WO2004070466A2 - Pixel tft arrangement for active matrix display - Google Patents
Pixel tft arrangement for active matrix display Download PDFInfo
- Publication number
- WO2004070466A2 WO2004070466A2 PCT/GB2004/000433 GB2004000433W WO2004070466A2 WO 2004070466 A2 WO2004070466 A2 WO 2004070466A2 GB 2004000433 W GB2004000433 W GB 2004000433W WO 2004070466 A2 WO2004070466 A2 WO 2004070466A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- gate
- array
- electrode
- conductive layer
- Prior art date
Links
- 239000011159 matrix material Substances 0.000 title abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 97
- 238000007639 printing Methods 0.000 claims description 46
- 239000004020 conductor Substances 0.000 claims description 37
- 238000000059 patterning Methods 0.000 claims description 22
- 239000012212 insulator Substances 0.000 claims description 21
- 238000007641 inkjet printing Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- 238000000151 deposition Methods 0.000 claims description 15
- 239000010409 thin film Substances 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 238000010129 solution processing Methods 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 239000007772 electrode material Substances 0.000 claims description 4
- 238000004049 embossing Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 claims 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 43
- 229910052751 metal Inorganic materials 0.000 abstract description 43
- 239000002184 metal Substances 0.000 abstract description 43
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 19
- 239000002904 solvent Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 230000008021 deposition Effects 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000000608 laser ablation Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000000443 aerosol Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000007645 offset printing Methods 0.000 description 6
- 238000007650 screen-printing Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 4
- 239000002322 conducting polymer Substances 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010017 direct printing Methods 0.000 description 3
- 238000007646 gravure printing Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 238000000813 microcontact printing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/201—Filters in the form of arrays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136227—Through-hole connection of the pixel electrode to the active element through an insulation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/127—Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
- H01L27/1274—Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
- H01L27/1285—Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/1292—Multistep manufacturing methods using liquid deposition, e.g. printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136213—Storage capacitors associated with the pixel electrode
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/043—Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0876—Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3659—Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/123—Connection of the pixel electrodes to the thin film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
Definitions
- This invention relates, in one aspect, to transistor-controlled display devices and techniques of use in their production, and in one embodiment to active matrix polymer TFT displays, having enhanced aperture ratios and pixel storage capacitors, more specifically the formation of high-resolution active matrix displays using techniques based on solution processing and direct printing.
- LCD thin film transistor liquid crystal display
- OLED organic light emitting diodes
- a TFT device configuration is described in WO01/47045.
- TFTs Semiconducting conjugated polymer thin-film transistors
- Such polymers were used as the active material to create a 4096 active matrix pixel display with 256 grey levels (E.A. Huitema et al., Nature 414, 599 (2001)).
- Semiconducting polymers in solution based print processes have more recently been used to create active matrix displays with printed polymer thin film transistors (S. Burns, et al. SID 2002 symposium, Digest of Technical Papers 33, 1193 (2002)).
- One problem can be the limited display area, in particular for high-resolution displays, in which the thin film transistor, particularly the drain (pixel) electrode, and other components, such as the data and addressing lines, and the pixel capacitor compete with each other for space. This can lead to a reduction in the aperture ratio and therefore the quality of the display.
- the area of the pixel electrode should be as large as possible. This is particularly difficult to achieve in conventional architectures, if the pixel electrode is defined on the same level as any of the gate or addressing lines, or any of the electrodes of the TFT.
- the manufacture of active matrix displays by solution based print processes offers many potential advantages over conventional manufacturing methods.
- solution based print processes are environmentally friendly, low temperature, compatible with flexible substrates, cost effective and advantageous for short run length and large display sizes.
- fabrication of high-resolution displays by printing processes is challenging.
- printing processes such as i ⁇ kjet printing, screen printing and offset printing
- it is difficult to fabricate metallic interconnect lines with a width of less than 50 -100 ⁇ m because of the difficulties associated with delivering small volumes of liquid.
- This problem can be alleviated somewhat by printing onto a substrate with a predefined surface energy pattern as disclosed in PCT/GB00/04934.
- achieving linewidths of less than 10-20 ⁇ m can be challenging.
- printable conductors such as conducting polymers or colloidal metals have conductivities significantly lower than bulk copper or silver, therefore requiring thick and wide interconnect lines to achieve adequate conductance across a large active matrix. Therefore, by using conventional display architectures, printed components can tend to be large and result in active matrix displays with low aperture ratios.
- a pixellated display device including a display medium, an array of at least partly printed transistors, addressing lines for controlling the array of transistors and an array of pixel electrodes located at least partly between the array of transistors and the display medium and via which respective portions of the display medium are controllable by the transistors, wherein each pixel electrode is controllable through a respective transistor via one of said addressing lines and also overlaps with another of said addressing lines and/or a counter electrode connected thereto for capacitive coupling therewith.
- the present invention also provides an electronic device including an array of at least partly printed transistors, addressing lines for controlling the array of transistors, and an array of pixel electrodes whose electric potentials are responsive to the transistors and which are located at least partly over the transistors, wherein each pixel electrode is controllable through a respective transistor via one of said addressing lines and overlaps with another of said addressing lines and/or a counter electrode connected thereto for capacitive coupling therewith.
- the present invention also provides a method of producing a pixellated display device including a display medium, an array of transistors, addressing lines for controlling the transistors, and an array of pixel electrodes located at least partly between the array of transistors and the display medium and via which respective portions of the display medium are controllable by the transistors, wherein each pixel electrode is controllable through a respective transistor via one of said addressing lines and also overlaps with another of said addressing lines and/or a counter electrode connected thereto for capacitive coupling therewith, wherein the method includes the step of forming at least one element of the array of transistors by a printing technique.
- the present invention also provides a method of producing an electronic device including a lower conductive layer formed by solution-processing and an upper conductive layer overlying said lower conductive layer and electrically connected thereto via a conductive interconnect through one or more insulator layers, wherein the creation of said interconnect includes: defining in said at least one insulator layer a hole that extends down to at least a portion of the lower conductive layer using a photoablative technique that discriminates between the lower conductive layer and said one or more insulator layers; and then depositing conductive material in said hole.
- the present invention also provides a method of producing an electronic device including a lower conductive layer formed by solution-processing and an upper conductive layer overlying said lower conductive layer and electrically connected thereto via a conductive interconnect through one or more insulator layers, wherein the creation of said interconnect includes: defining in said at least one insulator layer a hole that extends down to at least a portion of the lower conductive layer using an embossing technique; and then depositing conductive material in said hole.
- the present invention also provides a method of producing an electronic device, including the steps of: forming an array of thin-film transistor (TFT) devices on a substrate at least partly by a printing technique; providing one or more patterned insulator layers over the array of TFT devices so as to leave access to the drain or source electrode of each TFT device from above, and then forming a patterned conductive layer over the one or more patterned insulator layers so as to provide each TFT device with a respective pixel electrode extending from the drain or source electrode thereof up and over the gate electrode thereof or the gate electrode of an adjacent TFT, to thereby increase the aperture ratio.
- TFT thin-film transistor
- a device architecture comprising TFT source addressing lines and a TFT drain electrode formed on a first metal level of the device.
