WO2004075312A1 - Packaging organischer, licht emittierender dioden unter verwendung von reaktivem polyurethan - Google Patents

Packaging organischer, licht emittierender dioden unter verwendung von reaktivem polyurethan Download PDF

Info

Publication number
WO2004075312A1
WO2004075312A1 PCT/EP2004/001497 EP2004001497W WO2004075312A1 WO 2004075312 A1 WO2004075312 A1 WO 2004075312A1 EP 2004001497 W EP2004001497 W EP 2004001497W WO 2004075312 A1 WO2004075312 A1 WO 2004075312A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
water
capsule
organic
component according
Prior art date
Application number
PCT/EP2004/001497
Other languages
English (en)
French (fr)
Inventor
Wolfgang Rogler
Wolfgang Roth
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP04711608A priority Critical patent/EP1595296A1/de
Priority to US10/545,162 priority patent/US20060141204A1/en
Publication of WO2004075312A1 publication Critical patent/WO2004075312A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum

Definitions

  • the invention relates to the packaging of organic, light-emitting diodes or displays, in particular the protection of the diodes or displays from the effects of the atmosphere, in particular oxygen and water or water vapor.
  • OLEDs organic light-emitting diodes
  • a glass cap which can be glued, for example, using a light-curing epoxy resin.
  • a light-curing epoxy resin By selecting suitable adhesives, so-called 85/85 tests, i.e. storage at a relative air humidity of 85% and a temperature of 85 ° C, can be passed over a period of time which is sufficient for many applications, for example in mobile phones. For other applications, for example in the automotive sector, higher demands are made.
  • Various measures are known to improve the service life.
  • US 5,821,692 describes the use of perfluorinated liquids within the cap cavity.
  • No. 5,734,225 discloses the use of hydrophobic silicone layers in combination with still further inorganic layers.
  • EP 0 884 930 A1 teaches the use of water-absorbing polymers, for example polyimides, polyvinyl alcohol and polybutyral, also in combination with other inorganic layers.
  • water-absorbing polymers for example polyimides, polyvinyl alcohol and polybutyral
  • inorganic materials such as getter tablets based on zeolite, within the cap cavity is known from US Pat. No. 5,882,761. All of these materials react reversibly with water, which means that the water is released again especially at elevated temperatures and can damage the OLED.
  • the object of the invention is to improve the protection of encapsulated components against influences from the atmosphere, in particular oxygen and water or water vapor.
  • an organic material that reacts irreversibly with water.
  • hygroscopic materials are suitable for this purpose, i.e. those that contain water from the
  • the component to be protected is in particular a package encapsulating one or more organic components. It points a capsule to protect the components against environmental influences, especially against air humidity.
  • the capsule can be in the form of any, in particular closed, container for the component.
  • An organic material that irreversibly reacts with water is arranged in the capsule to bind moisture that penetrates or is present in the capsule.
  • polyurethane which contains a residual content of free isocyanate groups.
  • the polyurethanes can then be understood to a certain extent as prepolymers that react irreversibly under the action of water, for example through crosslinking.
  • the material is preferably arranged in a cavity of the capsule and should completely or almost completely fill it.
  • the capsule can be formed, for example, from a substrate and a cap, into which a cavity is inserted.
  • the capsule is to be transparent, glass can be used as the material for the substrate and / or the cap.
  • caps made of metal or ceramic can also be used.
  • the organic component is preferably an electroluminescent component, in particular a light-emitting diode.
  • the component can be arranged on the substrate and spanned by the cap.
  • material is arranged in an capsule which contains at least one of the components and which irreversibly reacts with water.
  • This material preferably has free isocyanate groups and is more preferably polyurethane.
  • the material can be applied locally by dosing, in particular dispensing.
  • the material can be applied to the entire surface by screen printing.
  • FIG. 2 shows a component in the form of a package encapsulating an organic component.
  • the isocyanate group shown in Figure 1 is very reactive and reacts under relatively mild reaction conditions with compounds which carry acidic or active protons, such as water.
  • Polyurethanes are plastics that are formed by polyaddition of polyfunctional isocyanates with at least two hydroxyl-containing compounds (alcohols).
  • Polyurethanes suitable according to the invention are those with a relevant residual content of free isocyanate groups, that is to say those which are known, for example, as one-component systems which harden by atmospheric moisture. These are widely used as adhesives and sealants in industry, for example in the field of glass bonding.
  • the preparation is made from diisocyanates and diols, care being taken that a residual content of free isocyanate groups is retained. These groups react irreversibly with water, forming carbamic acids, which in turn form amines with the elimination of carbon dioxide. These in turn react with free isocyanate groups of other molecules to form substituted ureas. There is therefore a water-initiated crosslinking of the polymer chains with one another.
  • Oligomers and prepolymers based on polyurethane are produced by reacting diisocyanates and diols. Some of the most common starting components are listed below. On the part of the diisocyanates, these are, for example, toluene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylene diisocyanate and isophorone diisocyanate. On the part of the polyols or polyhydroxy compounds, hydroxy-terminated polyethers, polyesters, polyolefins and glycols can be mentioned. The preparation of polyurethane and the reactions of the isocyanate group with water and amines are described in the literature.
  • the reactive polyurethanes mentioned are widely used as adhesives or sealants. However, it is not the adhesive or sealing effect that is decisive for the use of the reactive polyurethanes according to the invention, but rather the ability of the free isocyanate groups still present in these polymers to react with water.
  • the use of the reactive polyurethanes claimed for the OLED application relates to the irreversible chemical reaction of the Isocyanate groups with water.
  • the reactive polyurethane is therefore used as an irreversible organic water getter.
  • the reactive polyurethanes used can be filled with the fillers known in the field of adhesives and sealants.
