WO2004073944A1 - リグノセルロース系回転駆動体 - Google Patents

リグノセルロース系回転駆動体 Download PDF

Info

Publication number
WO2004073944A1
WO2004073944A1 PCT/JP2004/000903 JP2004000903W WO2004073944A1 WO 2004073944 A1 WO2004073944 A1 WO 2004073944A1 JP 2004000903 W JP2004000903 W JP 2004000903W WO 2004073944 A1 WO2004073944 A1 WO 2004073944A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
molding
gear
lignocellulosic
steam treatment
Prior art date
Application number
PCT/JP2004/000903
Other languages
English (en)
French (fr)
Inventor
Yoji Kikata
Hiroshi Morihisa
Original Assignee
Chunichi Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunichi Seiko Co., Ltd. filed Critical Chunichi Seiko Co., Ltd.
Publication of WO2004073944A1 publication Critical patent/WO2004073944A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the present invention relates to a lignocellulose-based material and a technique using the material, and more particularly, to a rotary driving body using a molding technique for a lignocellulosic-modified material that is modified by steam treatment and exhibits plasticity.
  • Typical lignocellulosic materials are lignocell mouth materials obtained from wood and herbs. .
  • lignocellulosic materials are typically in the form of fibers or chips, as disclosed in, for example, Japanese Patent Publication No. 2002-528298, and heat-cured. It is used as a material for molded articles such as various pods and panels that use a conductive adhesive as a binder. In addition, a molded article is also obtained by adding wood powder or the like to a thermosetting resin material and extruding it.
  • lignocellulosic materials are discarded or not yet used.
  • industrial waste or agricultural waste such as demolition waste of houses and furniture, waste paper such as newspapers and dam-poles, cut grass, fallen leaves, cuttings, thinned wood, and pressed slag such as sugarcane.
  • waste paper such as newspapers and dam-poles
  • cut grass fallen leaves
  • cuttings thinned wood
  • pressed slag such as sugarcane.
  • lignocellulosic materials are reused for port and panel materials, fermented compost, litter and solid fuels, they have useful parts due to processing costs such as crushing and drying.
  • the fact is that waste is still being disposed and incinerated.
  • rotary drives such as gears and belt wheels are currently generally made of metal, and limitedly made of resin.
  • an object of the present invention is to provide a technique for manufacturing a rotary driving body such as a gear using a lignocellulosic material.
  • the present inventors have conducted various studies on a lignocellulose-based modified material obtained by treating a lignocellulosic material with steam. As a result, they found that the lignocellulose-based material after the treatment could be heated to develop the flow of the material, and based on the plasticity due to the flow, a molding process applied to general resin molding. Utilizing a lignocellulose-based modified material, a rotary drive such as a gear was manufactured using this technology. They have found that they have the same or better performance than engineering plastics such as copolymers, and have completed the present invention.
  • Lignocellulosic material mainly composed of the molded body of lignocellulose-based modifying materials obtained by steaming, and a flexural Young's modulus 10. O kN / mm 2 or more of the molded body, tooth height is 0. 5 mm A rotating drive element that is a gear with a number of teeth of 6 or more and 6 mm or less.
  • FIG. 1 is a front view showing a gear configuration in a gear durability tester.
  • Figure 2 is a side view of the gear durability tester.
  • a lignocellulosic material obtained by steam treatment A rotation driving body is provided by at least molding the loin-based modifying material.
  • the lignocellulose-based modified material obtained by subjecting the lignocell-based material to steam treatment contains a cellulose-based decomposition component and a lignin-based decomposition component.
  • the material once solidified flows by heating again and develops plasticity. Therefore, the lignocellulosic material functions as a thermoplastic material that can impart plasticity by heating. At the same time, by heating the composition containing the lignocellulose-based modifying material, the composition can be fluidized to exhibit plasticity.
  • the modified material of the present invention (hereinafter referred to as the present material) is obtained by subjecting a lignocellulosic material to a steam treatment.
  • the “lignocellulosic material” may be any material containing lignin and cellulose. Preferably, it is contained in the form of lignocellulose constituting the plant cell wall. Therefore, the lignocellulosic material is preferably all or part of herbs such as trees, kenaf, corn, sugarcane, hemp, idasa and rice.
  • Lignocellulosic materials include industrial or agricultural products such as house demolition, furniture demolition, wood chips, thinned wood, rice hulls, wood flour, waste paper, pruned branches, cut grass, fallen leaves, and sugarcane scum (bagasse). Includes waste.
  • the lignocellulose-based material may be constituted not in the form of a complex with cellulose, hemicellulose and lignin, but in the form of containing each separately. Further, these individual materials may be added to a lignocell-based material containing lignocellulose in a composite form. Therefore, the lignocellulose-based material can be, for example, a lignin-containing fraction obtained as waste in the pulping step with high quality waste paper that contains almost no lignin.
  • these lignocellulosic materials can be used alone or in combination of two or more.However, from the viewpoint of material homogeneity and suppression of the strength of the processing conditions, these materials may be used alone or in combination of two or more. It is preferable to use a combination of about 3 kinds.
  • lignocellulose-based materials When performing steam treatment, it is preferable to use only lignocellulose-based materials, but if necessary, materials other than lignocellulose, such as sugars such as glucose, lignin components, acids, and moisture may be added as appropriate. Can be.
  • the degree of generation of decomposition components by steam treatment can be controlled.
  • the lignocellulosic material is preferably finely divided so that the steam treatment can be performed uniformly. When it is subdivided, the time required for the steaming, drying, and pulverizing steps is also reduced.
  • the lignocellulose-based material is easy to handle when it is formed into small pieces or fine powder, specifically, in the form of flakes or flakes such as wafers.
  • the size can be, for example, about 5 cm ⁇ 5 cm or less with a thickness of 1 mm or less, and preferably about 2 cm ⁇ 2 cm or less with a thickness of 5 mm or less. Sawdust and planar waste can be used as they are.
  • the water content (dry basis) of the lynocellulosic material is preferably 120% or less (hereinafter, the moisture content means weight%). If the water content exceeds 120%, the decomposition components generated in the lignocellulosic material by the steam treatment will easily flow out, and an effective amount of the decomposition components will not be easily retained in the treated lignocellulosic material. Because. More preferably, it is 8% or more and 100% or less. Within such a range, the entire lignocellulose-based material can be uniformly steamed to generate a decomposed component, and at the same time, the outflow of the decomposed component can be effectively suppressed, and a thermoplastic material having favorable flowability and moldability can be obtained.
  • thermoplastic material can be obtained. If it is less than 8%, the exposure to water vapor tends to be uneven, and as a result, the generation of decomposition components also becomes uneven, It becomes difficult to obtain a thermoplastic material having good fluidity. On the other hand, when the content exceeds 100%, free water in the lignocellulose-based material is easily released during the steam treatment, and the decomposed components easily flow out of the lignocellulose-based material with the release of the free water.
  • the thermal fluidity of the lignocellulosic material decreases. More preferably, it is 15% or more and 100% or less. More preferably, it is 30% or more and 100% or less.
  • the degree of the water content can be adjusted in the step of drying the lignocellulosic material. Conversely, the water content can also be adjusted by externally applying water to the lignocellulosic material. (Steam treatment)
  • the steam treatment can be performed in various forms, but is preferably performed by heating under saturated steam or hot steam. Specifically, this is carried out by exposing the lignocellulosic material to heated steam in a pressure vessel under high pressure.
  • heating is preferably performed at about 60 ° C. or more, and the upper limit is preferably about 260 ° C. or less.
  • the temperature is not lower than 60 ° C. and not higher than 250 ° C., side reactions such as decomposition and condensation can be suppressed while decomposing hemicellulose and lignin.
  • it is heated to about 110 ° C. or higher and about 230 or lower. More preferably, the temperature is not less than about 150 ° C. and not more than about 230. Most preferably, it is not less than about 200 ° C. and not more than about 230, more preferably not more than 220 ° C.
  • the steam treatment may be performed, for example, for several tens of seconds to several tens of minutes.
  • the processing time is preferably longer when the processing temperature is low, and can be shorter when the processing temperature is high.
  • the lignocellulose-based material is large, it is preferable to make the length longer, and when the material is small, the length can be made shorter.
  • the heating temperature is 110 or more and 230 or less, it is good that the treatment is performed for several tens of seconds to about 10 minutes, preferably about 1 minute. ⁇ About 5 minutes. Preferably, it is about 2 to 3 minutes. On the other hand, when using a lignocellulose material in a larger state, it takes 15 minutes or more. May be required.
  • a good processing state can be obtained by heating for several tens of seconds to about 5 minutes.
  • planar waste typically less than 5 cm x 5 cm in thickness less than l mm, preferably 2 cm x 2 cm in thickness less than 0.5 mm
  • a preferable treatment state can be obtained in about 2 to 5 minutes.
  • the steam treatment is preferably performed at a temperature lower than 200 ° C.
  • the pressure can be gradually reduced, or the pressure can be released all at once to atmospheric pressure.
