WO2004072289A1 - 新規ウイルスベクター - Google Patents

新規ウイルスベクター Download PDF

Info

Publication number
WO2004072289A1
WO2004072289A1 PCT/JP2004/001739 JP2004001739W WO2004072289A1 WO 2004072289 A1 WO2004072289 A1 WO 2004072289A1 JP 2004001739 W JP2004001739 W JP 2004001739W WO 2004072289 A1 WO2004072289 A1 WO 2004072289A1
Authority
WO
WIPO (PCT)
Prior art keywords
soluble polymer
amino acid
water
virus
peg
Prior art date
Application number
PCT/JP2004/001739
Other languages
English (en)
French (fr)
Inventor
Tadanori Mayumi
Shinsaku Nakagawa
Yasuo Tsutsumi
Koichi Kawasaki
Mitsuko Maeda
Takao Hayakawa
Hiroyuki Mizuguchi
Original Assignee
Fuso Pharmaceutical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Pharmaceutical Industries, Ltd. filed Critical Fuso Pharmaceutical Industries, Ltd.
Priority to JP2005505035A priority Critical patent/JP4566129B2/ja
Priority to DE602004032330T priority patent/DE602004032330D1/de
Priority to EP04711732A priority patent/EP1626090B1/en
Priority to US10/544,986 priority patent/US20060258005A1/en
Priority to AT04711732T priority patent/ATE506445T1/de
Publication of WO2004072289A1 publication Critical patent/WO2004072289A1/ja
Priority to US11/544,986 priority patent/US7367688B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/40Vectors comprising a peptide as targeting moiety, e.g. a synthetic peptide, from undefined source
    • C12N2810/405Vectors comprising RGD peptide