  • polyurethanes with a pasty consistency are particularly suitable.
  • the application can then take place, for example, by means of dispensing or screen printing.
  • Such an amount is advantageously metered in that after the joining parts of a capsule have been joined, the metered material completely or almost completely fills the volume of the capsule cavity to be filled.
  • the reactive polyurethane and the adhesive used to glue the cap of the capsule can both be on the same part to be joined, but also separately on each of the parts to be joined.
  • OLED with a glass cap.
  • OLED compatibility is surprisingly given.
  • FIG. 2 shows a cross section through a component 10.
  • An OLED 12 is arranged on a glass substrate 11.
  • the OLED 12 is covered by a glass cap which is bonded to the glass substrate 11 at the edge 14.
  • Glass cap 13 and glass substrate 11 form a capsule.
  • the OLED 12 has the following components: a transparent electrode 15, for example made of ITO (indium tin oxide), an organic hole transport material 16, for example made of a conductive polymer, an organic electroluminescent material 17, for example a light-emitting polymer, and a metal electrode 18, which is composed of calcium 19 and silver 20, for example.
  • the organic electroluminescent material 17, that is to say the emitter (chro-ophor) also serves as an electron transport material.
  • the two functions can also be separate, in which case the two functions can also be separate, in which case the two functions can also be separate, in which case the two functions can also be separate, in which case the two functions can also be separate, in which case the two functions can also be separate, in which case the I
  • Electron transport material is arranged between the metal electrode and emitter. Above the component in the form of the OLED 12 arranged on the glass substrate 11, the cavity of the cap 13 is filled with a material 21 which reacts irreversibly with water.
  • This material 21 is preferably polyurethane with a residual content of free isocyanate groups.
  • the component is produced in the form of an organic, light-emitting diode, for example by spin coating if polymer solutions are processed, or by vapor deposition if monomers are used.
  • ITO indium tin oxide coated glasses are used as substrates, although the ITO can also be structured. ITO is transparent and is used as an anode due to its electrical properties. If necessary, auxiliary layers such as hole- and electron-conducting layers are used. Metals with a small work function, such as calcium, are evaporated as the cathode.
  • the packaging of the diode with a glass cap and the application of the irreversible water-reactive material in the form of a water-absorbing layer take place in an inert atmosphere, that is to say in an atmosphere which is in particular free of water and oxygen.
  • the production of the light-emitting diode based on polymers is carried out in detail as follows. For the sake of clarity, the production of a diode without a material which reacts irreversibly with water is described first.
  • ITO-coated glass substrate with an edge length of 5 x 5 cm and a thickness of 1.1 mm
  • two parallel, 2 mm wide ITO strips with a distance of 1 cm are produced by means of photolithography. Exposed areas are not removed in alkaline. This protects the ITO. Exposed ITO is stripped off with concentrated HBr at a temperature of 40 ° C for two minutes.
  • a 70 nm thick layer of PEDOT (polyethylene dioxothiophene) is applied to the ITO-structured glass pane, for example by spin coating from an aqueous solution. This layer is dried in a tempering process at 200 ° C for five minutes.
  • PEDOT polyethylene dioxothiophene
  • the emitter layer made of xylene, for example based on polyfluorene, with a thickness of 100 nm is then applied to it, for example also by spin coating. This layer is dried at a reduced pressure of 10 ⁇ 6 bar. Also at this pressure, two calcium strips, each 2 mm wide, are evaporated at a distance of 1 cm through a shadow mask as the cathode. These metal strips are arranged at right angles to the ITO structures on the glass substrate.
  • the areas of the intersecting anode and cathode tracks, between which the polymers are located, represent the active area of the light-emitting diode.
  • Silver strips with a thickness of 150 nm are vapor-deposited onto the calcium strips, likewise through a shadow mask. However, no metal is evaporated at the points to be glued. The organic layers are removed manually at these points. This can be done with a blade, for example.
  • the polymer-free area can also be generated as described in WO 03/03481 A2.
  • the four diodes obtained in this way are then encapsulated with a glass cap.
  • the methods and devices described in WO 01/18886 A2 and WO 01/18887 AI can be used for this purpose.
  • the outer dimensions of the cap are 24 x 24 mm in the exemplary embodiment, the adhesive edge is 1 mm and the depth of the cavity is 200 ⁇ m.
  • the parts to be joined are positioned with respect to one another in an inert, that is to say in particular water and oxygen-free, atmosphere and are glued together, for example, with an organic adhesive.
  • Cathode applied a voltage of 5 volts, for example, the encapsulated diode lights up.
  • the lifespan achieved with such a diode when stored at a temperature of 85 ° C. and a relative atmospheric humidity of 85% is, for example, 120 hours and serves as a reference for the lifetimes reported below.
  • a material that irreversibly reacts with water is used in the manufacture of the light-emitting diode.
  • reactive polyurethane is used in particular.
  • the material is dosed in the middle of the inside of the glass cap cavity using a dispenser. The amount is selected so that when the glass cap is placed and pressed on, the volume of the cavity is almost completely or completely filled, as a result of which the organic component is completely covered with a water-absorbing organic layer based on polyurethane.
  • the glass cap is glued using a light-curing epoxy adhesive.
  • the adhesive bead required for this is applied to the organic component using a dispenser.
  • the irreversibly reacting water in the form of the reactive polyurethane can also be applied centrally to the organic component by means of a dispenser.
  • a dispenser By placing the glass cap on, the material is distributed so that the volume of the cavity is almost completely or completely filled. After positioning, the glass cap is glued using a light-curing epoxy adhesive. The adhesive bead required for this is applied to the organic component using a dispenser.
  • the use of the reactive polyurethane improves the lifespan of an OLED by a factor of 3 at a temperature of 85 ° C and a relative humidity of 85%.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Eine organische, Licht emittierende Diode enthält zur Bindung von unerwünscht eindringender Luftfeuchtigkeit Polyurethan mit freien Isocyanatgruppen.

