WO2004073848A1 - Sistema mezclador-dosificador bicomponente - Google Patents

Sistema mezclador-dosificador bicomponente Download PDF

Info

Publication number
WO2004073848A1
WO2004073848A1 PCT/ES2003/000673 ES0300673W WO2004073848A1 WO 2004073848 A1 WO2004073848 A1 WO 2004073848A1 ES 0300673 W ES0300673 W ES 0300673W WO 2004073848 A1 WO2004073848 A1 WO 2004073848A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
component
dosing
mixer
volume
Prior art date
Application number
PCT/ES2003/000673
Other languages
English (en)
French (fr)
Inventor
José Julio MOYA GARCÍA
Original Assignee
Asm-Dimatec Ingenieria, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asm-Dimatec Ingenieria, S.A. filed Critical Asm-Dimatec Ingenieria, S.A.
Priority to AU2003294044A priority Critical patent/AU2003294044A1/en
Priority to BR0309320-4A priority patent/BR0309320A/pt
Publication of WO2004073848A1 publication Critical patent/WO2004073848A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/831Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices using one or more pump or other dispensing mechanisms for feeding the flows in predetermined proportion, e.g. one of the pumps being driven by one of the flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1036Means for supplying a selected one of a plurality of liquids or other fluent materials, or several in selected proportions, to the applying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • G05D11/132Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components