Definitions

  • the present invention relates to a virus vector having a structure in which a water-soluble polymer is bonded to the surface of a virus particle, and a foreign peptide having affinity for integrin is bonded to the water-soluble polymer.
  • adenovirus vectors At present, adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, liposomes and the like are known as vectors used for gene transfer.
  • adenovirus vectors have 1) high gene transfer efficiency and high gene expression efficiency, 2) transfection of cells and many other cell types, and 3) in vivo tissue It is also effective for direct gene transfer into cells, 4) It is possible to introduce a relatively large foreign gene, 5) It is easy to prepare high titer vectors, and 6) It is less likely to cause cytotoxicity. It is widely used because it has
  • the mode of infection of adenovirus is as follows: first, a fiber protruding from the surface of the virus particle binds to the adenovirus receptor CAR (coxackie-adenovirus receptor) present on the surface of the infected cell, and then penton-based (Arginine (R)-Glycine (G)-Aspartic acid (D) with 5 sequences) binds to integrins (aV3, aV] 35) present on the cell surface, causing virus particles. It is known to be taken up into cells and establish infection (T'Wickham et al., Cell J, Vol. 73, pp. 309-319, 1993) ).
  • CAR coxackie-adenovirus receptor
  • adenoviruses when used as a vector for gene transfer, adenoviruses 1) cause an inflammatory response in individuals depending on the dose due to their high immunogenicity, 2) have a short half-life in blood, 3> High S rights, risk of liver damage, 4> Low gene transfer efficiency to CAR low expressing cells (for example, airway epithelial cells, smooth muscle cells, skeletal muscle cells, T cells, hematopoietic stem cells, dendritic cells, etc.) 5) High antigenicity
  • CAR low expressing cells for example, airway epithelial cells, smooth muscle cells, skeletal muscle cells, T cells, hematopoietic stem cells, dendritic cells, etc.
  • PEG polyethylene glycol
  • a peptide motif (hereinafter referred to as the RGD motif) having a basic sequence of arginine (R) -glycine (G) -aspartic acid (D), which is known to bind to integrin, is genetically engineered.
  • Adenovirus vector inserted into the knob at the fiber tip hereinafter referred to as fiber mutant adenovirus vector) (H. Mizuguchi et al., Gene Ther. (Gene Ther.>), Vol. 8, pp. 730-735, 2001) and the PEG of the PEG of the adenovirus vector described above.
  • Adenovirus vector to which a peptide having specificity for airway epithelial cells (sss.17 peptide, SDQLAS PYSHPR) is added to the outermost part (hereinafter referred to as airway epithelial cell-specific peptide PEG-adenovirus vector) H.
  • airway epithelial cell-specific peptide PEG-adenovirus vector H.
  • the PEG-adenovirus vector described above has a problem that PEG inhibits the binding of the virus particle to CAR and reduces the gene transfer efficiency in CAR-expressing cells (SiR. R. 0, riordan et al.>"Human Gene Theranv" J, Vol. 10, pp. 1349-1358, 1999).
  • PEG inhibits the binding of the virus particle to CAR and reduces the gene transfer efficiency in CAR-expressing cells
  • the fiber mutant adenovirus vector since only the RGD motif is inserted into the virus fiber, it has the same antigenicity as a normal adenovirus vector, so that neutralizing antibodies and phagocytic cells can be used. There is a problem that the gene transfer efficiency is reduced by the action.
  • the airway epithelial cell-specific peptide PEG-adenowinoresbetata cannot transfect only the airway epithelial cells, and the sss.17 peptide targets the airway epithelial cell surface. No substance has been identified. Furthermore, from Table 1 and FIG. 2 by H. Romanczuk et al., It is clear that binding to airway epithelial cells requires a total of 12 amino acid residues of sss. In general, peptides consisting of as many as 12 amino acid residues are likely to show immunogenicity to the administered organism, and viral vectors containing sss. There is a problem to administer.
  • the airway epithelial cell-specific peptide-PEG-adenovirus vector also has various problems in its production method.
  • the vector synthesizes an sss.17, peptide derivative by adding a cysteine having an active SH group to the end of the sss.17 peptide, while synthesizing a sss.17 peptide derivative with a group that reacts with a lysine residue on the adenovirus surface.
  • Heterobifunctional PEG having both an active SH group and a group that reacts with the active SH group of the sss.
  • An object of the present invention is to provide a virus vector in which the respective disadvantages have been overcome, while maintaining the useful points of the above-mentioned conventionally used virus vectors.
  • PEG-adenovirus vector above fiber-modified Adenowiru scan vectors and airway epithelial cell-specific peptidase Puchido p EG - while retaining useful point of adeno Ui Roh-less solid data and foremost, the virus base compactors which are overcome the respective disadvantages
  • the purpose is to do. That is, 1) reducing the immunogenicity of the adenovirus vector and avoiding an inflammatory response to an individual; 2) reducing the antigenicity of the adenovirus vector and avoiding attacks from neutralizing antibodies and phagocytes; 3) Improve the problem of reduced gene transfer efficiency in PEG-adenovirus vector.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a water-soluble polymer binds to the surface of a virus particle, and an exogenous peptide having an affinity for integrins present on the cell surface. Found that a virus vector having a structure linked to the water-soluble polymer was useful for solving the problems of a conventional virus vector for gene transfer and maintaining its usefulness. Thus, the present invention has been completed.
  • the present invention provides, in the first aspect,
  • a water-soluble polymer is directly or indirectly bound to the virus particle surface, and an exogenous peptide having an affinity for integrin present on the target cell surface is bound to the water-soluble polymer.
  • the water-soluble polymer is a virus particle via a linker amino acid and a crosslinking agent;
  • the virus vector according to 4> wherein the molecular weight of the poly'ethylene glycol is 3,000 to 4,000;
  • the exogenous peptide is tyrosine ( ⁇ ) -glycine (G) -glycine (G) -arginine (R) .- glycine (G) -aspartic acid (D) -threonine ( ⁇ ) —proline ( ⁇ ) — ⁇ Alanine (X)-lysine ( ⁇ )- ⁇ -alanine (X)-proline ( ⁇ >-threonine ( ⁇ )-aspartic acid (D)-glycine (G) monoanoreginin (R)-glycine (G)-glycine (G > The virus vector according to 11), which has an amino acid sequence represented by -tyrosine (Y).
  • the present invention provides, in the second aspect, 1 3) A gene transfer method characterized by using the virus vector according to any one of 1) to 1 2).
  • the present invention provides, in a third aspect thereof,
  • a foreign peptide having an affinity for integrin is bound to the water-soluble polymer of the water-soluble polymer 1 ⁇ -linkeramino acid to obtain a foreign peptide-a water-soluble polymer-a linker-amino acid;
  • a cross-linking agent is bound to the resulting exogenous peptide-water-soluble polymer ⁇ -linker-amino acid linker-amino acid;
  • a method for producing a viral vector comprising the steps of:
  • Steps a) and b) are performed by linking a linker amino acid to the resin (Resin), and then the exogenous peptide-soluble water-soluble polymer-monolinker-amino acid is cleaved from the resin. And c) and d), wherein the method for producing a viral vector according to 14) is performed;
  • the present invention has low immunogenicity and low antigenicity with respect to a living body to be administered, so that it is hardly attacked by neutralizing antibodies or poor phagocytes, has a relatively long half-life in blood, and has a high Efficient gene transfer is also possible, which results in low flurogenicity, easy and efficient production of the virus without reducing its usefulness, and thawing and refreezing after long-term cold storage. If the vector for gene transfer is stable even after repetition, the gene transfer method is particularly used.
  • virus particle surface refers to the outer shell (force) of the virus.
  • exogenous peptide j refers to a peptide artificially added to a vinoresbetter.
  • integratedin refers to a non-covalently bound transmembrane glycoprotein composed of ⁇ - subunit and subunit, which has an ability to bind to an extracellular matrix. It has affinity for laminin, such as 4j81, ⁇ 1, ⁇ 8 ⁇ 1, aVj31, ⁇ Vj33, ⁇ Vj36, aHb] 33, which have an affinity for the extracellular matrix component fibronectin.
  • Figure 1 shows the results of using human lung epithelial carcinoma A549 cells (ATCC: CCL-185, Fig. 1A) and mouse melanoma B16BL6 cells (Tohoku University Institute of Aging: TKG0598, Fig. IB).
  • Performed control adenovirus vector, PEG-adenowinores vector, fiber mutant adenovirus resetter and RGD-PE A graph showing the results of a comparative experiment on the gene expression efficiency of the G-adenovirus vector is shown.
  • Figure 2 shows a control adenovirus vector, a PEG-adenovirus vector, and a fiber obtained from human lung epithelial carcinoma A549 cells (Figure 2A) and mouse melanoma B16BL6 cells ( Figure 2B).
  • 4 is a graph showing the results of an experiment comparing the gene expression efficiency of a mutant adenovirus vector and an RGD-PEG-adenovirus vector in the presence of a neutralizing antibody.
  • Figure 3 shows a control adenovirus vector and a PE G-adenowinores vector obtained using human lung epithelial carcinoma A549 cells (Figure 3A) and mouse melanoma B16BL6 cells ( Figure 3B).
  • 7 is a graph showing gene expression efficiencies immediately after production of a fiber mutant adenovirus vector and an RGD-PEG-adenovirus vector, and when freeze-thawing was repeated after long-term low-temperature storage.
  • the virus that can be used in the virus vector of the present invention is not particularly limited as long as it is a virus that is known to be used in a virus vector for gene transfer.
  • Viruses such as adeno-associated virus, particularly preferred are adenoviruses.
  • a virus appropriately modified by genetic engineering can be used as an adenovirus used for a viral vector for gene introduction.
  • an adenovirus in which the E1 gene region or E3 gene region of the adenovirus genome has been deleted, an adenovirus in which a foreign gene has been inserted into the region, or the like can be used as a virus for producing a vector.
  • the water-soluble polymer that can be used in the virus vector of the present invention is not particularly limited as long as it is a pharmaceutically acceptable water-soluble polymer, and polyethylene glycol having a molecular weight of 300 to 400 is preferably used.
  • Polyolylene glycol such as polypropylene daricorn, polystyrene copolymer such as styrene-maleic acid copolymer, polyvinylinolepyrrolidone, and polybutyl alcohol are preferred, and polyethylene diol is particularly preferred.
  • this water-soluble polymer includes water-soluble poly Derivatives in which the terminal of the mer is protected and / or activated are also included.
  • Water-soluble polymers with protected ends are suitable for peptide synthesis, especially those protected with fmoc (9-fluorenylmethoxycarbonyl) or t-Boc (tert-butoxycarbonyl).
  • Preferred eg, Shearwater: Cat No. 1P2Z0F02, 2Z530F02.
  • Examples of the water-soluble polymer having an activated terminal include those having an active group that binds to a part of an amino acid (an amino group, a carboxyl group, a thionole group, and the like).
  • exogenous peptide having an affinity for integrin that can be used in the virus vector of the present invention is not particularly limited as long as it has a substantial affinity for integrin, but is not limited to fibronectin.
  • fibronectin motifs (RGD, LDV, REDV), laminin motifs (RYVVLPR, L GT IPG, PDSGR, YI GSR, LRE, I KVAV, RN IAE IIKDI, RGD), vitronectin peptide comprising cutin motif (RGD) is preferably t also, a 4 j3 1 above, ⁇ 5 J3 1, ⁇ 8 ] 3 1, aV ⁇ 1, ⁇ ⁇ 3 ⁇ ⁇ 6.
  • ⁇ ⁇ b 3 3 (Integrin with affinity for buipronectin), ⁇ 1 / 31, a.21, ⁇ 3 ⁇ 1, ⁇ 6 ⁇ la7 ⁇ 1, a6 ⁇ 4, aV ⁇ 8 (affinity for laminin having Integurin), o; 8 i3 l, aV ⁇ 1, aV ⁇ S aV ⁇ 5, aV ⁇ 8 N a U b ⁇ 3 ( Yes Surupe peptide with affinity for integrin) having an affinity for the vitronectin also present invention It can be suitably used as an exogenous peptide having an affinity for integrin.
  • peptides are known peptide motifs (for example, CK5j31: RGD, ⁇ 21: DEGA, ⁇ 4j31 or K4J37: EIL DV, a61: RGD, YIGSR or IKVAV).
  • a peptide having an affinity for the integrin can be searched for and obtained by a phage display method.
  • peptides having an affinity for QjVjS3 or Q; , RGD, LDV, REDV, GPRP, etc. can also be suitably used as the exogenous peptide having an affinity for integrin of the present invention.
  • peptide derivatives in which an amino acid or the like is appropriately added to one or both ends of the amino acid sequence of a peptide having an affinity for integrin as described above may be used in the present invention unless they exhibit significant antigenicity. Can be.
  • the virus vector of the present invention can be prepared by using the virus, the water-soluble polymer and the exogenous peptide as essential elements, and the number of bonds of each element between the virus particle, the 7-soluble polymer and the exogenous peptide
  • the binding site and the binding format are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately increased or decreased or changed according to the following method or a method known per se.
  • the viral vector of the present invention comprises (i) a linker amino acid bound to one end of a water-soluble polymer to obtain a water-soluble polymer 1 ⁇ -linker amino acid, and (ii) a water-soluble polymer At the other end of the water-soluble polymer of linker amino acid, an exogenous peptide having an affinity for integrin is sequentially synthesized at its carboxyl terminal force to obtain an exogenous peptide water-soluble polymer 1 ⁇ one linker amino acid; (iii) a cross-linking agent is bound to the resulting exogenous peptide 7J-soluble polymer-linker-amino-acid linker amino acid; and (i V) an exogenous peptide-water-soluble polymer linker via the cross-linking agent.
  • the water-soluble polymer is polyethylene glycol (PEG)
  • the linker is one amino acid
  • the cross-linking agent is a cross-linking agent capable of binding to a thiol group or a diamino group.
  • PEG polyethylene glycol
  • the linker is one amino acid
  • the cysteine and the cross-linking agent is a cross-linking agent capable of binding to a thiol group or a diamino group.
  • a foreign peptide having an affinity for integrin present on the surface of a target cell can be synthesized by a known peptide synthesis method (for example, a solid phase method).
  • the exogenous peptide of the present invention includes not only an amino acid sequence having an affinity for integrin present in a target cell but also other amino acids. It can be used as a server.
  • the exogenous peptide can have a branched structure by including one or more amino acids having two amino groups. This enhances the ability of the viral vector of the present invention to bind to integrin present on the surface of the target cell.
  • the water-soluble polymer In order to bind the water-soluble polymer to which the exogenous peptide having affinity for integrin present on the surface of the target cell is bound to the virus particle surface, the water-soluble polymer can be directly bound to the virus particle surface. At least one amino acid capable of binding to a divalent cross-linking agent (preferably, a hetero-reactive divalent bi-valent cross-linking agent) is added to one end of the water-soluble polymer. After binding the linker monoamino acid and the divalent cross-linking agent, one end of the divalent cross-linking agent is bonded to the virus particle surface, that is, the water-soluble polymer and the virus particle surface It is preferred that a linker monoamino acid and a divalent cross-linking agent be present in between.
  • a linker monoamino acid and a divalent cross-linking agent be present in between.
  • This method is effective when an exogenous peptide having an affinity for an integrin present on the surface of a target cell contains an acidic amino acid. Because, when a water-soluble polymer to which an exogenous peptide having affinity for integrin present on the surface of a target cell is bound is directly bonded to the virus particle surface, it is necessary to activate the terminal of the water-soluble polymer. This is because when an exogenous peptide having an affinity for an integrin present on the surface of a target cell contains an acidic amino acid, the acidic amino acid is also activated and its original properties are changed.
  • the exogenous peptide having an affinity for the integrin present on the target cell surface contains an acidic amino acid
  • the exogenous peptide having an affinity for the integrin present on the target cell surface is bound.
  • the water-soluble polymer be bound to the virus particle surface using a linker amino acid and a divalent crosslinking agent without activating the water-soluble polymer.
  • linker amino acid cysteine having a thiol group, lysine as a basic amino acid, alanine as a neutral amino acid, aspartic acid as an acidic amino acid, and other amino acids can be used. It is preferable that the number is included.
  • an active group When binding only a water-soluble polymer to a linker amino acid, it is necessary to add an active group to the terminal of the water-soluble polymer.
  • the active group that binds to the amino group of the amino acid include an N-hydroxysuccinimide group, a succinimidinole group, a force / repoxynole group, an aldehyde group, and a benzotriazole group.
  • the active group that binds to the carboxyl group of an amino acid include an amino group.
  • Amino acid Examples of the active group that binds to the all group include a maleimide group and a vinyl / resnolephone group. Among them, it is preferable to use a derivative having an active group that binds to an amino group of an amino acid, and particularly preferable to use a derivative having a terminal N-hydroxysuccinimide group or a succinimidyl group.
  • One or several amino acids can be introduced as a spacer between the crosslinking agent and the water-soluble polymer, if necessary.
  • the above-mentioned linker amino acid and amino group, lipoxyl group, thiol group it is preferable to use a divalent cross-linking agent capable of bonding to the above.
  • a cross-linking agent capable of binding at least to the amino group since it is preferable to target the amino group present on the virus particle surface for binding to the virus particle surface, it is necessary to use a cross-linking agent capable of binding at least to the amino group.
  • cysteine is used as the linker amino acid, it is necessary to use a cross-linking agent capable of binding to at least a thiol group.
  • the divalent cross-linking agent examples include a cross-linking agent having a binding ability to a thiol group or a diamino group (mainly a maleimide group, an N-hydroxysuccinimide group or a succinimidyl group in a molecule), for example, technochemica / EMC S (N- (6-Maleiraidocaproyloxy succinimide), GMB S (N- (4-Maleimidobutyryloxy) succinimide), MBS (m-Maleimidobenzyl-N-hydroxy succinimide ester), SA TA (N-Succinimidyl S-acethylthioacetate), S MC C (Succinimidyl 4- (N-maleiraidomethyl)-cyclohexane-l-carboxylate), S MP B (Succinimidyl 4-p-ma ⁇ eimidophenyi butyrate), SPDP (N- Succinimidyl)
  • a divalent crosslinking agent a