Description

Beschreibung
Packaging organischer, Licht emittierender Dioden unter Verwendung von reaktivem Polyurethan
Die Erfindung betrifft das Packaging organischer, Licht emittierender Dioden bzw. Displays, speziell den Schutz der Dioden bzw. Displays vor Einwirkungen der Atmosphäre, insbesondere Sauerstoff und Wasser- bzw. Wasserdampf .
Die Herstellung organischer, Licht emittierender Dioden (OLEDs) , die verwendeten Prozesse und Materialien sind in der Literatur ausführlich beschrieben. Hierzu sei auf das „Philips Journal of Research*, 1998, Band 51, Nr. 4, Seiten 467 bis 477 verwiesen.
Um eine ausreichende Lebensdauer der OLED zu gewährleisten, ist einer hermetische Verkapselung notwendig, da für die OLED verwendete Materialien, insbesondere Kathodenmaterialien mit niedriger Austrittsarbeit wie beispielsweise Kalzium, aber auch Polymere, mit Sauerstoff und Wasser reagieren. Als Folge davon treten Degradationserscheinungen auf, die die Lebensdauer der OLED verkürzen und damit eine Kommerzialisierung entsprechender Bauelemente verhindern.
Einen wirksamen Schutz vor Umgebungseinflüssen stellt eine Glaskappe dar, die beispielsweise mittels eine-s lichthärtenden Epoxidharzes verklebt werden kann. Durch Auswahl geeigneter Klebstoffe können sogenannte 85/85-Tests, das heißt Lagerungen bei einer relativen Luftfeuchte von 85% und einer Temperatur von 85° C, über einen Zeitraum bestanden werden, der für viele Anwendungen, beispielsweise in Mobiltelefonen, ausreichend ist. Für andere Anwendungen, zum Beispiel im Automobilbereich, werden aber höhere Anforderungen gestellt. Zur Verbesserung der Lebensdauer sind verschiedene Maßnahmen bekannt. In US 5,821,692 ist die Verwendung perfluorierter Flüssigkeiten innerhalb der Kappenkavität beschrieben. In US 5,734,225 ist die Verwendung hydrophobierender Silikonschichten in Kombination mit noch weiteren anorganischen Schichten offenbart. EP 0 884 930 AI lehrt die Verwendung wasserabsorbierender Polymere, zum Beispiel Polyimide, Polyvinylalkohol und Polybutyral, ebenfalls in Kombination mit weiteren anorganischen Schichten. Die Verwendung anorganischer Materialien, wie zum Beispiel Gettertabletten auf Zeolith-Basis, innerhalb der Kappenkavität ist aus US 5,882,761 bekannt. Alle diese Materialien reagieren reversibel mit Wasser, das heißt, dass das Wasser insbesondere bei erhöhter Temperatur wieder abgegeben wird und die OLED schädigen kann.
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, den Schutz verkapselter Bauteile gegenüber Einwirkungen aus der Atmosphäre, insbesondere Sauerstoff und Wasser- bzw. Wasserdampf, zu verbessern.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Zum Schutz gegenüber Einwirkungen aus der Atmosphäre, insbesondere Sauerstoff und Wasser- bzw. Wasserdampf, wird ein organisches Material verwendet, das irreversibel mit Wasser reagiert. Prinzipiell sind hierfür hygroskopische Materialien geeignet, also solche, die mit Wasser aus der
Luft reagieren. Geeignete Materialien sollten darüber hinaus gegenüber den zum Aufbau der OLED verwendeten Materialien inert sein. Das gilt auch für die Reaktionsprodukte der Materialien mit Wasser.
Das zu schützende Bauelement ist insbesondere ein ein oder mehrere organische Bauteile einkapselndes Package. Es weist eine Kapsel zum Schutz der Bauteile gegenüber Umwelteinflüssen auf, insbesondere gegenüber Luftfeuchtigkeit. Die Kapsel kann in Form eines beliebigen, insbesondere geschlossenen Behältnisses für das Bauteil vorliegen. Zum Binden von in die Kapsel eindringender oder darin vorhandener Luftfeuchtigkeit ist in der Kapsel ein organisches Material angeordnet, das irreversibel mit Wasser reagiert.
Aus der Vielzahl möglicher Materialien haben sich solche mit freien Isocyanatgruppen als ganz besonders wirksam herausgestellt. Diese freien Isocyanatgruppen können mit dem unerwünschten Wasser reagieren.
Freie Isocyanatgruppen lassen sich kostengünstig durch den
Einsatz von hygroskopischem, wasserreaktivem Polyurethan zur Verfügung stellen, das einen Restgehalt von freien Isocyanatgruppen enthält. Die Polyurethane können dann gewissermaßen als Präpolymere aufgefasst werden, die unter der Wirkung von Wasser irreversibel reagieren, beispielsweise durch Vernetzung.