- the pixel electrode is formed on a second separate metal level, and the TFT gate electrode and gate addressing lines on a third metal level, separated from both the first level and the second level by at least one dielectric layer.
- the pixel electrode on the second level is electrically connected to the drain electrode on the first level through a via-hole interconnection and a pixel capacitor is formed by overlap of part of the pixel electrode on the second level with a portion of the gate addressing line of a neighbouring line of pixels on the third level.
- a device architecture comprising TFT source addressing lines and a TFT drain electrode formed on a first metal level of the device.
- the pixel electrode is formed partially on a second separate metal level and partially on the first metal level, and a TFT gate electrode and gate addressing lines on a third metal level separated from both the first level and the second level by at least one dielectric layer.
- the portion of the pixel electrode on the first level is electrically connected to the drain electrode on the first level, the portion of the pixel electrode on the first and second level are electrically connected by an interconnection formed across the side wall of at least one patterned dielectric layer.
- a pixel capacitor is formed by overlap of part of the pixel electrode on the second level with a portion of the gate addressing line of a neighbouring line of pixels on the third level.
- Another embodiment of the invention allows for the optimisation of the aperture ratio and pixel capacitance through the use of a bottom gate transistor configuration.
- a transistor with a bottom-gate configuration has an added advantage that a via-hole needs only to be formed through one of the dielectric layers. Where the via hole is produced as a result of solvent jetting, it is necessary to ensure that the chosen solvent does not also dissolve the lower dielectric.
- Figure 1 shows the general structure of an active matrix display pixel.
- Figure 2 explains the incorporation of a pixel capacitor into a transistor-controlled display device, for the case where the drain electrode is the. pixel electrode.
- Figure 3 shows a device according to a first embodiment of the present invention.
- Figure 4 shows a device according to a second embodiment of the present invention.
- Figure 5 shows a bottom gate device according to a third embodiment of the present invention.
- Figure 1 shows an active matrix pixel where the display media is voltage controlled, such as liquid crystal or electronic paper.
- Figure l.a. is a side view of one transistor and one pixel. It consists of a substrate 1, a semiconductor 2, which may be a continuous layer or may be patterned, (in Figure 1, the semiconductor is patterned in order to cover the transistor channel), a data line 3, a pixel electrode 4, a transistor dielectric 5, a gate electrode/gate interconnect 6 and a display media 7 (for example liquid crystal or electronic paper) and a counter electrode 8 of the display media.
- the state of the display media is determined by the electric field across the media, which is a function of the voltage difference between the pixel electrode 4 and the counter electrode 8.
- a switchable area of the device 9 can be switched by a voltage difference between the pixel 4 and the top electrode 8. This area determines the aperture ratio of the device.
- Figure l.b. is a top view of the device and shows six transistors and six pixels arranged in three rows. (The display media is not shown in Figure 1.b).
- the lines are written sequentially.
- the voltage written to one line should remain relatively constant during the addressing of the other lines.
- the pixel acts as a parallel plate capacitor providing a reservoir of charge.
- This capacitance can be augmented by the inclusion of a storage capacitor.
- a storage capacitor can be formed by overlapping the pixel with the gate line of the neighbouring transistor.
- Figure 2 explains the incorporation of a pixel capacitor into a transistor-controlled display device, for the case where the drain electrode is the pixel electrode, and is a schematic diagram of three adjacent pixels, N-l, N and N+l of a top gate device.
- Figure 2. a. shows the side view of the device.
- the gates/gate interconnects 6 are extended to overlap part of the adjacent pixel.
- a capacitor 10 is formed between pixel N and the gate of pixel N-l.
- the resultant storage capacitor helps the pixel to maintain a constant voltage throughout the cycle.
- this overlap of the adjacent gate interconnect over the lower, drain (pixel) electrode leads to a reduction of the switchable area 9 of the device and therefore, the aperture ratio.
- Figure 2.c. shows the circuit diagram for this arrangement, where the storage capacitor, C stora e , is formed between the pixel electrode 4 and the gate of a pixel of a neighbouring transistor. This capacitor acts as a reservoir for charge and therefore enhances the image holding ability of the pixel.
- Figure 3. This architecture incorporates a pixel capacitor that allows for a high aperture ratio.
- Figure 3. a. shows the side view of three adjacent transistors and pixels.
- Figure 3.b illustrates a top view of six pixels. Three of these pixel electrodes are shown as being semitransparent, for clarity.
- Data addressing lines 20 running across the display, TFT source electrodes 3, and TFT drain electrodes 4 are formed on a first metal level of the device.
- a metal level is defined as a layer of the device that contains conductive interconnects and / or conductive electrodes.
- the patterned pixel electrode 13 forming one of the contacts to the display element 14 is formed on a separate, second metal level of the device.
- the TFT gate electrode 24, the gate addressing row interconnects 22 and the counter electrode of the pixel capacitor 6 are formed on a third metal level of the device.
- In between the first and third metal level and the second and third metal level is at least one dielectric layer 5, 11 which provides electrical insulation between the electrodes and interconnects at different levels.
- the dielectric between the first and third level is the gate dielectric 5 of the TFT.
- the pixel electrode 13 on the second level is electrically connected to the drain electrode 4 on the first level.
- the latter is achieved by the formation of a via-hole interconnection 12. This interconnection is formed both through the dielectric layer 11 between the second and third levels, and the dielectric layer 5 between the first and third levels.
- the source and drain electrodes 3, 4 may be formed as follows.
- a surface energy pattern is defined on a substrate that consists of an array of hydrophobic and hydrophilic regions. This surface energy pattern is formed as a result of a hydrophobic polymer, such as polyimide (PI), being deposited and patterned on top of a hydrophilic glass subsfrate.
- PI polyimide
- the source and drain electrodes are deposited through ink jet printing from a liquid material, such as PEDOT/PSS, within the hydrophilic wells.
- the hydrophobic ridges define the TFT channel.
- the pixel electrodes 13 of neighbouring pixels on the second metal level may be printed with a small distance of typically on the order of 15-20 ⁇ m between each other. This small gap between neighbouring pixel electrodes needs to be defined very reliably in order to avoid electrical shorting from one pixel to the next.
- a surface energy pattern 16 can be predefined on the second metal level prior to the deposition of the pixel electrodes 13 to repel the ink of the conducting pixel electrode material, and define accurately the dimensions of the pixel electrode.
- the surface energy pattern can be defined by techniques such as laser forward fransfer printing, photolithographic patterning, laser direct write patterning, soft lithographic stamping, embossing, inkjet deposition, or other direct-write deposition and patterning techniques.
- FIG. 4 A second embodiment of the present invention and its method of production is shown in Figure 4.
- This configuration is a variation of the architecture shown in Figure 3.
- either one or both of the dielectric layers 5, 11 are patterned and the pixel elecfrode 13 is formed partially on the first level and partially on the second level with a metallic interconnection formed across a side wall of the patterned dielectric(s).
- the dielectric layer(s) are patterned by direct-write deposition, such as, for example, inkjet printing or screen printing.