  • the moisture inside the cellulose-containing material in the processing apparatus is vaporized, causing an explosion in the cellulose-containing material and destroying the structure of the cellulose-containing material.
  • the cellulose-containing material can be comminuted and crushed into a fibrous or powdery form (hereinafter, releasing pressure from a high-pressure state at once is referred to as explosive crushing. Later releasing the pressure all at once is called steaming and explosion treatment.)
  • blasting is adopted, steaming and blasting are performed continuously. Blasting makes the subsequent crushing process easier. In addition, the drying process will be performed efficiently.
  • the heating temperature in the steam treatment is preferably 18 CTC or more and 260 C or less. More preferably, the temperature is about 200 ° C. or more and about 230 ° C. or less.
  • This material can be obtained by such a steam treatment. Hydrolysis or thermal decomposition components are generated in this material, and the decomposition components are retained in the tissue or leached from the tissue to the material surface. (Dry)
  • the material After steaming, the material is preferably dried. If a large amount of moisture is present, when the material is heated and fluidized, the moisture may evaporate and impair moldability or fluidity. In addition, the decomposed components may move along with the evaporation of water, which may impair fluidity and moldability.
  • the drying step is preferably performed until the water content (based on dry weight) of the present material becomes 28% or less. More preferably, it is dried to 12% or air-dry moisture content.
  • Drying can be carried out at room temperature or at a high temperature, but preferably, after the steam treatment, drying is carried out actively.
  • drying is carried out actively.
  • Active drying means drying while applying air or Z or heat to promote water evaporation. Specifically, drying at a high temperature equal to or lower than the steam treatment temperature, or drying at a normal temperature by blowing air or the like is performed.
  • the water content can be measured according to JIS Z2101 Wood Test Method 3.2 Water Content. .
  • the material can be ground so that the particle size of the material is suitable for the application in which the material is to be applied.
  • the particle size of the present molding composition is not particularly limited. Even with about 100, sufficient fluidity during melting can be ensured. Considering the melt flow for extrusion molding or injection molding, it is preferably about 800 or less, more preferably about 200 / ⁇ m or less, and more preferably 180 m or less. . It is more preferably at most about 100 / m, more preferably at most about 90 tm. Also, it may be about 45 or less.
  • the particle size distribution also affects. Higher fluidity can be obtained with a certain degree of particle size distribution.
  • An overall preferred range is from about 45 m to about 180, more preferably from about 45 to about 90, and from about 90 ⁇ 111 to about ⁇ 180. It is as follows.
  • the particle shape is not particularly limited, and may be flaky, spherical, irregular, fibrous, etc. can do.
  • a machine such as a wheel mill, a pole mill, a grinder, a mixer, etc. can be used. Lignocellulosic materials that have been steamed and dried are easily destroyed due to the embrittlement of the tissue. For this reason, it can be formed into fine powder in a short time and with a small power compared to simply grinding. Therefore, no heat is generated in the pulverization step, and the pulverization can be performed safely and at low cost.
  • the particles can be sieved using a sieve having a mesh size not exceeding the maximum particle size of the target molding material.
  • the decomposed component After drying, not only pulverization but also granulation is possible. Since the decomposed component has adhesiveness, it can be granulated to homogenize the particle size and improve flowability. In addition, a new composite molding material can be obtained by applying a coating material during granulation.
  • This material retains at least components for decomposing cellulose, hemicellulose, and lignin. It also often contains undegraded lignin and Z or cellulose. As described above, this material flows when heated, and exhibits plasticity. As a result, this material can be used as a plasticizer. Heat flow is possible after solidification. Further, the composition containing the material can be used as a thermoplastic material, and can be typically used as a molding material utilizing plasticization by heat. Preferably, it is used as a thermoplastic molding material.
  • the present material especially the decomposition component existing on the particle surface is melted, so that the entire aggregate of particles has fluidity and plasticity. It seems to give. Therefore, when the material develops plasticity by heating, it may be completely melted resin.However, in many cases, the amorphous material contains a melt partly and is derived from the constituent particles of the material. It is considered to contain various shaped particles such as spherical, fibrous, or flaky.
  • composition of the present invention contains this material.
  • the present molding composition preferably contains the present material mainly. Specifically, of the resin material (100 parts by weight) used in the composition, the present material is contained in an amount of 20 to 99 parts by weight, more preferably 40 to 99 parts by weight. In addition, a composition comprising only the present material can be used.
  • thermoplastic resin materials include, for example, ordinary thermoplastic resin materials, thermosetting resin materials, and biodegradable resin materials.
  • thermoplastic resin material polyethylene, polypropylene, ABS, vinyl chloride, and the like can be used, and preferably, polypropylene and polyethylene can be used.
  • thermosetting resin a phenol resin, a urea resin, a melamine resin, or the like can be used.
  • a phenol resin can be used.
  • the biodegradable resin material By using the biodegradable resin material, the biodegradability of the whole molded body can be easily secured.
  • the biodegradable resin material one or two or more selected from aliphatic polyester materials such as polylactic acid, poly-3-hydroxybutyric acid, and butylene polysuccinate can be used. These aliphatic polyester materials are preferable in terms of excellent biodegradability and easy availability.
  • the material or the composition containing the material develops fluidity upon heating and becomes plastic. In addition, it solidifies upon cooling.
  • plasticity of this material By utilizing the plasticity of this material, it can be applied to various compositions such as molding compositions, plasticizer compositions, and filler compositions that utilize thermoplasticity.
  • a molded article When used as a molding composition, a molded article can be easily obtained by performing an appropriate shape imparting step during plasticization.
  • various resin molding methods such as compression molding, extrusion molding, injection molding and the like can be adopted.
  • the composition before use is not particularly limited in its form. Powder or particles In addition to the shape, it can be a precursor having a shape and size suitable for molding, transport, and handling. Such a precursor can be obtained at least by pressing.
  • the decomposition components inherent in this material have caking properties even at room temperature. Therefore, by using this caking property, a precursor having a shape can be obtained only by pressurization. Further, by heating at the same time, it is possible to obtain precursors of various shapes in which at least a part of the present material is melted and the bonding property is further improved. Since this material has thermoplasticity, plasticity can be developed by heating the precursor in a subsequent heating step. (Plasticization)
  • the heating conditions for plasticization are preferably set within a range where the material is fluidized:
  • the fluidization temperature (fluidization start temperature) varies depending on the steam treatment conditions of the material, but can be from about 100 ° C to about 260 ° C. Preferably, it is at least about 110 ° C., more preferably at least about 150 ° C., even more preferably at least about 170 ° C., and most preferably at least about 180 That is all. Further, the temperature is preferably about 230 ° C. or less. Most preferably, it is not less than about 170 ° C and not more than about 180 ° C.
  • the heating temperature can be set relatively low when the temperature during the steam treatment is high. When the steam treatment temperature is low, it is preferable to set the temperature relatively high.
  • the flow can be started at a temperature of about 150 to about 190 ° C, depending on the lignocellulosic material used and the processing time. Can be.
  • the flow can be started at about 160 ⁇ depending on the lignocellulosic material used and the treatment time.
  • the flow can be started at about 100 ° C. to about 140 ° C., depending on the lignocellulosic material used and the processing time.
  • general planer waste typically about 5 cm x 5 cm or less with a thickness of lmm or less, preferably about 2 cm x 2 cm or less with a thickness of 0.5 mm or less
  • the processing time is less than 5 minutes
  • the flow starts at about 190 ° C, and when the processing time is 5 minutes to 10 minutes, the flow starts at about 190 ° C.
  • the steam treatment temperature is about 210: and the treatment time is less than 5 minutes (about 2 minutes), it is fluidized at about 160 ° C. If the steam treatment temperature is about 220 ° C and the treatment time is less than 5 minutes (about 2 minutes), it is fluidized at about 140 ° C, and the treatment time is 5 to 10 minutes at the same temperature. Fluidize at 100-110 ° C. In particular, for the same strip, when the steam treatment temperature is about 220 ° C and the treatment time is 10 minutes, the flow start temperature is about 105 ° C.
  • the particle diameter of the material is preferably 45 m or more and 180 m or less in order to ensure fluidization, but the particle diameter is 45 / m or less. It has been found that 'begins to flow at a lower temperature than the illustrated degree.
  • the molding temperature is about 170 ° C.
  • the heating time under pressure is preferably at least 10 minutes, more preferably at least 15 minutes, even more preferably at least 20 minutes.
  • the flow start temperature and fluidity can be controlled by the steam treatment temperature.
  • the flow start temperature can be confirmed by an extrusion test using a generally available capillary rheometer or the like.