Das Material ist vorzugsweise in einer Kavität der Kapsel angeordnet und sollte diese vollständig oder nahezu vollständig ausfüllen.
Die Kapsel kann beispielsweise aus einem Substrat und einer Kappe gebildet werden, in die eine Kavität eingebracht ist.
Soll die Kapsel transparent sein, so kann als Material für das Substrat und/oder die Kappe Glas verwendet werden. Alternativ können auch Kappen aus Metall oder Keramik Verwendung finden.
Das organische Bauteil ist vorzugsweise ein elektrolumineszierendes Bauteil, insbesondere eine Licht emittierende Diode. Das Bauteil kann auf dem Substrat angeordnet und von der Kappe überspannt sein.
Bei einem Verfahren zur Verkapselung von Bauteilen, insbesondere organischen Bauteilen, wird in einer Kapsel, die zumindest eines der Bauteile enthält, Material angeordnet, das irreversibel mit Wasser reagiert. Dieses Material weist bevorzugt freie Isocyanatgruppen auf und ist weiter bevorzugt Polyurethan.
Das Material kann durch Dosieren, insbesondere Dispensieren, lokal appliziert werden.
Alternativ oder ergänzend kann das Material durch Siebdruck flächig appliziert werden.
Weitere wesentliche Vorteilte und Merkmale der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen. Dabei zeigt:
Figur 1 eine freie Isocyanatgruppe;
Figur 2 ein Bauelement in Form eines ein organisches Bauteil einkapselnden Packages .
Die in Figur 1 dargestellte Isocyanatgruppe ist sehr reaktiv und reagiert unter relativ milden Reaktionsbedingungen mit Verbindungen, welche saure bzw. aktive Protonen tragen, wie beispielsweise Wasser.
Als Polyurethane werden Kunststoffe bezeichnet, welche durch Polyaddition von mehrfunktionellen Isocyanaten mit mindestens zwei Hydroxylgruppen tragenden Verbindungen (Alkoholen) gebildet werden. Erfindungsgemäß geeignete Polyurethane sind solche mit einem relevanten Restgehalt freier Isocyanatgruppen, also solche, die beispielsweise als luftfeuchtigkeitshärtende Einkomponentensysteme bekannt sind. Diese werden als Kleb- und Dichtstoffe in der Industrie beispielsweise auf dem Gebiet der Glasverklebung vielfältig eingesetzt. Die Herstellung erfolgt aus Diisocyanaten und Diolen, wobei darauf zu achten ist, dass noch ein Restgehalt freier Isocyanatgruppen erhalten bleibt. Diese Gruppen reagieren irreversibel mit Wasser, wobei Carbaminsäuren gebildet werden, die ihrerseits unter Abspaltung von Kohlendioxid Amine bilden. Diese wiederum reagieren mit freien Isocyanatgruppen anderer Moleküle unter Bildung von substituierten Harnstoffen. Es erfolgt also eine durch Wasser initiierte Vernetzung der Polymerketten untereinander.
Die Herstellung von Oligomeren und Präpolymeren auf Basis von Polyurethan erfolgt durch Reaktion von Diisocyanaten und Diolen. Im Folgenden sind einige der gebräuchlichsten Ausgangskomponenten aufgeführt. Auf Seiten der Diisocyanate sind dies beispielsweise Toluoldiisocyanat, Diphenylmethandiisocyanat, Hexamethylendiisocyanat, Xyloldiisocyanat und Isophorondiisocyanat . Auf Seiten der Polyole oder Polyhydroxyverbindungen sind hydroxyterminierte Polyether, Polyester, Polyolefine und Glykole zu nennen. Die Herstellung von Polyurethan und die Reaktionen der Isocyanatgruppe mit Wasser und Aminen sind in der Literatur beschrieben.
Wie erwähnt, finden die genannten reaktiven Polyurethane als Kleb- bzw. Dichtstoffe breite Verwendung. Für die erfindungsgemäße Verwendung der reaktiven Polyurethane ist aber nicht die Kleb- oder Dichtwirkung entscheidend, sondern die Fähigkeit der in diesen Polymeren noch vorhandenen freien Isocyanatgruppen, mit Wasser zu reagieren. Die für die OLED- Anwendung beanspruchte Verwendung der reaktiven Polyurethane bezieht sich auf die irreversible chemische Reaktion der Isocyanatgruppen mit Wasser. Das reaktive Polyurethan wird also als irreversibler organischer Wassergetter eingesetzt. Die verwendeten reaktiven Polyurethane können mit den auf dem Gebiet der Kleb- und Dichtstoffe bekannten Füllstoffen gefüllt sein.