- the pixel elecfrode 13 is also deposited by direct-write printing, for example, by printing a conductive material over the sidewalls of the dielectric pattern to form the electrical connection between the pixel electrode 13 and the drain electrode 4.
- the pattern of the dielectric layers 5, 11 is defined in such a way that adequate isolation is achieved between the gate electrodes / interconnects 22, 24 on the third level, and the other electrodes 3, 4, 13 on the first and second levels.
- One advantage of the configuration illustrated in Figure 4 is that it does not require formation of a via-hole interconnection, although the area on the first and third level that is available for elecfrodes and interconnects is reduced compared to the configuration shown in Figure 3.
- the pixel capacitor is formed between the pixel capacitor counter electrode 6 which is connected to the gate addressing lines of the (N-l) or (N+l)th row of pixels, and the pixel electrode 13 on the third level.
- each pixel elecfrode covers the respective pixel area of the second level almost completely with only a small gap of dimension d left to the neighbouring pixels. This achieves aperture ratios close to 100 %.
- This configuration has the following additional advantages.
- the width of the data addressing lines 20 can be made relatively large in order to achieve better conductivity.
- the width of the channel of the TFT can be increased by, for example forming the source and drain electrodes 3, 4 in an interdigitated configuration or by forming the source elecfrode 3 on all four sides of the pixel.
- the source and drain electrodes 3, 4 can cover a significant fraction of the area of the first level.
- the width of the gate addressing interconnects can be increased in order to achieve a better conductivity.
- the size of the pixel capacitor counter electrode 6 and its lateral overlap with the pixel electrode 13 may be adjusted so that it occupies a significant fraction of the area of the third level.
- FIG. 5 shows a first dielectric 5 deposited on the pixel capacitor counter electrode 6 positioned on a first metal level.
- Source and drain electrodes 3,4 are shown on the second metal level with the upper, pixel elecfrode 13 positioned on top of the semiconductor and dielectric layers 2, 11.
- the bottom gate configuration has the added advantage that a via-hole needs only to be formed through one of the dielectric layers. To prevent the via-hole from going through both of the dielectric layers, an etch stop mechanism is required.
- the lower dielectric layer 5 and the drain electrode 4 should not be soluble in the solvent in which the upper electrode 11 dissolves.
- a lower layer that is non-absorbing at the laser wavelength and an upper layer that is absorbing at the laser wavelength may be used in combination to selectively remove material from one layer and leave the other in place.
- the device components (interconnects, electrodes, semiconductor and insulating elements) of each of the above mentioned embodiments are deposited by solution processing and / or direct printing. This may be done, for example, by inkjet printing, aerosol printing, offset printing, solution or blade coating.
- a surface energy pattern may be formed on the subsfrate prior to deposition of the electrodes and interconnects on each level. Surface energy patterning can be achieved by a range of techniques including, but not limited to photolithography, microcontact printing or exposure to focussed electromagnetic radiation (see WO02/095805). The surface energy pattern makes the surface regions that are to be kept free of conducting material repulsive for the ink of the conducting material.
- Surface energy patterning can be performed on any of the metal levels prior to deposition of the conductive material.
- Via hole formation is preferably carried out by a direct-write based method such as laser ablation or ink jetting of solvent.
- via holes may also be made by other methods such as mechanical means or photolithography.
- the via-hole After the via-hole is formed it can be filled with conductive material, preferably using a print based method such as inkjet.
- the above three-metal level configuration allows to achieve high values of the capacitance of the pixel capacitor, while maintaining high aperture ratios, that can in principle be close to 100%. This is true whether the elecfrodes and interconnects are formed from optically fransparent conductive material or not.
- high aperture ratios can be achieved by using fransparent conductive materials, such as PEDOT/PSS or ITO for all electrodes that occupy a large area.
- fransparent conductive materials such as PEDOT/PSS or ITO
- non- transparent conductors may be restricted to ones such as inkjet printed or aerosol printed colloidal metal in the case of interconnects that require a high conductivity close to that of bulk copper or silver, such as the long gate addressing interconnects and the data addressing interconnects running across the display.
- the pixel electrode, the pixel capacitor counter elecfrode, the via-hole interconnection and the source/drain/gate electrodes may all be formed from a fransparent conductor such as printable transparent tin oxides or PEDOT/PSS.
- a fransparent conductor such as printable transparent tin oxides or PEDOT/PSS.
- a conducting via-hole interconnection 12 runs from the drain electrode 4 of the transistor through the dielectric and insulating layers to an enlarged pixel electrode 13.
- the switchable area of the display medium 14 and therefore the aperture ratio is enlarged and can be close to 100%.
- the storage capacitor 10 can be increased.
- This device structure also allows the pixel capacitor to be double sided.
- a capacitor is formed between a) the middle and the lower level and b) the middle and upper level. This provides the capability to produce a very large pixel capacitor whilst maintaining an aperture ratio of near 100%.
- FIG. 4a shows a display structure built up to the gate level, with extended gates as described previously.
- the insulating layers, 5 and 11 are patterned so as only to isolate the necessary components of the metal layers.
- a conducting interconnect 12 is formed between the drain electrode 4 and the upper, pixel electrode 13.
- the connecting interconnect need only be deposited by solvent or mechanical methods, since there is no requirement to form a via-hole.
- the upper insulating layer could be patterned requiring a via-hole to be formed only through the lower dielectric layer.
- one possibility for patterning the pixel elecfrodes such that they make contact with the elecfrodes without shorting is to choose the lower dielectric 5 and the pixel electrode material 13 such that the lower dielectric material will repel the pixel elecfrode material as it is printed.
- the upper dielectric material 11 is chosen such that the pixel elecfrode material adheres well.
- the upper dielectric material covers the lower dielectric material.
- the upper electrode does not overlap the lower dielectric material. This creates a channel that is repulsive to the pixel electrode material as it is being printed and can reduce the need for high print accuracy.
- FIG. 5 shows a structure based on bottom gate transistors that has the same advantages as those described above: high pixel capacitance and high aperture ratio.
- the gate elecfrodes 24, pixel capacitor counter elecfrodes 6 and gate interconnects 22 are printed or otherwise formed on the subsfrate followed by a dielectric layer 5.
- the semiconductor layer 2, data lines 22, source 3 and drain 4 are then formed on top of the dielectric.
- a second insulating layer 11 is laid on top of the structure followed by a via-hole interconnection 12 and a pixel electrode 13.
- This architecture has an advantage over the top gate structure in that there is only a requirement to form a via-hole through one dielectric layer as opposed to two.
- the upper dielectric layer could be patterned as described in Figure 4, eliminating the need for a via-hole forming step.
- the device of the present invention may be used with voltage controlled display media such as liquid crystal or electronic paper, but also with current-driven displays, such as organic light-emitting diode displays. It may be used in both reflective and transmissive displays. The display effect and the nature of the display influence the design of the active matrix.
- all layers of the active matrix TFT array are deposited • from solution, and patterned by direct printing techniques.
- Some of the layers such as the interconnect lines requiring a high conductivity might be deposited by vacuum deposition techniques and patterned by photolithography.