  • a cross-linking agent capable of binding to an amino group and a carboxyl group for example, EDC commercially available from Techno Chemical Co., Ltd. (1-Ethyl-3- (3-DimethylaminopropyD carbodiimide) etc.
  • a bivalent cross-linking agent a cross-linking agent that has the ability to bind to two thiol groups (mainly a maleimide group in the molecule )
  • BMH marketed by Techno Chemical Co., Ltd.
  • thiol groups and amino groups are used as divalent cross-linking agents used to bind a water-soluble polymer having an exogenous peptide having an affinity for integrin present on the surface of a target cell to the virus particle surface.
  • Crosslinking agents having a binding ability to the compound mainly having a maleimide group, N-hydroxysuccinimide group, and succinimidyl group in the molecule are preferable.
  • a linker is linked to a resin (formation of a linker amino acid-resin), and then a linker-amino acid is linked to a water-soluble polymer (a water-soluble polymer-linker-amino acid-resin). Then, an exogenous peptide having an affinity for integrin present on the surface of the target cell is bound to a water-soluble polymer (formation of an integrin-affinity exogenous peptide-a water-soluble polymer-a linker-amino acid-a resin).
  • the integrin-affinity foreign peptide-water-soluble polymer—linkeramino acid is cleaved from the resin to obtain an integrin-affinity foreign peptide-water-soluble polymer “linker-amino acid.
  • a bridging agent is bound (formation of integrin-affinity exogenous peptide-water-soluble polymer-linker-amino acid-bivalent cross-linking agent), and finally it is bound to the virus particle surface (integrin-affinity exogenous).
  • Peptide water-soluble polymer (1) formation of one linker, one amino acid, one divalent cross-linking agent, and one virus particle).
  • the method for producing the virus vector of the present invention can be performed by a known peptide synthesis method.
  • the linker amino acid contains cysteine
  • the divalent crosslinking agent has a binding ability to a thiol group or a diamino group (mainly, a maleimide group, an N-hydroxysuccinimide group, (With a simimidinole group in the molecule).
  • a thiol group or a diamino group mainly, a maleimide group, an N-hydroxysuccinimide group, (With a simimidinole group in the molecule.
  • the exogenous peptide sequence that binds to the 7J-soluble polymer preferably has a chain length as short as possible from the viewpoint of reducing the immunogenicity of a living body as a virus vector as described above. Further, from the viewpoint of enhancing the affinity for the target cell as a viral vector, one or more exogenous peptides may be included. The chain length and the number of exogenous peptides can be adjusted as appropriate while taking into account the effect as a wheel / less vector. Further, the foreign peptide may contain one or more integrin affinity motifs.
  • the modification rate of the water-soluble polymer in the virus vector of the present invention prepared as described above was determined by the residual amino group of the water-soluble polymer-adenovirus vector using the fluororesin-min method (Edcloyl 'Maria ( A. Croyle Maria) et al. Human Gene Therapy ”, Vol. 11, pp. 1713-1722, 2000>. Accordingly, those skilled in the art can appropriately determine the optimal water-soluble polymer modification rate in terms of the gene transfer efficiency, and this can be applied to the present invention. Specifically, 0 4 2 ni g /: .
  • the particle size of the water-soluble polymer-11 adenovirus vector can be measured using ZETASIZER 3000HS (Malverni). Similarly to the above modification ratio, those skilled in the art can appropriately determine the optimal particle size in terms of gene transfer efficiency and select a water-soluble polymer having an optimal molecular weight, and this can be applied to the present invention. it can. In addition, the present inventors found that the modification ratio of the water-soluble polymer of the water-soluble polymer adenovirus vector and the average particle size measured by ZETASIZER increased in correlation with the amount and the number of additions of the water-soluble polymer. I have confirmed. Therefore, the modification of the water-soluble polymer of the adenovirus vector can be controlled by the amount and the number of additions of the water-soluble polymer.
  • the number of virus particles can be measured according to the method of Maizel et al. (JV Jr. Maizel et al., "Pirology J, Vol. 36, pp. 115-125, 1968).
  • a person skilled in the art can appropriately determine the number of viruses to be used for gene transfer, that is, take an appropriate amount of the purified virus solution, dissolve it in 1% SDS / PBS (1), and use the absorbance meter to measure the OD26. measured at 0 nm. number viral particles are calculated as 1. 1 X 1 0 1 2 particles / OD 260.
  • the target individual includes, for example, humans, mice, rats, hamsters, monoremots, and the like.
  • the target administration site of the virus vector of the present invention includes brain, liver, kidney, spleen, prostate, small intestine, large intestine, lung, bronchi, skin, esophagus, stomach, duodenum, skeletal muscle, etc. Is mentioned.
  • Cells targeted by the virus vector of the present invention include living cells (epithelial cells, muscle cells, brain nerve cells, etc.), cancer cells, cultured cells, and the like.
  • the target cells include A549 cells, B16BL6 cells, HepG2 cells, COS1 cells, CHO cells, and the like.
  • cells to be targeted include T cells, B cells, hematopoietic stem cells, ES cells, and the like.
  • Integrins are expressed or exert physiological functions at various sites.At least ⁇ 11 is neurite, lymphocyte, ⁇ 2 ⁇ 1 is platelet, cancer cell, ⁇ 3 ⁇ 1 is kidney, lung, Cancer cells, hi 41 are lymphocytes, monocytes, eosinophils, «5 ⁇ 1 are various cells, a 6 ⁇ 1 is epithelial cells, neurites, cancer cells, ⁇ 71 is skeletal muscle, ⁇ 8] 3 1 is kidney, neuron, ⁇ 9] 31 is tracheal epithelium, ⁇ V / 31 is various cells, cancer cells, ⁇ ; V j33 blood vessels, bone, blood vessels, epithelium, a Vi36 is epithelium, a V 8 is Neurites, sp 4; 87 are lymphocytes, sp 6; 84 are epithelial cells, sp L2 is leukocytes, ⁇ 2 is neutrophils, monocytes, ⁇ 2 is monocytes, granulocytes, a D 2
  • the spleen 91 is expressed in the tracheal epithelium
  • the ⁇ 2 chain is expressed on the surface of leukocytes
  • aL / 32 is LFA-1 (a protein with lymphocyte function), ⁇ ; ⁇ ] 3 2 Is expressed on Mac-1 (macrophage surface protein).
  • the three chains are expressed in various cells including platelets.
  • An exogenous peptide having an affinity for the integrin expressed in a cell or site-specific manner is obtained (for example, obtained by screening by a phage display method or the like).
  • a gene By applying to a viral vector, a gene can be specifically introduced into a cell or site where the target integrin is expressed.
  • the administration route of the viral vector of the present invention when used in in vivo, can be appropriately selected, such as local administration to a tissue or organ, intravenous administration, transmucosal administration, intramuscular administration, oral administration.
  • the viral vector of the present invention includes a p53 gene (apoptosis of cancer cells).
  • Therapeutic genes such as thymidine kinase gene (inducing apoptosis of cancer cells), adenosine aminase (ADA) gene (adenosine aminase deficiency), and the like.
  • RGD-PEG adenovirus vector from a mixture of Adenowinores
  • RGD-PEG adenovirus vector that can be isolated from a mixture of Adenowinores
  • centrifugation using a CsC1 density gradient Can be used. It can also be isolated by dialysis, or can be isolated by combining ultracentrifugation using a CsC1 density gradient with analysis.
  • adenowinores vectors were prepared and compared. That is, as shown in the following 1) to 4), 1) an adenovirus vector as a control, 2) a PEG-adenovirus vector, 3) a fiber mutant adenovirus vector, and 4) an adenovirus vector of the present invention Produced.
  • a vector prepared by Mizuguchi et al. was used (the vector lacks the E1 and E3 regions of the adenovirus vector, and the luciferase gene is incorporated into this E1-deficient region! /, Things.
  • the virus was first added together with 5% Dulbeco, s modified eagle's medium (DMEM, manufactured by Sigma>) supplemented with 5% fetal serum. Cells were infected About 2-3 days later, CPE
  • the PEG-adenovirus vector was prepared using the control adenovirus vector prepared in 1) above, followed by methoxy polyethylene glycol-succinimidyl propionate (mPEG-SPA). A molecular weight of 5,000, a product of Shearwater, catalog number: 2M4M0D01) was used.
  • Mizuguchi et al. Produced a fiber mutant adenovirus vector in which a part of the amino acid sequence present in the knob of the adenovirus fiber was genetically engineered to a peptide consisting of arginine (R>-glycine (G)-aspartic acid (D)).
  • This vector is an adenovirus vector.
  • the ⁇ 1 region and the ⁇ 3 region are deleted, and the luciferase gene is integrated in the ⁇ 1 deleted region, which binds to non-CAR-expressing cells via integrin and efficiently expresses the gene.
  • the gene sequence encoding the HI loop of the fiber is cleaved with Csp451 and the vector plasmid pAdHM15 having a Clal site with both restriction enzymes, and corresponds to the anoregiyun (R)-glycine (G)-aspartic acid (D) sequence.
  • the synthesized oligo DNA was introduced by in vitro ligation. Then, the luciferase gene was inserted into the E1-deficient site.
  • the resulting plasmid was cleaved with Pacl and transfected into 293 cells to obtain a luciferase-expressing adenowinores vector having the anoreginin (R) -glycine (G) -aspartate (D) sequence ⁇ ! In the fiber.
  • a method for producing an adenovirus vector will be described with reference to the following reaction chart.
  • Cysteine Cysteine
  • a heteroreactive bivalent reagent that specifically binds to the SH group.
  • 3Arayun (j3Ala) is present between the linker amino acid and PEG; it is used as a spacer to facilitate the reaction.
  • a lysine (Lys) with two amino groups was introduced to link two RGD sequences per PEG molecule with the aim of increasing affinity for integrins.
  • the synthesis was carried out according to the solid phase method using Fmoc as a protecting group. That is, 1.5 g of Fmoc-Amide Resin (functional group content 0.66 mol / g) (manufactured by Applied Biosystems) was weighed and placed in a propylene reaction vessel (Nippon Kagaku Co., Ltd.). Set on a shaker (IA company, VIBRAX VXR) and add dichloromethane (D
  • CM methyl methacrylate
  • DIPC diisopropylcarbodiimide
  • EMCS has a maleimide group and N-hydroxysuccinimide active ester at both ends of the molecule. The active ester reacts with the amino group and the maleimide group selectively reacts with the SH group. It is known to react.
  • the compound g (RDG-PEG) obtained in 4-1-1) of Example 1 was bound to the adenovirus vector prepared in Example 1-1-1). That is, 1 ⁇ 10 12 particles / g of compound g (RDG-PEG) at a 250-fold molar amount to the primary amine present in the outer shell protein (hexon, penton base, fiber) of one particle of adenovirus vector. Add the adenovirus to the adenovirus vector and react at 37 ° C for 15 minutes with stirring at 300 rpm to bind the adenovirus. Completed. As a result, an adenovirus vector (RGD-PEG-adenovirus vector) to which compound g was bound was obtained. a) Fmoc-Cys (Tit Resin
  • B16BL6 cells were subcultured in DMEM containing 10% fetal serum, and subconfluent B16BL6 cells were used for Eagle, s minimum essential containing 7.5% fetal serum. The cells were subcultured in medium (MEM, Sigma II: ⁇ ), and those in a subconfluent state were used for the experiment.
  • a 549 cells and B 16 BL 6 cells were seeded on a 48-well plate with 2 ⁇ 10 4 cells Z 0.5 ml LZ well and cultured for 24 hours. 300
  • the luciferase activity was measured as an index of the gene expression efficiency of the virus vector by lysing the cells with 100 ⁇ L of Luciferase Cell Culture Lysis Reagent (Promega Neyring), then using Luciferase Assay System (Promega), Microluraat The activity was measured using Plus LB96 (manufactured by Perkin Elmer) The activity was expressed as Luciferase activity (RLU (relative light unit) / Veil).
  • Luciferase activity RLU (relative light unit) / Veil
  • the results are shown in FIG. 1 as changes in luciferase activity when virus particles per cell were changed.
  • the RGD-PEG-adenovirus vector showed gene expression several hundred times higher than that of the PEG-adenowinores vector in A549 cells, which are high CAR-expressing cells, and the same gene expression as the control adenovirus vector.
  • the RGD-PEG-adenovirus vector showed more than 100-fold higher gene expression than the control adenovirus vector, compared to B16BL6 cells, which are low CAR expressing cells in the control adenovirus vector. .
  • its expression is expressed in fibers that protrude from the adenovirus particle surface. Insertion of the RGD sequence was equivalent to that of the fiber mutant adeno-inores vector, which enabled high gene expression even in cells with low CAR expression.
  • the fiber mutated adenovirus vector is considered to be approximately equivalent to the virus particle size and virus mass of the control adenovirus vector due to the incorporation of RGD into its own fiber.
  • the PEG-adenovirus vector has significantly larger virus particle diameter and virus mass than the fiber mutant adenovirus vector and the control adenovirus vector.
  • the RGD-PEG-adenovirus vector of the present invention uses PEG having a molecular weight of 3400, and the molecular weight of PEG is 20% because of the addition of RGD, which is an exogenous peptide with affinity for integrin. Compared to a PEG-adenovirus vector of 0, the virus particle size and virus mass are both greater.
  • those having a large structure can be used as a virus vector even if the structure has a peptide having an affinity for integrin. It is expected that the ability to bind to DNA will be weaker, resulting in a lower gene transfer efficiency than the fiber-mutated adenovirus vector.
  • the RGD-PEG-adenovirus vector having such a large structure was able to transduce genes as efficiently as the fiber mutant adenovirus vector, and therefore, it was considered that the integrin affinity was maintained at a high level.
  • the experiments were performed using human lung epithelial carcinoma A549 cells (FIG. 2A), which are high CAR expressing cells, and mouse melanoma B16BL6 cells (FIG. 2B), which are low CAR expressing cells.
  • A549 cells were subcultured in DMEM containing 10% fetal calf serum, and were used in a subconfluent state for the experiment.
  • B16BL6 cells were subcultured in Eagle's minimum essential medium (thigh, manufactured by Sigma) containing 7.5% of bovine serum, and those in a subconfluent state were subjected to the experiment.
  • a 549 cells and B 16 BL 6 cells were seeded on a 48-well plate with 1 ⁇ 10 4 cells Z 0.5 mL, and cultured for 24 hours.
  • ICR mouse serum containing anti-adenovirus vector antibody add each vector prepared in the culture medium of each cell at 1000 particles / cell //0.5 mL to each well, and add 37 ° C. C, saturated vapor pressure, and cultured 5% C0 2 under 24 hours.
  • the luciferase activity was measured according to 5) of Example 1.
  • the ICR mouse serum was prepared by administering the control adenovirus vector to the ICR mouse three times at about 10 10 particles / mouse.
  • RGD-PEG-adenovirus vector maintains high gene expression in both CAR-high and low-expressing cells in the presence of anti-adenovirus vector antibody, far exceeding control and fiber-mutated adenovirus vectors was.
  • A549 cells Assuming that the gene expression in the absence of antibody of each vector is 100%, the gene expression of the control adenovirus vector and the mutant adenovirus vector in the presence of the antiserum 1/10000 dilution is 24% and Although reduced to 42%, the RGD-PEG-adenovirus vector retained 100% gene expression.
  • the RGD-PEG-adenowinores vector of the present invention could be a superior gene transfer vector than the fiber mutant adenovirus vector, and was an integrin-affinity foreign peptide via PEG.
  • PEG By adding RGD, it was found that PEG can be attached to target cells while retaining the advantages of PEG, and subsequent gene transfer and gene expression can be efficiently achieved.
  • a PEG-adenovirus vector to which an integrin-affinity exogenous peptide such as RGD has been imparted has a high gene transfer and expression ability like a fiber mutant adenovirus vector, and furthermore, the antibody that the PEG-adenovirus vector has It was found to have evasion ability.
  • the mutant adenovirus vector and the RGD-PEG-adenovirus vector were respectively stored in phosphate buffered saline (PBS) at 180 ° C for one month. After thawing various adenowinores vectors at room temperature and repeating the freezing step at -80 ° C five times, each gene A comparative experiment of the current efficiency was performed.
  • PBS phosphate buffered saline
  • the experiments were performed using human lung epithelial carcinoma A549 cells (FIG. 3A), which are high CAR expressing cells, and mouse melanoma B16BL6 cells (FIG. 3B), which are low CAR expressing cells.
  • A549 cells were subcultured in DMEM containing 10% fetal calf serum, and those in a subconfluent state were used for the experiment.
  • B16BL6 cells were subcultured in Eag1 e's minimum essential maximrn (MEM, Sigma) containing 7.5% germ-free serum and subconfluent. Were subjected to the experiment.
  • A549 cells and B16BL6 cells were seeded on a 48-well plate at 2 ⁇ 10 4 cells / 0.5 mL Nowell and cultured for 24 hours.
  • Each vector prepared in the medium of each cell was added to the well with 3000 mL of Z cell ⁇ .5 mL, and cultured for 24 hours at 3.7 ° C., saturated vapor pressure, and 5% CO 2 .
  • the PEG-adenovirus vector immediately after its production in A549 cells had a low gene expression efficiency as compared to other vectors, as in 5) of Example 1.
  • the control adenovirus vector, PEG-adenovirus vector, fiber mutant adenowinores vector, and RGD-PEG-adenovirus vector obtained by freezing and thawing 5 times after storage for 1 month have almost the same genes as when they were made. He kept his efforts.
  • the gene expression of the RGD-PEG-adenovirus vector in B16BL6 cells immediately after construction was approximately 100 times higher than that of the control adenovirus vector, similar to 5> in Example 1, and equivalent to that of the fiber mutant adenovirus vector. It was confirmed that it was.
  • the RGD-PEG-adenovirus vector maintained gene expression almost equal to that at the time of production, even after five months of freezing and thawing after storage for one month.
  • the gene expression of the RGD-PEG-adenovirus vector of the present invention was confirmed. At present, even after repeated freezing and thawing after long-term low-temperature storage, the protein is sufficiently retained and has high stability.
  • the RGD-PEG-adenovirus vector of the present invention maintained excellent gene expression efficiency even when freeze-thawing was repeated after long-term low-temperature storage. It was an unexpected result that the stability of an adenovirus vector having a large structure such as RGD-PEG was sufficiently maintained even after repeated freezing and thawing after long-term cold storage.
  • the present invention has low immunogenicity and low antigenicity with respect to the living body to be administered, so that it is not easily attacked by neutralizing antibodies or phagocytic cells, has a relatively long half-life in blood, and is suitable for a wide range of cells.
  • SEQ ID NO: 5 Peptide motif having integrin-binding activity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