Aus verarbeitungstechnischen Gründen sind besonderes solche Polyurethane geeignet, die in pastöser Konsistenz vorliegen. Die Applikation kann dann beispielsweise mittels Dispensen oder Siebdrucken erfolgen. Vorteilhaft wird eine solche Menge dosiert, dass nach dem Fügen der Fügeteile einer Kapsel das dosierte Material das Volumen der zu füllenden Kavität der Kapsel vollständig oder nahezu vollständig ausfüllt. Das reaktive Polyurethan und der zum Verkleben der Kappe der Kapsel verwendete Kleber können sich beide auf dem gleichen Fügeteil befinden, aber auch getrennt auf je einem der Fügeteile.
Eine entscheidende Voraussetzung für die Verwendung der Polyurethane ist ihre Inertheit gegenüber den zum Aufbau einer OLED üblicherweise verwendeten Materialien. Dies gilt insbesondere für die in der Regel für die Kathode verwendeten Metalle mit niedriger Austrittsarbeit, wie beispielsweise Kalzium. Obwohl Isocyanatgruppen extrem reaktiv sind, reagieren sie bei- der vorgeschlagenen Verwendung nur, wie beabsichtigt, mit eindringendem Wasser, nicht aber mit Kalzium oder anderen zum Aufbau der OLED verwendeten Materialien. Zudem entsteht in Folge der Bildung von Kohlendioxid kein die OLED schädigender Überdruck. Das gilt auch für das OLED-Packaging, das heißt, die Verklebung der
OLED mit einer Glaskappe. Im Fall der reaktiven Polyurethane ist die OLED-Kompatibilität überraschenderweise gegeben.
Figur 2 zeigt einen Querschnitt durch ein Bauelement 10. Dabei ist auf einem Glassubstrat 11 eine OLED 12 angeordnet. Die OLED 12 ist durch eine Glaskappe abgedeckt, welche am Rand 14 mit dem Glassubstrat 11 verklebt ist. Glaskappe 13 und Glassubstrat 11 bilden eine Kapsel. Die OLED 12 weist folgende Bestandteile auf: Eine transparente Elektrode 15, beispielsweise aus ITO (Indium-Zinn-Oxid), ein organisches Lochtransportmaterial 16, beispielsweise aus einem leitenden Polymer, ein organisches elektrolumineszierendes Material 17, beispielsweise ein Licht emittierendes Polymer, und eine Metallelektrode 18, die beispielsweise aus Kalzium 19 und Silber 20 zusammengesetzt ist. Das organische elektrolumineszierende Material 17, das heißt der Emitter (Chro ophor) , dient dabei in diesem Fall gleichzeitig als Elektronentransportmaterial . Die beiden Funktionen können aber auch getrennt sein, wobei dann das
Elektronentransportmaterial zwischen Metallelektrode und Emitter angeordnet ist. Oberhalb des auf dem Glassubstrat 11 angeordneten Bauteils in Form der OLED 12 ist die Kavität der Kappe 13 mit einem Material 21 gefüllt, das irreversibel mit Wasser reagiert. Dieses Material 21 ist vorzugsweise Polyurethan mit einem Restgehalt freier Isocyanatgruppen.
Die Herstellung des Bauelements in Form einer organischen, Licht emittierende Diode erfolgt beispielsweise durch Spincoating, wenn Polymerlösungen verarbeitet werden, oder durch Aufdampfen, wenn Monomere verwendet werden. Als Substrate werden ITO (Indium-Zinn-Oxid) -beschichtete Gläser verwendet, wobei das ITO auch strukturiert sein kann. ITO ist transparent und wird wegen seiner elektrischen Eigenschaften als Anode verwendet. Falls erforderlich, werden Hilfsschichten wie loch- und elektronenleitende Schichten verwendet. Als Kathode werden Metalle mit kleiner Austrittsarbeit wie beispielsweise Kalzium aufgedampft. Das
Packaging der Diode mit einer Glaskappe sowie die Applikation des irreversiblen mit Wasser reagierenden Materials in Form einer wasserabsorbierenden Schicht erfolgen in Inertatmosphäre, das heißt in einer insbesondere wasser- und Sauerstofffreien Atmosphäre. Die Herstellung der Licht emittierenden Diode auf Basis von Polymeren wird im Detail wie folgt durchgeführt. Dabei wird der Übersichtlichkeit halber zunächst die Herstellung einer Diode ohne irreversibel mit Wasser reagierendes Material beschrieben.