- the conductivity of the gate lines and data lines has to be high for the display to fully operate. If these lines are accurately printed and/or confined by surface energy patterning they can be made from very high conductivity, low transparency materials such as colloidal metals that can be used without overly diminishing the overall transparency of the display. Alternately transparent conductors may be used if the conductivity is sufficiently high.
- the conductivity of the material of any of the pixel elecfrodes does not have to be as high as the gate lines and data lines.
- PEDOT, ITO or other transparent conductors may be used.
- metals can be used for the upper, pixel electrode, providing the necessary reflectivity.
- the display structure is formed on a substrate, which could be produced of glass, plastic, stainless steel or other materials.
- the data lines are formed from conducting material. They are preferentially formed by printing, although evaporation and photolithography may also be used. In the case where the data lines are printed they can either be printed using accurate printing alone or surface energy assisted patterning. Examples for print methods are ink jet printing, aerosol printing, offset printing, screen printing, lithography and gravure printing.
- the printed material could be colloidal metal or a conducting polymer such as PEDOT. Where the display effect is fransmissive, very fine lines can be formed by accurate printing or other deposition methods, or, a transparent conductor may be deposited, such as PEDOT or ITO. These lines should be sufficiently conducting for display operation.
- the semiconductor layer is preferentially deposited from solution although it may also be deposited by evaporation.
- the semiconducting material might be a small organic molecule or a conjugated polymer, or a solution-processible inorganic semiconductor, such as a dispersion of inorganic nanoparticles.
- the semiconducting layer is patterned into active layer islands in order to reduce parasitic leakage currents between neighbouring pixels and devices.
- the semiconducting material may be deposited by inkjet printing. In addition, surface energy patterning may be used to enhance the printing resolution.
- the gates and interconnects are formed from conducting material. They are preferentially formed by printing, although evaporation and the techniques of photolithography may also be used.
- the gates and interconnects may either be printed using accurate printing alone or surface energy patterning. Examples of print methods that may be used include inkjet printing, aerosol printing, offset printing screen printing, and gravure printing.
- the material printed could be colloidal metal or a conducting polymer such as PEDOT. Where the display effect is transmisive very fine lines can be formed by accurate printing or other deposition methods, or, a fransparent conductor such as PEDOT or ITO can be used.
- the lines should also be sufficiently conducting in order to minimize C delays along the gate lines.
- the deposition process used should be compatible with the layers that have been previously deposited.
- the pixel elecfrode is formed preferably by printing but may also be formed by other methods such as evaporation and photolithography. Examples of print methods that can be used include inkjet printing, aerosol printing, offset printing screen printing, and gravure printing.
- the material printed could be colloidal metal or a conducting polymer such as PEDOT. Where the display effect is fransmissive a transparent conductor such as PEDOT can be used.
- the deposition process used for both layers should be compatible with previously deposited layers, the via-hole and double dielectric layer formation.
- the upper, pixel elecfrode 13 determines the aperture ratio. Minimising the dimension d (see Figure 3) increases the aperture ratio. This can be done through any of the patterning methods such as photolithography but is preferentially achieved by printing techniques, either by accurate printing alone or printing combined with surface energy patterning. Preferably, surface energy assisted printing is used in order to minimize the distance d, and to reduce the risk of defects and shorts between adjacent pixels.
- Surface energy patterning on the surface of the dielectric layer 11 can be achieved by a range of techniques including, but not limited to photolithography, microcontact printing or exposure to focussed electromagnetic radiation (WO02/095805). The surface energy pattern enables the surface regions with width d to repulse the ink of the conducting pixel elecfrode and allows accurate printing with minimum d.
- the dielectric layers are preferentially deposited from solution although other methods such as evaporation may be used. Where deposited from solvents care should be taken that the bottom layer is insoluble in the solvent of the top dielectric layer.
- the upper dielectric layer may be deposited in a patterned fashion by inkjet printing, aerosol printing or other methods, so as to cover the gates and gate lines and such as to define the pixel capacitor area. Where the dielectrics layer are patterned, the upper, pixel electrode can be deposited by any of the methods as described above, in direct contact with the lower pixel elecfrode, thus removing the need for via-hole formation as described below
- unwanted scattering of light can be avoided by either patterning the dielectric layers so as to cover a -m-Lnimal area of the display and/or well matching their refractive index to those of the surrounding .
- the via-hole can be formed by a broad range of techniques, such as, but not limited to, laser ablation, photolithography or mechanical methods.
- a preferred method is the printing of solvents and subsequent filling with conductive material as described in WO01/47045.
- the via-hole is formed by the printing of solvents and it has to penetrate two dielectric layers and in some cases a semiconducting layer. For this a sequence of different solvents or a blend of two or more solvents can be used.
- the via-hole should be sufficiently small to fit within the pixel area without interfering with the transistor.
- the via-hole should be ⁇ 100 microns in diameter and most preferably ⁇ 50 microns in diameter.
- the surface of the pixel electrode in the vicinity of the via-hole and above the via-hole should be smooth.
- the via-hole can be. formed from transparent material such as PEDOT.
- the via-hole is filled with a conducting material that has a similar refractive index to that of the dielectric layer in order to reduce any light scattering.
- the optical ihhomogeneity around the via-hole is too high, the area of the via-hole can be shielded from the viewer by a black matrix.
- Another preferred method for the forming of via holes is laser ablation.
- the dielectric materials are removed in a selective fashion by the rapid absorption of energy from a scanning laser beam to form via holes.
- the dielectric layers used can either be intrinsically absorbing or are mixed with a dye to increase the absorption at the wavelength of the laser beam.
- Another method incorporating laser ablation is to deposit a release layer before the dielectric layers are deposited. This release layer is highly absorbing to the wavelength of the laser beam and on absorption removes the dielectric layers deposited on top.
- via holes are then filled with a conducting material, preferably using a print based method such as inkjet.
- the embodiment shown in Figure 3 is a three level device architecture incorporating a double-sided capacitor and large aperture ratio.
- a via hole is formed between the first and third level and the third and second level to ensure electrical conduction between the levels.
- the semiconductor 2 which may consist of a material such as poly(dioctylfluorene-co-bithiophene) (F8T2) in a solution of xylene may be deposited by a technique such as inkjet printing into an active layer island, in order to reduce parasitic leakage currents between neighbouring pixels and devices.
- a continuous dielectric layer 5 may be deposited by techniques such as spin-coating to provide electrical insulation between the electrodes and connections at different levels.
- a suitable material for such an insulating layer may be polymethylmethacrylate (PMMA).
- PMMA polymethylmethacrylate
- the gate electrode 24, and gate addressing lines 22 are formed by the deposition of a conductive material such as colloidal silver or PEDOT/PSS.
- the pixel capacitor counter electrode 6 is also on the third metal level. This is followed by a second continuous dielectric layer of polystyrene deposited in between the third and second metal layer of the device by spin-coating, blade coating or other solution processing techniques.
- a patterned pixel elecfrode forming one of the contacts to the display element 13 is formed on a separate, second metal level of the device.
- the pixel elecfrodes on metal levels 6, 13 may be formed by inkjet printed PEDOT or ITO or other fransparent conductors (fransmissive display) or colloidal silver (reflective display).