  • the most common capillary-type rheometer is a heating furnace that can control the temperature, a cylinder that is installed in the heating furnace, contains a test sample, has a nozzle that is a discharge port, and a piston that pressurizes the sample in the cylinder. , And are provided.
  • Fig. 2 shows an example of an extrusion test using such a capillary rheometer. The material starts to flow by heating through the thin tube rheome, and is discharged as a filament.
  • the present material and the present composition before the heating step. That is, it is preferable to carry out a heating step to the extent that the present material is not plasticized.
  • a heating step By performing such a preheating step, heating conditions can be moderated. Further, when a molded article is obtained, the density, bending strength, and bending Young's modulus of the obtained molded article can be dramatically improved. In addition, the coefficient of expansion and water absorption at the time of water absorption can be significantly reduced.
  • the temperature of the preheating step is not particularly limited, but is preferable. In other words, the heating temperature is about the same as the heating temperature in the heating step.
  • a molded article can be obtained by applying an appropriate shape imparting means.
  • the shape imparting means for example, a conventionally known means such as using a mold or passing through a die can be used. Thereafter, by cooling, a molded body can be obtained.
  • the molding method is not particularly limited as long as it is suitable for molding the rotary driving body, and is preferably a compression molding method.
  • the molding composition is plasticized and molded, precise molding is possible.
  • a simple shape such as a disk or a cylinder
  • a rotary drive such as a gear having a desired tooth shape, a rotary drive having a portion having a different wall thickness or a different cross-sectional shape, and a rotary drive having an aperture portion.
  • Conditions at the time of imparting the shape differ depending on the steam treatment conditions and the molding method.
  • the pressurizing condition be about lOMPa to about 80MPa. More preferably, it is not less than about 25 MPa and not more than 6 OMPa. If the steam treatment is performed at a high temperature of 220 or higher at a high temperature for a predetermined time (typically about 2 to 5 minutes), good molding can be realized at 50 MPa or less.
  • a molded article can be obtained by giving the shape to the molding composition and then cooling it.
  • the obtained molded body is at least partially resinous.
  • the surface has a remarkably resin-like surface.
  • the internal phase a state in which particles derived from the constituent particles of the present material may be observed.
  • the molded body is in a state in which the resin-like portion and the particle bonding portion are mixed.
  • the bending strength is at least 10 NZmm 2 ⁇ Ma properly is 4 ONZmm 2 or more, more preferably Rukoto give 50 N / mm 2 or more shaped bodies.
  • the bending Young's coefficient of 2. O kN / mm 2 or more, preferably 6. 0 kN / mm 2 or more, more preferably it is possible to obtain 8. is 0 k NZmm 2 more compact.
  • a molded article having a thickness expansion coefficient of 15% or less, preferably 12% or less when absorbing water can be obtained.
  • a molded article excellent in water resistance having a water absorption of 13% or less, preferably 10% or less can be obtained.
  • a molded article having excellent oil resistance can be obtained.
  • a molded article having an oil absorption of 1% or less, preferably 0.5% or less, more preferably 0.1% or less when immersed in machine oil for 24 hours can be obtained.
  • a molded article having an oil absorption thickness expansion coefficient and an oil absorption length expansion coefficient of 1% or less, preferably 0.5% or less, and more preferably 0.1% or less can be obtained.
  • JIS A 5905 fiberboard 5.4 According to the density test.
  • the dimensions of the test piece shall be 20 mm X 2 Omm.
  • a test piece with a width of 1 OmmX length of 65 mmX thickness of 4 to 6 mm shall be tested with a span of 5 Omm and a load speed of 2 mmZ and a centralized load applied.
  • the bending strength and bending Young's modulus are calculated according to JIS Z 5905 Wood Test Method 9 Bending Test.
  • JISA 5905 fiber board 5 JISA 5905 fiber board 5.
  • the immersion time is 24 hours.
  • the dimensions of the test piece shall be 2 OmmX 2 Omm. 4.
  • test piece shall be 20 m ⁇ ⁇ 2 O mm.
  • the oil absorption can be calculated by immersing in oil such as machine oil for a certain period of time (for example, 24 hours) and dividing the increase in weight before and after immersion by the initial weight. Also, by dividing the change in thickness and length before and after immersion by the initial thickness and initial length, respectively, the oil absorption thickness expansion rate and oil absorption length expansion rate can be calculated. Since such a molded article has a resin aspect and high density and high strength, it can be subjected to secondary processing after molding. As a result, the present molded body and its 2 ⁇ processed body can replace the industrial product in which the synthetic resin molded body was conventionally used by the present molded body. For example, various processes, such as cutting and grinding, performed on a synthetic resin can be performed.
  • This molded article has such characteristics that its surface is inherently excellent in lubricity and heat is hardly generated by friction. In particular, such characteristics are remarkable in a molded article obtained from only this material. For this reason, it can be used for a rotary driving body related to power transmission, such as a gear, a shaft, an auger, a bearing, or a bearing, by molding or further performing a cutting process.
  • the bending Young's coefficient is 8. O k Nmm 2 or more, more preferably 1 0. 0 k N Roh mm 2 or more.
  • the rotary driving body using the molded body has excellent lubricating properties and does not require lubricating oil, or is smaller than that required for a conventional metal rotary driving body. Can be rotated with no lubricating oil amount. At the same time, the amount of wear can be suppressed to the same level as an engineering plastic such as a polyacetal copolymer.
  • the oil absorption after immersion in mechanical oil for 24 hours is 1% or less (preferably 0.5% or less, more preferably 0.1% or less, more preferably 0.05% or less, most preferably 0.01% or less) and high oil resistance.
  • the oil absorption thickness expansion coefficient and the oil absorption length expansion coefficient are each 1% or less, preferably 0.5% or less, more preferably 0.1% or less, still more preferably 0.05% or less, and most preferably. Is less than 0.01%. From these facts, it can be said that the present rotary drive has high oil resistance. Therefore, it can be sufficiently used even when immersed in oil, and can be replaced with metal gears.
  • the present rotary driving body can exhibit plasticity again by heating based on the thermoplasticity of the present material. Therefore, when the rotary driving body becomes unnecessary, it can be used again as a molding material by heating again. That is, a new shape can be provided with the composition as it is, or a new shape can be provided in combination with another material. Furthermore, it can be diverted to other uses as a filler.
  • plasticizing the used rotary driving body it can be separated from the composite material or resin material such as another filler in the rotary driving body, or can be recovered. At the same time, it is possible to recover only this material.
  • the rotary driving body of the present invention is mainly made of, or mainly composed of, a lignocellulosic material. Therefore, biodegradation can be achieved by supplying it directly to soil-growing areas such as microorganisms or certain cellulose-lignin-degrading microbiota.
  • soil-growing areas such as microorganisms or certain cellulose-lignin-degrading microbiota.
  • Beech planer waste was steamed at 200 ° C for 10 minutes, and then burst into fibers by releasing pressure at once. Then, it was dried to air-dry moisture content in the sun, pulverized with a wheel mill, and sieved to recover fine powder having a size of 500 m or less.
  • Example 1 The fine powder obtained in Example 1 was used as a molding material as it was as a molding composition. No other materials were used other than this molding material.
  • This molding composition is poured into a press mold, and pressurized and heated at two temperatures of 170 ° C and 190 ° C for 20 minutes under a load of 27 Got a body. Note that a preheating step of about 20 minutes was applied to the molding composition for each of the temperature condition samples.
  • the beech planer waste was steamed at 200 ° C for 10 minutes, and then the pressure was released at once to explode and fibrillate. After that, it was dried to air-dry moisture content in the sun, pulverized with a wheel mill, and sieved to recover a fine powder having a size of 500 m or less.
  • FIG. 1 and 2 show the configurations of various gears and the outline of the durability tester, respectively.
  • Gear 1 was prepared by compression-molding 130 g of the molding composition to a size of 10 OmmX10 OmmX9 mm under the above conditions, and then cutting the module to 2.0 with 38 teeth.
  • the intermediate gear .2 was prepared by hot-pressing 13 g of the molding composition under the above conditions so that the module had 2.0 and the number of teeth was 18.
  • the other gear was a driving gear 3, which was formed by molding under the same conditions as the intermediate gear 2.
  • the final gear 4 was manufactured by cutting gears from Zyuracon (trademark, polyacetal copolymer) so that the module had 2.0 and the number of teeth was 18.
  • a load of 1 ON was applied to the rotating shaft of the final gear 4 by a coil spring, the drive gear 3 was rotated at 3166 rpm by a motor, and continuously operated for 8 hours to perform a gear durability test. went.
  • the large gear 1 has both tooth surfaces in rotational contact with the mating gear at 1500 rpm
  • the intermediate gear 2 has both tooth surfaces in rotational contact with the mating gear at 3166 rpm.
  • the gear 3 and the final gear 4 are configured such that one of the tooth surfaces contacts the power transmission. No lubrication oil was supplied before and during rotation.
  • the total number of rotations in the test was 720,000 rotations for the gear sample 1, and the intermediate gear 2 and the final gear 4 each had 15 19,680 rotations.
  • Table 2 shows the results of the durability test.
  • a rotary drive such as a gear can be provided by using a molded product of a material derived from a lignocellulosic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Gears, Cams (AREA)