Auf einem ITO-beschichteten Glassubstrat mit 5 x 5 cm Kantenlänge und einer Dicke von 1,1 mm werden mittels Photolithographie zwei zueinander parallele, 2 mm breite ITO- Streifen im Abstand von 1 cm erzeugt. Belichtete Stellen werden im Alkalischen nicht abgelöst. Dadurch wird das ITO geschützt. Freiliegendes ITO wird mit konzentriertem HBr bei einer Temperatur von 40° C während zwei Minuten abgelöst. Auf die ITO-strukturierte Glasscheibe wird beispielsweise mittels Spincoaten aus wässriger Lösung eine 70 nm dicke Schicht aus PEDOT (Polyethylendioxothiophen) aufgebracht. Diese Schicht wird in einem Temperprozess bei 200° C fünf Minuten getrocknet. Anschließend wird darauf, beispielsweise ebenfalls durch Spincoaten, aus Xylol die Emitterschicht, beispielsweise auf Polyfluorenbasis, mit einer Dicke von 100 nm aufgebracht. Die Trocknung dieser Schicht erfolgt bei einem verminderten Druck von 10~6 bar. Ebenfalls bei diesem Druck werden durch eine Schattenmaske als Kathode zwei je 2 mm breite Kalziumstreifen im Abstand von 1 cm aufgedampft. Diese Metallstreifen sind rechtwinklig zu den auf dem Glassubstrat befindlichen ITO-Strukturen angeordnet.
Die Flächen der sich kreuzenden Anoden- und Kathodenbahnen, zwischen denen sich die Polymere befinden, stellen die aktive Fläche der Leuchtdiode dar. Auf die Kalziumstreifen werden, ebenfalls durch eine Schattenmaske, Silberstreifen der Dicke 150 nm aufgedampft. An den zu verklebenden Stellen wird allerdings kein Metall aufgedampft. An diesen Stellen werden die organischen Schichten manuell abgezogen. Dies kann beispielsweise mit einer Klinge erfolgen. Der polymerfreie Bereich kann aber auch wie in WO 03/03481 A2 beschrieben erzeugt werden. Anschließend werden die auf diese Weise erhaltenen vier Dioden mit einer Glaskappe verkapselt. Hierzu können insbesondere die in WO 01/18886 A2 und WO 01/18887 AI beschrieben Verfahren und Vorrichtungen verwendet werden. Die Außenmaße der Kappe betragen im Ausführungsbeispiel 24 x 24 mm, der Kleberand 1 mm und die Tiefe der Kavität 200 μm.
Die zu fügenden Teile werden in einer inerten, das heißt insbesondere wasser- und Sauerstofffreien Atmosphäre zueinander positioniert und beispielsweise mit einem organischen Kleber miteinander verklebt.
Wird an die ITO-Elektrode (Anode) und die Ca-Elektrode
(Kathode) eine Spannung von beispielsweise 5 Volt angelegt, so leuchtet die verkapselte Diode. Die mit einer solchen Diode bei Lagerung bei einer Temperatur von 85° C und einer relativen Luftfeuchtigkeit von 85% erreichte Lebensdauer beträgt beispielsweise 120 Stunden und dient als Referenz für die im Folgenden berichteten Lebensdauern.
Zur Steigerung der Lebensdauer wird bei der Herstellung der Licht emittierenden Diode ein Material eingesetzt, das irreversibel mit Wasser reagiert. Hierzu wird insbesondere reaktives Polyurethan eingesetzt. Das Material wird mittels eines Dispensers mittig auf die Innenseite der Glaskappenkavität dosiert. Die Menge ist so gewählt, dass beim Auflegen und Anpressen der Glaskappe das Volumen der Kavität nahezu vollständig bzw. vollständig ausgefüllt wird, wodurch das organische Bauteil komplett mit einer Wasser absorbierenden organischen Schicht auf Basis von Polyurethan bedeckt wird. Die Glaskappe wird nach Positionierung mittels eines lichthärtenden Epoxidklebers verklebt. Die hierfür benötigte Kleberaupe wird mittels Dispenser auf das organische Bauteil appliziert. Bei Lagerung bei einer Temperatur von 85° C und einer relativen Luftfeuchte von 85° wird die Lebensdauer einer so hergestellten OLED durch Verwendung des reaktiven Polyurethans um den Faktor 3 verbessert.
Alternativ oder ergänzend kann das irreversibel mit Wasser reagierende Material in Form des reaktiven Polyurethans auch mittels eines Dispensers mittig auf das organische Bauteil aufgebracht werden. Durch das Auflegen der Glaskappe wird das Material so verteilt, dass das Volumen der Kavität nahezu vollständig bzw. vollständig ausgefüllt wird. Die Glaskappe wird nach Positionierung mittels eines lichthärtenden Epoxidklebers verklebt. Die hierfür benötigte Kleberaupe wird mittels Dispenser auf das organische Bauteil appliziert. Auch in diesem Fall verbessert sich durch die Verwendung des reaktiven Polyurethans die Lebensdauer einer OLED bei einer Temperatur von 85° C und einer relativen Luftfeuchte von 85% um den Faktor 3.