- the pixel capacitor is formed between the pixel capacitor counter elecfrode 6 which is connected to the gate addressing lines 22 and the pixel elecfrode 13 on the third level.
- a via-hole is formed.
- the via-hole is formed between the pixels on each metal level of the device.
- a via-hole may be formed either by printing techniques or by methods of laser ablation.
- Printing techniques such as, but not limited to inkjet printing may be used to produce a via-hole in the above described device.
- a solvent or mixture of solvents is deposited that are able to dissolve both the first and second dielectric material, but differentiates between lower pixels.
- ethyl acetate may be used as a suitable solvent.
- the resultant via-hole may then be filled with a conductive material, forming a connection between the two pixels, such as PEDOT. —
- the via channels may be formed either by using a rastering laser where the wavelength of the laser is absorbed by the dielectric materials or where an absorbing dye is added to the dielectric layers.
- Such a system would allow successful via-hole formation by virtue of the non-solubility of the dielectric layers in the via-hole solvent.
- a three level device architecture incorporates polyvinylphenol (PNP) as the gate dielectric 5, followed by polystyrene for the second dielectric layer 11.
- PNP polyvinylphenol
- Isopropanol and xylene or xexane are possible solvents for the formation of the via-holes in these layers, although as mentioned above, this embodiment can be produced without forming via-holes.
- the semiconductor 2 which may consist of a material such as poly(dioctylfluorene-co-bithiophene) (F8T2) in a solution such as xylene may be deposited by a technique such as inkjet printing into an active layer island, in order to reduce parasitic leakage currents between neighbouring pixels and devices.
- a patterned dielectric layer 5 of polyvinylphenol (PNP) may be deposited by a technique such as inkjet printing on a surface energy pattern, as previously described or other patterning techniques in order to provide adequate isolation between the gate electrodes and the interconnects on the third level and electrodes on the first and second level.
- PNP polyvinylphenol
- the gate elecfrode 24 and gate addressing lines 22 are formed by the deposition of a conductive material such as colloidal silver or PEDOT/PSS.
- a pixel capacitor counter electrode 6 is also on the third metal level.
- a patterned pixel electrode forming one of the contacts to the display element 13 is formed partially on the first level and partially on the second level of the device with a metallic connection formed across a side wall of the patterned dielectric(s).
- the pixel elecfrode 13 may be formed by inkjet printed PEDOT or ITO or other transparent conductors (fransmissive display) or colloidal silver (reflective display).
- the combination of materials and processes used to fabricate this invention are ideally tailored to the end use of the device.
- a reflective display there is no need for the active matrix backplane components to be transparent.
- a fransmissive display one arrangement would incorporate a combination of high conductivity, highly confined opaque conducting materials with lower conductivity fransparent conductors.
- the highly conducting, well confined materials for example colloidal silver, which can be deposited in many ways including surface energy assisted printing or aerosol, would be used as the data lines and interconnect lines. The confined nature of these features means that the fransmission of the display is not seriously affected.
- the transparent, lower conductivity elements for example ITO or PEDOT, which can also be deposited using printing or other methods, are used for the pixel and storage capacitance electrodes.
- This combination of high conductivity and high resolution patterned layers combined with low conductivity transparent layers enables the fabrication of a print based transparent display with high ' aperture ratio and high pixel capacitance.
- Some of the conducting elecfrodes of the TFT and/or the connections in the display device may be formed from inorganic conductors that may, for example, be deposited by the printing of a colloidal suspension or by electroplating onto a pre-patterned substrate.
- one or more of the conductive components of the device may be formed from an insoluble conductive material such as a vacuum-deposited conductor.
- Any solution processible conjugated polymeric or oligomeric material that exhibits adequate field-effect mobilities exceeding 10 ⁇ 3 cm 2 /Vs, preferably exceeding 10 "2 cm /Ns, may be used for the formation of the semiconducting layer.
- Suitable materials are reviewed in H.E. Katz, J. Mater. Chem. 7, 369 (1997), or Z. Bao, Advanced Materials 12, 227 (2000).
- Other possibilities include small conjugated molecules with solubilising side chains (J.G. Laquindanum, et al., J. Am. Chem. Soc. 120, 664 (1998)), semiconducting organic-inorganic hybrid materials self-assembled from solution (CR. Kagan, et al., Science 286, 946 (1999)), or solution-deposited inorganic semiconductors such as CdSe nanoparticles (B. A. Ridley, et al., Science 286, 746 (1999)).
- the elecfrodes may be coarse-patterned by techniques other than inkjet printing. Suitable techniques include soft lithographic printing (J.A. Rogers et al., Appl. Phys. Lett. 75, 1010 (1999); S. Brittain et al., Physics World May 1998, p. 31), screen printing (Z. Bao, et al, Chem. Mat. 9, 12999 (1997)), and photolithographic patterning (see WO 99/10939), offset printing, flexographic printing or other graphic arts printing techniques. Ink-jet printing is considered to be particularly suitable for large area patterning with good registration, in particular for flexible plastic substrates.
- one or more components may also be deposited by vacuum deposition techniques and/or patterned by a photolithographic process.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006502233A JP2006516754A (en) | 2003-02-04 | 2004-02-04 | Transistor control display |
EP04707968.6A EP1592999B1 (en) | 2003-02-04 | 2004-02-04 | Pixel tft arrangement for active matrix display |
US10/544,523 US8400576B2 (en) | 2003-02-04 | 2004-02-04 | Transistor-controlled display devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0302485.8 | 2003-02-04 | ||
GBGB0302485.8A GB0302485D0 (en) | 2003-02-04 | 2003-02-04 | Pixel capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004070466A2 true WO2004070466A2 (en) | 2004-08-19 |