 ウイルス粒子表面に水溶性ポリマーが直接または間接的に結合し、かつ標的細胞表面に存在するインテグリンに親和性のある外来性ペプチドが当該水溶性ポリマーに結合していることを特徴とするウイルスベクターを提供する。

Description

新規ウイ/レスベクター 技術分野
本発明は、 ウィルス粒子表面に水溶性ポリマーが結合し、 カゝつ、 当該水溶性ポ リマーにィンテグリンに親和性のある外来性ぺプチドが結合した構造を有するゥ イ^スベクターに関する。 明 細 1
背景技術
現在、 遺伝子導入に用いられているベクタ書ーとしてアデノウイルスベクター、 アデノ随伴ウィルスベクター、 レトロウイルスベクターおよびリポソーム等が知 られている。 その中でもアデノウイルスベクターは、 1 } 遺伝子導入効率おょぴ 遺伝子発現効率が高い、 2 ) 増殖停止期の細胞やその他多くの細胞種に対して遺 伝子導入が可能、 3 ) in vivoにおける組織への直接遺伝子導入にも有効、 4 } 比較的大きな外来遺伝子を導入することが可能、 5 ) 高力価ベクターの作製が容 易、 および 6 ) 細胞毒性を引き起こす可能性が低い、 などの利点を有しているこ とから汎用されている。
また、' アデノウイルスの感染様式として、 まずウィルス粒子表面から突出する ファイバーが感染細胞表面に存在するアデノウイルス受容体 C AR (coxackie- adenovirus receptor) に結合し、 その後ウィルス粒子表面に存在するペントン ベース (アルギニン (R) —グリシン (G) —ァスパラギン酸 (D) の配列を 5 個有する) が細胞表面に存在するィンテグリン ( a V 3、 a V ]3 5 ) に結合す ることでウィルス粒子が細胞内に取込まれ、 感染が成立することが知られている (ティー 'ジエイ ·ウィックハム (T. J. Wickham) ら著, 「セル (Cell) j , 第 73卷, 309-319頁, 1993年参照) 。
しかしながら、 遺伝子導入用のベクターとして使用する場合、 アデノウイルス は、 1 ) 免疫原性が高いため投与量によっては個体に対して炎症反応を引き起こ す、 2 ) 血中半減期が短い、 3 > S權積性が高く、 肝障害発症の危険性がある、 4> CAR低発現細胞 (例えば、 気道上皮細胞、 平滑筋細胞、 骨格筋細胞、 T細 胞、 造血幹細胞、 樹状細胞など) に対しては遺伝子導入効率が低い、 5) 抗原性 が高いため、 中和抗体や貧食細胞の攻撃を受けやすく遺伝子導入効率が低下する、 などの問題点がある。
これら問題点を解決するために、 アデノウイルスベクターを局所投与する方法、 アデノウィルスの抗原性を示す部位を遺伝子:!;学的に削除する方法、 アデノウイ ルスゲノムを遺伝子工学的に改変する方法などが試みられている力 全ての問題 点が角军決されたわけではない。
一方、 最近では、 ゥイノレスに対する中和抗体や貧食細胞の作用による遺伝子導 入効率の低下の回避および血中安定性の向上を目的として、 ウィルス粒子表面に ポ エチレングリコール (PEG) を結合させたアデノウイルスベクター (以下、 PEG—アデノウイルスベクターという) (特表 2001 - 521381号公報参照) や、 CAR非発現おょぴ低発現細胞における遺伝子導入効率の向上を目的として、 標 的細胞表面に存在するィンテグリンに結合することが知られているアルギニン (R) 一グリシン (G) —ァスパラギン酸 (D) を基本配列として有するぺプチ ドモチーフ (以下、 RGDモチーフという) を遺伝子工学的手法によりウィルス のファイバー先端のノブに糸且込んだアデノウイルスベクター (以下、 ファイバー 変異アデノウイルスベクターという) (ェイチ, ■ミズグチ (H. Mizuguchi) ら 著, Γジーン'セラピー (Gene Ther. > 」 , 第 8卷, 730-735頁, 2001年参照) や、 前記の PEG—アデノウィルスベクターの PEGの最外部に気道上皮細胞に特異 性を有するペプチド (s s s. 17ペプチド、 SDQLAS PYSHPR) を付 加したアデノウィルスべクタ一 (以下、 気道上皮細胞特異的ぺプチドー P E G— アデノウイルスベクターという) (ェイチ 'ロマンクザック (H. Romanczuk) ら 著, 「ヒューマン ·ジーン■セラピー (Human Gene Therapy) 」 , 第 10卷, 2615- 2626頁, 1999年参照) が報告されている。
し力 しながら、 前記の PEG—アデノウイルスベクターでは、 PEGによりゥ ィルス粒子と C A Rとの結合が阻害され、 C A R発現細胞における遺伝子導入効 率が低下するという問題が生じている (シィ ·アール ·オリオールダン ( R. 0, riordan) ら著 > 「ヒューマン 'ジーン■セラピー (Human Gene Theranv) J , 第 10卷, 1349-1358頁, 1999年参照) 。 また、 かかる遺伝子導入効率の低下に起 因して、 P E G—アデノウィルスベクターを組織に投与しても標的細胞内に取り 込まれず、 血流にのって肝臓に集積し肝障害を引き起こす可能性もある。
また、 前記のファイバー変異アデノウイルスベクターでは、 ウィルスのフアイ バーに R GDモチーフが揷入されているだけなので、 通常のアデノウィルスべク ターと同様の抗原性を有するため、 中和抗体や貪食細胞の作用により遺伝子導入 効率が低下するという問題点がある。
さらに、 前記の気道上皮細胞特異的ぺプチドー P E G—アデノウイノレスベタタ 一では、 気道上皮細胞のみにしカ遺伝子導入することができず、 また、 s s s . 1 7ペプチドが標的とする気道上皮細胞表面の物質も明らかとなっていない。 さ らに、 前記エイチ 'ロマンタザック (H. Romanczuk) ら著の表 1および図 2から 見ると、 気道上皮細胞に対する結合には s s s . 1 7の全 1 2個のアミノ酸残基 が必要であることが示唆される力 一般的に 1 2個ものアミノ酸残基からなるぺ プチドは投与した生体に対して免疫原性を示す可能性が高く、 s s s . 1 7ぺプ チドを含むウィルスベクターを in vivoで投与するには問題がある。
また、 前記の気道上皮細胞特異的ペプチド一 P E G—アデノウィルスベクター では、 その作製方法にも種々の問題点が存在する。 すなわち、 当該ベクターは、 s s s . 1 7ペプチドの末端に活性 S H基を有するシスティンを付加して s s s . 1 7,ぺプチド誘導体を合成し、 一方でアデノウィルス表面のリジン残基と反応す る基と前記の s s s . 1 7ぺプチド誘導体の活性 S H基と反応する基とをそれぞ れ P E Gの両末端側に有する異二価反応性 P E Gをアデノウイルスに結合させ
( P E G—アデノウイルス) 、 その後に、 前記の s s s . 1 7ペプチド誘導体を この P E G—アデノウイルスに結合させることによって作製している。 しかし、 このベクター作製方法では、 活性 S H基を有する s s s . 1 7ペプチド誘導体同 士が反応の間に分子間架橋して P E Gと結合できなくなったり、 アデノウイノレス が 2段階の反応系に暴露されることから元来のウィルス自体が有する有用な能力 が低下するなどという問題点も存在していた。
したがって、 これらの従 ¾^用されているウィルスベクターが有する問題点な いし欠点が解決されたウィルスべクタ一の開発が望まれていた。 本発明は、 上述の従来使用されているウィルスベクターが有する有用点を保持 しつつ、 それぞれの欠点が克服されたウィルスベクターを提供することを目的と する。
特に、 上 の P E G—アデノウイルスベクター、 ファイバー変異アデノウィル スベクターおよび気道上皮細胞特異的ぺプチドー p E G—アデノウイノレスベタタ 一の有用点を保持しつつ、 それぞれの欠点が克服されたウィルスべクターを することを目的とする。 すなわち、 1 ) アデノウイルスベクターが有する免疫原 性を低下させ、 個体に対する炎症反応を回避し、 2 ) アデノウイルスベクターが 有する抗原性を低下させ、 中和抗体や貪食細胞からの攻撃を回避し、 3 ) P E G —アデノウイルスベクターにおける遺伝子導入効率低下の問題を改善し、 4 ) フ アイパー変異アデノウィルスベクターの血中安定性をより向上させ、 免疫原性の 改善、 中和抗体や貧食細胞からの攻撃を回避し、 5 ) 気道上皮細胞特異的ぺプチ ド一 P E G—アデノウィルスベクターにおける遺伝子導入し得る標的細胞の範囲 を広げ、 6 ) ウィルスベクターの作製を簡便力つ効率的とし、 7 ) 元来のアデノ ウィルス自体が有する有用な能力を保持しつつゥィルスべクターを作製する、 な どを目的とする。 発明の開示
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 ウィルス粒 子の表面に水溶性ポリマーが結合し、 つ、 細胞表面に存在するインテグリンに 親和性のある外来性ぺプチドが当該水溶性ポリマーに結合した構造を有するウイ ルスベクターが、 従来の遺伝子導入用のウィルスベクターが有していた課題を解 決し、 カゝっ有用性を保持するのに有用であることを見出し、 本発明を完成するに 至った。
すなわち、 本発明は、 その第 1の態様において、
1 ) ウィルス粒子表面に水溶性ポリマーが直接または間接的に結合し、 かつ標的 細胞表面に存在するィンテグリンに親和性を有する外来性ぺプチドが当該水溶性 ポリ'マーに結合していることを特徴とするウィルスベクター;
2 ) 前記水溶性ポリマーがリンカーァミノ酸および架橋剤を介してウィルス粒子 表面に結合している 1) 記載のウィルスベクター;
3〉 前記ウィルスがアデノウイルスである 1) または 2) 記載のウィルスベクタ
4) 前記水溶性ポリマーがポリエチレンダルコールまたはその誘導体である 1) ないし 3) いずれか 1記載のウィルスベクター;
5>前記ポリ'エチレングリコールの分子量が 3000〜4000である 4〉 記載 のウィルスべクター;
6) StrlBリンカ一アミノ酸がシスティンであって、 前記架橋剤がチオール基およ ぴァミノ基に対して結合能を有する架橋剤である 2) ないし 5) いずれか 1記載 のウイノレスベタター;
7>前記架橋剤が N— (6—マレイミドカプロィルォキシ) スクシンイミド (N- (6-Maleiraidocaproyloxy)succinimide) (EMC S) である 6) 記載のウイノレス ベ々タ ' ~ -
8> 前記インテグリンが 3または aV]35である 1) ないし 7) いずれか 1記載のウィルスベクター;
9) 前記外来性ペプチドがアルギニン (R) —グリシン (G) —ァスパラギン酸 (D) を含む配列である 1) ないし 8) いずれか 1記載のウィルスベクター;
10) 前記外来性ペプチドが一つ以上の ァラ -ンを含む配列である 9) 記載の ウイノレスベクター;
11) 前記外来性ペプチドがリジン (Κ) を含み、 当該リジンを介して分岐して いることを特徴とする 9) または 10) 記載のウィルスベクター;
12) 前記外来性ペプチドがチロシン (Υ) -グリシン (G)一グリシン (G) 一アルギニン (R).―グリシン (G)一ァスパラギン酸 (D) - トレオニン (Τ) — プロリン (Ρ) — βァラニン (X) ― リジン (Κ) - βァラニン (X) -プロリン (Ρ> - トレオニン (Τ) -ァスパラギン酸 (D) -グリシン (G) 一ァノレギニン (R) -グリシン (G) -グリシン (G> -チロシン (Y) に示さ れるアミノ酸配列であることを特徴とする 11) 記載のウィルスベクターを提供 する。
また、 本発明は、 その第 2の態様において、 1 3) 1) ないし 1 2) いずれか 1記載のウィルスベクターを用いることを特徴 とする遺伝子導入方法を提供する。
さらに、 本発明は、 その第 3の態様において、
14) a >水溶性ポリマーの 1の末端にリンカーァミノ酸を結合させて水溶性ポ リマ1 ""―リンカ一アミノ酸を得;
b > この水溶性ポリマ1 ^一リンカーァミノ酸の水溶性ポリマーに、 ィンテグリ ンに親和性を有する外来性ぺプチドを結合させて外来性ぺプチド一水溶性ポリマ 一一リンカ一アミノ酸を得;
c ) 得られた外来性ぺプチド一水溶性ポリマ^ "―リンカ一アミノ酸のリンカ一 ァミノ酸に架橋剤を結合させ;ついで
d> その架橋剤を介,して外来性ぺプチドー 7_Κ溶性ポリマ一一リンカー了ミノ酸 とゥイノレスとを結合させる
工程を含むウィルスベクターの作製方法;
1 5) a> および b) の工程をリンカ一アミノ酸を樹脂 (Resin) に結合して行 い、 その後、 生成した外来性ぺプチドー水溶性ポリマ■ ~一リンカ—ァミノ酸を樹 脂から切断して c) および d) の工程を行う 14) 記載のウィルスベクターの作 製方法;
1 6 ) 前記水溶性ポリマーがポリェチレンダルコールまたはその誘導体である 1 4) または 15 ) 記載のウイ/レスベクターの作製方法;
1 7) 前記リンカーァミノ酸がシスティンであって、 前記架橋剤がチオール基お よびアミノ基に対して結合能を有する架橋剤である 14) ないし 16) いずれか 1記載のウィルスベクターの作製方法を提供する。
本発明によれば、 投与する生体に対して免疫原性が低く、 抗原性が低いため中 和抗体や貧食細胞による攻撃を受け難くて血中半減期が比較的長く、 細胞に対し て高効率の遺伝子導入が可能であり、 またそれにより fl¾積性が低く、 さらに、 ウィルス元来の有用な能力を低下させることなく簡便かつ効率的に作製でき、 長 期低温保存後に融解 ·再凍結を繰り返しても安定な遺伝子導入用ベクターならぴ に遺伝子導入方法が される。
なお、 本明細書中にて用いる 「ウィルス粒子表面」 とは、 ウィルスの外殻 (力 プシド) を構成するへキソン、 ペントンベース、 ペントンベース上に突出するフ ァィバーおょぴノプのすべての部位をいう。
また、 本明細書中にて用いる 「外来性ペプチド j とは、 人工的にウイノレスベタ ターに付与するペプチドをいう。
また、 本明細書中で用いる Γィンテグリン」 とは、 細胞外マトリックスとの結 合能力を有し、 αサブュニットと サブュニットからなる非共有的に結合した膜 貫通型糖タンパク質をいい、 当該インテグリンには、 細胞外マトリックス成分で あるフイブロネクチンに親和性を有するものとしてひ 4 j8 1、 α δ β 1, α 8 β 1、 aVj3 1、 α Vj33, α V j36, aH b ]3 3など、 ラミニンに親和性を有す るものとして ο¾ 1 ]3 1、 α 2 β l 3 β l a 6 β α 7 1、 a 6 β 4^ ひ Vi88など、 ビトロネクチンに親和性を有するものとして ο; 8 1、 aV β 1、 aV β 3, aV β 5, aV β 8S ο;Π ΐ3 ΐ3 3など、 コラーゲンに親和性を有する ものとして《 1 /3 1、 α 2 /3 1、 aVj38など、 V CAM— 1に親和性を有する ものとして α 4 |8 1、 ひ 4 j87など、 ティネシン一 Cに親和性を有するものとし て <¾ 8 ]3 1、 α 9 /3 1、 α V ]36など、 トロンボスポンジンに親和性を有するも のとして α 4 ]3 1、 aV03など、 I CAM— 1に親和性を有するものとして ο: Lj3 2、 αΜβ 2 ひ D jS 2など、 ォステオポンチンに親和性を有するものとし て aV]3 3など、 フィプリノーゲンに親和性を有するものとして aV ]3 3、 αΠ b i3 3、 aMj3 2 など、 E—力ドヘリンに親和性を有するものとして ひ E 7など、 フォンビルプラント因子に親和性を有するものとして αν 3、 αΠ b β 3などが知られており、 これらすベてのものが含まれる。
なお、 本明細書中でアミノ酸配列を示す場合は、 慣用されている一文字表記ま たは三文字表記で表す。 図面の簡単な説明
図 1は、 ヒト肺上皮癌 A 549細胞 (ATCC : CCL— 1 85、 図 1A) お よびマウスメラノーマ B 1 6 B L 6細胞 (東北大学加齢医学研究所: TKG05 98、 図 I B) を用いて行った、 対照アデノウイルスベクター、 PEG—アデノ ウイノレスベクター、 ファイバー変異アデノウイノレスベタターおよび RGD— PE G—アデノウィルスべクタ一の遺伝子発現効率の比較実験の結果を示すグラフで める。
図 2は、 ヒト肺上皮癌 A 5 4 9細胞 (図 2 A) およびマウスメラノーマ B 1 6 B L 6細胞 (図 2 B) を用いて行った、 対照アデノウイルスベクタ一、 P E G— アデノウィルスベクター、 ファイバー変異アデノウィルスベクターおよび R GD - P E G—アデノウィルスベクターの中和抗体存在下での遺伝子発現効率の比較 実験の結果を示すグラフである。
図 3は、 ヒト肺上皮癌 A 5 4 9細胞 (図 3 A) およびマウスメラノーマ B 1 6 B L 6細胞 (図 3 B) を用いて行った、 対照アデノウイルスベクタ一、 P E G- アデノウイノレスベクター、 ファイバー変異アデノウイルスベクター、 および R G D- P E G-アデノウイルスベクターの作製直後と、 長期低温保存の後、 凍結融 解を繰り返した場合との遺伝子発現効率を示すグラフある。 発明を実施するための最良の形態
本発明のウィルスベクターに使用できるウィルスとしては、 遺伝子導入用のゥ ィルスべクタ一に用いることが知られているウィルスであれば特に限定されるも のではないが、 好ましくはアデノゥイノレス、 レトロウイルス、 アデノ随伴ウイノレ スなどのウィルス、 特に好ましくはアデノウイルスが挙げられる。 また、 遺伝子 導入用のウィルスベクターに使用するアデノウィルスとしては、 遺伝子工学的に 適宜改変されたウィルスも使用できる。 例えば、 アデノウイルスゲノムの E 1遺 伝子領域や E 3遺伝子領域を欠損させたアデノウィルス、 当該領域に外来遺伝子 を揷入したアデノウィルスなどをベクターを作製するためのウィルスとして使用 できる。
本発明のウィルスべクタ一に使用できる水溶性ポリマーとしては、 医薬上許容 し得る水溶性ポリマーであれば特に限定されるものではないが、 分子量 3 0 0 0 〜4 0 0 0のポリエチレングリコーノレ、 ポリプロピレンダリコーノレなどのポリア ノレキレングリコ一ノレ、 その他、 スチレンマレイン酸共重合体、 ポリビニノレピロリ ドン、 ポリビュルアルコールなどのポリビュル共重合体などが好ましく、 特にポ リエチレンダルコールが好ましい。 また、 この水溶性ポリマーには、 水溶性ポリ マーの末端が保護および/または活性化された誘導体も包含される。 水溶性ポリ マーの末端が保護されたものはペプチド合成に好適であり、 特に Fmo c (9- fluorenylmethoxycarbonyl) または t一 B o c (tert-butoxycarbonyl) 等で f禾 護されたものを使用するのが好ましい (例えば、 Shearwater社:カタ口グ番号 1 P 2 Z 0 F 02、 2 Z 530F02) 。 また、 水溶性ポリマーの末端が活性化さ れたものとしては、 アミノ酸の一部 (ァミノ基、 カルボキシル基、 チォーノレ基な ど) と結合する活性基を有しているものが挙げられる。