Description

明 リグノセルロース系回転駆動体 [技術分野]
この発明は、 リグノセルロース系材料とこの材料を利用する技術に関し、 詳し くは、 水蒸気処理により改質され、 可塑性を発現するリグノセルロース系改質材 料の成形技術を利用する回転駆動体に関する。
糸田
[背景技術]
資源の有効利用、 自然や人体に悪影響を与える化学物質の使用の低減、 有害物 質の廃棄や, C〇2排出の低減を目的として、植物資源由来のリグノセルロース系材 料を利用する試みが成されている。
リグノセルロース系材料としては、 木材や草本類から得られるリグノセル口一 ス材料が典型的である。.
これらのリグノセルロース系材料は、 例えば日本国公表特許公報 2 0 0 2 - 5 2 8 2 9 9号に開示されているように、 典型的には、 ファイバー状あるいはチッ プ状とされ、 熱硬化性接着剤をバインダーとする各種ポ一ドやパネル等の成形体 材料として用いられている。 また、 熱硬化性樹脂材料中に木粉などを添加して押 出し成形などにより成形体を得ることも行われている。
また、 リグノセルロース系材料には、 廃棄されるかあるいは未だ利用されてい ないものもある。 たとえば、 家屋や家具の解体廃材、 新聞紙やダンポールなどの 古紙、 刈り草、 落ち葉、 刈り枝、 間伐材、 サトウキビなどの圧搾滓などの産業廃 棄物あるいは農業廃棄物である。 これらのリグノセルロース系材料は、 一部がポ ードゃパネル材料、 発酵堆肥、 敷料、 固形燃料に再利用されているものの、 破砕 や乾燥などの加工コストの関係から、 有用な部分を有しながらも、 依然として廃 棄 ·焼却処分が行われているのが実情である。
有用資源の循環利用、 地球温暖化抑制の観点から、 近年、 廃棄 ·焼却処分され ていたリグノセルロース系材料についてもさらなる利用が求められるようになつ てきている。 しかしながら、 上述のように、 廃棄あるいは未利用リグノセルロー 系材料は、 不均質、 水分含量が高いなどという観点から、 再利用のためには、 各種工程を経る必要があった。 また、 さらに、 循環利用を促進するには、 できる だけ他の材料を含まないことも望まれる。
一方、 リグノセルロース系材料を水蒸気処理した材料を、 乾燥し、 解繊し、 加 熱及び圧締して、 水蒸気処理によって生成する成分が有する接着力を利用して強 固なボードを得る技術が知られている。 しかしながら当該ボードは、 材料形態で あるフアイバ一を主体とするフアイバーポードであるため、 ポード以外への成形 加工は困難であった。 しかしながら、 より広い再利用の途を確保するには、 ポー ド以外への新たな用途確保が必要である。
ここに、 歯車やベルト車などの回転駆動体にあっては、 現在、 一般的には金属 製であり、,限定的に樹脂製となっている。
そこで、 本発明では、 リグノセルロース系材料を利用して歯車などの回転駆動 体を製造する技術を提供することを、 その目的とする。
[発明の開示]
本発明者らが、 リグノセルロース系材料を水蒸気処理して得られるリグノセル ロース系改質材料につき種々検討した。 その結果、 当該処理後のリグノセルロー ス系材料を加熱して、 当該材料の流動を発現させうることを見出し、 さらに、 当 該流動による可塑性に基づいて、 一般的な樹脂成形に適用される成形加工を利用 して、 歯車などの回転駆動体を製造し、 当該歯車が予想を越えた特性を発揮する ことを見出し、 本リグノセルロース系改質材料で成形した歯車などの回転駆動体 がポリァセタールコポリマーなどのエンジニアリングプラスチックと同等あるい はそれ以上の性能を有していることを見出し、 本発明を完成した。
本発明によれば、 以下の手段が提供される。
( 1 ) 回転駆動体であって、
リグノセルロース系材料を水蒸気処理して得られるリグノセルロース系改質材 料の成形体を主体とする回転駆動体。
( 2 ) 前記回転駆動体が歯車である、 (1 ) 記載の回転駆動体。 (3) 前記歯車のかみあい部分は、 切削加工あるいは前記リグノセルロース系改 質材料の成形加工により形成されている、 (2) 記載の回転駆動体。
' (4) 曲げヤング係数が 10. 0 kNZmm2以上である、 (1) から (3) のう ちいずれかに記載の回転駆動体。
(5) 無潤滑油あるいは低潤滑油で駆動される (1) から (3) のうちいずれか に記載の回転駆動体。
(6) 無潤滑油あるいは低潤滑油で駆動される (4) に記載の回転駆動体。
(7) 歯高が 0. 5mm以上 16mm以下で、 歯数が 6以上の歯車である、 (1) から (3) のうちいずれかに記載の回転駆動体。
(8) 歯高が 0. 5mm以上 16mm以下で、 歯数が 6以上の歯車である、 (4) に記載の回転駆動体。
(9) 歯高が 0. 5mm以上 16mm以下で、 歯数が 6以上の歯車である、 (5) に記載の回転駆動体。
(10)歯高カ 0. 5 mm以上 16 mm以下で、歯数が 6以上の歯車である、 (6) に記載の回転駆動体。
(11) 回転駆動体であって、
リグノセルロース系材料を水蒸気処理して得られるリグノセルロース系改質材 料の成形体を主体とし、 この成形体の曲げヤング係数 10. O kN/mm2以上 であり、 歯高が 0. 5 mm以上 6 mm以下で歯数が 6以上の歯車である、 回転駆 動体。
[図面の簡単な説明]
図 1は、 歯車耐久試験機における歯車構成を示す正面図である。
図 2は、 歯車耐久試験機の側面図である。
[発明を実施するための最良の形態]
本発明では、 リグノセルロース系材料を水蒸気処理して得られる、 リグノセル ロース系改質材料を少なくとも成形して回転駆動体を提供する。
.. リグノセルロース系材料が水蒸気処理されることにより、 当該材料中に含まれ ていたセルロースあるいはへミセルロースなどのセルロース系成分が加水分解等 を受けて分解成分が生成される。 また、 当該材料中に含まれていたリグニン系成 分も変性あるいは分解され、 分解成分が生成される。 したがって、 リグノセル口 ース系材料を水蒸気処理して得られるリグノセルロース系改質材料は、 セルロー ス系分解成分とリグニン系分解成分とを含有する。 かかる材料は、 理論的に十分 に解明されてはいないものの、 加熱により、 少なくともその一部が溶融し、 流動 し、 可塑性を発現する。 また、 この流動により可塑化後、 一旦固化された当該材 料は、 再び加熱することにより、 流動し、 可塑性を発現する。 したがって、 当該 リグノセルロース系材料は、 加熱により可塑性を付与できる熱可塑性材料として 機能する。 同時に、 .当該リグノセルロース系改質材料を含む組成物を、 加熱する ことにより、 この組成物を流動化し、 可塑性を発現させることができる。
したがって、 これらの発明によれば、 貴重な植物由来資源の循環利用を実現す ることができる。 以下の説 ¾においては、 まず、 本発明のリグノセルロース系改質材料について 説明し、 次いで、 当該改質材料を用いた成形体の製造方法について説明する。
(リグノセルロース系改質材料)
本発明の改質材料 (以下、 本材料という。) は、 リグノセルロース系材料を水蒸 気処理して得られる。 本明細書において 「リグノセルロース系材料」 とは、 リグ ニンとセルロースとを含有する材料であればよい。 好ましくは、 植物細胞壁を構 成するリグノセルロースの形態で含有する。 したがって、 リグノセルロース系材 料は、 好ましくは、 @々の樹木、 ケナフ、 トウモロコシ、 サトウキビ、 麻、 イダ サ、 イネなどの草本類の全体あるいは一部である。 また、 リグノセルロース系材 料には、 家屋解体物、 家具解体物、 木屑、 間伐材、 籾殻、 木粉、 古紙、 剪定枝、 刈り草、 落ち葉、 サトウキビの圧搾滓 (バガス) などの産業あるいは農産廃棄物 を包含する。 リグノセルロース系材料は、 セルロースやへミセルロースとリグ二 ンと複合体形態でなく、 それぞれ別個に含有する形態で構成されていてもよい。 また、 これらの個別の材料を複合形態のリグノセルロースを含有するリグノセル 口一ス系材料に添加してもよい。 したがって、 リグノセルロース系材料は、 たと えば、 殆どリグニンを含まない上質紙の古紙とパルピングの工程で廃棄物として 得られるリグニン含有画分とすることでもできる。
本発明においては、 これらのリグノセルロース系材料を 1種あるいは 2種以上 を組み合わせて用いることができるが、 材料の均質性の観点、 処理条件強度の抑 制の観点からは、 単独かあるいは 2種〜 3種程度を組み合わせて使用することが 好ましい。
水蒸気処理をするにあたっては、 リグノセルロース系材料のみとすることが好 ましいが、 必要に応じて、 リグノセルロース以外の材料、 たとえば、 グルコース などの糖類、 リグニン成分、 酸、 水分を適宜添加することができる。
水蒸気 理に供するリグノセルロース系材料の大きさにより、 水蒸気処理によ る分解成分の生成程度を制御することができる。