Definitions

  • the object of the present invention patent refers to a two-component pasta mixer-dosing system with volume control and mixing speed, the ratio of the components to Mix from 1: 1 to 100: 1, which entails precise control of the volumes to be mixed, as well as a control of the speed of the mixture, which will be different depending on the volume and proportion of said components.
  • the two-component pasta dosing system has been developed, which in its basic configuration, presents a complete set of pumping, mixing and application with volume and flow control, before mixing and after mix.
  • the two-component paste mixer-dosing system is capable of mixing the components in a fully controlled ratio that can range from 1: 1 to 100: 1, also controlling the volume and speed of application of the final paste or mixture, thus obtaining optimum performance when said paste is deposited on a glass with the aim of fixing it to the frame of the structure of a body.
  • the two-component paste mixer-dosing system whose purpose is to obtain a product (paste), suitable for achieving optimum performance when said paste is deposited in a glass that is to be fixed to the structure of the body frame.
  • the system is configured by a set of pumps (pneumatic or hydraulic) one of which sucks the main component or paste of a container or barrel, while the other pump (which may be of less power) sucks the catalyst component, deposited in a suitable container.
  • These components, main or paste and catalyst, driven by their respective pumps are taken to their respective dosing stations. Once dosed they are taken to the mixing head, which is at the same time the head that applies the mixture on the glass.
  • the hoses that transport the main component and the catalyst to the dosing and mixing stations can be heated between 0 o C and 100 ° C to favor a more fluid circulation of said components.
  • the paste or main component is passed through an electrical or mechanical dispenser controlled by a PLC, which allows controlling the volume and speed with which the paste passes through the dispenser, with which the flow rate can be determined in (mm3 / s ) of paste that reaches the control valve of the dosing and mixing head.
  • This PLC is responsible for maintaining the regimes within the established parameters and activates / deactivates the control valve to allow or not the passage of the mixture.
  • the catalyst component is passed through an electric or mechanical doser controlled by a PLC, which allows controlling the volume and speed with which the catalyst passes through the doser, with which the flow rate can be determined in (mm3 / s) of paste that reaches the control valve of the dosing and mixing head.
  • Said PLC is in charge of maintaining the regimes within the established parameters and acts / deactivates the control valve to allow or not the passage of the catalyst.
  • the incoming flows of the main component and of the catalyst component are synchronized between them by means of the above-mentioned PLC, so that the volumes to be mixed will always be in the right proportion according to the flow and proportion needs that are needed at the exit of the application nozzle. .
  • the two components once dosed according to the flow rate and proportion required in the nozzle, are transported to a mixing and homogenization head. Once the paste is mixed and homogenized, it is passed through an application nozzle. According to the user's demand, there are two possible ways to mount these heads: fixed (in this case called 7 or axis) or subject to the 6 or axis of the robot (called 6 or axis).
  • the head is mounted on a motor controlled by the robot (hence the name 7 or axis) and the whole assembly (motor and dosing-mixer) is mounted on a fixed structure by means of a support base.
  • the head is mounted directly on the flange of the robot.
  • the dosed application of the mixture can be done manually and not only for the attachment of crystals to bodies but also for any embodiment that needs to put a two-component paste in a certain place, such as It may be to apply soundproofing putty between sheets.
  • FIG. 1-A schematically shows the two-component mixing-dosing system of a preferred embodiment wherein the paste and catalyst suction binomial is constituted by ELECTRICAL-ELECTRICAL dosing.
  • FIG. 1-B schematically shows the two-component mixing-dosing system of a first alternative embodiment wherein the paste and catalyst suction binomial is constituted by ELECTRICAL-MECHANICAL dosing.
  • FIG. 1-C schematically shows the two-component mixing-dosing system of a second alternative embodiment wherein the paste and catalyst suction binomial is constituted by MECHANICAL-MECHANICAL dosing.
  • FIG. 2 shows a perspective view of the mixing and metering system installed in bicomponent configuration 7 or axis.
  • FIG. 3 shows a perspective view of the dispensing head assembly controlled by the axis 7 or the robot.
  • FIG. 4 shows a sectional view of the head D governed by 6 or axis of the robot.