本発明のウイルスべクターに使用できるインテグリンに親和性を有する外来性 ぺプチドとしては、 ィンテグリンに対して実質的な親和性を有するぺプチドであ れば特に限定されるものではないが、 フイブロネクチンに存在する RGD、 LD V、 REDVモチーフ、 ラミニンに存在する RYVVLPR、 LGT I PG、 P DSGR、 Y I GSR、 LRE、 I KVAV、 RN I AE I I KD I、 RGDモ チーフ、 ビトロネクチンに存在する RGDモチーフ、 コラーゲンに存在する RG Dモチーフ、 トロンビンに存在する RGDモチーフ、 フィプリノーゲンに存在す る GPRP、 RGIモチーフ、 その他インテグリンに親和性があると報告されて いる E I LDV、 KQAGDV、 D E GAモチーフを含むペプチドが好ましい。 上記に示したインテグリン親和性モチーフのうち、 特に、 フイブロネクチンモ チーフ (RGD、 LDV、 REDV) 、 ラミニンモチーフ (RYVVLPR、 L GT I PG、 PDSGR、 Y I GSR、 LRE、 I KVAV、 RN IAE I I K D I、 RGD) 、 ビトロネクチンモチーフ (RGD) を含むペプチドが好ましい t また、 上述の a 4 j3 1、 α 5 J3 1, α 8 ]3 1、 aV β 1, αΥ β 3 αΥ β 6. α Π b 3 3 (ブイプロネクチンに親和性を有するインテグリン) 、 α 1 /3 1、 a .2 1、 α 3 β 1, α 6 β l a 7 β 1、 a 6 β 4, aV β 8 (ラミニンに親和 性を有するィンテグリン) 、 o; 8 i3 l、 aV β 1, aV β S aV β 5, aV β 8N a U b β 3 (ビトロネクチンに親和性を有するインテグリン) に親和性を有 するぺプチドも本発明のィンテグリンに親和性を有する外来性ぺプチドと.して好 適に使用することができる。 これらペプチドは、 公知のペプチドモチーフ (例え ば、 CK 5 j3 1 : RGD、 α 2 1 : DEGA、 α 4 j3 1または K 4 J3 7 : E I L DV、 a 6 1 : RGD、 Y I GSRまたは I KVAV) を含むものを使用して もよく、 ファージディスプレイ法によって上記インテグリンに親和性を有するぺ プチドを探索して得ることもできる。
また、 アデノウィルスは C A Rに結合した後、 a V J3 3または a V j3 5に結合 することが報告されているので、 Qj V jS 3または Q; V i3 5に親和性を有するぺプ チド (例えば、 R G D、 L D V、 R E D V、 G P R Pなど) を含むペプチドも本 発明のィンテグリンに親和性を有する外来性ぺプチドとして好適に使用できる。 また、 上記示したインテグリンに親和性のあるペプチドのアミノ酸配列の片末 端または両末端に、 適宜アミノ酸などが付与されたペプチド誘導体も、 重大な抗 原性を示さない限り本発明に利用することができる。
本発明のウィルスベクターは、 前記のウィルス、 水溶性ポリマーおよび外来性 ぺプチドを必須の要素として作製し得るが、 ゥィルス粒子と 7溶性ポリマーと外 来性ペプチドとの間における各々の要素の結合数、 結合部位、 結合形式は、 本発 明の効果を損じない限り特に限定されるものではなく、 適宜、 下記の方法または 自体公知の方法に準じて増減または変更することができる。
簡単には、 本発明のウィルスベクターは、 (i ) 水溶性ポ マーの 1の末端に リンカーァミノ酸を結合させて水溶性ポリマ1 ^一リンカーァミノ酸を得、 ( i i ) この水溶†生ポリマ一一リンカーァミノ酸の水溶性ポリマーのもう 1の末端に おいて、 ィンテグリンに親和性を有する外来性ぺプチドをそのカルボキシル末端 力 ^順次合成して外来性ぺプチドー水溶性ポリマ1 ^一リンカーァミノ酸を得; ( i i i ) 得られた外来性ぺプチドー 7J溶性ポリマ一一リンカ一アミノ酸のリン カーアミノ酸に架橋剤を結合させ;ついで、 ( i V ) その架橋剤を介して外来性 ぺプチドー水溶性ポリマ^ リンカーアミノ酸とウイノレスとを結合させる工程に よって作製することができる。 より簡単には、 水溶 1生ポリマーはポリエチレング リコーノレ ( P E G) とし、 また、 リンカ一アミノ酸をシスティンとし、 架橋剤を チオール基おょぴァミノ基に対して結合能を有する架橋剤とすることができる。 詳細に説明すると、 標的細胞表面に存在するィンテグリンに親和性の有する外 来性ペプチドを合成するには、 公知のペプチド合成方法 (例えば、 固相法など) によって行うことができる。 本発明の外来性ペプチドには、 標的細胞に存在する ィンテグリンに親和性のあるァミノ酸配列だけでなく、その他のァミノ酸もスぺ ーサ一として用いることが きる。 特にインテグリンに親和性のあるアミノ酸配 列と P E Gとの距離間を広げるためには、 これらの間に j3ァラニンなどのァミノ 酸を 1ないし数個スぺーサ一として揷入するのが好ましい。 具体的には、 RGD- J3 A 1 a- PEG
RGD- j3 A 1 a- βΑΐ a - PEG
RGDTP - ]3 A 1 a- PEG
YGGRGDTP - 3 A 1 a - PEG
などの配列が好ましい。
外来性ぺプチドを 2個以上水溶性ポリマーに付加させたい場合には、 アミノ基 2個を有するアミノ酸を 1個以上含ませて、 外来性ペプチドを分岐構造とするこ とができる。 これにより、 本発明のウィルスベクターの標的細胞表面に存在する ィンテグリンへの結合能が増強される。 特に本願明細書の実施例に記載のような インテグリンに親和性のあるアミノ酸配列と P E Gとの間にリジンを含ませて外 来性ペプチドを分岐構造とすることが好ましい。 また、 インテグリンに親和性の あるアミノ酸配列とリジンとの距離間を広げるために、 これらの間に ァラニン などのアミノ酸を 1ないし数個スぺーサ一として揷入するのがさらに好ましい。 具体例として
RGD
Ly s— PEG
I
RGD
RGD ― βΑ \ a
Ly s― PEG
RGD—— β Al a
RGD ― 3 Al a
RGD ― βΑΙ a― Ly s ― Ly s― PEG
- RGD ― A】 a
YGGRGDTP —— Α Ι a
Ly s— PEG
I
YGGRGDTP —βΑΙ a などの分岐構造をもつ外来性べプチドとするのが好ましい。
標的細胞表面に存在するィンテグリンに親和性を有する外来性ぺプチドが結合 した水溶性ポリマーをウィルス粒子表面に結合させるためには、 当該水溶性ポリ マーとウィルス粒子表面を直接結合させることもできるが、 当該水溶†生ポリマー の片末端に二価性架橋剤 (好ましくは、 異反応十生二価†生架橋剤) と結合すること のできるアミノ酸 (以下、 リンカ一アミノ酸という) を少なくとも 1個付加し、 当該リンカ一アミノ酸と二価性架橋剤とを結合させた後、 二価性架橋剤の一方の 端とウィルス粒子表面とを結合させること、 すなわち、 水溶性ポリマーとウィル ス粒子表面との間にリンカ一アミノ酸と二価性架橋剤を存在させるのが好ましい。 この方法は、 標的細胞表面に存在するインテグリンに親和性のある外来性ぺプチ ドに酸性アミノ酸が含まれる場合に有効である。 なぜなら、 標的細胞表面に存在 するィンテグリンに親和性のある外来性ぺプチドが結合した水溶性ポリマーを直 接ウィルス粒子表面に結合させる場合には、 当該水溶性ポリマーの末端を活性化 させる必要がある力 標的細胞表面に存在するインテグリンに親和性のある外来 性ぺプチドに酸性ァミノ酸が含まれる場合には当該酸性ァミノ酸も活性化されて しまい本来の性質が変化してしまうからである。 従って、 特に標的細胞表面に存 在するインテグリンに親和性のある外来性ぺプチドに酸性ァミノ酸が含まれる場 合には、 標的細胞表面に存在するインテグリンに親和性のある外来性ペプチドが 結合した水溶性ポリマーを活性化させることなく、 リンカーァミノ酸と二価性架 橋剤を用いてウィルス粒子表面に結合させることが好ましい。
このリンカ一アミノ酸としては、 チオール基を有するシスティン、 塩基性アミ ノ酸であるリジン、 中性アミノ酸であるァラニン、 酸性アミノ酸であるァスパラ ギン酸その他のアミノ酸が使用できるが、 好ましくは少なくともシスティンを 1 個含むものが好ましい。
水溶性ポリマーのみをリンカ一アミノ酸に結合させる際には、 水溶性ポリマー の末端に活性基を付与する必要がある。 ァミノ酸のァミノ基と結合する活性基と しては、 N—ヒドロキシスクシンイミド基、 スクシンイミジノレ基、 力/レポキシノレ 基、 アルデヒド基、 ベンゾトリアゾール基などが挙げられる。 アミノ酸のカルボ キシル基と結合する活性基としては、 アミノ基などが挙げられる。 アミノ酸のチ オール基と結合する活性基としては、 マレイミ.ド基、 ビ二/レスノレホン基などが挙 げられる。 その中でも、 アミノ酸のァミノ基と結合する活性基を有する誘導体を 使用するのが好ましく、 特に末端に N—ヒドロキシスクシンイミド基またはスク シンィミジル基を有する誘導体が好ましい。
架橋剤と水溶性ポリマーの間には、 必要に^じてァミノ酸を 1ないし数個スぺ ーサーとして揷入することができる。 特に本願明細書の実施例に記載のように ]3 ァラニンを揷入することが好まし 、。
次に、 標的細胞表面に存在するィンテグリンに親和性のある外来性ぺプチドが 結合した水溶性ポリマーをウィルス粒子表面に結合させるためには、 上記リンカ 一アミノ酸とアミノ基、 力ルポキシル基、 チオール基等に結合できる二価性架橋 剤とを使用するのが好ましい。 特に、 ウィルス粒子表面との結合にはウィルス粒 子表面に存在するアミノ基を標的にすることが好ましいため、 少なくともァミノ 基に対して結合能を有する架橋剤を使用する必要がある。 また、 リンカーァミノ 酸としてシスティンを使用した場合には、 少なくともチオール基に対して結合能 を有する架橋剤を使用する必要がある。
二価性架橋剤には、 チオール基おょぴァミノ基に対して結合能を有する架橋剤 (主としてマレイミド基、 N—ヒドロキシスクシンィミド基またはスクシンィミ ジル基を分子內に持つ) 、 例えばテクノケミカ/レ (株)より市販されている EMC S (N- (6-Maleiraidocaproyloxy succinimide) 、 GMB S (N - (4 - Maleimidobutyryloxy) succinimide) 、 MB S (m-Maleimidobenzyl-N- hydroxy succinimide ester) 、 S A TA (N-Succinimidyl S - acethylthioacetate) 、 S MC C (Succinimidyl 4- (N-maleiraidomethyl) - cyclohexane-l-carboxylate) 、 S MP B (Succinimidyl 4 - p - ma丄 eimidophenyi butyrate) 、 S P D P (N- Succinimidyl 3- (2-pyridylthio) propionate) 、 S u 1 f o—GMB S (N- ( y -Maleimidobutyloxy) sulcosuccinimide ester) 、 S u 1 f o— L C - S P D P (Sulfosucciniraidyl 6— (3, (2-pyridyldithio) - propionamide) hexanoate) 、 S u 1 f o— MB S (m - Ma丄 eiraidobenzoyl- N— hydroxysulfo-succinimide ester) 、 S u 1 ί o― SMC C
(Sulfosucciniraidyl 4 (N-maleiraidoraethyl) -cyclohexane-l-carboxylate) 、 S u 1 f o― SMP B (Sulfosucciniraidyl 4- (p-maleimidophenyl) -butyrate) ヽ S u 1 f o - S B E D (Sulfosuccinimidyl (2— 6— (biotinamido)— 2— (p— azidobenzamido) -hexanoaraido) ethyl-1, 3, -di thi opropi onat e) などが挙げられ る。 その他、 N—スクシンィミジル一 N—マレイミ ドアセテート(N- Succinimidyl-N-maleimidoacetate) ^ N—スクシンイミジノレー 4— (N—マレイ ミ ド)ブチレート(N— Succinimidyl - 4— (N-maleimido) butyrate)、 N—スクシミジ ノレ一 6— (マレイミ ド) へキサノエート(N-Succimidyl— 6— (N- maleimido) hexanoateN N—スクシンィミジノレ一 m— (N—マレイミ ド) ベンゾ ェ1 ~ト (N— succinimidyl— ra—(N—maleimi do) benzoate)、 N—スクシン ¾>ジノレ一 m ― (N—マレ ミド) ベンゾエート (N- Succinimidyl- m- (N-maleimido)benzoate) なども利用できる。 また、 二価性架橋剤として、 2つのアミノ基に対し結合能を 有する架橋剤 (主として N—ヒドロキシスクシンィミド基、 スクシンィミジル基 を分子内に持つ) 、 例えばテクノケミカル (株)より市販されている B S 3 (Bis (Sulfosuccinimidyl) suberate) 、 DMP (Dimethyl suberunudate) 、 D M S (Dimethyl suberiraidate} 、 D S G (Disuccinimidyl glutarate) 、 D S
P (Loman' s Reagent) 、 D S S (Disuccinimidyl suberate) 、 D T S S P (3, 3, -Dithiobis (sulfosuccinimidyl propionate) ) 、 E G S
(Ethyl eneglycol bis (succinimidylsuccinate)) 、 S u l f o— E G S
(Ethyl en glycol bis (succinimidylsuccinate)などカ挙けりれる。 また、 二価 性架橋剤として、 アミノ基とカルボキシル基に対し結合能を有する架橋剤、 例え ばテクノケミカル (株)より市販されている E D C (1 - Ethyl - 3- (3- DimethylaminopropyD carbodiimide) などが挙げられる。 また、 二価性架橋剤と して、 2つのチオール基に対し結合能を有する架橋剤 (主としてマレイミド基を 分子内に持つ) 、 例えばテクノケミカル (株)より市販されている BMH
(BisMaleiraidohexane) が挙げられる。 その中でも、 標的細胞表面に存在するィ ンテグリンに親和性のある外来性ぺプチドが結合した水溶性ポリマーをウィルス 粒子表面に結合させるために使用する二価性架橋剤としては、 チオール基および アミノ基に対して結合能を有する架橋剤 (主としてマレイミド基、 N—ヒドロキ シスクシンィミド基、 スクシンィミジル基を分子内に持つ) が好ましい。 好ましい実施形態としては、 まず、 樹脂にリンカ一アミノ酸を結合させ (リン カーアミノ酸一樹脂の形成) 、 次にリンカ一アミノ酸に水溶性ポリマーを結合さ せ (水溶性ポリマ一一リンカ一アミノ酸一樹脂の形成) 、 その後標的細胞表面に 存在するィンテグリンに親和性を有する外来性べプチドを水溶性ポリマーに結合 させる (インテグリン親和性外来性ペプチド一水溶性ポリマ一一リンカーァミノ 酸一樹脂の形成) 。 次に、 インテグリン親和性外来性ペプチド一水溶性ポリマー —リンカーァミノ酸を樹脂から切断し、 ィンテグリン親和性外来性ぺプチド一水 溶性ポリマ" リンカ一アミノ酸を得る。 その後、 リンカ一アミノ酸に二価性架 橋剤を結合させ (ィンテグリン親和性外来性ぺプチド一水溶性ポリマ一一リンカ 一アミノ酸一二価性架橋剤の形成) 、 最後にこれをウィルス粒子表面と結合させ る (ィンテグリン親和性外来性ぺプチドー水溶性ポリマ■ "一リンカ一アミノ酸一 二価性架橋剤一ウィルス粒子の形成) 工程が含まれる。 この本発明のウィルスべ クタ一の作製方法は、 公知のぺプチド合成法によって行うことができる。
さらに好ましい実施形態としては、 リンカーァミノ酸はシスティンを含むもの であり、 二価性架橋剤がチオール基おょぴァミノ基に結合能を有する (主として マレイミド基、 N—ヒドロキシスクシンィミド基、 スクシンィミジノレ基を分子内 に持つ) ものである。 この方法は、 標的細胞表面に存在するインテグリンに親和 性のある外来性ぺプチドに酸性ァミノ酸が含まれる場合に特に有効である力 酸 性アミノ酸が含まれない場合にも使用できる。
なお、 7J溶性ポリマーに結合する外来性ペプチド配列は、 前記のようにウィル スベクターとしての生体の免疫原性を低下させる観点からはできるだけ短い鎖長 を有することが好ましい。 また、 ウィルスベクターとしての標的細胞に対する親 和性を高める観点から、 外来性ペプチドを 1つ以上含めてもよい。 外来性ぺプチ ドの鎖長および個数については、 ウイ/レスベクターとしての効果を勘案しつつ適 宜調整することができる。 さらに、 外来性ペプチド中には 1種類以上のインテグ リン親和†生モチーフを含むこともできる。
上述のように作製した本努明のウィルスベクターにおける水溶性ポリマーの修 飾率の測定は、 水溶性ポリマ一一アデノウィルスべクタ一の残存ァミノ基をフル ォレス力ミン法 (エー■クロィル 'マリア (A. Croyle Maria) ら著, 「ヒユー マン ·ジーン ·セラピー (Human Gene Therapy) 」 , 第 11卷, 1713-1722頁, 2000年 > に準じて行うことができる。 これにより、 当業者であれば遺伝子導入効 率において適宜最適の水溶性ポリマー修飾率を決定することができ、 これを本宪 明に応用することができる。 具体的には、 0 . 4 2 ni g /:m Lのフルォレスカミ ン Zジォキサン溶液 (商品名 Fluram、 Fluka社製) に対して 3倍量の 5 X 1 0 1 1 粒子 Zm Lの水溶性ポリマ1 ^一アデノウィルスベクターを添加し、 激しく撹拌す る。 室温で 1 0分間インキュベート後、 蛍光強度 (励起波長 E x : 3 9 2 n m、 蛍光波長 Em : 4 8 0 n m) を測定する。 未修飾アデノウィルスベクターで検量 線を作製し、 水溶性ポリマ一一アデノウィルスべクタ一の水溶性ポリマー修飾率 を算出する。
水溶性ポリマ一一アデノウィルスベクターの粒子経の測定には、 ZETASIZER 3000HS (Malvern i^) を用いて測定することができる。 上記修飾率と同様に、 当業者であれば遺伝子導入効率において適宜最適の粒子経を決定し、 最適な分子 量をもつ水溶性ポリマーを選択することができ、 これを本発明に応用することが できる。 また、 本発明者らは水溶性ポリマ一一アデノウィルスべクターの水溶性 ポリマー修飾率と ZETASIZERで測定した平均粒子径は、 水溶性ポリマーの添加量、 添加回数に相関して増加していることを確認している。 従って、 アデノウイルス べクタ一の水溶性ポリマー修飾は、 水溶性ポリマーの添加量および添加回数によ り制御可能である。
ウィルス粒子数の測定は Maizelらの方法 (ジエイ ·ブイ ·ジュニア .マイゼル (J. V. Jr. Maizel) ら著, 「パイロロジー (Virology) J , 第 36卷, 115-125 頁, 1968年) に従って行うことができ、 当業者であれば、 適宜遺伝子導入の際に 使用するウィルス数を決定できる。 すなわち、 精製したウィルス液を適量とり 1 % S D S /P B S (一) で溶解した後、 吸光度計により OD 2 6 0 n mで測定 する。 ウィルス粒子数は 1 . 1 X 1 0 1 2粒子/ O D260として換算する。
本発明のウィルスベクターを治療目的に用いる際に対象となる個体としては、 例えばヒト、 マウス、 ラット、 ハムスター、 モノレモットなどが挙げられる。 また、 本発明のウィルスベクターの対象となる投与部位としては、 脳、 肝臓、 腎臓、 脾 臓、 前立腺、 小腸、 大腸、 肺、 気管支、 皮膚、 食道、 胃-、 十二指腸、 骨格筋など が挙げられる。 また、 本発明のウィルスベクターの対象となる細胞としては、 生 体由来細胞 (上皮細胞、 筋肉細胞、 脳神経細胞など) 、 ガン細胞、 培養細胞など が挙げられる。 また、 本発明のウィルスベクターを i n V i t r oにて用いる 際に対象となる細胞としては、 A 549細胞、 B 16 B L 6細胞、 H e p G 2細 胞、 COS 1細胞、 CHO細胞などが挙げられる。 また、 本発明のウィルスべク ターを e x V i V oにて用いる際に対象となる細胞としては、 T細胞、 B細胞、 造血幹細胞、 ES細胞などが挙げられる。
インテグリンは種々の部位で発現または生理機能を発揮している力 少なくと も、 α 1 1は神経突起、 リンパ球、 α 2 β 1は血小板、 癌細胞、 α 3 β 1は腎 臓、 肺、 癌細胞、 ひ 4 1はリンパ球、 単球、 好酸球、 « 5 ^ 1は各種細胞、 a 6 β 1は上皮細胞、 神経突起、 癌細胞、 α 7 1は骨格筋、 α 8 ]3 1は腎臓、 神 経細胞、 α 9 ]3 1は気管上皮、 α V /3 1は各種細胞、 癌細胞、 ο; V j33血管、 骨、 血管、 上皮、 aVi36は上皮、 a V 8は神経突起、 ひ 4;8 7はリンパ 球、 ひ 6;84は上皮細胞、 ひ L 2は白血球、 αΜβ 2は好中球、 単球、 Χβ 2は単球、 顆粒球、 a D 2は泡沫細胞、 α Π b ]3 3は血小板、 α E ]3 7はリン パ球、 にそれぞれ発現しているかまたは生理機能を発揮しているものと考えられ るが、 これに限定されるものではない。 一般的に、 ひ 9 1は気管上皮で癸現し、 β 2鎖は白血球の表面に発現しており、 aL /3 2は LFA— 1 (リンパ球機能付 随タンパク) 、 ο;Μ]3 2は Ma c— 1 (マクロファージの表面タンパク) で発現 している。 また、 3鎖は血小板を含む様々な細胞で発現している。
上記細胞または部位特異的に発現しているインテグリンに対し、 親和性のある 外来性ペプチドを得 (例えばファージディスプレイ法などによってスクリーニン グして得る) 、 当該得られた外来性ペプチドを本発明のウィルスベクターに応用 することにより、 標的とするインテグリンが発現している細胞または部位に特異 的に遺伝子導入する。
本発明のウィルスベクターの投与経路は、 i n V i v oで使用する場合、 組 織や臓器へ局所投与、 静脈内投与、 経粘膜投与、 筋肉内投与、 経口投与など適宜 選択することができる。
さらに、 本発明のウィルスベクターには、 p 53遺伝子 (癌細胞のアポトーシ ス誘導》、 チミジンキナーゼ遺伝子 (癌細胞のアポトーシス誘導) 、 アデノシン アミナーゼ (ADA) 遺伝子 (アデノシンアミナーゼ欠損症) 、 などの治療用遺 伝子を組み込むことが可能である。
アデノウイノレス、 RGD— PEG、 RGD— P EG—アデノウイルスベクター の混合物から本突明の R G D— P E G—アデノウイルスベクターを単離するには. 例えば C s C 1密度勾配を用いた遠心分離法を用いることができる。 また、 透析 を行うことにより単離することもでき、 C s C 1密度勾配を用いた超遠心法と透 析を糸且み合わせて単離することもできる。 具体的には、 SpectrumZPro CE
(Cellulose Ester) Sterile Dispo Dialyzer (SPECTRUM社製、 分画分子量 (MWC0) ; 300, 000) を用いることができる。 なお、 透析の確認には、 PEGお よび RGD— P EGより大きい分子量である F I TCーデキストランが透析膜を 通過することを確認することで達成できる。 実施例
実施例 1 各種アデノウイノレスベタターにおける遺伝子発現効率の比較
本願発明のアデノウィルスベクターの遺伝子発現効率を検討するために、 各種 アデノウイノレスベクターを作製し、 比較検討を行った。 すなわち、 次の 1) 〜 4) に示したように、 1> 対照としてのアデノウイルスベクター、 2) PEG— アデノウイルスベクター、 3) ファイバー変異アデノウイルスベクター、 および 4) 本願発明のアデノウイルスベクターを作製した。
1) 対照アデノウイルスベクターの作製
対照アデノウィルスベクターは、 Mizuguchiらが作製したベクターを使用した ( 当該ベクターは、 アデノウィルスベクターの E 1および E 3領域が欠損しており, この E 1欠損領域にルシフェラーゼ遺伝子が組み込まれて!/、るものである。
対照アデノウイルスベクターを増殖させて単離精製するために、 まず、 このゥ ィルスを 5%ゥシ胎児血清添加 Dulbeco, s modified eagle' s medium (DMEM、 Sigma社製〉' とともに添加し 2 9 3細胞に感染させた。 約 2〜3日後、 C PE
(cytopathic effect) の確認できた 2 9 3細胞を培養上清とともに回収し、 3 00 0 r pm、 5分間遠心した。 次に、 得られた細胞を少量の培養液で懸濁し、 凍結融解を 4回繰り返すことで細胞を破壌し、 ウイノレスを溶液中に遊離させた。 その後、 3000 r pm、 5分間遠心し、 上清を粗ウィルス溶解液 (CVL: crude virus lysate) として得た。 SW41チューブに C s C 1 (比重 1.25 /TD溶液 [750mM NaC l、 5 OmM KC 1、 25 OmM Tr i s. 1 OmM Na 2HP04、 pH=7.4] ) を注ぎ、 そして C s C 1 (比重 1.
40/TD溶液) を下層し密度勾配を作製した。 次に、 回収した粗ウィルス溶解 液を重層し SW41ローター (Beckman社製) を用いて 18。C、 35000 r p m、 1時間遠心した (一次遠心)。 その後、 チューブ内にできた下方の白いバ ンドを回収し (一^精製) 、 次に、 SW41チューブに C s C 1 (比重 1.34 /TD溶液〉 を注ぎ、 一次精製で得られたウィルス液を重層し、 同様に SW41 ローターを用いて 18°C、 35000 r pm 18時間遠心した (二次遠心)t その後、 二次遠心でチューブ内にできた下方の白いバンドを回収した (二次精 製)。 ここで得られたウィルス液を透析チューブに回収し、 PBS (—) に入れ, スターラーで回転させながら 4 °Cで透析を行った。 透析液は 1時間おきに 3回取 り替え、 最後に 10。/。のグリセリンを含んだ P B S (一) で 2時間以上透析を行 つた。 透析を終了したウィルス液は実験開始時まで一 80°Cで保存し、 これを対 照アデノウィルスベクターとして使用した。 以上の操作は無菌的に行った。
2) PEG—アデノウイルスベクターの作製
PEG—アデノウイルスベクターの作製には、 上記 1) で作製した対照アデノ ウィルスベクターを使用し、 これにメ トキシポリエチレングリコールースクシン ィミンルァロヒォネート (methoxy polyethylene glycol - succinimidyl propionate : mPEG— SPA、 分子量 5000、 Shearwater社製、 カタ口グ番 号: 2M4M0D01) を用いた。
すなわち、 1粒子のアデノウイルスベクターの外殻タンパク質 (へキソン、 ぺ ントンベース、 ファイバー) に存在する一級ァミンに対して、 100倍モル量の mPEG— SPAを 1 X 1012粒子ノ mLの対照アデノウイルスベクターに添 加し、 300 r pmで撹拌しながら 37°C、 15分間反応させることによりアデ ノウィルスを結合させ、 さらに 30分間同条件下で反応させることにより反応を 完了させた。 これにより PEGが結合したアデノウイルスベクター (PEG—ァ デノウィルスベクター) 'を得た。
3 ) ファイバー変異アデノウイルスベクターの作製
アデノウィルスファイバーのノブに存在するアミノ酸配列の一部をアルギニン (R> —グリシン (G) —ァスパラギン酸 (D) なるペプチドに遺伝子工学的に 変異させたファイバー変異アデノウイルスベクターは、 Mizuguchiらが作製した ベクターを使用した (ェイチ,ミズグチ (H. Mizuguchi) ら著, 「ジーン 'セラ ピー (Gene Ther. ) 」 , 第 8巻, 730- 735頁, 2001年参照) 。 当該ベクターはアデ ノウィルスベクターの Ε 1領域おょぴ Ε 3領域が欠損しており、 この Ε 1欠損領 域にルシフェラーゼ遺伝子が組み込まれており、 C AR非発現細胞に対してもィ ンテグリンを介して結合し、 効率よく遺伝子導入できる特徴を有するものである。 なお、 ファイバー変異アデノウイルスベクターの増殖および単離精製は上記 1〉 と同様に行った (ェイチ,ミズグチ (H. Mizuguchi) ら著, 「ジーン'セラピー (Gene Ther. ) 」 , 第 8卷, 730-735頁, 2001年参照) 。
フアイバー部の HIループをコードしている遺伝子配列部分を Csp451と Clal部位 をもったベクタープラスミド pAdHM15を両制限酵素で切断し、 ァノレギユン (R) —グリシン (G) —ァスパラギン酸 (D) 配列に相当する合成オリゴ DNAを in vitroライゲーシヨンで導入した。 その後、 ルシフェラーゼ遺伝子を E1欠損部位 に揷入した。 生じたプラスミドを Paclで切断し、 293細胞にトランスフエクショ ンし、 ァノレギニン (R) —グリシン (G) —ァスパラギン酸 (D) 配^!をフアイ パーに有するルシフェラーゼ発現アデノウイノレスベクターを得た。
4 ) アデノウイルスベクター (R G D— P E G—アデノウイルスベクター) の 作製
本発明の 1の実施態様において、 アデノウィルスベクターの作製方法を下記の 反応チャートに参照して説明する。
4— 1 ) Fraoc-K (Fmoc) -PEG- β AC (Trt) -Amide Resin (化合物 d ) の合成 インテグリンに親和性を有するアルギニン (R) —グリシン (G) —ァスパラ ギン酸 (D) の 3アミノ酸を含む (Ac- YGGRGDTP 0 A) 2K- PEG- ]3 AC - amide (化合物 f ) の合成を行うために、 まず、 Fmoc-K(Fmoc) - PEG- ;3 AC (Trt) -Amide Resin (下 記反応チャート、 化合物 d ) を合成した。 ここで、 リンカ一アミノ酸として使用 するシスティン (Cys) は SH基と特異的に結合する異反応性二価性試薬である マレイミド体との結合に重要である。 また、 リンカ一アミノ酸と PEGとの間に 存在する; 3ァラユン (j3Ala) は、 反応を進行させやすくするためのスぺーサと して用いている。 アミノ基を 2個有するリジン (Lys) は、 インテグリンへの親 和性を高める目的で PEG 1分子当りに 2個の RGD配列を結合させるために導 入しに。
合成は保護基として Fmo cを用いた固相法に準じて行った。 すなわち、 Fmoc-Amide Resin (官能基含量 0.66瞧 ol/g) (Applied Biosystems社製) を 1.5 g d.Orano 目当)秤取してプロピレン製反応容器 (国産化学株式会ネ環) に入れ てシェーカー (I A社製、 VIBRAX VXR) にセットし、 これにジクロルメタン (D
CM) を加えて膨潤させた。 20%—ピぺリジン/ DMF (Ν,Ν- diraethylforraamide) で Fmoc基を除去し、 DMFで洗浄した後、 Fmoc- Cys (Trt) - 0Hを lmol/L-DIPC/DMF(DIPC=diisopropylcarbodiimide)と lmol/L- ΗΟΒΐ/DMF (HOBt=N-hydroxybenzotriazole)で力ルポン酸を活性化させてから樹脂 に加えて縮合させた (化合物 a) 。 以後、 固相上での Fmoc保護基の除去 (脱保 護) 、 すなわちァミノ基の職 → DMF洗浄 → Fmoc-アミノ酸誘導体と 各ステップに適切な縮合反応試薬による HOBtの活性エステノレによる遊離ァミノ基 との反応 〈カップリング〉 → DMF洗浄、 の操作を繰り返して縮合反応を進 めた。 同様にピぺリジンによる Fmoc基の除去 〈脱保護〉 およひ moc - ]3Ala- 0Hと の縮合 (化合物 b〉 を行い、 その後脱保護を行って H-/3 Ala- Cys (Trt) -Amide
Resinを得た。 次に、 Fmoc- PEG- HS (Fmoc- PEG- NHS、 Shearwater社製、 カタログ番 号 1 P2Z 0F 02、 分子量 3400)との反応は、 反応活性体であるこの Fmoc - PEG - NHS のみでは反応の進行が非常に遅いため、 DIEA(diisopropylethylamine)存在 下、 0.45mo 1/L-HBTU/HOBt/DMF (HBTU=2- (lH-Benzotriazole-1-yl) -1, 1, 3, 3, - tetramethyluronium hexafluorophosphate)を縮合試薬として反応させた (化合 物 c〉。 ピぺリジンによる脱保護後、 Fmoc - Lys (Fmoc) -0Hとの反応は、 前述の 1 mol/L-DIPC/DMFと lmol/L- HOBt/DMFを用いて行レ、、 Fmoc - Lys (Fmoc) -PEG- β Ala- Cys (Trt) -Amide Resin (化合物 d (PEG— Re s i n) ) を得た。
4-2) [Ac-Y (Β^) GGR (Pmc) GD (0But)丁 (But) Pj3A] 2K— PEG- β AC (Trt) -Amide Resin (化合物 e) の合成
次に、 実施例 1の 4一 1 ) にて作製した Fmoc- Lys (Fmoc)- PEG- β Ala-Cys (Trt) - Amide Resin (化合物 d) について、 ペプチド合成機 (機種名: ABI433A, 合成プ ログラム: FastMocO.25QMonPrevPk) を用いて、 Fraoc- ]3 Ala- 0H、 Fmoc- Pro- 0H、 Fraoc- Thr(But)-0H、 Fraoc-Asp (OBu^-OH, Fmoc- Gly- 0H、 Fmoc-Arg (Pmc) - 0H、 Fmoc-Tyr (Bu*) - OHを順次使用し、 脱保護と縮合を繰り返してべプチド伸長を行つ た。 ここで、 RGDと PEGとの間に存在する ]3ァラニンは、 反応を進行させや すくするためのスぺーサとして用いている。
その結果、 (Fmoc-Y (Bu1) GGR (Pmc) GD (OBu*) T (Bu') P j3 A) 2K-PEG- ]3 AC (Trt) - Amide Resinを合成した。 次いで、 実施例 1の 4— 4) に示した EMCSがアデ ノウィルス粒子表面に存在する一級ァミンのみに反応するように、 RGD配列を 含む外来性ぺプチドの N末端遊離ァミノ基をァセチル化して塞いだ。 すなわち、 脱保護後の DIEA存在下、 無水酢酸との反応により、 遊離のアミノ基をァセチルイ匕 し、 〔Ac-Y (Βι^) GGR (pmc) GD (0But)了 (But) p^A] 2K- PEG- β AC (Trt) -Amide Res in
(化合物 e (RGD— PEG— Re s i n) ) を得た。
4-3) 〔Ac- Y (But) (pmc) GD (0But)丁 (But) Pi3A] 2K- PEG- β AC (Trt) -Amide (化合物 f (RGD— PEG) ) の単離と精製
実施例 1の 4— 2) によつて得られた 〔Ac- Y (But)∞κ (Pmc) GD (0But) T (But) p β A〕 2K-PEG-j3 AC (Trt) -Amide Resin (化合物 e (RGD— PEG— Re s i n) ) 中の CAc-Y (BU') GGR (Pmc) GD (OBu*) T (Bu*)? βΑ 2K- PEG- ]3 AC (Trt) -Amide
(化合物 f (RGD— PEG) ) を Re s i nから単離した。 すなわち、 トリフ ルォロ酢酸: T I p S (triisopropyl si Ian) :水- 90 : 5 : 5の組成より成 るカクテルを用いた処理により RGD— PEGを樹脂から切り離し、 溶媒留去後 に凍結乾燥することによ 粗化合物 ί (化合物 ί (RGD— PEG) ) を得た。 次に、 粗化合物 f の精製を行うために、 当該試料 20mgを lmLの 10 %ァセ トニトリル/超純水に溶解し、 遠心分離し、 その上清を HP LCに供した (分取 カラム: DAIS0PAK SP- 120-5- QDS-B、 20 X 250mm, 流速: 1 OmL/分、 移動相 A: 0.01% - トリフルォロ酢酸/ァセトニトリル、 移動相 B: 0.01% - トリフルォ 口酢酸/超純水、濃度勾配: 60分間で Α/Β=1/9〜Α/Β-7/3めリ二アグラディェン ト) 。 リテンションタイム 45〜60分の分画を収集し、 エバポレーターにて溶 媒留去、 凍結乾燥を行い純化合物 f (化合物 f (RGD-PEG) ) を得た。
4一 4) ィ匕合物 f と EMC S — Maleimideocaproy丄 oxy)succiniraide) と の架橋
実施例 1の 4— 3) で得られた純化合物 f (RGD-PEG) とウィルス粒子 表面とを結合させるために、 ァミノ基と SH基との架橋反応が可能な異反応性二 価性試薬である EMCSを用いて純化合物 f (RGD-PEG) を f 飾した。 な お、 EMC Sはマレイミド基と N—ヒドロキシスクシンィミド活性エステルを分 子の両端に持ち、 アミノ基に対しては活性エステルが反応し、 SH基に対しては マレイミド基が選択的に反応することが知られている。
まず、 純化合物 f (RGD-PEG) を 10瞧 ol/L -リン酸ナトリウム緩衝液 ( H6.0) に溶解し、 EMCSをジメチルスルホキシド (DMSO) に溶解し た溶液を滴下した。 室温下 30分間反応の後、 lOramol/L-リン酸ナトリウム緩衝液 ( p H7- 4) を加えて次の使用まで凍結保存し、 EMCSで修飾された化合物 g (RDG-PEG) を得た。
4-5) RDG— PEGとアデノウイルスベクターとの結合
実施例 1の 4一 4) で得た化合物 g (RDG-PEG) を、 実施例 1— 1) で 作製したアデノウイルスベクターに結合させた。 すなわち、 1粒子のアデノウィ ルスベクターの外殻タンパク質 (へキソン、 ペントンベース、 ファイバー) に存 在する一級ァミンに対して、 250倍モル量の化合物 g (RDG-PEG) を 1 X 1012粒子/111しのァデノウィルスベクターに添加し、 300 r pmで撹拌 しながら 37°C、 15分間反応させることによりアデノウイルスを結合させ、 さ らに 30分間同条件下で反応させることにより反応を完了させた。 これにより化 合物 gが結合したアデノウィルスベクター (RGD— PEG—アデノウィルスべ クタ一) を得た。 a) Fmoc-Cys(Tit Resin
Figure imgf000026_0001
b) Fmoc- jS Ala- Cys(Trt>Resin O
(Fmoo-PEG-NHS ) c) Fmoc- PEG- S Ala-Cys(Trt)-Resin
d) Fmoc -Lys(Fmoc>PEG- β Ala-Cys(Trt Resin
e) Ac-YGGRGDTP Ala
I
Lys-PEG- j3 Ala-Cys (Trt) -Resin Ac-YGGRGDTP jSAla
f) Ac-YGGRGDIP Ala
Lys-PEG- jSAla-Cys-amide
Ac-YGGRGDTP jS Ala
EMCS g) Ac-YGGRGDTP Ala
Lys-PEG- ^Ala-Cys-amide
Ac-YGGRGDTP βΜα
Figure imgf000026_0002
5) 遺伝子発現効率の比較実験
上記実施例 1の 1) 〜4〉 にて作製した、 対照アデノウイルスベクター、 PE G—アデノウィルスベクター、 ファイバー変異アデノウィルスベクターおよび R GD— PEG—アデノウィルスべクタ一の遺伝子発現効率の比較実験を行つた。 実験は、 CAR高宪現細胞であるヒ ト肺上皮癌 A 549細胞 ( A T C C: C C
L— 1 8 5、 図 1A) および CAR低発現細胞であるマウスメラノーマ B 16B L 6細胞 (東北大学加齢医学研究所: TKG05 98、 図 1 B〉 を用いて行った。 A549細胞は、 10 %ゥシ胎児血清を含む D MEMで継代培養し、 サブコンフ レント状態のものを実験に供した。 また、 B 16 B L 6細胞は、 7. 5%ゥシ胎 血清を含む Eagle, s minimum essential medium (MEM、 Sigma¾:^) で継代培 養し、 サブコンフレント状態のものを実験に供した。
48穴プレートに A 549細胞および B 1 6 B L 6細胞を 2 X 104細胞 Z 0. 5 m L Zゥエルで播種し、 24時間培養した。 それぞれの細胞の培地で調製した 各ベクターをそれぞれ 300、 1000、 3000、 10000 粒子/細胞 0. 5 m Lでゥエルに加え、 37 °C、 飽和蒸気圧、 5%CO2条件下 24時間培
«した。
また、 ウィルスベクターの遺伝子発現効率の指標としてのルシフェラーゼ活性 の測定は、 Luciferase Cell Culture Lysis Reagent (Promegaネ環) 100 μ L· で細胞を溶解させた後、 Luciferase Assay System (Promega社製) 、 Microluraat Plus LB96 (Perkin Elmer社製〉 を用いて測定した。 活性は、 Luciferase activity (RLU (relative light unit) /Veil) として表した。
その結果を、 各細胞当りのウィルス粒子を変化させた場合のルシフェラーゼ活 性の変化として図 1に示す。 RGD— PEG—アデノウイルスベクターは、 CA R高発現細胞である A 549細胞に対して PEG—アデノウイノレスベクターより 数百倍高い遺伝子発現を示し、 対照アデノウィルスベクターと同等の遺伝子発現 を示した。 また、 対照アデノウイルスベクターにおいて遺伝子導入効率の低い C AR低発現細胞である B 1 6 BL 6細胞に対して、 RGD— P EG—アデノウィ ルスベクターは対照アデノウィルスベクターより百倍以上高い遺伝子発現を示し た。 しかもその発現は、 アデノウイルス粒子表面から突出しているファイバーに R G D配列を挿入することで C A R低発現細胞に対しても高い遺伝子発現が可能 となったフアイバー変異アデノゥイノレスべクタ一と同等であつた。
このことから、 P E G—アデノウィ^ /レスベクターの P E Gに、 R GDをはじめ とするィンテグリン親和性外来性ぺプチドを付与することで、 標的細胞に接着し 効率よく遺伝子導入を行うことができ、 さらに導入された遺伝子も効率よく発現 することが判明した。
ファイバー変異アデノウィルスベクターは、 R GDを自身のファイバーに組み 込んであるために、 対照アデノウィルスベクターのウィルス粒子径およびウィル ス質量とほぼ同等であると考えられる。 一方、 P E G—アデノウイルスベクター はファイバー変異アデノウィルスベクターおよび対照アデノウィルスベクターと 比較して、 ウィルス粒子径およびウィルス質量共に格段に大きいと言える。 本発 明の R GD— P E G—アデノウィルスベクターは、 分子量 3 4 0 0の P E Gを用 レ、、 力っィンテグリン親和性外来性ぺプチドである R G Dを付与している分、 P E Gの分子量が 2 0 0 0である P E G—アデノウィルスベクターと比較して、 ゥ ィルス粒子経およびウィルス質量は共にさらに大きいと言える。 一般的に、 本発 明の R GD— P E G—アデノウィルスベクターの様な巨大構造を有するものは、 たとえ当該構造の中にインテグリンに親和性のあるペプチドを有していたとして も、 ウィルスベクターとしてインテグリンに結合する能力が弱くなり、 その結果、 フアイバー変異アデノウィルスべクターよりも遺伝子導入効率が低下することが 予想される。 しかしながら、 本実施例の結果、 当該巨大構造を有する R GD— P E G—アデノウィルスベクターは、 ファイバー変異アデノウィルスベクターと同 等に効率よく遺伝子導入できたことから、 高いインテグリン親和性を保持してい ると考えられる。 わずかアルギニン (ί —グリシン (G) —ァスパラギン酸
(D) の 3アミノ酸のみでファイバー変異アデノウィルスベクターと同等の遺伝 子導入効率が示されたことは、 全く予想し得なかった結果である。
この結果により、 ィンテグリンに親和性を有するぺプチドを水溶性ポリマーに 結合させることにより、 水溶性ポリマーが多数結合し巨大構造化したウィルスべ クタ一においても、 効率よく遺伝子導入できることが証明された。
また、 アデノウイルスは細胞表面に存在する C ARに結合した後、 ペントンべ ースに する RGDが a Vj33、 aV β 5に結合することが知られているので. 本発明の R GD— PEG—アデノウイノレスベクタ一の結合にもインテグリン、 特 に aV 3、 o;Vj35が関与しているものと考えられる。 実施例 2 中和抗体存在下での各種アデノウィルスベクターにおける遺伝子発現 効率の比較実験
上記実施例 1の 1) 〜4) にて作製した、 対照アデノウイルスベクター、 PE G—アデノウイノレスベクター、 ファイバー変異アデノウィルスベクターおよび R GD-PEG-アデノウィルスべクタ一の中和抗体存在下での遺伝子発現効率の 比較実験を行った。
実験は、 CAR高発現細胞であるヒ ト肺上皮癌 A 549細胞 (図 2 A) およぴ CAR低発現細胞であるマウスメラノーマ B 16BL6細胞 (図 2B) を用いて 行った。 A549細胞は、 10%ゥシ胎児血清を含む DMEMで継代培養し、 サ プコンフレント状態のものを実験に供した。 また、 B 16BL6細胞は、 7. 5%ゥシ胎¾血清 ¾·含む Eagle' s minimum essential medium (腿、 Sigma社 製) で継代培養し、 サブコンフレント状態のものを実験に供した。
48穴プレートに A 549細胞、 B 16 B L 6細胞を 1 X 104細胞 Z 0.5 mL ゥェノレで播種し、 24時間培養した。 抗アデノウイルスベクター抗体を含 む I CRマウス血清存在下おょぴ非存在下において、 それぞれの細胞の培地で調 整した各ベクターをそれぞれ 1000粒子/細胞 //0.5 mLでゥエルに加え、 37°C、 飽和蒸気圧、 5 %C02条件下 24時間培養した。 なお、 ルシフェラー ゼ活性の測定は実施例 1の 5 ) に準じて行つた。 また、 I C Rマウス血清は、 対 照アデノウイルスベクターを I CRマウスに約 1010粒子/マウスで 3回投与 して作製した。
その結果を、 抗アデノウィルス血清の希釈率を変化させた場合のルシフェラー ゼ活性の変ィヒとして図 2に示す。 RGD— PEG—アデノウイルスベクターは、 CAR高発現細胞および低発現細胞の両方に対して抗アデノウィルスベクター抗 体存在下で、 対照アデノウイルスベクターおよびファイバー変異アデノウィルス ベクターを遙かに越える高い遺伝子発現を保持していた。 例えば、 A549細胞 では、 各ベクターの抗体非存在下における遺伝子発現を 100%とした場合、 抗 血清 1/10000希釈存在下では、 対照アデノウィルスべクタ一おょぴフアイ バー変異アデノウィルスベクターの遺伝子発現はそれぞれ 24%および 42%に まで減少しているが、 RGD— PEG—アデノウイルスベクターでは、 100% の遺伝子発現を保持していた。
B 16 B L 6細胞では、 抗血清 1ノ 10000および 1/3000希釈存在下 において対照アデノウイノレスベクター、 PEG—アデノウィルスベクターおよび フアイバー変異アデノウィルスべクタ一のいずれの遺伝子発現も著しく低下して いるが、 RGD— PEG—アデノウイノレスベクターはその ί也のベクターを遙かに 越える高い遺伝子努現を示した。 従って、 RGD— PEG—アデノウィルスべク ターは他のベクターと比較して、 中和抗体の影響を受けにくく、 標的鉀胞に遺伝 子導入しゃす 、ことが明らかとなった。
このことから、 本発明の RGD— PEG—アデノウイノレスベクターは、 フアイ バー変異アデノウィルスベクターより優れた遺伝子導入べクターになり得ること が判明し、 かつ、 PEGを介してインテグリン親和性外来性ペプチドである RG Dを付与することで、 PEGの利点を保持しつつ標的細胞に接着し、 それに続く 遺伝子導入および遺伝子発現を効率よく達成できることが判明した。
従って、 R G Dをはじめとするインテグリン親和性外来性ぺプチドを付与した PEG—アデノウィルスベクターはファイバー変異アデノウィルスベクターのよ うな高い遺伝子導入おょぴ発現能を備え、 さらに P EG—アデノウィルスベクタ 一が有する抗体回避能を有していることが判明した。 実施例 3 —8ひ。 Cで 1ヶ月間保存後、 凍結融解を繰り返した各種アデノウィル スベクターにおける遺伝子発現効率の比較実験 上記実施例 1の 1) 一 4) にて作製した対照アデノウイルスベクター、 PEG 一アデノウイルスベクター、 ファイバー変異アデノウイルスベクター、 および R GD - PEG-アデノウィルスベクターをそれぞれリン酸緩衝生理食塩水 (PB S) 中に一 80°Cで 1ヶ月間保存した。 その後、 各種アデノウイノレスベクターを 室温で融解、 -80 °Cで凍結のステップを 5回操り返した後に、 各々の遺伝子発 現効率の比較実験を行った。
実験は、 CAR高発現細胞であるヒト肺上皮癌 A 549細胞 (図 3A) 、 およ ぴ CAR低発現細胞であるマウスメラノーマ B 16 BL 6細胞 (図 3B) を用い て行った。 A 549細胞は、 10 %ゥシ胎児血清を含む DMEMで継代培養し、 サプコンフレント状態のものを実験に供した。 また、 B 16BL6細胞は、 7. 5%ゥシ台児血清を含む E a g 1 e' s mi n i mum e s s e n t i a l me d i urn (MEM, S i gma社製) で継代培養し、 サブコンフレント状態 のものを実験に供した。
48穴プレートに A 549細胞、 および B 16 B L 6細胞を 2X 104細胞/ 0. 5 mLノウエルで播種し、 24時間培養した。 それぞれの細胞の培地で調整 した各べクターをそれぞれ 3000粒子 Z細胞 Ζθ . 5 mLでウエノレに加え、 3, 7 °C、 飽和蒸気圧、 5%CO 2条件下 24時間培養した。
なお、 各種アデノウィルスベクターによる遺伝子発現効率の指標としてのルシ フェラーゼ活性測定は、 実施例 1の 5 ) に準じて行つた。
その結果を、 各種アデノウイノレスベクターの作製直後、 および長期低温保存し、 凍結融解後の遺伝子発現として図 3に示す。
まず、 A549細胞における、 作製直後の PEG-アデノウイルスベクターは実 施例 1の 5 ) と同様にその他のベタターと比較して低 、遺伝子発現効率となって いることが確認できた。 また、 1ヶ月保存後、 凍結融解を 5回繰り返した対照ァ デノウィルスベクター、 PEG—アデノウイルスベクター、 ファイバー変異アデ ノウイノレスベクター、 および RGD— PEG—アデノウイルスベクターは作製時 とほぼ同等の遺伝子努現を保持していた。
次に、 B 16BL6細胞における、 作製直後の RGD— PEG—アデノウィノレ スベクターの遺伝子発現は、 実施例 1の 5〉 と同様に対照アデノウィルスべクタ —より約 100倍高く、 ファイバー変異アデノウイルスベクターと同等であるこ とが確認できた。 また、 1ヶ月保存後、 凍結融解を 5回繰り返した場合も RGD - PEG-アデノウイルスベクターは、 作製時とほぼ同等の遺伝子発現を保持し ていた。
このことから、 本宪明の RGD— PEG-アデノウイルスベクターの遺伝子発 現は、 長期低温保存後、 凍結融解を繰り返した場合であっても、 十分保持されて おり、 安定性が高いと言える。
一般的に、 本発明の RGD- P E Gのような巨大な構造をアデノウイルスべク ター表面に付与した場合、 R GDとアデノウイルスベクターとが架橋剤、 システ イン、 P E G、 リジン、 および ァラニンを介して結合することとなり、 安定性 が低いと予想される。 しかしながら、 本実施例の結果、 長期低温保存後、 凍結融 解を繰り返した場合においても本発明の R GD- P E G-アデノウイルスベクタ 一は、 優れた遺伝子発現効率を保持していた。 R GD- P E Gのような巨大構造 をもつアデノウィルスベクターの安定性が長期低温保存後、 凍結融解を繰り返し た場合においても十分保持されていたのは、 予想外の結果であつた。 産業上の利用の可能性
本発明によれば、 投与する生体に対して免疫原性が低く、 抗原性が低いため中 和抗体や貧食細胞による攻撃を受け難くて血中半減期が比較的長く、 広範な細胞 に対して高効率の遺伝子導入が可能であり、 またそれにより im積性が低く、 さ らに、 ウィルス元来の有用な能力を低下させることなく簡便かつ効率的に作製で き、 長期低温保存後に融解 ·再凍結を繰り返しても安定な遺伝子導入用ベクター ならびに遺伝子導入方法が提供される。 配列表フリーテキスト
SEQ ID NO: 1
Peptide motif having integrin-binding activity.
SEQ ID NO: 2
Peptide motif having integrin-binding activity.
SEQ ID NO: 3
Peptide motif having integrin-binding activity.
SEQ ID NO: 4
Peptide motif having integrin-binding activity.
SEQ ID NO: 5 Peptide motif having integrin-binding activity.
SEQ ID NO: 6
Peptide motif having integrin-binding activity.
SEQ ID NO: 7
Peptide motif having integrin-binding activity.
SEQ ID NO: 8
Peptide motif having integrin-binding activity.
SEQ ID NO: 9
Peptide motif having integrin-binding activity.
SEQ ID NO: 10
Peptide motif having integrin-binding activity.
SEQ ID NO: 11
Peptide motif having integrin-binding activity.
SEQ ID NO: 12
Designed peptide containing peptide motif having integrin-binding activity.
SEQ ID NO: 13
Designed peptide containing peptide motif having integrin-binding activity.

Claims

請 求 の 範 囲
1 . ウィルス粒子表面に水溶性ポリマーが直接または間接的に結合し、 力つ標的 細胞表面に存在するィンテグリンに親和性を有する外来性ぺプチドが当該水溶个生 ポリマーに結合していることを特徴とするウイノレスベタタ一。
2. 前記水溶性ポリマーがリンカ一アミノ酸および架橋剤を介してウイルス粒子 表面に結合している請求項 1記載のウィルスべクター。
3 . 前記ウィルスがアデノウィルスである請求項 1または 2記載のウィルスべク ター。
4. 前記水溶性ポリマーがポリエチレンダルコールまたはその誘導体である請求 項 1ないし 3いずれか 1項記載のウィルスべクタ一。
5 . 前記ポリエチレングリコールの分子量が 3 0 0 0〜4 0 0 0である請求項 4 記載のウィルスベクター。
6 . 前記リンカ一アミノ酸がシスティンであって、 前記架橋剤がチオール基およ びァミノ基に対して結合能を有する架橋剤である請求項 2ないし 5いずれか 1項 記載のウィルスベクター。
7 . 前記架橋剤が N— (6—マレイミドカプロィルォキシ) スクシンイミド (N- (6-Maleimidocaproyloxy) succiniraide) (EMC S ) である請求項 6記載のウイ ノレスべクタ一。
8 . 前記ィンテグリンが α V )3 3または α V 5である請求項 1ないし 7いずれ 力 1項記載のウィルスベクター。
9 . 前記外来性ペプチドがアルギニン (R) —グリシン (G) —ァスパラギン酸 (D ) を含む配列である請求項 1ないし 8レヽずれか 1項記載のゥィルスべクタ一。
1 0 . 前記外来性ぺプチドがーつ以上の βァラニンを含む配列である請求項 9記 載のウィルスベクター。
1 1 . 前記外来性ペプチドがリジン (Κ) を含み、 当該リジンを介して分岐して いることを特徴とする請求項 9または 1 0記載のウィルスベクター。
1 2 . 前記外来性ペプチドがチロシン (Υ) -グリシン (G) ―グリシン (G) 一アルギニン (R) - グリシン (G) ―ァスパラギン酸 (D) - トレオニン (T) —プロリン (P ) — βァラニン (X) 一 リジン (Κ) - ァラニン (X) 一プロリン (Ρ)— トレオニン (Τ) -ァスパラギン酸 (D) -グリシン (G) -ァノレギニン (R) - グリシン (G) - グリシン (G) -チロシン (Υ) で示さ れるァミノ酸配列であることを特徴とする請求項 1 1記載のウイノレスベタター。 5 1 3 . 請求項 1ないし 1 2いずれか 1項記載のウィルスベクターを用いることを 特徴とする遺伝子導入方法。
1 4 . 1 >水溶性ポリマーの 1の末端にリンカーアミノ酸を結合させて水溶性ポ リマ■ ~~ "リンカ一アミノ酸を得、
2 ) この水溶性ポリマ一一リンカーァミノ酸の水溶性ポリマーに、 インテグリ 10 ンに親和性を有する外来性ぺプチドを結合させて外来性ぺプチドー水溶性ポリマ 一一リンカ一アミノ酸を得;
3 ) 得られた外来性ぺプチド一 7溶性ポリマ一一リンカ一アミノ酸のリンカ一 ァミノ酸に架橋剤を結合させ;ついで
4 ) その架橋剤を介して外来性ぺプチド一水溶性ポリマ1 ^一リンカ一アミノ酸 15 とゥイノレスとを結合させる
工程を含むウィルスベクターの作製方法。
1 5 . 1 ) および 2 ) の工程をリンカ一アミノ酸を樹脂 (Resin) に結合して行 い、 その後、 生成した外来性ペプチド一 7j溶性ポリマ一一リンカ一アミノ酸を樹 脂から切断して 3 ) および 4 ) の工程を行う請求項 1 4記載のウィルスベクター
20- の作製方法。
1 6 . 前記水溶性ポリマーがポリェチレンダルコールまたはその誘導体である請 求項 1 4または 1 5記載のウィルスベクターの作製方法。
1 7 . 前記リンカ一アミノ酸がシスティンであって、 前記架橋剤がチオール基お ょぴァミノ基に対して結合能を有する架橋剤である請求項 1 4ないし 1 6いずれ 25 カ 1項記載のウィルスベクターの作製方法。 .
PCT/JP2004/001739 2003-02-17 2004-02-17 新規ウイルスベクター WO2004072289A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005505035A JP4566129B2 (ja) 2003-02-17 2004-02-17 新規ウイルスベクター
DE602004032330T DE602004032330D1 (de) 2003-02-17 2004-02-17 Neuartiger virusvektor
EP04711732A EP1626090B1 (en) 2003-02-17 2004-02-17 Novel virus vector
US10/544,986 US20060258005A1 (en) 2003-02-17 2004-02-17 Novel virus vector
AT04711732T ATE506445T1 (de) 2003-02-17 2004-02-17 Neuartiger virusvektor
US11/544,986 US7367688B1 (en) 2003-02-17 2006-10-06 Outdoor lighting lamp with water-resistant cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003038780 2003-02-17
JP2003-038780 2003-02-17

Publications (1)

Publication Number Publication Date
WO2004072289A1 true WO2004072289A1 (ja) 2004-08-26

Family

ID=32866406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001739 WO2004072289A1 (ja) 2003-02-17 2004-02-17 新規ウイルスベクター

Country Status (6)

Country Link
US (2) US20060258005A1 (ja)
EP (1) EP1626090B1 (ja)
JP (1) JP4566129B2 (ja)
AT (1) ATE506445T1 (ja)
DE (1) DE602004032330D1 (ja)
WO (1) WO2004072289A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068945A1 (ja) * 2006-12-08 2008-06-12 Osaka University 細胞内移行ペプチドを有効成分とする遺伝子導入補助剤および該遺伝子導入補助剤を利用した遺伝子導入方法
JP2008182921A (ja) * 2007-01-29 2008-08-14 Osaka Univ 磁性粒子を用いた遺伝子導入方法
JP2014534245A (ja) * 2011-11-22 2014-12-18 ザ チルドレンズ ホスピタル オブフィラデルフィア 効率の高いトランスジーン送達のためのウイルスベクター

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD654192S1 (en) 2009-05-13 2012-02-14 Lighting Science Group Coporation Body portion of a lamp
USD652564S1 (en) 2009-07-23 2012-01-17 Lighting Science Group Corporation Luminaire
USD663446S1 (en) 2010-05-04 2012-07-10 Lighting Science Group Corporation Body portion of a bulb
USD658791S1 (en) 2010-05-04 2012-05-01 Lighting Science Group Corporation Luminaire
USD659266S1 (en) 2010-05-04 2012-05-08 Lighting Science Group Corporation Luminaire
US8388186B2 (en) * 2011-05-26 2013-03-05 Arcadia Lamp shade having interlocking sections
USD666750S1 (en) 2012-02-13 2012-09-04 Lighting Science Group Corporation Luminaire
CN102913860A (zh) * 2012-11-09 2013-02-06 东莞市环宇文化科技有限公司 一种室外灯具防护装置
WO2017206006A1 (zh) * 2016-05-30 2017-12-07 余社洪 一种防水照明吊扇
CN106068387B (zh) * 2016-05-30 2019-06-28 余社洪 一种加强防水型吊扇
US10274170B2 (en) * 2017-07-13 2019-04-30 Appleton Grp Llc Drain system for a luminaire
CN108799848A (zh) * 2018-03-29 2018-11-13 杭州知加网络科技有限公司 一种水冷式led灯
US11421698B2 (en) * 2020-02-24 2022-08-23 Hunter Fan Company Ceiling fan sealing assembly
WO2024130069A1 (en) * 2022-12-16 2024-06-20 Lilium Therapeutics Inc. Viral vectors with engineered function and methods of production thereof
US12104767B1 (en) * 2023-09-21 2024-10-01 Air Cool Industrial Co., Ltd. Quick assembling structure for ceiling fan with lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044143A1 (en) * 1997-04-03 1998-10-08 Genzyme Corporation Polymer-modified viruses
WO2000011202A1 (en) * 1998-08-24 2000-03-02 Genzyme Corporation Cationic complexes of polymer-modified adenovirus
WO2001012235A2 (en) 1999-08-19 2001-02-22 University Of Southern California Targeted artificial gene delivery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082320A (en) * 1959-05-01 1963-03-19 Singer Mfg Co Lighting fixtures
US3588488A (en) * 1969-06-16 1971-06-28 Sybron Corp High kelvin surgical lighting fixture
US3754133A (en) * 1971-08-19 1973-08-21 Univ New York Lamp for use in a high pressure environment
US5971573A (en) 1997-05-24 1999-10-26 King Of Fans, Inc. Spring clip light fixture connector
US6287857B1 (en) * 1998-02-09 2001-09-11 Genzyme Corporation Nucleic acid delivery vehicles
GB9913359D0 (en) * 1999-06-09 1999-08-11 Cancer Res Campaign Tech Polymer modified biological elements
US6536926B2 (en) 1999-07-27 2003-03-25 King Of Fans, Inc. Spring clip light fixture connector
AU5708601A (en) * 2000-04-17 2001-10-30 James E Rothman Javelinization of protein antigens to heat shock proteins
WO2001092549A2 (en) * 2000-05-31 2001-12-06 Genvec, Inc. Method and composition for targeting an adenoviral vector
US6392541B1 (en) 2000-11-28 2002-05-21 King Of Fans, Inc. Theft-deterrent outdoor lighting
US6776508B2 (en) 2002-01-23 2004-08-17 King Of Fans, Inc. Landscaping fixtures with colored lights
US6926423B2 (en) 2003-07-03 2005-08-09 King Of Fans, Inc. Light with simulated candle flicker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044143A1 (en) * 1997-04-03 1998-10-08 Genzyme Corporation Polymer-modified viruses
WO2000011202A1 (en) * 1998-08-24 2000-03-02 Genzyme Corporation Cationic complexes of polymer-modified adenovirus
WO2001012235A2 (en) 1999-08-19 2001-02-22 University Of Southern California Targeted artificial gene delivery

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. R. O'RIORDAN, HUMAN GENE THERAPY, vol. 10, 1999, pages 1349 - 1358
CRIPE T P, ET AL: "Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus.adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells", CANCER RES,, vol. 61, no. 7, 2001, pages 2953 - 2960, XP002969170 *
MAGNUSSON M K, ET AL: "Genetic retargeting of adenovirus: novel strategy employing 'deknobbing' of the fiber", J. VIROL., vol. 75, no. 16, 2001, pages 7280 - 7289, XP001056142 *
OKADA N: "Efficient delivery intro denedritic cells by fiber-mutant adenovirus vectors", YAKUGAKU ZASSHI, vol. 121, no. 8, 2001, pages 593 - 600, XP002976466 *
ROMANCZUK, HUMAN GENE THERAPY, vol. 10, 1999, pages 2615 - 2626
VIGNE E, ET AL: "RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection", J VIROL., vol. 73, no. 6, 1999, pages 5156 - 5161, XP002126062 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068945A1 (ja) * 2006-12-08 2008-06-12 Osaka University 細胞内移行ペプチドを有効成分とする遺伝子導入補助剤および該遺伝子導入補助剤を利用した遺伝子導入方法
WO2008068982A1 (ja) * 2006-12-08 2008-06-12 Osaka University 細胞内移行ペプチドを有効成分とする遺伝子導入補助剤および該遺伝子導入補助剤を利用した遺伝子導入方法
JP2008182921A (ja) * 2007-01-29 2008-08-14 Osaka Univ 磁性粒子を用いた遺伝子導入方法
JP2014534245A (ja) * 2011-11-22 2014-12-18 ザ チルドレンズ ホスピタル オブフィラデルフィア 効率の高いトランスジーン送達のためのウイルスベクター
US10640785B2 (en) 2011-11-22 2020-05-05 The Children's Hospital Of Philadelphia Virus vectors for highly efficient transgene delivery

Also Published As

Publication number Publication date
US20060258005A1 (en) 2006-11-16
JPWO2004072289A1 (ja) 2006-06-01
US7367688B1 (en) 2008-05-06
EP1626090A1 (en) 2006-02-15
DE602004032330D1 (de) 2011-06-01
JP4566129B2 (ja) 2010-10-20
EP1626090A4 (en) 2007-07-04
EP1626090B1 (en) 2011-04-20
ATE506445T1 (de) 2011-05-15

Similar Documents

Publication Publication Date Title
WO2004072289A1 (ja) 新規ウイルスベクター
Kleemann et al. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI
Liu et al. Nanostructured materials designed for cell binding and transduction
Temming et al. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature
JP4509999B2 (ja) 医薬送達及び抗原提示システムとしてのペプチドナノ粒子
Ahmed Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers
ES2524598T3 (es) Conjugados poliméricos de factor VIII
ES2386258T3 (es) Relaciones de adición conjugadas para la entrega controlada de compuestos farmacéuticamente activos
Corti et al. Tumor vasculature targeting through NGR peptide-based drug delivery systems
Tarvirdipour et al. Peptide-based nanoassemblies in gene therapy and diagnosis: paving the way for clinical application
Sun et al. Design and cellular internalization of genetically engineered polypeptide nanoparticles displaying adenovirus knob domain
JP2001503250A (ja) 束縛ペプチドモチーフを用いたターゲッティングアデノウイルス
Shin et al. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy
Kim et al. Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration
ES2357622T3 (es) Péptido etiqueta que contiene cisteína para la conjugación específica de sitio de proteínas.
EP3030244B1 (en) Polyconjugates for delivery of rnai triggers to tumor cells in vivo
KR20010043080A (ko) 진단/치료제에서의 또는 그에 관련된 개선점
WO2002088318A2 (en) Lipid-comprising drug delivery complexes and methods for their production
JP2003503370A (ja) 核酸を細胞に導入するための配合剤
Gao et al. Novel monodisperse PEGtide dendrons: design, fabrication, and evaluation of mannose receptor-mediated macrophage targeting
JP2007145761A (ja) 細胞膜透過性ペプチド修飾多糖−コレステロールまたは多糖−脂質非ウイルス性ベクターおよびその製造方法
Wang et al. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles
JP2019519508A (ja) マルチアーム重合標的抗がんコンジュゲート
Sylvestre et al. Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice
ES2291439T3 (es) Peptidos que presentan una afinidad por la proteina viral gp120, y uso de estos peptidos.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005505035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004711732

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004711732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006258005

Country of ref document: US

Ref document number: 10544986

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10544986

Country of ref document: US