リグノセルロース系材料は、 .水蒸気処理を均一に行うことができるように、 細 分化されていることが好ましい。 細分化されていると、 水蒸気処理や乾燥、 粉砕 の各工程で必要とされる時間も短縮される。 特に、 リグノセルロース系材料は、 小片化ないし微粉末化、 具体的には、 フレーク又はゥエーハ等の薄片状に形成さ れていると、 取り扱いやすい。 大きさは、 例えば、 厚さ l mm以下で 5 c m X 5 c m以下程度の大きさ、 好ましくは、 厚さ 5 mm以下で 2 c m X 2 c m以下 程度とすることができる。鋸くずやプレーナ屑等をそのまま用いることもできる。 リク'ノセルロース系材料の含水率 (乾量基準) は、 1 2 0 % (以下、 含水率に おいては重量%を意味する。)以下であることが好ましい。含水率が 1 2 0 %を超 えると、 水蒸気処理によってリグノセルロース系材料中に生成する分解成分が流 出しやすくなり、 有効量の分解成分が処理後のリグノセルロース系材料に保持さ れにくくなるからである。 より好ましくは、 8 %以上 1 0 0 %以下である。 かか る範囲であると、 リグノセルロース系材料全体を均一に水蒸気処理して分解成分 を生成させると同時に分解成分の流出を効果的に抑制できて、 好ましい流動性と 成形性とを備える熱可塑性材料を得ることができる。 8 %未満であると、 水蒸気 による暴露が不均一になりやすく、 このため、 分解成分の生成も不均一になり、 流動性の良好な熱可塑性材料を得られにくくなる。 一方、 1 0 0 %を超えると、 水蒸気処理中にリグノセルロース系材料中の自由水が遊離しやすくなり、 この自 由水の遊離とともに分解成分がリグノセルロース系材料から流出しやすくなり、 得られるリグノセルロース系材料の熱流動性が低下する。より好ましくは、 1 5 % 以上 1 0 0 %以下である。さらに、好ましくは、 3 0 %以上 1 0 0 %以下である。 含水率は、 リグノセルロース系材料を乾燥する工程においてその程度を調整す ることができる。 逆に、 含水率は、 リグノセルロース系材料に対して外部から水 分を付与することによつても調整することができる。 (水蒸気処理)
水蒸気処理は、 各種形態で実施することができるが、 好ましくは、 飽和水蒸気 あるいは 熱水蒸気下で加熱することによって行われる。 具体的には、 耐圧容器 内で、 高圧下において、 加熱水蒸気にリグノセルロース系材料を曝すことによつ て行う。
水蒸気処理は、 約 6 0 °C以上で加熱することが好ましく、 また、 上限は好まし くは約 2 6 0 °C以下である。 6 0 °C以上 2 5 0 °C以下であると、へミセルロース、 リグニン等の分解を行う一方、 分解縮合等の副反応を抑制することができる。 好 ましくは、 約 1 1 0 °C以上約 2 3 0 以下に加熱する。 より好ましくは、 約 1 5 0 °C以上約 2 3 0 以下とする。 最も好ましくは、 約 2 0 0 °C以上約 2 3 0 以 下とし、 さらに好ましくは 2 2 0 °Cとする。
水蒸気処理は、 加熱温度が約 1 1 0 °C以上約 2 3 0 °C以下のとき、 例えば、 数 十秒から数十分間程度処理すればよい。 処理時間は、 処理温度が低い場合にはよ り長くすることが好ましく、 処理温度が高い場合には、 より短くすることができ る。 また、 リグノセルロース系材料が大きい場合には、 より長くすることが好ま しく、 同材料が小さい場合には、 より短くすることができる。
上述したようなフレーク状にまで細分化されたリグノセルロース系材料では、 加熱温度が 1 1 0 以上 2 3 0 以下のとき、 数十秒〜 1 0分程度処理すれば良 レ^ 好ましく約 1分〜約 5分である。 好ましくは、 約 2分〜 3分程度である。 一 方、 より大きな状態のままのリグノセルロース材料を用いた場合は、 1 5分以上 必要となる場合もある。
.. 好ましい処理温度である 2 0 0 °C以上 2 3 0 °C以下の場合、 数十秒〜 5分程度 の加熱で良好な処理状態を得ることができる。 たとえば、 一般的に入手しやすい プレ一ナ屑 (典型的には、 厚さ l mm以下で 5 c m x 5 c m以下程度の大きさ、 好ましくは、 厚さ 0 . 5 mm以下で 2 c m X 2 c m以下程度の細片) の場合、 2 分から 5分程度で好ましい処理状態を得ることができる。
なお、 製造される成形材料が特有の匂いをえることを防ぐためには、 水蒸気処 理は、 2 0 0 °C未満の温度で行われることが好ましい。
水蒸気処理を終了させるときは、 徐々に圧力を下げることもできるし、 一挙に 大気圧まで開放することもできる。 大気圧まで一挙に開放する場合には、 処理装 置内のセルロース含有材料内部の水分が蒸気化されることにより、 セルロース含 有材料内 爆発が生じてセルロース含有材料の組織が破壊される。 この結果、 セ ルロース含有材料が細分化されて繊維状や粉末状等に粉砕することができる (以 下、 高圧状態から一挙に圧力開放することを、 爆砕という。 また、 加圧容器内で 蒸煮後に一挙に圧力開放することを蒸煮 ·爆砕処理という。)。 通常、 爆砕を採用 する場合には、 蒸煮 ·爆碎が連続して行われる。 爆砕によれば、 その後の粉砕ェ 程が容易になる。 また、 乾燥工程も効率的に実施されるようになる。
なお、 爆砕を実施する場合には、 水蒸気処理における加熱温度は、 1 8 CTC以 上 2 6 0 °C以下であることが好ましい。 より好ましくは、 約 2 0 0 °C以上約 2 3 0 °C以下とする。
このような水蒸気処理により、 本材料を得ることができる。 本材料には加水分 解あるいは熱分解成分が生成され、 当該分解成分が組織内に保持されあるいは組 織から材料表面に浸出した状態となっている。 (乾燥)
水蒸気処理後、 本材料を乾燥することが好ましい。 水分が多量に存在すると、 本材料を加熱して流動化させる際、 水分が気化して成形性あるいは流動性を損な う可能性がある。 また、 分解成分が水分の蒸発とともに移動して流動性や成形性 を損なう可能性がある。 乾燥工程は、 一般には、 本材料の含水率 (乾量基準) が 2 8 %以下となるまで 実施することが好ましい。 より好ましくは、 1 2 %あるいは気乾含水率まで乾燥 する。
乾燥は、 常温下でも高温下でも行い得るが、 好ましくは、 水蒸気処理の後、 積 極的に乾燥する。 水蒸気処理後、 早期に水分を蒸発させることにより、 水分とと もに水溶性の分解成分が離脱することを抑制して、 分解成分をセルロース含有材 料に多く残留させることができる。
なお、 積極的な乾燥とは、 水分蒸発を促進するための送風および Zまたは熱を 付与しながら乾燥させることをいう。 具体的には、 水蒸気処理温度以下の高温下 での乾燥や、 常温下での送風等による乾燥である。
なお、 含水率は、 J I S Z 2 1 0 1木材の試験方法 3 . 2 含水率に準じて 測定する とができる。 .
(粉碎)
水蒸気処理後において、 粉砕は、 必要に応じて行うことができる。 例えば、 成 形材料を適用しょうとする用途に本材料の粒径が適するように粉砕することがで きる。
本成形用組成物とする際の粒径は特に限定しない。 1 0 0 0 程度でも、 溶 融時の流動性を十分確保することができる。 押出し成形や射出成形のためのメル 卜フローを考慮すれば、 好ましくは、 約 8 0 0 以下であり、 約 2 0 0 /^ m以 下がさらに好ましく、 より好ましくは 1 8 0 m以下である。 さらに好ましくは 約 1 0 0 / m以下であり、 一層好ましくは約 9 0 t m以下である。 また、 約 4 5 以下であってもよい。
フローに関しては、 粒径の他、 粒度分布も影響する。 ある程度粒度分布を有す る方が高い流動性を得ることができる。
全体的に好ましい範囲としては、 約 4 5 m以上約 1 8 0 以下であり、 よ り好ましくは、 約 4 5 以上約 9 0 以下であり、 また、 約 9 0 ^ 111以±約 1 8 0 以下である。
なお、 粒子形状は、 特に限定しないで、 薄片状、 球状、 不定形状、 繊維状等と することができる。
.. 粉砕には、 例えばウィレ一ミル、 ポールミル、 かいらい機、 ミキサー等の機械 を用いることができる。 水蒸気処理し乾燥したリグノセルロース系材料は、 組織 が脆化されているために簡単に破壊される。 このため、 単に粉碎するのに比較し て小さな動力、 短時間で微粉末に形成することができる。 したがって、 粉碎工程 で熱が発生することもなく、 安全にかつ省コス卜で粉砕することができる。
粉砕では、 目標とされる成形材料の最大粒径以下の目開きの篩を用いて篩い分 けすることができる。
なお、 乾燥後には、 粉砕のみならず、 造粒も可能である。 分解成分は接着性を 有するため、 造粒して、 粒径を均質化したり、 流動性を改善したりすることがで きる。 また、 造粒に際して、 コーティング材を適用することにより、 新しい複合 成形材料 ¾得ることもできる。
本材料は、 少なくともセルロース、 へミセルロース、 及びリグニンの分解成分 を保持している。 また、 多くの場合、 分解されていないリグニンおよび Zまたは セルロースを含有している。 本材料は、 既に述べたように、 加熱することにより 流動し、 可塑性を発現する。 結果として、 このため、 本材料は可塑化剤として使 用できる。 加熱流動は、 一旦固化後も可能である。 また、 本材料を含む組成物を 熱可塑性材料として使用でき、 典型的には、 熱による可塑化を利用した成形材料 として使用できる。 好ましくは、 熱可塑性成形用材料として使用する。
推論であって、 本発明を拘束するものではないが、 本材料の少なくとも一部で あって、 特に、 粒子表面に存在する分解成分が溶融することにより、 粒子の集合 体全体に流動性と可塑性とを付与するものと思われる。 したがって、 本材料は、 加熱により可塑性を発現するとき、完全に溶融樹脂化している場合もありうるが、 多くの場合、 溶融物を一部に含み、 本材料の構成粒子に由来する、 不定形状、 球 状、 繊維状、 あるいは薄片状等の各種形状粒子が含んでいると考えられる。
(本材料を含む組成物)
本発明の組成物は、 本材料を含有すれば足りる。