Claims

Patentansprüche
1. Bauelement mit einer ein, insbesondere organisches, Bauteil enthaltenden Kapsel, dadurch gekennzeichnet, dass in der Kapsel zum Schutz des Bauteils vor Wasser ein Material angeordnet ist, das irreversibel mit Wasser reagiert.
2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass das Material freie Isocyanatgruppen aufweist.
3. Bauelement nach Anspruch 2, dadurch ge ennzeichnet, dass das Material Polyurethanstrukturen aufweist.
4. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Material in einer Kavität der Kapsel angeordnet ist
5. Bauelement nach Anspruch 4, dadurch gekennzeichnet, dass das Material die Kavität vollständig oder nahezu vollständig ausfüllt.
6. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kapsel ein Substrat und eine Kappe aufweist.
7. Bauelement nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, dass die Kappe eine Kavität aufweist.
8. Bauelement nach einem der vorhergehenden Ansprüche, dadurch ge ennzeichnet, dass die Kapsel zumindest teilweise transparent ist.
9. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekenn eic net, dass das Bauteil ein elektrolumineszierendes Bauteil ist, insbesondere eine Licht emittierende Diode.
10. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bauteil aus organischen Halbleitern aufgebaut ist,
11. Bauelement nach einem der vorhergehenden Ansprüche, dadurch ge enn eichnet, dass das Bauteil auf einem, insbesondere flexiblem, Substrat angeordnet ist.
12. Verfahren zur Verkapselung eines Bauteils, insbesondere eines organischen Bauteils, bei dem in einer Kapsel zum Schutz des Bauteils vor Wasser ein Material angeordnet wird, das irreversibel mit Wasser reagiert.
13. Verfahren nach Anspruch 12, bei dem das Material durch Dosieren, insbesondere Dispensieren, lokal appliziert wird.
14. Verfahren nach Anspruch 12, bei dem das Material durch Siebdruck flächig appliziert wird.
PCT/EP2004/001497 2003-02-18 2004-02-17 Packaging organischer, licht emittierender dioden unter verwendung von reaktivem polyurethan WO2004075312A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04711608A EP1595296A1 (de) 2003-02-18 2004-02-17 Packaging organischer, licht emittierender dioden unter verwendung von reaktivem polyurethan
US10/545,162 US20060141204A1 (en) 2003-02-18 2004-02-17 Packaging of organic light-emitting diodes using reactive polyurethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10306811A DE10306811A1 (de) 2003-02-18 2003-02-18 Packaging organischer, Licht emittierender Dioden unter Verwendung von reaktivem Polyurethan
DE10306811.2 2003-02-18

Publications (1)

Publication Number Publication Date
WO2004075312A1 true WO2004075312A1 (de) 2004-09-02

Family

ID=32747988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001497 WO2004075312A1 (de) 2003-02-18 2004-02-17 Packaging organischer, licht emittierender dioden unter verwendung von reaktivem polyurethan

Country Status (4)