  • FIG. 5 shows a sectional view of the assembly vertically dosing head bicomponent governed by 6 or axis of the robot.
  • the two-component mixer-dosing system obtains, by mixing two components, a paste that has an optimal performance when It deposits this on the periphery of a glass during the process of fixing said glass on the frame of the structure of a body.
  • the two-component pasta mixing-dosing system is constituted in a first phase by the means necessary to bring the two components to be mixed (PA, PB) to the so-called Application and Mixer Head (S).
  • the main component (PA) is deposited in the container (JA), which has all the necessary elements (agitator, motor, filter) so that said main component (PA) is properly prepared before being sucked by the electric or mechanical doser (B1) through the hose (L1), which can be heated between 0 or C and 100 ° C to make easier the transit of the main component (PA) from the container (JA) to the dispenser (B1) and, from this, to the Application Head and Mixer (S).
  • the catalyst component (PB) is deposited in the container (JB), which has all the necessary elements (agitator, motor, filter) so that said catalyst component (PB) is properly prepared before being transported to the electrical or mechanical doser ( B2) through the hose (L2), which is heated between 0 or C and 100 ° C to make it easier to transit the catalyst component (PB) from the container (JB) to the dispenser (B2) and, from this, to the Application Head and Mixer (S).
  • FIG. 1-B shows a first alternative embodiment, in which the dosing elements are ELECTRICAL-MECHANICAL, and in FIG.
  • FIG. 1-C shows a second alternative embodiment whose dosing elements are MECHANICAL-MECHANICAL.
  • the function of the dosers both electrical and mechanical, is to be able to pass through them a prederteminated flow of the matter being sucked.
  • the difference between mechanical and electrical dosers is in the order of fluid passage accuracy, since the possible fluid passage selection points in mechanics is smaller than in electrical ones.
  • the use of an electric dispenser although it makes the system more expensive, is advisable when it is desired to achieve a lot of precision in the proportion of each component of the mixture, or when the proportion of the catalyst element is small compared to the main element.
  • FIG. 1-B or FIG. 1-C respectively.
  • FIG. 2 shows a mixer-dosing system of the ELECTRICAL-MECHANICAL dosing type mounted within a fixed structure (A) for axis, in which the positioning of the doser (B1) can be appreciated, which measures the volume and input speed of the main product as well as the position of the mechanical dispenser (B'2) that regulates the volume and speed of the catalyst product, and the motor assembly (E) which is governed by the robot and attached to the head support (F) for 7 or axis. synchronized with it, said motor (E) providing the rotation of the application nozzle (R), located at the end of the application chamber (G) of the two component dosing head (D).
  • FIG. 1 shows a mixer-dosing system of the ELECTRICAL-MECHANICAL dosing type mounted within a fixed structure (A) for axis, in which the positioning of the doser (B1) can be appreciated, which measures the volume and input speed of the main product as well as the position of the mechanical dispenser (B'2) that regulate
  • FIG 3 shows a perspective view of the two-component dosing head assembly for 7 or axis, configured by the head support (F), the motor (E) that rotates the application chamber (G) and integral with it to the nozzle of application (R), and the dosing head (D).
  • the position of the assembly in front and side view and a partial section in which the motor assembly with the dosing head is shown is also observed.
  • FIG. 4 shows a view of the assembly of the dosing head (D), two-component for robot, with a sectioned vertical projection of the assembly, where the parts that configure it are shown, as well as the transmission (T) of the 6 or axis of the robot that gives the movement to the nozzle, independently sections AA, and BB, are indicated before and after the transmission element.
  • FIG. 5 shows a vertically sectioned view of the two-component dosing head assembly, with the positioning of the head (D), where you can see: the motor (M), which regulates the depth of the needle (H) and thus control the volume of the product output, the valve (V1) to regulate the input of the main component or paste (PA), the valve (V2) to regulate the input of the catalyst component (PB), the mixing tank (K), the application chamber (G ) with the application nozzle (R).
  • the head (D), two-component dosing unit for robot, with the transmission set (T) and independently showing the plant positioning of the two-component mixer - doser is shown attached to the assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating Apparatus (AREA)
  • Accessories For Mixers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