本組成物には、 本組成物を加熱することにより、 本材料が流動化あるいは溶融 樹脂化して、 本組成物自体に可塑性を発現させうる程度に本材料を含有している とが好ましい。 したがって、 好ましくは、 本成形用組成物は、 本材料を主とし て含有する。 具体的には組成物に用いる樹脂材料 1 0 0重量部のうち本材料を 2 0重量部以上 9 9重量部以下含有し、 より好ましくは、 4 0重量部以上 9 9重量 部以下含有する。 また、 本材料のみからなる組成物とすることもできる。
組成物中に含めることのできる他の樹脂材料としては、 たとえば、 通常の熱可 塑性樹脂材料、 熱硬化性樹脂材料、 生分解性樹脂材料を使用することができる。 熱可塑性樹脂材料としては、 ポリエチレン、 ポリプロピレン、 A B S、 塩化ビニ ルなどを用いることができるが、 好ましくは、 ポリプロピレン、 ポリエチレンを 用いることができる。
また、 熱硬化性樹脂としては、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂等 を用いる とができる。 好ましくは、 フエノール樹脂を用いることができる。 生分解性樹脂材料を用いることにより、 成形体全体としての生分解性を容易に 確保することができる。 なお、 生分解性樹脂材料としては、 ポリ乳酸、 ポリ— /3 —ヒドロキシ酪酸、 ポリコハク酸ブチレン等の脂肪族ポリエステル材料から選択 される 1種あるいは 2種以上を選択して用いることができる。 これらの脂肪族ポ リエステル材料は、 優れた生分解性と入手容易な点において好ましい。
(本材料あるいは本組成物の利用)
本材料、 あるいは本材料を含む本組成物は、 加熱により流動性を発現し、 可塑 性を有するようになる。 さらに、 冷却により固化する。 本材料の可塑性を利用す ることで、 熱可塑性を利用する成形用組成物、 可塑剤組成物、 充填剤組成物等の 各種組成物に適用することができる。
成形用組成物としての使用に際しては、 可塑時に適当な形状付与工程を実施す ることで容易に成形体を得ることができる。成形方法は、圧縮成形、押出し成形、 射出成形他、 各種樹脂成形法を採用することができる。
(前駆体) _ 使用前の本組成物は、 特に、 その形態を限定するものではない。 粉末状や粒子 状の他、 成形 ·搬送 ·ハンドリングに適した形状や大きさを備えた前駆体とする ともできる。 このような前駆体は、 少なくとも加圧することによって得ること ができる。 本材料が本来的に有する分解成分は、 常温でも粘結性を有している。 このため、 この粘結性を利用することにより、 加圧のみによって形状を有する前 駆体を得ることができる。 また、 同時に加熱することにより、 本材料の少なくと も一部を溶融させ一層結合性が高められた状態の各種形状の前駆体を得ることが できる。 本材料は熱可塑性を有するため、 前駆体を後段の加熱工程において、 加 熱することにより可塑性を発現させることができる。 (可塑化)
可塑化のための加熱条件は、 好ましくは、 本材料が流動化する範囲内で設定す ることが: ςきる。 流動化する温度 (流動化開始温度) は、 本材料の水蒸気処理条 件によっても異なるが、 約 1 0 0 °C以上約 2 6 0 °C以下とすることができる。 好 ましくは、 約 1 1 0 °C以上であり、 より好ましくは約 1 5 0 °C以上であり、 さら に好ましくは約 1 7 0 °C以上であり、 最も好ましくは約 1 8 O t以上である。 ま た、 約 2 3 0 °C以下とすることが好ましい。 約 1 7 0 °C以上約 1 8 0 °C以下とす ることが最も好ましい。
なお、 加爇温度は、 水蒸気処理時の温度が高い場合には、 相対的に低く設定す ることができる。 また、 水蒸気処理温度が低い場合には、 相対的に高く設定する ことが好ましい。
特に、 水蒸気処理温度が約 2 0 0 °Cであった場合、 用いたリグノセルロース系 材料や処理時間にもよるが、 約 1 5 0で〜約 1 9 0 °Cの温度で流動開始させるこ とができる。
また、 水蒸気処理温度が約 2 1 0 °Cであった場合、 用いたリグノセルロース系 材料や処理時間にもよるが、 約 1 6 0 ^で流動開始させることができる。
水蒸気処理温度が約 2 2 0 °Cであった場合、 用いたリグノセルロース系材料や 処理時間にもよるが、 約 1 0 O ^C〜約 1 4 0でで流動開始させることができる。 たとえば、 一般的なプレーナ屑 (典型的には、 厚さ l mm以下で 5 c m X 5 c m以下程度の大きさ、 好ましくは、 厚さ 0 . 5 mm以下で 2 c m X 2 c m以下程 度の細片) を水蒸気処理温度が約 2 0 0 °Cで処理した場合、 処理時間が 5分未満
(2 分程度) の場合には、 約 1 9 0 °Cで流動開始し、 処理時間が 5分〜 1 0分の 場合は、 約 1 9 0 °Cで流動開始する。
また、 同様の細片につき、 水蒸気処理温度が約 2 1 0 :、 処理時間が 5分未満 (2分程度)の場合には、約 1 6 0 °Cで流動化する。水蒸気処理温度が約 2 2 0 °C、 処理時間が 5分未満 (2 分程度) の場合には、 約 1 4 0 °Cで流動化し、 同温度で 処理時間が 5〜1 0分の場合には、 1 0 0〜 1 1 0 °Cで流動化する。 特に、 同様 の細片について、 水蒸気処理温度が約 2 2 0 °C、 処理時間 1 0分の場合、 流動開 始温度は約 1 0 5 °C程度である。
なお、 既に述べたように、 本材料の粒子径は、 流動化を確保するには、 好まし くは、 4 5 m以上 1 8 0 m以下であるが、 粒子径が 4 5 / m以下であると、 ' 例示した 度よりもより低い温度で流動を開始することがわかっている。
ヤング物性の確保を重要視する場合には、成形温度は約 1 7 0 °Cである。また、 予熱工程を付与するとともに、 加圧加熱時間を好ましくは 1 0分以上、 より好ま しくは 1 5分以上、 さらに好ましくは 2 0分以上とする。
以上のことから、 水蒸気処理温度によって流動開始温度や流動性を制御できる ことが明らかである。 なお、 流動開始温度は、 一般的に入手可能な細管式レオメ —夕等による押出し試験によって確認することができる。
最も、 一般的な細管式レオメータは、 温度制御可能な加熱炉と、 加熱炉内に設 置され、 試験試料を収容し、 吐出口であるノズルを有するシリンダと、 シリンダ 内の試料を加圧するピストン、 とを備えている。 かかる細管式レオメ一夕による 押出し試験の一例を図 2に示す。 本材料は、 かかる細管式レオメ一夕一により加 熱により流動を開始し、 糸状体として吐出される。
なお、 加熱工程に先んじて、 本材料及び本組成物を予め加熱しておくことが好 ましい。 すなわち、 本材料が可塑化しない程度の加熱工程を予め実施することが 好ましい。 かかる予熱工程を実施することで、 加熱条件を緩やかにすることがで きる。 また、 成形体を得る場合には、 得られる成形体の密度、 曲げ強さ、 曲げャ ング係数を飛躍的に向上させることができる。 また、 吸水時の膨張率や吸水率を 顕著に低下させることができる。 予熱工程の温度は、. 特に限定しないが、 好まし くは、 加熱工程時の加熱温度と同程度とする。
' (成形体の製造)
成形用組成物を加熱して流動化 ·可塑化後、 あるいは流動化に伴い、 適切な形 状付与手段を適用することにより成形体を得ることができる。 形状付与手段は、 たとえば、 型を使用したり、 ダイを通過させたりする従来公知の手段を使用する ことができる。 その後、 冷却することにより、 成形体を得ることができる。 成形 方法としては、 回転駆動体の成形に適したものであれば特に限定しないが、 好ま しくは、 圧縮成形方法である。
また、本成形体の製造にあたっては、成形用組成物を可塑化して成形するため、 精密な成形が可能である。 たとえば、 円盤や円柱等の単純形状のみならず、 その まま所望 歯形を有する歯車などの回転駆動体、 肉厚の異なる部位や異なる断面 形状を有する回転駆動体、 絞り部分などを有する回転駆動体を製造することがで きる。
形状付与時の条件は、 水蒸気処理条件や成形手法によって異なる。 ボードゃパ ネル等を圧縮成形により得る場合には、 加圧条件を、 約 l O M P a以上約 8 0 M P a以下とすることが好ましい。より好ましくは、約 2 5 M P a以上とし、また、 6 O M P a以下とする。 水蒸気処理温度が 2 2 0で以上の高温で所定時間 (典型 的には 2〜5分程度) 処理されていれば、 5 0 M P a以下で良好な成形を実現す ることができる。
(成形体)
本成形用組成物に対して形状を付与した後、 冷却することにより、 成形体を得 ることができる。
得られた成形体は、 少なくとも一部において、 樹脂様となっている。 特に、 表 面において顕著に樹脂様表面を有する。 また、 特に、 内相において、 本材料の構 成粒子に由来する粒子が結合された状態が観察されることもある。 多くの場合、 成形体は、 樹脂様部と粒子結合部分とが混在した状態となっている。
本成形体によれば、 その密度、 曲げ強さ, 曲げヤング係数において優れた特性 を確保することができる。 たとえば、 曲げ強さが、 少なくとも 10 NZmm2 纤ましくは 4 ONZmm2以上、 より好ましくは 50 N/mm2以上の成形体を得 ることができる。 また、 曲げヤング係数が 2. O kN/mm2以上、 好ましくは 6. 0 kN/mm2以上、 さらに好ましくは 8. 0 k NZmm2以上である成形体 を得ることができる。 また、 吸水時の厚さ膨張率が 15 %以下、 好ましくは、 1 2%以下の成形体を得ることができる。 また、 吸水率が 13%以下、 好ましくは 10 %以下の耐水性に優れた成形体を得ることができる。
さらに、 耐油性の優れた成形体を得ることができる。 例えば、 機械油に 24時 間浸漬した場合の吸油率が 1 %以下、 好ましくは 0. 5%以下、 さらに好ましく は 0. 1 %以下の成形体を得ることができる。
また、上記浸漬条件で吸油厚さ膨張率及び吸油長さ膨張率がそれぞれ 1 %以下、 好ましく 0. 5%以下、 さらに好ましくは 0. 1 %以下の成形体を得ることが できる。
また、粒子流動に近い流動状態の場合には、硬化後の加熱後の収縮率が小さく、 このため、 容易に寸法精度の高い成形体を得ることもできる。 なお、 上記した各種特性の試験方法としては、 以下に示す方法を採用すること が好ましい。
1. 密度
J I S A 5905繊維板 5. 4密度試験に準じる。 なお、 試験片の寸法は、 20 mmX 2 Ommとする。
2. 曲げ試験 (曲げ強さ及び曲げヤング係数)
寸法幅 1 OmmX長さ 65 mmX厚み 4〜 6 mmの試験片に対して、 スパン 5 Omm、 荷重速度 2mmZ分とし中央集中荷重を加えて試験を行う。 曲げ強さ及 び曲げヤング係数の算出は、 J I S Z 5905 木材の試験方法 9 曲げ試験 による。
3. 吸水厚さ膨張率
J I S A 5905繊維板 5. 10吸水厚さ膨張率試験に準じる。 水浸せき時 間は 24時間とする。 また、 試験片の寸法は 2 OmmX 2 Ommとする。 4 . 吸水率
.. J I S A 5 9 0 5繊維板 5 . 9吸水率試験に準じる。 試験片の寸法は 2 0 m η Χ 2 O mmとする。
5 . 吸油性
例えば、 機械油などの油に一定時間 (例えば 2 4時間) 浸漬し、 浸漬前後の重 量増加を初期重量で除することにより、 吸油率を算出することができる。 また、 浸漬前後の厚み及び長さの変化をそれぞれ初期厚み及び初期長さで除することに より、 吸油厚さ膨張率及び吸油長さ膨張率を算出することができる。 このような成形体は、 樹脂様相を備えるとともに、 高い密度と高い強度を有し ていることから、 成形後に 2次的加工を施すことできる。 この結果、 本成形体及 びその 2 ^加工体は、 従来合成樹脂成形体が用いられていた工業製品を本成形体 により代替することができる。 たとえば、 合成樹脂に対して行われる、 切削加工 及び研削加工等の各種加工を実施することできる。
(回転駆動体)
本成形体は、 その表面が本質的に潤滑性に優れ、 摩擦により熱が発生しにくい という特性を備えている。 特に、 本材料のみから得られた成形体においてはかか る特性が顕著である。このため、成形により、あるいはさらに切削加工を施して、 歯車、 シャフト、 オーガ、 ベアリング、 軸受けなどの動力伝達に関わる回転駆動 体に用いることができる。
特に、 回転駆動体にあっては、 曲げヤング係数が 8 . O k Nmm 2以上である ことが好ましく、 より好ましくは 1 0 . 0 k Nノ mm 2以上である。 かかる曲げ ヤング係数を備えることにより、 一般的に使用される歯車 (歯高が Ό . 5 mm以 上 1 6 mm以下で歯数が 6以上 1 2 0以下)、 特に、 歯高が 4腿 以上の歯車を構 成することができ、 例えば、 モジュール 2 . 0 (歯高 4 mm) で、 歯数が 6以上 1 2 0以下) を実用可能な強度を付して作製することができる。
また、 本成形体を用いた回転駆動体は、 優れた潤滑性を有し、 潤滑油を供給す ることなく、 あるいは従来金属製の回転駆動体に必要とされているのに比べて少 ない潤滑油量で回転させることができる。 同時に、 ポリアセタールコポリマーな のエンジニアリングプラスチックと同等程度の磨耗量に抑制することができる。
' 一方、 機械油 2 4時間浸漬後における吸油率が 1 %以下 (好ましくは 0 . 5 % 以下、 さらに好ましくは 0 . 1 %以下、 より好ましくは 0 . 0 5 %以下、 最も好 ましくは 0 . 0 1 %以下) であって高い耐油性を有する。 また、 吸油厚さ膨張率 及び吸油長さ膨張率もそれぞれ 1 %以下、 好ましくは 0 . 5 %以下、 より好まし くは 0 . 1 %以下、 さらに好ましくは 0 . 0 5 %以下、 最も好ましくは 0 . 0 1 % 以下である。 これらのことから、 本回転駆動体は、 高い耐油性を有しているとい える。 したがって、 油に浸漬状態においても十分に使用可能であり、 金属製歯車 に代替可能である。
(回転駆敷体の再利用) .
本回転駆動体は、 本材料の熱可塑性に基づいて、 加熱により再度可塑性を発現 させることができる。 したがって、 本回転駆動体が不要となった場合において、 再度加熱することにより、 再び成形材料として使用できる。 すなわち、 そのまま の組成で新たな形状を付与することもできるし、 他の材料と組み合わせて新たな 形状を付与することもできる。 さらに、 充填剤として別の用途に転用することも できる。
また、 使用済みの本回転駆動体を可塑化させることにより、 回転駆動体中の他 のフイラ一などの複合材料や樹脂材料と分離したり、 あるいはこれらを回収する ことができる。 同時に、 本材料のみを回収することも可能となる。
さらに、 固形燃料や吸着剤としても使用することができる。
なお、 本回転駆動体を再利用するにあたっては、 予め、 細分化しておくことが 好ましい。
(回転駆動体の生分解)
本発明の回転駆動体は、 リグノセルロース系材料のみから、 あるいはそれを主 体としている。 したがって、 そのまま土中などの微生物などの生育する領域ある いは一定のセルロースゃリグニン分解性微生物叢に供給することにより、 生分解 W
される。 したがって、 廃棄にあたっても、 環境に与える影響を抑制することがで きる。
(実施例 1 )
ブナのプレーナ屑を 2 0 0 °Cで 1 0分間水蒸気処理し、 その後、 一気に圧力を 開放して爆砕し、 繊維化した。 その後、 天日で気乾含水率まで乾燥させ、 ウィレ 一ミルで粉碎し、 篩いにかけて 5 0 0 m以下の大きさの微粉末を回収した。
(実施例 2 )
実施例 1で得た微粉末を成形材料として、 そのまま成形用組成物として使用し た。 本成形材料以外には、 なんら他の材料は使用しなかった。 この成形用組成物 をプレス金型に注入し、 荷重 2 7 · 7 M P a下、 1 7 0 °C、 1 9 0 °Cの 2つの温 度で 2 0分間加圧及び加熱して、 成形体を得た。 なお、 いずれの温度条件試料に ついても、 成形用組成物に対して約 2 0分間の予熱工程を付与した。
この 2種類の成形体について各種機械的物性等を確認した。結果を表 1に示す。
【表 1】
Figure imgf000019_0001
表 1に示すように、本成形材料を用いることにより、好ましい密度、曲げ強さ、 曲げヤング強度を備える成形体を得られることがわかった。 また、 耐油特性の結 果から、 成形体を油に浸潰した状態でも機能させうることがわかった。 実施例 3)
' ブナのプレーナ屑を 200°Cで 10分間水蒸気処理し、 その後、 一気に圧力を 開放して爆碎し、 繊維化した。 その後、 天日で気乾含水率まで乾燥させ、 ウィレ —ミルで粉碎し、 篩いにかけて 500 m以下の大きさの微粉末を回収した。
この微粉末のみを成形材料とした成形用組成物をプレス金型に注入し、 荷重 2 7. 7MP a下、 170°Cで 20分間加圧及び加熱して、 3種類の歯車成形体を 得た。 なお、 成形用組成物に対して約 20分間の予熱工程を付与した。 各種歯車 の形態と耐久試験機の概略をそれぞれ図 1及び図 2に示す。
大歯車 1は、 成形用組成物 130 gを, 上記条件で 1 0 OmmX 10 OmmX 9 mmのサイズに圧縮成形した後、 モジュール 2. 0、 歯数 38となるよう切削 加工して作製した。 中間歯車.2は、 成形用組成物 1 3 gを、 上記条件でモジユー ル 2. 0、 歯数 1 8となるように熱圧成形して作製した。 他の一つの歯車は、 駆 動歯車 3であり、 中間歯車 2と同様の条件で成形して作製した。 なお、 最終歯車 4は、 ジユラコン (商標、 ポリアセタールコポリマー) を歯切りしてモジュール 2. 0、 歯数 1 8となるように作製した。
図 2に示すように、 最終歯車 4の回転軸にコイルスプリングにより 1 ONの負 荷を与え、 モーターにより駆動歯車 3に 3166 r pmの回転をさせ、 8時間連 続運転して歯車耐久試験を行った。 この試験装置においては、 大歯車 1は、 1 5 00 r pmで両歯面が相手歯車に回転接触し、 中間歯車 2は、 3 166 r pmで 両歯面が相手歯車に回転接触し、 駆動歯車 3と最終歯車 4は、 片歯面がそれぞれ 動力伝達接触するようになっている。 回転前及び回転中に潤滑油は供給しなかつ た。 また、 試験における総回転数は、 歯車試料 1は 720000回転であり、 中 間歯車 2及び最終歯車 4は、 それぞれ 1 5 1 9680回転であった。
本試験では、 試験前後の各歯車重量を測定し、 耐久試験による重量減少量を算 出した。 また、 大歯車 1と駆動歯車 4について歯面 (歯形) の試験前後の変化を GEARTEC ΤΤΪ-300Ε (株式会社東京テクニカル) により測定した。
この耐久試験結果を表 2に示す。
【表 2
Figure imgf000021_0001
表 2に示すように、 試験前後の質量変化からは、 本成形材料による歯車がジュ ラコンと同等あるいはそれ以上の耐久性を備えていることがわかった。 また、 歯 面の変化量もこの結果を支持していた。
これらのことから、 本改質材料を用いた成形体を歯車として実用可能であるこ とがわかった。
以上説明したように、 本発明によれば、 リグノセルロース系材料に由来する材 料の成形体を用いて歯車などの回転駆動体を提供できる。