Country Link
US (1) US20060141204A1 (de)
EP (1) EP1595296A1 (de)
DE (1) DE10306811A1 (de)
WO (1) WO2004075312A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110032704A1 (en) * 2008-04-08 2011-02-10 Sang Keun Oh Lighting display apparatus and the method for manufacturing the same
US8803187B2 (en) 2012-10-22 2014-08-12 Empire Technology Development Llc Protection of light emitting devices
CN203983341U (zh) * 2014-07-31 2014-12-03 京东方科技集团股份有限公司 电致发光器件及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179187A (en) * 1990-02-23 1993-01-12 Bayer Aktiengesellschaft Use of isocyanates containing urethane groups as drying agents and a process for the production of a coating composition
US5505985A (en) * 1990-11-30 1996-04-09 Idemitsu Kosan Company Limited Process for producing an organic electroluminescence device
EP1191821A1 (de) * 2000-09-25 2002-03-27 Konica Corporation Organisches Elektrolumineszenzelement und dafür verwendetes organisches Elektrolumineszenzmaterial
JP2002134269A (ja) * 2000-10-27 2002-05-10 Matsushita Electric Works Ltd 有機el素子
EP1223791A2 (de) * 2001-01-10 2002-07-17 Canon Kabushiki Kaisha Organische elektrolumineszente Vorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148066A (ja) * 1995-11-24 1997-06-06 Pioneer Electron Corp 有機el素子
US5734225A (en) * 1996-07-10 1998-03-31 International Business Machines Corporation Encapsulation of organic light emitting devices using siloxane or siloxane derivatives
US5821692A (en) * 1996-11-26 1998-10-13 Motorola, Inc. Organic electroluminescent device hermetic encapsulation package
US6432516B1 (en) * 1997-04-17 2002-08-13 Kureha Kagaku Kogyo K.K. Moistureproofing film and electroluminescent device
WO2003005774A1 (en) * 2001-05-24 2003-01-16 Orion Electric Co., Ltd. Container for encapsulating oled and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179187A (en) * 1990-02-23 1993-01-12 Bayer Aktiengesellschaft Use of isocyanates containing urethane groups as drying agents and a process for the production of a coating composition
US5505985A (en) * 1990-11-30 1996-04-09 Idemitsu Kosan Company Limited Process for producing an organic electroluminescence device
EP1191821A1 (de) * 2000-09-25 2002-03-27 Konica Corporation Organisches Elektrolumineszenzelement und dafür verwendetes organisches Elektrolumineszenzmaterial
JP2002134269A (ja) * 2000-10-27 2002-05-10 Matsushita Electric Works Ltd 有機el素子
EP1223791A2 (de) * 2001-01-10 2002-07-17 Canon Kabushiki Kaisha Organische elektrolumineszente Vorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 09 4 September 2002 (2002-09-04) *

Also Published As

Publication number Publication date
EP1595296A1 (de) 2005-11-16
US20060141204A1 (en) 2006-06-29
DE10306811A1 (de) 2004-08-26

Similar Documents

Publication Publication Date Title
EP2465149B1 (de) Verfahren zur kapselung einer elektronischen anordnung
DE60018542T2 (de) Organische Elektrolumineszenzanzeige und Verfahren zu deren Herstellung
EP2465150B1 (de) Verfahren zur kapselung einer elektronischen anordnung
DE69630162T2 (de) Passivierung von organischen Vorrichtungen
EP2279537B1 (de) Verfahren zur kapselung einer elektronischen anordnung
DE60006211T2 (de) Organische elektrolumineszente vorrichtung
WO2005104259A2 (de) Verkapselung für ein organisches elekronisches bauteil, herstellungsverfahren dazu, sowie verwendung
EP1798306B1 (de) Verfahren zum Abscheiden eines Aufdampfmaterials
DE10349034A1 (de) Elektrolumineszenzbauelemente und Kathoden
DE112009002034T5 (de) Organisches elektrolumineszierendes Bauelement
WO2001018886A2 (de) Organische lichtemittierende diode und herstellungsverfahren
DE102011052509A1 (de) Wasser-Aufnahmemittel und eine organoelektrische Vorrichtung, die das Wasser-Aufnahmemittel darin enthält
EP0258783B1 (de) Haftetikett
KR101665593B1 (ko) 유기전자장치용 접착필름 및 이를 포함하는 유기전자장치용 봉지재
WO2004075312A1 (de) Packaging organischer, licht emittierender dioden unter verwendung von reaktivem polyurethan
DE60200054T2 (de) Organische elektrolumineszente Vorrichtung
EP3198660A1 (de) Verfahren zum aufbringen einer schutzschicht, schutzschicht selbst und halbfabrikat mit einer schutzschicht
DE10236855B4 (de) Gehäuseeinheit zur Verkapselung von Bauelementen und Verfahren zu deren Herstellung
DE102004049955A1 (de) Verfahren zur Herstellung eines optischen Bauelements, insbesondere einer OLED
DE10130992B4 (de) Verfahren zur Herstellung einer hermetisch dichten Verbindung zwischen einem Substrat und einer Dioden-Schutzkappe
DE102009036395A1 (de) Bauteil mit einem ersten und einem zweiten Substrat und Verfahren zu dessen Herstellung
WO2017068041A1 (de) Organisches optoelektronisches bauelement und verfahren zum herstellen eines organischen optoelektronischen bauelements
DE102007046730A1 (de) Organisches elektronisches Bauelement, Herstellungsverfahren dazu sowie Verwendung
WO2019223953A1 (de) Kombination einer transparenten vollflächigen verkapselung mit einer (intransparenten) randverkapselung mit hohem gettergehalt
DE10329366B4 (de) Bauelement, insbesondere Anzeigevorrichtung mit organischen Leuchtdioden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004711608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006141204

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10545162

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004711608

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004711608

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10545162

Country of ref document: US