El sistema mezclador-dosificador bicomponente de pasta, cuya finalidad es la de obtener un producto (pasta), adecuado para conseguir un comportamiento optimo cuando se deposita dicha pasta en un cristal que se va ha fijar a la estructura del marco de la carroceria. El sistema esta configurado por un conjunto de bombas (electricas o mecanicas ) las cuales succionan el componente principal o pasta y el componente catalizador de sus respectivos recipientes, siendo dicha succion a traves de mangueras calefactadas entre 00 C. y 1000 C. estando los volumenes de dichos componentes (principal y catalizador) en una relacion controlada que puede variar de 1:1 hasta 100:1. La sincronizacion de todos los elementos se realiza mediante un PLC o PC, que permite controlar el volumen y la velocidad, del caudal (mm3/s.) de la mezcla a depositar con lo cual se determina el caudal.

Description

SISTEMA MEZCLADOR-DOSIFICADOR BICOMPONENTE
Objeto de la invención.
EL objeto de la presente patente de invención, según se expresa en el enunciado de esta memoria descriptiva, se refiere a un sistema mezclador-dosificador de pastas de tipo bicomponente con control de volumen y velocidad de mezcla, pudiendo ser la relación de los componentes a mezclar desde 1 :1 hasta 100:1 , lo cual lleva consigo un control preciso de los volúmenes a mezclar, así como también un control de la velocidad de la mezcla, que será diferente en función del volumen y proporción de dichos componentes.
Para conseguir las características anteriormente mencionadas se ha desarrollado el sistema me∑clador-dosificador bicomponente de pasta, que en su configuración básica, presenta un conjunto completo de bombeo, mezcla y aplicación con control de volumen y caudal, antes de la mezcla y después de la mezcla.
Antecedentes de la invención
Antiguamente la aplicación de pastas para el pegado de cristales se realizaba de forma manual mediante el uso de pistolas de aplicación. En este tipo de operaciones no se procedía a un control exhaustivo del volumen de pasta aplicada.
Recientemente, se ha procedido a la automatización de estos procesos de aplicación de pastas sobre cristales para los vehículos.
En la automatización de estos procesos se han introducido elementos de control y supervisión del volumen de pasta aplicada con unas exigencias mayores que las existentes en las aplicaciones manuales. Estas pastas han sido tradicional mente tipo monocomponente basadas en el poliuretano, pero actualmente están apareciendo pastas bicomponente en las cuales una pasta hace de matriz y la otra de catalizador con el fin de obtener un secado y curado más rápido y resistente. En estas aplicaciones bicomponente el control de volumen y el mezclado son condiciones necesarias para obtener un comportamiento óptimo del producto, una vez que se ha aplicado este.
Dentro de este sistema, el mezclado debe realizarse dentro de la boquilla de aplicación. Existiendo una gama variada de tipos de boquillas, así como de fabricantes que utilizan su propio diseño, mezcladores, equipos de bombeo y de premezcla. Sin embargo los sistemas actuales de mezclado tienen el inconveniente de que el control del volumen de cada componente no es muy preciso y, además, en ocasiones la mezcla no es muy homogénea. Dichos inconvenientes hacen probable que las características del producto final no sean las óptimas, pudiendo variar indeseadamente dichas características de unas ocasiones a otras, como es natural con más probabilidad cuando la proporción del catalizador es pequeña respecto a la de la matriz.
Para resolver los inconvenientes actuales que presentan los procedimientos de aplicación de las pasta con elementos bicomponentes, se ha desarrollado el sistema mezclador-dosificador bicomponente de pasta, que es capaz de mezclar los componentes en una relación totalmente controlada que puede ir de 1 :1 hasta 100:1 , controlando además el volumen y la velocidad de aplicación de la pasta final o mezcla, obteniendo así un comportamiento óptimo cuando se deposita dicha pasta sobre un cristal con el objetivo de fijarlo al marco de la estructura de una carrocería.
Descripción de la invención
El sistema mezclador-dosificador bicomponente de pasta, cuya finalidad es la de obtener un producto (pasta), adecuado para conseguir un comportamiento óptimo cuando se deposita dicha pasta en un cristal que se va ha fijar a la estructura del marco de la carrocería. El sistema está configurado por un conjunto de bombas (neumáticas o hidráulicas) una de las cuales succiona el componente principal o pasta de un recipiente o barril, mientras que la otra bomba (que puede ser de menor potencia) succiona el componente catalizador, depositado en un recipiente adecuado. Estos componentes, principal o pasta y catalizador, impulsados por sus respectivas bombas, se llevan a sus respectivas estaciones de dosificación. Una vez dosificadas se llevan al cabezal de mezcla, que es al mismo tiempo el cabezal que aplica la mezcla sobre el cristal. Las mangueras que transportan el componente principal y el catalizador a las estaciones de dosificación y mezcla pueden estar calefactadas entre 0o C y 100° C para favorecer una circulación más fluida de dichos componentes.