Claims

1. 回転駆動体であって、
リグノセルロース系材料を水蒸気処理して得られるリグノセルロース系改質材 料の成形体を主体とする回転駆動体。
2. 前記回転駆動体が歯車である、 請求項 1記載の回転駆動体。
3. 前記歯車のかみあい部分は請、 切削加工あるいは前記リグノセルロース系改質 材料の成形加工により形成されている、 請求項 2記載の回転駆動体。
4. 曲げヤング係数が 10. 0 kNZmのm2以上である、 請求項 1から請求項 3 のうちいずれか 1項に記載の回転駆動体。
5. 無潤滑油あるいは低潤滑油で駆動される請求囲項 1から請求項 3のうちいずれ か 1項に 載の回転駆動体 a
PCT/JP2004/000903 2003-01-31 2004-01-30 リグノセルロース系回転駆動体 WO2004073944A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-025198 2003-01-31
JP2003025198A JP3781727B2 (ja) 2003-01-31 2003-01-31 歯車の製造方法及び歯車

Publications (1)

Publication Number Publication Date
WO2004073944A1 true WO2004073944A1 (ja) 2004-09-02

Family

ID=32905066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000903 WO2004073944A1 (ja) 2003-01-31 2004-01-30 リグノセルロース系回転駆動体

Country Status (2)

Country Link
JP (1) JP3781727B2 (ja)
WO (1) WO2004073944A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262960B2 (en) 2007-05-30 2012-09-11 Fujitsu Limited Compression-molded product using plant material and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502848B2 (ja) * 2005-03-09 2010-07-14 独立行政法人産業技術総合研究所 繊維を有する植物系熱圧成形材料及びその製造方法
JP2007008000A (ja) * 2005-06-30 2007-01-18 Yoji Kikata 木質系材料からなる成形体及びその製造方法
JP2007044958A (ja) * 2005-08-09 2007-02-22 Aichi Prefecture 成形体の製造方法
JP2007261159A (ja) * 2006-03-29 2007-10-11 Aichi Prefecture 木質系材料からなる成形体の製造方法
JP2008037022A (ja) * 2006-08-08 2008-02-21 Chuniti Seiko Kk リグノセルロース系樹脂組成物の筐体射出成形方法、及びリグノセルロース系樹脂組成物
JP2009035582A (ja) * 2007-07-31 2009-02-19 Toshiba Corp 樹脂組成物およびその製造方法
JP5321254B2 (ja) * 2009-06-05 2013-10-23 凸版印刷株式会社 木粉を含有するポリ乳酸樹脂成形品およびその製造方法
JP5633521B2 (ja) * 2012-01-05 2014-12-03 富士通株式会社 圧縮成型品の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716806A (ja) * 1993-07-02 1995-01-20 Hisaka Works Ltd ウッドチップの改質処理方法
JPH10220561A (ja) * 1997-02-05 1998-08-21 Polyplastics Co 樹脂歯車対
JP2002349674A (ja) * 2001-05-25 2002-12-04 Shin Kobe Electric Mach Co Ltd 樹脂製ウォームホイールの製造法、樹脂製ウォームホイール用素形体
JP2003011109A (ja) * 2001-07-04 2003-01-15 National Institute Of Advanced Industrial & Technology 木質系熱圧成形材料の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716806A (ja) * 1993-07-02 1995-01-20 Hisaka Works Ltd ウッドチップの改質処理方法
JPH10220561A (ja) * 1997-02-05 1998-08-21 Polyplastics Co 樹脂歯車対
JP2002349674A (ja) * 2001-05-25 2002-12-04 Shin Kobe Electric Mach Co Ltd 樹脂製ウォームホイールの製造法、樹脂製ウォームホイール用素形体
JP2003011109A (ja) * 2001-07-04 2003-01-15 National Institute Of Advanced Industrial & Technology 木質系熱圧成形材料の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262960B2 (en) 2007-05-30 2012-09-11 Fujitsu Limited Compression-molded product using plant material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004261967A (ja) 2004-09-24
JP3781727B2 (ja) 2006-05-31

Similar Documents

Publication Publication Date Title
JP4081579B2 (ja) リグノセルロース系材料及びその利用
JP4371373B2 (ja) 木質系成形体の製造方法および木質系成形体
CN1041744C (zh) 由木素纤维素制取热固化树脂及复合材料制品的方法
JP5472639B2 (ja) 加熱・加圧により硬化する組成物
CN102470545B (zh) 木质纤维素和相关材料的处理
Kuram Advances in development of green composites based on natural fibers: A review
Sahin et al. Mechanical and thermal properties of particleboard manufactured from waste peachnut shell with glass powder
CN100488742C (zh) 处理木质纤维素材料的方法
WO2004073944A1 (ja) リグノセルロース系回転駆動体
Jamaludin et al. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard
Srebrenkoska et al. Biocomposites based on polylactic acid and their thermal behavior after recycing
WO1996019328A1 (fr) Planche fabriquee a partir d'un vegetal liberien malvace et procede de fabrication
AU2002337519A1 (en) Processing of ligno-cellulose materials
JP2003200407A (ja) バインダレスボード及びその製造方法
CN115056308A (zh) 槟榔刨花板及其制备方法
JP2007261159A (ja) 木質系材料からなる成形体の製造方法
JP5946226B2 (ja) アブラヤシ由来のバイオマス粉末およびその製造方法ならびにバイオマス複合成形体およびその製造方法
Ibrahim et al. Effect of refining parameters on medium density fibreboard (MDF) properties from oil palm trunk (Elaeis guineensis)
JP2008093831A (ja) 射出成形樹脂の製造方法、射出成形樹脂、成型物、酢酸成分の抽出方法。
Dikshit et al. Development of an innovant carbon/jute porcine‐bone hybrid material for sustainable composite manufacturing
CN103518017A (zh) 生产用于生产复合材料的含纤维素物质的方法
EP0987089B1 (fr) Procédé de fabrication d'objets à partir de matière première végétale par formage ou thermoformage
JP2009096875A (ja) 熱可塑性樹脂組成物の製造方法及び成形体の製造方法
JP2008037022A (ja) リグノセルロース系樹脂組成物の筐体射出成形方法、及びリグノセルロース系樹脂組成物
JP2017177621A (ja) 竹材および杉材を原料とした成形体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase