (c) Salze der Nanadiumsäure oder Kondensationsprodukte davon eingesetzt werden.
11. Systeme gemäß Ansprüchen 1 bis 9, dadurch gekennzeiclmet, dass als Nanadiumver- bindung (c) Lithium-, Natrium- und Kaliumortho- und metavanadat eingesetzt werden.
12. Verfahren zur Herstellung der Systeme gemäß Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass die Komponente (c) in die Komponenten (a) und/oder (b) vor deren Disper- gierung oder Auflösung in Komponente (d) eingebracht wird.
13. Verfahren zur Herstellung der Systeme gemäß Ansprüchen 1 bis 11, dadurch gekennzeiclmet, dass die Komponente (c) in die Komponente (d) vor der Dispergierung oder Auflösung der Komponente (a) und/oder (b) in derselben eingebracht wird.
14. Verfahren zur Herstellung der wässriger oder wasserdispergierbarer Systeme gemäß An- sprächen 1 bis 11, dadurch gekennzeiclmet, dass die Komponente (c) zu einer oder mehreren der Komponenten (a), (b), (d) und/oder (e) vor der Zugabe des Dispergier- wassers zugegeben wird.
15. Verwendung der Systeme gemäß Ansprüchen 1 bis 11 zur Herstellung von Lacken, Farben und Klebstoffen.
16. Substrate beschichtet mit aus Systeme gemäß Ansprüchen 1 bis 8 erhältlichen Überzügen.
PCT/EP2004/001424 2003-02-26 2004-02-13 Einkomponentige polyurethan-beschichtungssysteme enthaltend vierwertige vanadium-katalystoren WO2004076520A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006501852A JP4705013B2 (ja) 2003-02-26 2004-02-13 4価バナジウム触媒を含む一成分ポリウレタン被覆系
ES04710864T ES2384383T3 (es) 2003-02-26 2004-02-13 Sistemas de recubrimiento de poliuretano de un componente que contienen catalizadores de vanadio tetravalentes
EP20040710864 EP1599524B1 (de) 2003-02-26 2004-02-13 Einkomponentige polyurethan-beschichtungssysteme enthaltend vierwertige vanadium-katalysatoren
CA 2516835 CA2516835A1 (en) 2003-02-26 2004-02-13 Single-component polyurethane coating systems containing quadrivalent vanadium
MXPA05008970A MXPA05008970A (es) 2003-02-26 2004-02-13 Sistemas de revestimiento de poliuretano de un solo componente que contienen vanadio cuadrivalente.
KR1020057015758A KR101153543B1 (ko) 2003-02-26 2004-02-13 4가 바나듐을 함유하는 단일?성분 폴리우레탄 코팅 시스템
HK06106566A HK1086581A1 (en) 2003-02-26 2006-06-08 Single-component polyurethane coating systems containing quadrivalent vanadium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003108105 DE10308105A1 (de) 2003-02-26 2003-02-26 Polyurethan-Beschichtungssysteme
DE10308105.4 2003-02-26

Publications (1)

Publication Number Publication Date
WO2004076520A1 true WO2004076520A1 (de) 2004-09-10

Family

ID=32841878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001424 WO2004076520A1 (de) 2003-02-26 2004-02-13 Einkomponentige polyurethan-beschichtungssysteme enthaltend vierwertige vanadium-katalystoren

Country Status (13)

Country Link
US (1) US7041768B2 (de)
EP (1) EP1599524B1 (de)
JP (1) JP4705013B2 (de)
KR (1) KR101153543B1 (de)
CN (1) CN100335520C (de)
CA (1) CA2516835A1 (de)
DE (1) DE10308105A1 (de)
ES (1) ES2384383T3 (de)
HK (1) HK1086581A1 (de)
MX (1) MXPA05008970A (de)
PL (1) PL378200A1 (de)
RU (1) RU2005129539A (de)
WO (1) WO2004076520A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001956A1 (de) 2009-02-17 2010-08-19 Basf Se Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
WO2010108863A1 (de) 2009-03-24 2010-09-30 Basf Se Strahlungshärtbare hochfunktionelle polyurethan(meth)acrylate
DE102010003308A1 (de) 2009-03-31 2011-01-13 Basf Se Strahlungshärtbare wasseremulgierbare Polyurethan(meth)acrylate
US8373004B2 (en) 2007-03-27 2013-02-12 Basf Se Method for producing colorless isocyanurates of diisocyanates
WO2013060614A1 (de) 2011-10-28 2013-05-02 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2014063920A1 (de) 2012-10-24 2014-05-01 Basf Se Strahlungshärtbare wasserdispergierbare polyurethan(meth)acrylate
US8889780B2 (en) 2008-12-17 2014-11-18 Basf Se Quick-drying coating compounds
EP2808354A1 (de) 2014-08-08 2014-12-03 Basf Se Schnelltrocknende, hart-elastische, kratzfeste und beständige Beschichtungsmassen
US8969452B2 (en) 2008-12-17 2015-03-03 Basf Se Quick-drying coating compounds
WO2015055591A1 (en) 2013-10-16 2015-04-23 Basf Se Process for preparing water-emulsifiable polyurethane acrylates
WO2016096503A1 (en) 2014-12-17 2016-06-23 Basf Se Radiation curable coating composition based on chain-extended and cross-linked polyurethanes
EP3305824A1 (de) 2016-10-07 2018-04-11 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US9963538B2 (en) 2013-01-07 2018-05-08 Basf Se Catalysts for polyurethane coating compounds
EP3336118A1 (de) 2017-09-20 2018-06-20 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US10131814B2 (en) 2013-08-26 2018-11-20 Basf Se Radiation-curable water-dispersible polyurethane (meth)acrylates
EP3431521A1 (de) 2017-07-20 2019-01-23 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US10227504B2 (en) 2013-09-25 2019-03-12 Basf Se Crosslinkers for coating compounds
WO2020012039A1 (en) 2018-07-13 2020-01-16 Miwon Austria Forschung Und Entwicklung Gmbh Water-dispersible polyurethane (meth)acrylates for actinic radiation curable coatings
US10604675B2 (en) 2014-03-12 2020-03-31 Basf Se Quick-drying, energy-elastic, scratch-resistant and stable coating compounds
WO2021151774A1 (en) 2020-01-30 2021-08-05 Basf Se Color-stable curing agent compositions comprising water-dispersible polyisocyanates
WO2022128925A1 (en) 2020-12-18 2022-06-23 Basf Se Color-stable curing agent compositions comprising polyisocyanates of (cyclo)aliphatic diisocyanates
WO2023280648A1 (en) 2021-07-08 2023-01-12 Basf Se Polyisocyanate-containing formulations

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006058527A1 (de) * 2006-12-12 2008-06-19 Bayer Materialscience Ag Klebstoffe
EP2197767A2 (de) * 2007-09-11 2010-06-23 The Dow Chemical Company Isoliertes system zur ausgabe eines einteiligen polyurethanschaumstoffs
EP2316866A1 (de) * 2009-10-29 2011-05-04 Bayer MaterialScience AG Wässrige Zubereitung auf Basis kristalliner oder semikristalliner Polyurethanpolymere
JP5953900B2 (ja) * 2012-04-18 2016-07-20 Dic株式会社 2液硬化型樹脂組成物、コーティング剤及び塗膜
CN114395293B (zh) * 2016-10-14 2023-07-04 C3内诺公司 经稳定化的稀疏金属导电膜及用于稳定化合物的递送的溶液
US11842828B2 (en) 2019-11-18 2023-12-12 C3 Nano, Inc. Coatings and processing of transparent conductive films for stabilization of sparse metal conductive layers
EP3875511A1 (de) * 2020-03-05 2021-09-08 Covestro Deutschland AG Hochtemperatur-vernetzerdispersion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1921952A1 (de) * 1969-04-30 1970-11-05 Dynamit Nobel Ag Verfahren zur Herstellung von Polyurethanen
US5718817A (en) * 1993-07-28 1998-02-17 Elf Atochem North America, Inc. Catalyst for low temperature cure of blocked isocyanates
WO2002068494A1 (de) * 2001-02-26 2002-09-06 Bayer Aktiengesellschaft 1k-polyurethaneinbrennlacke und deren verwendung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108814A (en) 1974-09-28 1978-08-22 Bayer Aktiengesellschaft Aqueous polyurethane dispersions from solvent-free prepolymers using sulfonate diols
DE2812252A1 (de) 1978-03-21 1979-10-04 Bayer Ag 1,2,4-triazol-blockierte polyisocyanate als vernetzer fuer lackbindemittel
US5352755A (en) 1984-02-29 1994-10-04 The Baxenden Chemical Co. Blocked isocyanates
US5246557A (en) 1984-02-29 1993-09-21 The Baxenden Chemical Co. Blocked isocyanates
US5986033A (en) 1984-02-29 1999-11-16 The Baxenden Chemical Co. Blocked isocyanates
GB8405320D0 (en) 1984-02-29 1984-04-04 Baxenden Chem Blocked isocyanates
DE3412611A1 (de) 1984-04-04 1985-10-17 Bayer Ag, 5090 Leverkusen Waessrige dispersionen auf polyesterbasis, ihre herstellung und ihre verwendung zur herstellung von einbrennlacken
DE3936288A1 (de) 1989-11-01 1991-05-02 Bayer Ag In wasser dispergierbare bindemittelkombinationen, ein verfahren zur herstellung eines einbrennfuellers und dessen verwendung
JPH0525433A (ja) * 1991-05-10 1993-02-02 Asahi Chem Ind Co Ltd 伸展性を有する低温硬化性一液ポリウレタン塗料組成物
US5232988A (en) * 1992-02-25 1993-08-03 Miles Inc. Blocked polyisocyanates prepared from partially trimerized cyclic organic diisocyanates having (cyclo)aliphatically bound isocyanate groups and their use for the production of coatings
DE4213527A1 (de) 1992-04-24 1993-10-28 Bayer Ag Wäßrige Überzugsmittel für elastische Einbrennlackierungen
DE4221924A1 (de) 1992-07-03 1994-01-13 Bayer Ag In Wasser lösliche oder dispergierbare Polyisocyanatgemische und ihre Verwendung in Einbrennlacken
DE19504530A1 (de) 1995-02-11 1996-08-14 Huels Chemische Werke Ag Blockierte Polyisocyanate, Verfahren zu ihrer Herstellung und daraus hergestellte Lacke und Beschichtungssysteme
DE19519396A1 (de) 1995-05-26 1996-11-28 Huels Chemische Werke Ag Neue blockierte Polyisocyanate sowie ein Verfahren zu ihrer Herstellung
DE19532294A1 (de) 1995-09-01 1997-03-06 Huels Chemische Werke Ag Flüssige Einkomponenten-PUR-Einbrennlacke
GB9520317D0 (en) 1995-10-05 1995-12-06 Baxenden Chem Ltd Water dispersable blocked isocyanates
US5955532A (en) * 1997-07-17 1999-09-21 E. I. Du Pont De Nemours And Company Aqueous coating composition of a self-stabilized crosslinked latex
DE19750186A1 (de) 1997-11-13 1999-05-20 Bayer Ag Hydrophilierungsmittel, ein Verfahren zu dessen Herstellung sowie dessen Verwendung als Dispergator für wäßrige Polyurethan-Dispersionen
JPH11246646A (ja) * 1997-12-01 1999-09-14 Asahi Chem Ind Co Ltd 部分ブロック型ポリイソシアネート
JP2000198963A (ja) * 1998-12-28 2000-07-18 Nippon Steel Corp 低毒性かつ耐食性に優れるプレコ―ト金属板用塗料
US6353057B1 (en) 1999-02-10 2002-03-05 King Industries, Inc. Catalyzing cationic resin and blocked polyisocyanate with bismuth carboxylate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1921952A1 (de) * 1969-04-30 1970-11-05 Dynamit Nobel Ag Verfahren zur Herstellung von Polyurethanen
US5718817A (en) * 1993-07-28 1998-02-17 Elf Atochem North America, Inc. Catalyst for low temperature cure of blocked isocyanates
WO2002068494A1 (de) * 2001-02-26 2002-09-06 Bayer Aktiengesellschaft 1k-polyurethaneinbrennlacke und deren verwendung

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373004B2 (en) 2007-03-27 2013-02-12 Basf Se Method for producing colorless isocyanurates of diisocyanates
US8969452B2 (en) 2008-12-17 2015-03-03 Basf Se Quick-drying coating compounds
US8889780B2 (en) 2008-12-17 2014-11-18 Basf Se Quick-drying coating compounds
DE102010001956A1 (de) 2009-02-17 2010-08-19 Basf Se Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
WO2010108863A1 (de) 2009-03-24 2010-09-30 Basf Se Strahlungshärtbare hochfunktionelle polyurethan(meth)acrylate
US9200108B2 (en) 2009-03-24 2015-12-01 Basf Se Radiation-curing, highly functional polyurethane (meth)acrylate
DE102010003308A1 (de) 2009-03-31 2011-01-13 Basf Se Strahlungshärtbare wasseremulgierbare Polyurethan(meth)acrylate
WO2013060614A1 (de) 2011-10-28 2013-05-02 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2014063920A1 (de) 2012-10-24 2014-05-01 Basf Se Strahlungshärtbare wasserdispergierbare polyurethan(meth)acrylate
US9752056B2 (en) 2012-10-24 2017-09-05 Basf Se Radiation-curing, water-dispersible polyurethane (meth)acrylates
US9963538B2 (en) 2013-01-07 2018-05-08 Basf Se Catalysts for polyurethane coating compounds
US10131814B2 (en) 2013-08-26 2018-11-20 Basf Se Radiation-curable water-dispersible polyurethane (meth)acrylates
US10227504B2 (en) 2013-09-25 2019-03-12 Basf Se Crosslinkers for coating compounds
WO2015055591A1 (en) 2013-10-16 2015-04-23 Basf Se Process for preparing water-emulsifiable polyurethane acrylates
US10294392B2 (en) 2013-10-16 2019-05-21 Basf Se Process for preparing water-emulsifiable polyurethane acrylates
US10604675B2 (en) 2014-03-12 2020-03-31 Basf Se Quick-drying, energy-elastic, scratch-resistant and stable coating compounds
EP2808354A1 (de) 2014-08-08 2014-12-03 Basf Se Schnelltrocknende, hart-elastische, kratzfeste und beständige Beschichtungsmassen
WO2016096503A1 (en) 2014-12-17 2016-06-23 Basf Se Radiation curable coating composition based on chain-extended and cross-linked polyurethanes
US10584262B2 (en) 2014-12-17 2020-03-10 Basf Se Radiation curable coating composition based on chain-extended and cross-linked polyurethanes
WO2018065344A1 (de) 2016-10-07 2018-04-12 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
EP3305824A1 (de) 2016-10-07 2018-04-11 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US11001730B2 (en) 2016-10-07 2021-05-11 Basf Se Colour-stable curing compositions containing polyisocyanates of (cyclo)aliphatic diisocyanates
WO2019016097A1 (de) 2017-07-20 2019-01-24 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
EP3431521A1 (de) 2017-07-20 2019-01-23 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2019057539A1 (de) 2017-09-20 2019-03-28 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
EP3336118A1 (de) 2017-09-20 2018-06-20 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US11624003B2 (en) 2017-09-20 2023-04-11 Basf Se Colour-stable curing compositions containing polyisocyanates of (cyclo)aliphatic diisocyanates
WO2020012039A1 (en) 2018-07-13 2020-01-16 Miwon Austria Forschung Und Entwicklung Gmbh Water-dispersible polyurethane (meth)acrylates for actinic radiation curable coatings
WO2021151774A1 (en) 2020-01-30 2021-08-05 Basf Se Color-stable curing agent compositions comprising water-dispersible polyisocyanates
WO2022128925A1 (en) 2020-12-18 2022-06-23 Basf Se Color-stable curing agent compositions comprising polyisocyanates of (cyclo)aliphatic diisocyanates
WO2023280648A1 (en) 2021-07-08 2023-01-12 Basf Se Polyisocyanate-containing formulations

Also Published As

Publication number Publication date
RU2005129539A (ru) 2006-03-27
CN100335520C (zh) 2007-09-05
ES2384383T3 (es) 2012-07-04
MXPA05008970A (es) 2005-11-04
US20040229047A1 (en) 2004-11-18
DE10308105A1 (de) 2004-09-09
US7041768B2 (en) 2006-05-09
HK1086581A1 (en) 2006-09-22
CA2516835A1 (en) 2004-09-10
KR20050102145A (ko) 2005-10-25
EP1599524A1 (de) 2005-11-30
PL378200A1 (pl) 2006-03-20
KR101153543B1 (ko) 2012-06-11
JP4705013B2 (ja) 2011-06-22
EP1599524B1 (de) 2012-05-23
CN1753921A (zh) 2006-03-29
JP2006519890A (ja) 2006-08-31

Similar Documents

Publication Publication Date Title
EP1599524B1 (de) Einkomponentige polyurethan-beschichtungssysteme enthaltend vierwertige vanadium-katalysatoren
EP1599523B1 (de) Polyurethan-beschichtungssysteme
EP0566953B1 (de) Wässrige Einbrennfüller für elastische Einbrennlackierungen
EP0959087B1 (de) Wasserdispergierbare Polyether-modifizierte Polyisocyanatgemische
EP1599525B1 (de) 2k-pur-systeme
EP1287052B1 (de) Modifizierte polyisocyanate
EP3271412B1 (de) Hydrophile polyisocyanate auf basis von 1,5-diisocyanatopentan
EP1276787B1 (de) Hochfunktionelle wasserdispergierbare polyisocyanatgemische
WO2001062819A1 (de) Wasserdispergierbare polyisocyanatgemische
DE10216945A1 (de) Selbstvernetzende PUR-Dispersionen
EP0576952A2 (de) In Wasser lösliche dispergierbare Polyisocyanatgemische und ihre Verwendung in Einbrennlacken
EP1127928B1 (de) Acylharnstoffgruppen enthaltende Polyisocyanatgemische
EP1375551B1 (de) Neue Blockierungsmittel für nichtwässrige Polyisocyanate auf Basis von Aralkylaminen
EP1641860B1 (de) Blockierte polyisocyanate
EP1375552B1 (de) Wässrige und/oder wasserverdünnbare, mit sekundären Benzylaminen blockierte Polyisocyanate
EP1629023B1 (de) Verfestigungsstabile blockierte polyisocyanate
EP1641859B1 (de) Blockierte polyisocyanate
DE19847077A1 (de) Polyether-modifizierte Polyisocyanatgemische mit verbesserter Wasserdispergierbarkeit
WO2005033165A1 (de) Selbstvernetzende pur-dispersionen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004710864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 378200

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/008970

Country of ref document: MX

Ref document number: 2516835

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057015758

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006501852

Country of ref document: JP

Ref document number: 20048051898

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005129539

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020057015758

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004710864

Country of ref document: EP