La pasta o componente principal se hace pasar por un dosificador eléctrico o mecánico controlado mediante un PLC, que permite controlar el volumen y la velocidad con que la pasta pasa a través del dosificador, con lo cual se puede determinar el caudal en (mm3/s) de pasta que llega a la válvula de control de paso del cabezal de dosificación y mezcla. Dicho PLC se encarga de mantener los regímenes dentro de los parámetros establecidos y actúa/desactúa la válvula de control para permitir o no el paso de la mezcla.
De igual manera el componente catalizador se hace pasar por un dosificador eléctrico o mecánico controlado mediante un PLC, que permite controlar el volumen y la velocidad con que el catalizador pasa a través del dosificador, con lo cual se puede determinar el caudal en (mm3/s) de pasta que llega a la válvula de control de paso del cabezal de dosificación y mezcla. Dicho PLC se encarga de mantener los regímenes dentro de los parámetros establecidos y actúa/desactúa la válvula de control para permitir o no el paso del catalizador.
Los caudales entrantes del componente principal y del componente catalizador están sincronizados entre ambos mediante el anteriormente dicho PLC con lo que los volúmenes a mezclarse estarán siempre en la proporción adecuada según las necesidades de caudal y proporción que se necesitan a la salida de la boquilla de aplicación. Los dos componentes una vez dosificados de acuerdo al caudal y proporción requerido en la boquilla, son transportados a un cabezal de mezclado y homogeneización. Una vez mezclada y homogeneizada la pasta, se hace pasar por una boquilla de aplicación. Según demanda del usuario hay dos posibles modalidades de montar estos cabezales: fijos (en este caso denominados de 7o eje) o sujetos al 6o eje del robot (denominados de 6o eje).
Cuando el cabezal se fija en una estructura sólida, porque la característica de trabajo así lo demanda, se conoce por 7o eje, y cuando el cabezal va montado directamente sobre la brida del robot se conoce por el 6o eje.
Para la aplicación de 7o eje, el cabezal va montado sobre un motor controlado por el robot (de ahí el nombre 7o eje) y todo el conjunto (motor y dosificador- me∑clador) va montado sobre una estructura fija mediante un soporte base. Para la aplicación de 6o eje con robot el cabezal va montado directamente sobre la brida del robot.
Además de la aplicación robotizada de 6o y 7o eje, la aplicación dosificada de la mezcla se puede realizar manualmente y no solo para la sujeción de cristales a carrocerías si no para cualquier realización que necesite poner una pasta bicomponebte en un determinado sitio, como puede ser la de aplicar masilla de insonorización entre chapas.
Para completar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor compresión de las características del invento, se acompaña a la presente memoria de unos dibujos en base a cuyas figuras se comprenderán más fácilmente las innovaciones y ventajas de la protección objeto de la invención. Breve descripción de los dibujos
La FIG.1-A muestra esquemáticamente el sistema mezclador-dosificador bicomponente de una realización preferente en donde el binomio succionador de pasta y catalizador está constituido por dosificación ELÉCTRICO-ELÉCTRICO.
La FIG.1-B muestra esquemáticamente el sistema mezclador-dosificador bicomponente de una realización alternativa primera en donde el binomio succionador de pasta y catalizador está constituido por dosificación ELÉCTRICO- MECÁNICO.
La FIG.1-C muestra esquemáticamente el sistema mezclador-dosificador bicomponente de una realización alternativa segunda en donde el binomio succionador de pasta y catalizador está constituido por dosificación MECÁNICO- MECÁiMICO.
La FIG. 2 muestra una vista en perspectiva del sistema mezclador-dosificador bicomponente instalado en configuración de 7o eje.
La FIG. 3 muestra una vista en perspectiva del conjunto cabezal dosificador gobernado por el 7o eje del robot.
La FIG. 4 muestra una vista seccionada del cabezal D gobernado por el 6o eje del robot.
La FIG. 5 muestra una vista seccionada verticalmente del conjunto del cabezal dosificador bicomponente gobernado por el 6o eje del robot.
Realización preferente de la invención
El sistema mezclador-dosificador bicomponente obtiene, mediante la mezcla de dos componentes, una pasta que tiene un comportamiento óptimo cuando se deposita esta en la periferia de un cristal durante el proceso de fijación de dicho cristal sobre el marco de la estructura de una carrocería.
Tal y como se muestra esquemáticamente en la FIG. 1-A, el sistema mezclador- dosificador bicomponente de pasta, está constituido en una primera fase por los medios necesarios para llevar los dos componentes a mezclar (PA, PB) al llamado Cabezal de Aplicación y Mezclador (S).
El componente principal (PA) está depositado en el recipiente (JA), el cual tiene todos los elementos necesarios (agitador, motor, filtro) para que dicho componente principal (PA) esté debidamente preparado antes de ser succionado por el dosificador eléctrico o mecánico (B1) a través de la manguera (L1), la cual puede estar calefactada entre 0o C y 100° C para hacer mas fácil el transito del componente principal (PA) desde el recipiente (JA) hasta dosificador (B1) y, de este, al Cabezal de Aplicación y Mezclador (S).
El componente catalizador (PB) está depositado en el recipiente (JB), el cual tiene todos los elementos necesarios (agitador, motor, filtro) para que dicho componente catalizador (PB) esté debidamente preparado antes de ser transportado al dosificador eléctrico o mecánico (B2) a través de la manguera (L2), la cual está calefactada entre 0o C y 100° C para hacer mas fácil el tránsito del componente catalizador (PB) desde el recipiente (JB) hasta el dosificador (B2) y, de este, al Cabezal de Aplicación y Mezclador (S).
Integrados en el Cabezal de Aplicación y Mezclador (S) podemos distinguir la válvula (V1 ) que controla la entrada del componente principal (PA) al cabezal de mezcla (D), la válvula (V2) que controla la entrada del componente catalizador (PB) al cabezal de mezcla (D). En el cabezal de mezcla referenciado en las figuras como (D) es donde se realiza la mezcla y dosificación final y está constituido por un depósito mezclador (K) desde el cual se envía el producto, ya mezclado y en cantidades controladas por el la válvula de aguja (Q), a la cámara de aplicación (G) la cual tiene una boquilla de aplicación (R) que aplica el producto en la superficie deseada. La FIG. 1-B muestra una realización alternativa primera, en la cual los elementos dosificadores son ELÉCTRICO-MECÁNICO, y en la FIG. 1-C se muestra una realización alternativa segunda cuyos elementos dosificadores son MECÁNICO-MECÁNICO. La función de los dosificadores, tanto eléctricos como mecánicos es la de ser capaces de dejar pasar a través de ellos un prederteminado flujo de la materia que se está succionando. La diferencia entre las dosificadores mecánicos y los eléctricos está en el orden de precisión de paso de fluido, ya que los posibles puntos de selección de paso de fluido en los mecánicos es menor que en los eléctricos. Así pues, el uso de dosificador eléctrico, aunque encarece el sistema, es aconsejable cuando se quiere conseguir mucha precisión en la proporción de cada componente de la mezcla, o cuando la proporción del elemento catalizador es pequeña respecto al elemento principal. En el caso de que la mezcla no se resienta en sus propiedades, aun cuando haya un cierto grado de error en la cantidad de uno o de los dos componentes que la forman, se podrán utilizar las alternativas de la FIG. 1-B o de la FIG. 1-C, respectivamente.
Una vez visto el funcionamiento básico de la presente invención, detalles específicos en cuanto a las distintas modalidades de cabezales de pueden clarificar con la ayuda de las FIGS. 2 a 5.
La FIG. 2 muestra un sistema mezclador-dosificador del tipo dosificación ELÉCTRICO-MECÁNICO montado dentro de una estructura fija (A) para eje, en la cual se puede apreciar el posicionamiento del dosificador (B1) que dosifica el volumen y velocidad de entrada del producto principal así como la posición del dosificador mecánico (B'2) que regula el volumen y velocidad de entrada del producto catalizador, y fijado al soporte cabezal (F) para 7o eje el conjunto de motor (E) el cual está gobernado por el robot y sincronizado con el, proporcionando dicho motor (E) el giro de la boquilla de aplicación (R), situada en el extremo de la cámara de aplicación (G) de el cabezal (D) dosificador bicomponente. La FIG. 3 muestra una vista en perspectiva del conjunto cabezal dosificador bicomponente para 7o eje, configurado por el soporte del cabezal (F), el motor (E) que hace girar a la cámara de aplicación (G) y solidariamente con ella a la boquilla de aplicación (R), y el cabezal dosificador (D). También se observa el posicionamiento del conjunto en vista frontal y lateral y una sección parcial en la que se muestra el ensamble del motor con el cabezal dosificador.
La FIG. 4 muestra una vista del conjunto del cabezal dosificador (D), bicomponente para robot, con una proyección vertical seccionada del conjunto, donde se muestran las piezas que lo configura, así como la transmisión (T) del 6o eje del robot que da el movimiento a la boquilla , independientemente se indican las secciones A-A, y B-B, antes y después del elemento de transmisión.
La FIG. 5 muestra una vista seccionada verticalmente del conjunto del cabezal dosificador bicomponente, con el posicionamiento del cabezal (D), donde se puede ver: el motor (M), que regula la profundidad de la aguja (H) y controlar así el volumen del producto de salida, la válvula (V1) para regular la entrada del componente principal o pasta (PA), la válvula (V2) para regular la entrada del componente catalizador (PB), el depósito mezclador (K), la cámara de aplicación (G) con la boquilla de aplicación (R). En el conjunto aparece adosado el cabezal (D), dosificador bicomponente para robot, con el conjunto de transmisión (T) e independientemente se muestra el posicionamiento en planta, del mezclador - dosificador bicomponente.
Una vez descrita suficientemente la naturaleza de la presente invención, así como una realización preferente de la misma, sólo queda por añadir que, tanto su forma como los materiales y ejecución de la misma, son susceptibles de modificaciones, siempre y cuando no afecten de forma substancial a las características que se reivindican a continuación.