WO2004070466A3 WO2004070466A3 (en) | 2004-10-07 |
Family
ID=9952364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/000433 WO2004070466A2 (en) | 2003-02-04 | 2004-02-04 | Pixel tft arrangement for active matrix display |
Country Status (7)
Country | Link |
---|---|
US (1) | US8400576B2 (en) |
EP (1) | EP1592999B1 (en) |
JP (2) | JP2006516754A (en) |
KR (1) | KR20050098890A (en) |
CN (1) | CN100529921C (en) |
GB (1) | GB0302485D0 (en) |
WO (1) | WO2004070466A2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061658A1 (en) | 2004-12-06 | 2006-06-15 | Plastic Logic Limited | Electrode patterning |
EP1715374A1 (en) * | 2005-04-21 | 2006-10-25 | Samsung SDI Germany GmbH | Active matrix circuit, active matrix display and method for manufacturing the same |
WO2007012899A1 (en) | 2005-07-25 | 2007-02-01 | Plastic Logic Limited | Flexible touch screen display |
EP1806602A2 (en) * | 2006-01-06 | 2007-07-11 | Samsung Electronics Co., Ltd. | Black matrix of color filter and method of manufacturing the black matrix |
WO2007096456A1 (en) | 2006-02-27 | 2007-08-30 | Upm-Kymmene Corporation | Active-matrix electronic display comprising diode based matrix driving circuit |
WO2007004130A3 (en) * | 2005-06-30 | 2007-10-11 | Polymer Vision Ltd | Pixel perfromance improvement by use of a field-shield |
EP1764831A3 (en) * | 2005-09-15 | 2008-03-12 | Plastic Logic Limited | Forming holes using laser energy |
WO2006106365A3 (en) * | 2005-04-05 | 2008-12-11 | Plastic Logic Ltd | Multiple conductive layer tft |
WO2009053743A1 (en) | 2007-10-24 | 2009-04-30 | Plastic Logic Limited | Electronic document reader |
WO2009075739A2 (en) * | 2007-12-12 | 2009-06-18 | Eastman Kodak Company | Forming thin film transistors using ablative films |
WO2011036492A2 (en) | 2009-09-24 | 2011-03-31 | Plastic Logic Limited | Touch screen displays |
WO2011048424A2 (en) | 2009-10-23 | 2011-04-28 | Plastic Logic Limited | Electronic document reading devices |
WO2011064578A1 (en) | 2009-11-26 | 2011-06-03 | Plastic Logic Limited | Display systems |
US7968887B2 (en) | 2005-04-21 | 2011-06-28 | Samsung Mobile Display Co., Ltd. | Active matrix circuit substrate, method of manufacturing the same, and active matrix display including the active matrix circuit substrate |
WO2011080517A2 (en) | 2010-01-04 | 2011-07-07 | Plastic Logic Limited | Electronic document reading devices |
WO2011080513A2 (en) | 2010-01-04 | 2011-07-07 | Plastic Logic Limited | Touch-sensing systems |
WO2012025738A1 (en) | 2010-08-25 | 2012-03-01 | Plastic Logic Limited | Display control mode |
WO2012140434A1 (en) | 2011-04-14 | 2012-10-18 | Plastic Logic Limited | Display systems |
US8451249B2 (en) | 2005-07-25 | 2013-05-28 | Plastic Logic Limited | Flexible touch screen display |
US8462124B2 (en) | 2006-06-12 | 2013-06-11 | Plastic Logic Limited | Electronic document reading device |
WO2014033454A2 (en) | 2012-08-30 | 2014-03-06 | Plastic Logic Limited | Electronic device |
US8684779B2 (en) | 2004-12-06 | 2014-04-01 | Plastic Logic Limited | Electrode patterning |
WO2015008009A1 (en) | 2013-07-16 | 2015-01-22 | Plastic Logic Limited | Assembly of multiple flexible displays |
US9001024B2 (en) | 2008-09-05 | 2015-04-07 | Plastic Logic Limited | Electronic document reader |
US9229600B2 (en) | 2006-06-05 | 2016-01-05 | Flexenable Limited | Multi-touch active display keyboard |
US9331132B2 (en) | 2005-04-05 | 2016-05-03 | Flexenable Limited | Multiple conductive layer TFT |
US9755010B2 (en) | 2013-12-03 | 2017-09-05 | Flexenable Limited | Pixel driver circuit |
US9805668B2 (en) | 2012-07-20 | 2017-10-31 | Flexenable Limited | Display systems |
US9985207B2 (en) | 2004-12-06 | 2018-05-29 | Flexenable Limited | Electronic devices |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005215279A (en) * | 2004-01-29 | 2005-08-11 | Quanta Display Japan Inc | Liquid crystal display and its manufacturing method |
US20070090387A1 (en) * | 2004-03-29 | 2007-04-26 | Articulated Technologies, Llc | Solid state light sheet and encapsulated bare die semiconductor circuits |
JP2007103584A (en) * | 2005-10-03 | 2007-04-19 | Ricoh Co Ltd | Transistor element, display device and manufacturing methods thereof |
KR100795801B1 (en) * | 2006-07-19 | 2008-01-21 | 삼성에스디아이 주식회사 | Electrophoretic display apparatus |
GB0619548D0 (en) * | 2006-10-03 | 2006-11-15 | Plastic Logic Ltd | Distortion tolerant processing |
GB2449927A (en) * | 2007-06-08 | 2008-12-10 | Seiko Epson Corp | Electrolyte gated TFT |
JP5401778B2 (en) | 2007-10-15 | 2014-01-29 | 株式会社リコー | Thin film transistor array, display device, and information display system |
TW201142778A (en) | 2010-05-18 | 2011-12-01 | Ind Tech Res Inst | Pixel structure and circuit of pixel having multi-display-medium |
CN103081108B (en) * | 2010-09-09 | 2016-08-03 | 夏普株式会社 | Thin film transistor base plate and manufacture method, display device |
US8419588B2 (en) * | 2010-11-19 | 2013-04-16 | Remy Technologies, L.L.C. | Locking ring for a planetary gear set incorporated into a transmission member |
KR101872925B1 (en) * | 2010-12-24 | 2018-06-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Lighting device |
US8772795B2 (en) | 2011-02-14 | 2014-07-08 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and lighting device |
CN102645811B (en) * | 2011-11-23 | 2014-07-02 | 京东方科技集团股份有限公司 | Electronic-paper active substrate and manufacturing method thereof and electronic-paper display screen |
US9398237B2 (en) * | 2014-04-30 | 2016-07-19 | Sony Corporation | Image sensor with floating diffusion interconnect capacitor |
CN104503172A (en) | 2014-12-19 | 2015-04-08 | 深圳市华星光电技术有限公司 | Array substrate and display device |
US9946915B1 (en) * | 2016-10-14 | 2018-04-17 | Next Biometrics Group Asa | Fingerprint sensors with ESD protection |
US10978007B2 (en) * | 2018-12-03 | 2021-04-13 | Sharp Life Science (Eu) Limited | AM-EWOD circuit configuration with sensing column detection circuit |
US11320693B2 (en) * | 2019-08-30 | 2022-05-03 | Shenzhen GOODIX Technology Co., Ltd. | Under-display illumination with external light sources |
CN112071997B (en) * | 2020-09-09 | 2021-08-06 | Tcl华星光电技术有限公司 | Display device and manufacturing method thereof |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4695357A (en) * | 1985-11-25 | 1987-09-22 | The Dow Chemical Company | Removal of unsaturated hydrocarbons in anhydrous hydrogen halide by infrared laser radiation |
JPS62274696A (en) * | 1986-05-22 | 1987-11-28 | 株式会社東芝 | Manufacture of multilayer interconnection board |
US5153702A (en) * | 1987-06-10 | 1992-10-06 | Hitachi, Ltd. | Thin film semiconductor device and method for fabricating the same |
JP2514731B2 (en) * | 1990-02-05 | 1996-07-10 | シャープ株式会社 | Active matrix display |
JP2621599B2 (en) * | 1990-07-05 | 1997-06-18 | 日本電気株式会社 | Contact hole forming apparatus and method |
US5459595A (en) * | 1992-02-07 | 1995-10-17 | Sharp Kabushiki Kaisha | Active matrix liquid crystal display |
EP0588019A3 (en) * | 1992-07-21 | 1994-09-21 | Matsushita Electric Ind Co Ltd | Active matrix liquid crystal display |
JPH07230104A (en) * | 1993-12-24 | 1995-08-29 | Toshiba Corp | Active matrix type display element and its manufacture |
US5641974A (en) * | 1995-06-06 | 1997-06-24 | Ois Optical Imaging Systems, Inc. | LCD with bus lines overlapped by pixel electrodes and photo-imageable insulating layer therebetween |
JP2755223B2 (en) * | 1995-09-20 | 1998-05-20 | 日本電気株式会社 | Via hole forming method and apparatus |
JP3272212B2 (en) * | 1995-09-29 | 2002-04-08 | シャープ株式会社 | Transmissive liquid crystal display device and method of manufacturing the same |
US5839188A (en) | 1996-01-05 | 1998-11-24 | Alliedsignal Inc. | Method of manufacturing a printed circuit assembly |
JPH09203908A (en) * | 1996-01-25 | 1997-08-05 | Furontetsuku:Kk | Thin-film transistor for liquid crystal display device and liquid crystal display device |
JP2853656B2 (en) * | 1996-05-22 | 1999-02-03 | 日本電気株式会社 | LCD panel |
JP3312101B2 (en) * | 1996-07-02 | 2002-08-05 | シャープ株式会社 | Liquid crystal display |
KR100207491B1 (en) * | 1996-08-21 | 1999-07-15 | 윤종용 | Liquid crystal display device and its manufacturing method |
CN1148600C (en) * | 1996-11-26 | 2004-05-05 | 三星电子株式会社 | Liquid crystal display using organic insulating material and manufacturing methods thereof |
JP3287293B2 (en) * | 1997-01-14 | 2002-06-04 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
KR100226494B1 (en) * | 1997-02-20 | 1999-10-15 | 김영환 | Lcd apparatus and mufacturing method |
JP3973787B2 (en) * | 1997-12-31 | 2007-09-12 | 三星電子株式会社 | Liquid crystal display device and manufacturing method thereof |
US6379509B2 (en) * | 1998-01-20 | 2002-04-30 | 3M Innovative Properties Company | Process for forming electrodes |
US6122033A (en) * | 1998-04-06 | 2000-09-19 | National Semiconductor Corporation | Fusible seal for LCD devices and methods for making same |
JPH11330483A (en) * | 1998-05-20 | 1999-11-30 | Seiko Epson Corp | Semiconductor device, fabrication thereof, electrooptic device and electronic apparatus |
JP2000003785A (en) * | 1998-06-15 | 2000-01-07 | Sony Corp | Manufacture of electroluminescent display |
US6211468B1 (en) * | 1998-08-12 | 2001-04-03 | 3M Innovative Properties Company | Flexible circuit with conductive vias having off-set axes |
KR100274662B1 (en) | 1998-10-13 | 2001-01-15 | 김정식 | Method for manufacturing interlayer vias of multilayer printed circuit boards |
KR20000027768A (en) * | 1998-10-29 | 2000-05-15 | 김영환 | Lcd with high aperture rate and high transmissivity |
US6274412B1 (en) * | 1998-12-21 | 2001-08-14 | Parelec, Inc. | Material and method for printing high conductivity electrical conductors and other components on thin film transistor arrays |
US6395586B1 (en) * | 1999-02-03 | 2002-05-28 | Industrial Technology Research Institute | Method for fabricating high aperture ratio TFT's and devices formed |
KR100608611B1 (en) | 1999-06-02 | 2006-08-09 | 삼성전자주식회사 | Wafer level chip scale package using via hole and manufacturing method for the same |
US6284564B1 (en) * | 1999-09-20 | 2001-09-04 | Lockheed Martin Corp. | HDI chip attachment method for reduced processing |
CA2395004C (en) | 1999-12-21 | 2014-01-28 | Plastic Logic Limited | Solution processing |
US6590227B2 (en) * | 1999-12-27 | 2003-07-08 | Semiconductor Energy Laboratory Co., Ltd. | Active matrix display device |
JP2001249319A (en) * | 2000-03-02 | 2001-09-14 | Hitachi Ltd | Liquid crystal display device |
TW514762B (en) * | 2000-03-06 | 2002-12-21 | Hitachi Ltd | Liquid crystal display element having controlled storage capacitance |
JP2002050764A (en) * | 2000-08-02 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Thin-film transistor, array substrate, liquid crystal display, organic el display, and its manufacturing method |
US6940565B2 (en) * | 2000-08-26 | 2005-09-06 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and fabricating method thereof |
JP2002072257A (en) * | 2000-09-05 | 2002-03-12 | Fuji Xerox Co Ltd | Display element |
JP2002184991A (en) * | 2000-12-11 | 2002-06-28 | Matsushita Electric Ind Co Ltd | Liquid crystal image display and manufacturing method of semiconductor device for image display |
KR100795344B1 (en) * | 2001-05-29 | 2008-01-17 | 엘지.필립스 엘시디 주식회사 | Array Panel used for a Liquid Crystal Display Device and Method of Fabricating the same |
JP4841751B2 (en) * | 2001-06-01 | 2011-12-21 | 株式会社半導体エネルギー研究所 | Organic semiconductor device and manufacturing method thereof |
TW540137B (en) * | 2002-07-16 | 2003-07-01 | Hannstar Display Corp | TFT LCD, the semiconductor structure thereof, and the fabrication method thereof |
TWI307440B (en) * | 2002-10-21 | 2009-03-11 | Hannstar Display Corp |
-
2003
- 2003-02-04 GB GBGB0302485.8A patent/GB0302485D0/en not_active Ceased
-
2004
- 2004-02-04 US US10/544,523 patent/US8400576B2/en active Active
- 2004-02-04 JP JP2006502233A patent/JP2006516754A/en active Pending
- 2004-02-04 CN CNB2004800068085A patent/CN100529921C/en not_active Expired - Fee Related
- 2004-02-04 WO PCT/GB2004/000433 patent/WO2004070466A2/en active Search and Examination
- 2004-02-04 EP EP04707968.6A patent/EP1592999B1/en not_active Expired - Lifetime
- 2004-02-04 KR KR1020057014405A patent/KR20050098890A/en active Search and Examination
-
2011
- 2011-06-21 JP JP2011137193A patent/JP5410475B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8684779B2 (en) | 2004-12-06 | 2014-04-01 | Plastic Logic Limited | Electrode patterning |
US9985207B2 (en) | 2004-12-06 | 2018-05-29 | Flexenable Limited | Electronic devices |
EP1831937B1 (en) * | 2004-12-06 | 2019-11-27 | Flexenable Limited | Method for forming and metallizing vias through a multilayer substrate |
WO2006061658A1 (en) | 2004-12-06 | 2006-06-15 | Plastic Logic Limited | Electrode patterning |
US9331132B2 (en) | 2005-04-05 | 2016-05-03 | Flexenable Limited | Multiple conductive layer TFT |
WO2006106365A3 (en) * | 2005-04-05 | 2008-12-11 | Plastic Logic Ltd | Multiple conductive layer tft |
US9947723B2 (en) | 2005-04-05 | 2018-04-17 | Flexenable Limited | Multiple conductive layer TFT |
EP1715374A1 (en) * | 2005-04-21 | 2006-10-25 | Samsung SDI Germany GmbH | Active matrix circuit, active matrix display and method for manufacturing the same |
US7968887B2 (en) | 2005-04-21 | 2011-06-28 | Samsung Mobile Display Co., Ltd. | Active matrix circuit substrate, method of manufacturing the same, and active matrix display including the active matrix circuit substrate |
WO2007004130A3 (en) * | 2005-06-30 | 2007-10-11 | Polymer Vision Ltd | Pixel perfromance improvement by use of a field-shield |
US7989806B2 (en) | 2005-06-30 | 2011-08-02 | Creator Technology B.V. | Pixel performance improvement by use of a field-shield |
US8451249B2 (en) | 2005-07-25 | 2013-05-28 | Plastic Logic Limited | Flexible touch screen display |
US8890831B2 (en) | 2005-07-25 | 2014-11-18 | Plastic Logic Limited | Flexible touch screen display |
EP1907921B1 (en) * | 2005-07-25 | 2017-07-19 | Flexenable Limited | Flexible touch screen display |
WO2007012899A1 (en) | 2005-07-25 | 2007-02-01 | Plastic Logic Limited | Flexible touch screen display |
US8546723B2 (en) | 2005-09-15 | 2013-10-01 | Plastic Logic Limited | Forming holes using laser energy |
EP1764831A3 (en) * | 2005-09-15 | 2008-03-12 | Plastic Logic Limited | Forming holes using laser energy |
EP1806602A3 (en) * | 2006-01-06 | 2007-11-07 | Samsung Electronics Co., Ltd. | Black matrix of color filter and method of manufacturing the black matrix |
EP1806602A2 (en) * | 2006-01-06 | 2007-07-11 | Samsung Electronics Co., Ltd. | Black matrix of color filter and method of manufacturing the black matrix |
WO2007096456A1 (en) | 2006-02-27 | 2007-08-30 | Upm-Kymmene Corporation | Active-matrix electronic display comprising diode based matrix driving circuit |
US9229600B2 (en) | 2006-06-05 | 2016-01-05 | Flexenable Limited | Multi-touch active display keyboard |
US8462124B2 (en) | 2006-06-12 | 2013-06-11 | Plastic Logic Limited | Electronic document reading device |
WO2009053747A1 (en) | 2007-10-24 | 2009-04-30 | Plastic Logic Limited | Electronic document reading devices |
WO2009053743A1 (en) | 2007-10-24 | 2009-04-30 | Plastic Logic Limited | Electronic document reader |
WO2009075739A3 (en) * | 2007-12-12 | 2009-08-06 | Eastman Kodak Co | Forming thin film transistors using ablative films |
WO2009075739A2 (en) * | 2007-12-12 | 2009-06-18 | Eastman Kodak Company | Forming thin film transistors using ablative films |
US9001024B2 (en) | 2008-09-05 | 2015-04-07 | Plastic Logic Limited | Electronic document reader |
WO2011036492A2 (en) | 2009-09-24 | 2011-03-31 | Plastic Logic Limited | Touch screen displays |
US8619021B2 (en) | 2009-10-23 | 2013-12-31 | Plastic Logic Limited | Electronic document reading devices |
WO2011048424A2 (en) | 2009-10-23 | 2011-04-28 | Plastic Logic Limited | Electronic document reading devices |
US9183810B2 (en) | 2009-10-23 | 2015-11-10 | Flexenable Limited | Electronic document reading devices |
US9013383B2 (en) | 2009-11-26 | 2015-04-21 | David Hough | Display systems |
WO2011064578A1 (en) | 2009-11-26 | 2011-06-03 | Plastic Logic Limited | Display systems |
WO2011080517A2 (en) | 2010-01-04 | 2011-07-07 | Plastic Logic Limited | Electronic document reading devices |
WO2011080513A2 (en) | 2010-01-04 | 2011-07-07 | Plastic Logic Limited | Touch-sensing systems |
WO2012025738A1 (en) | 2010-08-25 | 2012-03-01 | Plastic Logic Limited | Display control mode |
US9336731B2 (en) | 2011-04-14 | 2016-05-10 | Flexenable Limited | System and method to compensate for an induced voltage on a pixel drive electrode |
WO2012140434A1 (en) | 2011-04-14 | 2012-10-18 | Plastic Logic Limited | Display systems |
US9805668B2 (en) | 2012-07-20 | 2017-10-31 | Flexenable Limited | Display systems |
WO2014033454A2 (en) | 2012-08-30 | 2014-03-06 | Plastic Logic Limited | Electronic device |
WO2015008009A1 (en) | 2013-07-16 | 2015-01-22 | Plastic Logic Limited | Assembly of multiple flexible displays |
US9755010B2 (en) | 2013-12-03 | 2017-09-05 | Flexenable Limited | Pixel driver circuit |
Also Published As
Publication number | Publication date |
---|---|
JP5410475B2 (en) | 2014-02-05 |
KR20050098890A (en) | 2005-10-12 |
JP2006516754A (en) | 2006-07-06 |
WO2004070466A3 (en) | 2004-10-07 |
CN1759344A (en) | 2006-04-12 |
US20060250558A1 (en) | 2006-11-09 |
EP1592999A2 (en) | 2005-11-09 |
JP2011197697A (en) | 2011-10-06 |
CN100529921C (en) | 2009-08-19 |
EP1592999B1 (en) | 2017-08-02 |
US8400576B2 (en) | 2013-03-19 |
GB0302485D0 (en) | 2003-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8400576B2 (en) | Transistor-controlled display devices | |
EP1866979B1 (en) | Pixel driver circuit for active matrix display | |
US9947723B2 (en) | Multiple conductive layer TFT | |
EP1648030B1 (en) | Organic thin film transistor array | |
RU2499326C2 (en) | Off-set top pixel electrode configuration | |
EP2059957B1 (en) | Organic thin film transistor | |
US8748242B2 (en) | Electronic circuit structure and method for forming same | |
US7709306B2 (en) | Active layer island | |
KR20080013747A (en) | Display device | |
US7915074B2 (en) | Thin film transistor array panel and manufacturing method thereof | |
KR100872154B1 (en) | Solution processing | |
US7786484B2 (en) | Display device having a portion of a pixel circuit exposed by a connection hole | |
JP2003518756A5 (en) | Method for forming electrode of electronic switching element or transistor on substrate | |
US20070040171A1 (en) | Organic thin film transistor array panel and method for manufacturing the same | |
US20070152558A1 (en) | Organic thin film transistor array panel | |
JP2008066510A (en) | Thin film transistor, manufacturing method therefor, and display device | |
US8183563B2 (en) | Organic transistor, organic transistor array and display apparatus | |
JP2009218295A (en) | Thin film transistor, method of manufacturing the same, active matrix type thin film transistor array and active matrix driven display device | |
KR101251997B1 (en) | Thin film transistor array panel and method for manufacturing the same | |
JP6197306B2 (en) | Thin film transistor manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020057014405 Country of ref document: KR Ref document number: 2006502233 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2004707968 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004707968 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048068085 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057014405 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004707968 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006250558 Country of ref document: US Ref document number: 10544523 Country of ref document: US |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 10544523 Country of ref document: US |