Claims

REIVINDICACIONES
1.- Sistema mezclador-dosificador bicomponente de pasta configurado por un conjunto de bombeo, mezcla, dosificación y aplicación , con control de volumen y caudal, antes de la mezcla y después de la mezcla, caracterizado porque el volumen del componente principal (PA) que llega a un deposito mezclador (K) de un cabezal (D) se regula mediante la presión aplicada por un dosificador eléctrico (B1) cuya entrada se controla por la válvula (V1 ), el volumen del componente catalizador (PB) que llega a dicho deposito mezclador (K) de dicho cabezal (D) se regula mediante la presión aplicada por un dosificador eléctrico (B2) cuya entrada se controla por la válvula (V2), estando controlados los volúmenes de dichos componentes (PA, PB) mediante un PLC o un PC que al sincronizar entre sí a dichos dosificadores y válvulas ( B1 , B2, V1 , V2) permite mezclar dichos componentes (PA, PB) en una relación que puede ir desde 1 :1 hasta 100:1.
2.- Sistema mezclador-dosificador bicomponente de pasta según la reivindicación 1 , caracterizado porque el control del volumen entrante del producto catalizador (PB) a dicho deposito mezclador ( ) se realiza mediante un dosificador mecánico (B2').
3.- Sistema mezclador-dosificador bicomponente de pasta según la reivindicación 1 , caracterizado porque el control del volumen entrante del producto principal (PA) a dicho deposito mezclador (K) se realiza mediante un dosificador mecánico (BV) y el control del volumen entrante del producto catalizador (PB) a dicho deposito mezclador (K) se realiza mediante un dosificador mecánico (B ).
4„- Sistema mezclador-dosificador bicomponente de pasta según la reivindicación 1 , caracterizado porque el control del volumen saliente de la pasta final, mezcla de los productos principal y catalizador (PA, PB), se controla por una válvula de aguja (Q) gobernada por un motor (M), ambos sincronizados entre si, y entre dichos elementos de control de entrada dosificadores ( B1 ,B2) y válvulas (V1 ,V2) mediante el anteriormente dicho PLC.
5.- Sistema mezclador-dosificador bicomponente de pasta, según las reivindicaciones precedentes, caracterizado porque el sistema puede ir montado sobre una estructura fija (A), estando el mezclador- dosificador unido a un motor (E) sincronizado con el robot, ( 7o eje ), que mueve el cabezal (D) y por tanto la boquilla de aplicación (G).
6.- Sistema mezclador-dosificador bicomponente de pasta, según las reivindicaciones precedentes, caracterizado porque el sistema puede ir montado directamente sobre la brida del robot, estando el mezclador-dosificador unido al robot mediante una transmisión (T) que permite al 6o eje del robot controlar el grado de rotación de la boquilla de aplicación (G).
PCT/ES2003/000673 2003-02-20 2003-12-31 Sistema mezclador-dosificador bicomponente WO2004073848A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003294044A AU2003294044A1 (en) 2003-02-20 2003-12-31 Bicomponent mixing/dosing system
BR0309320-4A BR0309320A (pt) 2003-02-20 2003-12-31 Sistema misturador - dosador de bicomponente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200300418A ES2214134B1 (es) 2003-02-20 2003-02-20 Sistema mezclador-dosificador bicomponente.
ESP200300418 2003-02-20

Publications (1)

Publication Number Publication Date
WO2004073848A1 true WO2004073848A1 (es) 2004-09-02

Family

ID=32893057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000673 WO2004073848A1 (es) 2003-02-20 2003-12-31 Sistema mezclador-dosificador bicomponente

Country Status (4)

Country Link
AU (1) AU2003294044A1 (es)
BR (1) BR0309320A (es)
ES (1) ES2214134B1 (es)
WO (1) WO2004073848A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702737A1 (de) * 2005-03-19 2006-09-20 Hennecke GmbH Verfahren und Vorrichtung zur Herstellung von Polyurethan-Formteilen
CN103394443A (zh) * 2013-08-05 2013-11-20 高精科技(苏州)有限公司 点胶机
CN106955824A (zh) * 2017-05-19 2017-07-18 成都西屋科技发展有限公司 一种多组分胶枪
CN110449315A (zh) * 2019-08-20 2019-11-15 淮安宏睿娱乐用品有限公司 双组份自动打胶机
CN110893391A (zh) * 2018-09-13 2020-03-20 宁德时代新能源科技股份有限公司 用于生产电池的涂胶控制方法及涂胶设备
DE102021120274A1 (de) 2021-08-04 2023-02-09 Atlas Copco Ias Gmbh Vorrichtung und Verfahren zum Auftragen eines mindestens zweikomponentigen viskosen Materials auf Werkstücke

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102743988A (zh) * 2012-07-30 2012-10-24 山东博丰利众化工有限公司 基于氟化铝生产的碱液自动卸车、配液及输送系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634024A (en) * 1984-01-16 1987-01-06 Technical Innovations, Inc. Automatic resin dispensing apparatus
EP0605138A1 (en) * 1992-12-30 1994-07-06 Nordson Corporation Dispensing system for coating material including a catalyst
ES2079548T3 (es) * 1991-01-11 1996-01-16 Nordson Corp Proceso y aparato para medir el flujo de un sistema dispensador de dos componentes.
ES2117805T3 (es) * 1994-02-18 1998-08-16 Nordson Corp Sistema de dispensacion de dos componentes.
US6234355B1 (en) * 1997-08-07 2001-05-22 Lenhardt Maschinenbau Gmbh Machine for filling the edge joints of insulating glass panes with a sealing compound consisting of two constituents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634024A (en) * 1984-01-16 1987-01-06 Technical Innovations, Inc. Automatic resin dispensing apparatus
ES2079548T3 (es) * 1991-01-11 1996-01-16 Nordson Corp Proceso y aparato para medir el flujo de un sistema dispensador de dos componentes.
EP0605138A1 (en) * 1992-12-30 1994-07-06 Nordson Corporation Dispensing system for coating material including a catalyst
ES2117805T3 (es) * 1994-02-18 1998-08-16 Nordson Corp Sistema de dispensacion de dos componentes.
US6234355B1 (en) * 1997-08-07 2001-05-22 Lenhardt Maschinenbau Gmbh Machine for filling the edge joints of insulating glass panes with a sealing compound consisting of two constituents

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702737A1 (de) * 2005-03-19 2006-09-20 Hennecke GmbH Verfahren und Vorrichtung zur Herstellung von Polyurethan-Formteilen
CN103394443A (zh) * 2013-08-05 2013-11-20 高精科技(苏州)有限公司 点胶机
CN106955824A (zh) * 2017-05-19 2017-07-18 成都西屋科技发展有限公司 一种多组分胶枪
CN106955824B (zh) * 2017-05-19 2019-01-08 成都西屋科技发展有限公司 一种多组分胶枪
CN110893391A (zh) * 2018-09-13 2020-03-20 宁德时代新能源科技股份有限公司 用于生产电池的涂胶控制方法及涂胶设备
CN110449315A (zh) * 2019-08-20 2019-11-15 淮安宏睿娱乐用品有限公司 双组份自动打胶机
DE102021120274A1 (de) 2021-08-04 2023-02-09 Atlas Copco Ias Gmbh Vorrichtung und Verfahren zum Auftragen eines mindestens zweikomponentigen viskosen Materials auf Werkstücke

Also Published As

Publication number Publication date
BR0309320A (pt) 2005-02-22
AU2003294044A1 (en) 2004-09-09
ES2214134B1 (es) 2005-11-01
ES2214134A1 (es) 2004-09-01

Similar Documents

Publication Publication Date Title
JP5382970B2 (ja) 電子式複数成分配合装置
ES2345071T3 (es) Dispositivo de suministro de fluido para una instalacion de pulverizacion.
WO2004073848A1 (es) Sistema mezclador-dosificador bicomponente
ES2616113T3 (es) Dosificador de fluido de doble bomba con posición de motor ajustable
ES2518115T3 (es) Procedimiento de control de un sistema de dosificación y mezcla de un producto con varios componentes, sistema de dosificación y de mezclado de dicho producto, e instalación de pulverización o de extrusión que comprende tal sistema
JP2009082917A (ja) 二成分計量ポンプアセンブリ
ES2321643T3 (es) Dispositivo y procedimiento para mezclar un componente aglutinante y un componente acelerador de endurecimiento para la preparacion de una pasta para emplastecer lista para el uso.
CA2824744C (en) Two component fluid metering and mixing system
JP2008537714A (ja) 分配装置及びそれのためのカートリッジ
WO2006023024A3 (en) Hand-held spraying apparatus having a multi-compartment liquid-holding reservoir
WO2014113934A1 (zh) 分配阀组件以及用于调色机的色浆分配装置
ES2701029T3 (es) Método y dispositivo para dispensar líquidos de un recipiente acoplado a una tapa con bomba integrada
RU2589346C2 (ru) Система и способ для точной подачи управляемых количеств вязкой текучей среды к устройству подачи текучей среды
WO1999048601A1 (en) Multi-component mixing and dispensing apparatus
ES2835183T3 (es) Aparato de dosificación
CN112673170A (zh) 用于将液体产品填充到容器中的组合计量组件
JP4611651B2 (ja) 多液混合装置
US10189035B2 (en) Machine for mixing and successively applying sealant material
EP1795988A1 (en) Arrangement for ratio-controlled dispensing of plural componet materials
WO2006093591A1 (en) Fluid metering system
JPH0386270A (ja) 塗付液混合送給装置
KR20160001942U (ko) 2액형 도료 펌프장치
JPH0763169A (ja) ダイアフラム式塗料ポンプ、該ポンプを用いた2液塗 装装置および2液混合方法
KR20210044398A (ko) 노면표시 페인트 분사장비
KR101629239B1 (ko) 미량용 2액 혼합 주입기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: PA/A/2004/009862

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A04847

Country of ref document: CN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP