WO2004070435A1 - Heat-resistant optical material and medium for optical transmission therefrom - Google Patents

Heat-resistant optical material and medium for optical transmission therefrom Download PDF

Info

Publication number
WO2004070435A1
WO2004070435A1 PCT/JP2004/000691 JP2004000691W WO2004070435A1 WO 2004070435 A1 WO2004070435 A1 WO 2004070435A1 JP 2004000691 W JP2004000691 W JP 2004000691W WO 2004070435 A1 WO2004070435 A1 WO 2004070435A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
heat
formula
polymer
optical material
Prior art date
Application number
PCT/JP2004/000691
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshito Tanaka
Takayuki Araki
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2004070435A1 publication Critical patent/WO2004070435A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/046Light guides characterised by the core material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like

Definitions

  • the present invention relates to an optical material having excellent heat resistance in addition to optical characteristics.
  • the optical material of the present invention is suitable, for example, as an optical transmission medium, more specifically, as a material for a plastic optical fiber or a waveguide element, particularly as a core material.
  • Acrylic resins are transparent to light in the visible region.
  • PMMA polymethyl methacrylate
  • they are commonly used in the core of plastic optical fibers for communications using LEDs as a light source (wavelength: 65 nm).
  • LEDs as a light source
  • PMMA has insufficient heat resistance (Tg: 105 ° C), so it may change its shape or impair its properties in applications or places where heat resistance is required. It can only be used in environments up to about 70.
  • Attempts to improve the heat resistance of PMMA include a method of copolymerizing ⁇ -methylstyrene and a method of copolymerizing maleic anhydride / styrene. In this case, the heat resistance is improved, but the mechanical strength is accordingly reduced, so that the fiber is easily broken when bent after being formed.
  • polycarbonate resin is excellent in heat resistance (Tg: 145.C), but when this is used for the core material of one optical fiber, the optical transmission loss is extremely large, Transmission, for example, transmission over 20 m is problematic.
  • Amorphous polyolefins (T g: 171 ° C, refractive index: 1.5 1) have particularly high heat resistance, but when exposed to air at high temperatures, coloring and gelling due to the effect of oxygen molecules may occur. It is easy to proceed, and as a result, when used as a core material of an optical fiber, there is a problem that transmission loss of an optical signal increases.
  • the LAN communication cables for these vehicles are required to have heat resistance in high-temperature areas such as the engine room and ceiling.
  • a plastic optical fiber for automobiles that has both heat resistance and signal transmission capability is required, but such an optical fiber has not yet been obtained for the aforementioned reasons. You.
  • An object of the present invention is to provide an optical material having both heat resistance and signal transmission ability in view of the above-mentioned conventional technology.
  • Another object of the present invention is to obtain an optical transmission medium, more specifically, an optical material having a signal transmission capability that can be used as a core material of a plastic optical fiber or a waveguide element.
  • the present inventors have conducted intensive studies to solve the above problems, and found that a specific polymer having an alicyclic hydrocarbon moiety in the side chain is excellent in heat resistance.
  • polymers having hydrocarbon moieties polymers having a heat distortion temperature of a specific temperature or higher are useful as heat-resistant optical materials.
  • optical polymers used in plastic optical fibers for automotive LAN as described above have found that they are useful as materials and have completed the present invention.
  • the heat-resistant optical material of the present invention is a heat-resistant optical material comprising a polymer having an alicyclic hydrocarbon moiety in a side chain, and a polymer having an alicyclic hydrocarbon moiety in the side chain.
  • the heat distortion temperature is 1 15 or more, and the equation (M 1)
  • the structural unit Ml has the formula (1): X
  • Structural unit derived from at least one of the monomers represented by the formula structural unit A is a structural unit derived from at least one of the monomers copolymerizable with the monomer of the formula (1)], It consists of a polymer containing 1 to 100 mol% of the structural unit Ml and 0 to 99 mol% of the structural unit A.
  • the polymer of the formula (M-1) according to the present invention comprises, as an essential component, a structural unit (Ml) derived from an acryl-based monomer of the formula (1) having an alicyclic hydrocarbon moiety in a side chain. It is a polymer, and it is preferable as a heat-resistant optical material because it is transparent to light in the visible region and has a high glass transition temperature by introducing an alicyclic hydrocarbon into a side chain.
  • the above-mentioned polymer has a heat distortion temperature of 115 ° C or higher, and is an optical material usable even in a high-temperature environment of 70 or higher, for example, a material useful for a plastic optical fiber for a vehicle-mounted LAN.
  • FIG. 1 is a schematic cross-sectional view of a main part structure of an optical waveguide device.
  • the structural unit M 1 which is an essential component in the polymer of the formula (M-1) of the present invention has a general formula (M_2):
  • Structural unit M 1-1 is represented by formula (2):
  • Z 1 is a monovalent organic group having 330 carbon atoms having an alicyclic hydrocarbon moiety
  • Structural unit Ml—2 is the formula (3):
  • X 3 is at least one member selected from the group consisting of H CH 3 C 1 and CF 3 ;
  • Z 2 is a monovalent organic group having 330 carbon atoms having an alicyclic hydrocarbon moiety
  • Structural unit derived from at least one of the monomers represented by the following formulas] may be a structural unit containing 199 mol% of the structural unit M1-1 and 199 mol% of the structural unit M1_2. preferable.
  • the first of the preferable polymers of the present invention is that the above-mentioned M1-1 power is 199 mol%, the structural unit Ml-2 is 199 mol%, and the arbitrary structural unit A in the formula (M-1) is 098 mol% % Polymer.
  • ⁇ -fluoroacrylic acid-derived structural unit ⁇ 1-1 having an aliphatic alicyclic hydrocarbon moiety in the side chain and ⁇ -fluoroacrylic acid represented by the formula (2) among the monomers of the formula (1) It is a polymer that has structural unit ⁇ 1-2 as an essential component derived from a monomer other than a single unit.
  • heat resistance and transparency can be imparted by introducing the structural unit Ml-2,
  • it is possible to adjust the refractive index for example, to set PMMA or higher by increasing the refractive index).
  • the structural unit Ml-2 is a structural unit derived from methacrylate in which X 3 in the formula (3) is CH 3 , and the above-mentioned heat resistance, transparency and refractive index adjustment functions can be more effectively achieved. Can be granted.
  • Structural unit A_1 is represented by formula (4):
  • X 1 is at least one selected from the group consisting of H, CH 3 , F, C 1 and CF 3 ; R 1 is a hydrogen atom, a linear or branched ether bond having 1 to 30 carbon atoms) At least one selected from the group consisting of an alkyl group that may be contained and a fluorinated alkyl group that may contain a linear or branched ether bond having 1 to 30 carbon atoms) Structural unit derived from one kind and Z or formula (5): X 2 CH 2 ⁇ C
  • X 2 is the same as X 1 in the formula (4); a monovalent hydrocarbon group having 6 to 30 carbon atoms comprising R 2 is an aromatic ring structure (aromatic ring), provided that R 2 A part or all of the hydrogen atoms in the monomer may be substituted with a fluorine atom); a structural unit derived from at least one of the following monomers; structural unit A-2 is represented by the formula (1), (1) 4) and a structural unit derived from a monomer copolymerizable with the monomer shown in (5)], wherein 1 to 99 mol% of the structural unit A-1 and the structural unit A are contained in the polymer.
  • the structural unit contains 0 to 98 mol% of —2.
  • the second of the preferable polymers of the present invention is that the structural unit M1 having an alicyclic hydrocarbon site in the side chain in the formula (M-1) is 1 to 99 mol%, and the alicyclic hydrocarbon site is It is a polymer containing 1 to 99 mol% of structural unit A-1 not containing, and 0 to 98 mol% of arbitrary structural unit A-2.
  • the refractive index can be adjusted (for example, set to PMMA or higher by increasing the refractive index). It is.
  • the refractive index can be adjusted (for example, PMMA or more by increasing the refractive index). Is set to).
  • X 1 and X 2 in the structural unit A-1 are structural units derived from methacrylate, which is CH 3 , it is preferable in that heat resistance, transparency, and a function of adjusting a refractive index can be more effectively imparted.
  • X 1 and X 2 in the structural unit A-1 are structural units derived from ⁇ -fluoroacrylate, which is an F atom, heat resistance and mechanical strength, particularly bending It is preferable in that it can impart strength and further flexibility.
  • the structural unit A-1 is a structural unit derived from at least one monomer selected from methyl methacrylate and methyl- ⁇ -fluoroacrylate. Can be granted.
  • the structural unit A-1 is a structural unit derived from at least one monomer selected from phenyl methacrylate and phenyl ⁇ -fluoroacrylate, it is preferable in that it can impart further heat resistance and low water absorption.
  • the ratio of Ml / A-1 is 5/95 to 90/10 mol%, more preferably 595 to 60/40 mol%, particularly preferably 10 ⁇ 90 to 50/50 mol%.
  • the ratio is 10/90 to 40/60 mol%.
  • X in the structural unit Ml derived from the monomer of the formula (1) is preferably an F atom.
  • heat resistance and mechanical strength, particularly bending strength, and further flexibility can be imparted.
  • Z forming a side chain in the polymer of the present invention containing the structural unit of the formula (M-1) and the polymer containing the structural unit of the formula (M-3), the side in the polymer containing the structural unit of the formula (M-2) ZZ 2 forming a chain is an organic group having 3 to 30 carbon atoms and having an alicyclic hydrocarbon moiety therein.
  • the alicyclic hydrocarbon moiety may be a monocyclic hydrocarbon moiety, a multicyclic hydrocarbon moiety, or a hydrocarbon moiety containing any of them.
  • alicyclic hydrocarbon moiety includes a monocyclic hydrocarbon moiety, ⁇ , ⁇
  • Zeta 2 is preferably a number of 7 or more organic groups carbon, it'll connexion than effective As a result, heat resistance can be imparted.
  • ⁇ and ⁇ 2 are preferably an organic group containing a hydrocarbon moiety having a double ring structure, and can more effectively impart heat resistance and transparency.
  • ⁇ 2 when containing a hydrocarbon moiety having a monocyclic structure, ⁇ 2 is, specifically,
  • hydrogen atoms of these exemplified hydrocarbon groups may be substituted with an alkyl group having 1 to 5 carbon atoms, a fluorine atom, or a functional group.
  • hydrogen atoms of these exemplified hydrocarbon groups may be substituted with an alkyl group having 1 to 5 carbon atoms, a fluorine atom, or a functional group.
  • double ring structure consisting Adamanta down and its derivatives, Noruporunan and its derivatives or Ranaru double ring structure, tricyclo [5 .. 2. 1.0 2 ' 6 ]
  • Those containing a double ring structure composed of decane and a derivative thereof are preferable, and these can particularly effectively impart heat resistance and transparency to the polymer.
  • Polymer and the formula (M- 2) and (M- 3) structure 3 ⁇ 4 side chains that have a hydrocarbon moiety of alicyclic structure in the polymer containing structural units of the formula (M- 1) of the present invention monomer capable of forming the unit (formula (1) (2) and (3)) is specifically the Z, in Akuriru monomer which have at least one side chain structure selected from the ZZ 2 There are, for example, the following.
  • R la , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a are the same Or different, H, F, C 1 or an alkyl group which may be substituted by a halogen atom having 1 to 14 carbon atoms; R 11a has 1 to 6 carbon atoms which may include a bond or a branched chain; Alkylene group; n is 0, an integer of 1-2)
  • R 1 R 2b is a substituent bonded to the ring, CH 3 C 2 H 5 or OH; R 4b R 5b has a bond or a branched chain.
  • R 3b is HCH 3 or C 2 H 5 ; n is an integer of 0 or 12), and more specifically,
  • X is H, F, C 1, CH 3 or CF 3; R 1 'R 2C , R 3C, R
  • R 14C and R 15E are the same or different, and may be an alkyl group having 1 to 14 carbon atoms which may be substituted with H, F, CI or a halogen atom; R 16C may have a bond or a branched chain. (Good alkylene group with 1 to 6 carbon atoms)
  • R ld , R 2d , R 3d , R 4d , R 5d , R 6d , R 7d , R 8d 3 ⁇ 4 R 9d 3 ⁇ 4 R 10d , R lld 3 ⁇ 4 R 12d and R 13d are the same or different and are an alkyl group having 1 to 14 carbon atoms which may be substituted with H, F, C 1 or a halogen atom; R 14 d includes a bond or a branched chain (Alkylene group having 1 to 6 carbon atoms which may be present)
  • n is an integer of 16 and m is an integer of up to 0 29.
  • Y is H or F; R le R 2e R 3e is the same or different, and H is an alkyl which may contain an ether bond of 129 carbon atoms.
  • H is an alkyl which may contain an ether bond of 129 carbon atoms.
  • fluorine-containing alkyl group which may contain an ether bond having 1 to 29 carbon atoms
  • methacrylic acid, ⁇ -fluoroacrylic acid, acrylic acid, methyl methacrylate ( ⁇ ), and methyl ⁇ -fluoroacrylate are excellent in the effects of improving transparency, heat resistance, and mechanical strength. preferable.
  • is excellent in improving optical and mechanical properties.
  • monomer having a hydrocarbon group containing an aromatic cyclic structure (aromatic ring) of the formula (5) in the side chain include:
  • R 5 f is the same or different and is an alkyl group having 1 to 14 carbon atoms which may be substituted by H, F, C 1 or a halogen atom; R 6 f may have a bond or a branched chain A good alkylene group having 1 to 6 carbon atoms) and the like.
  • the aromatic cyclic structure contained in R 2 is not only an aromatic monocyclic structure such as a benzene ring, but also a multiple cyclic structure such as a naphthylene ring or an anthracene cyclic structure, or a pyridine ring. It may be a structure in which two or more aromatic cyclic structures such as phenyl are continuously connected.
  • phenyl methacrylate .. phenyl methacrylate is preferred from the viewpoint of improving heat resistance.
  • the molecular weight of the polymer used in the heat-resistant optical material of the present invention is generally in the range of 2000 to 1,000,000 in number average molecular weight, preferably 10,000 to 500,000, particularly preferably 50,000 to 300,000. Low An excessively high molecular weight is not preferable because mechanical properties, particularly, bending strength and flexibility are reduced. On the other hand, a molecular weight that is too high is not preferred because moldability is reduced and transparency is reduced due to an increase in light scattering.
  • the polymer used in the heat-resistant optical material of the present invention has a heat distortion temperature of 115 ° C. or higher, which suppresses softening even in a high-temperature environment. Signal transmission (transmission with little loss of optical signal over long distances) becomes possible.
  • the heat distortion temperature in the present invention means a deflection temperature under load (HDT), and uses a value measured by a method standardized by ASTM D684.
  • the heat distortion temperature is preferably 12 Ot: or more, especially 130 ° C or more, and more preferably 140 ° C or more.
  • the high heat deformation temperature makes it possible to control automobiles, especially around engine parts, and aircraft. It is advantageous for optical components, optical communication media, plastic optical fibers, etc. used in high-temperature environments, such as for controlling air conditioners and controlling industrial mouth pots.
  • the heat-resistant optical material of the present invention needs to have high transparency to light in the visible region, and particularly preferably has high transparency to light having a wavelength of 650 nm.
  • the heat-resistant optical material of the present invention preferably has an extinction coefficient at 65 Onm wavelength light of 0.015 cm- 1 or less, particularly 0.014 cm- 1 or less, and more preferably 0.015 cm- 1 or less. It is preferably cm- 1 or less.
  • the extinction coefficient means that a plastic optical fiber having a length of 10 Omm is manufactured by using a heat-resistant optical material of the present invention as a core material by melt-spinning with a clad material having an appropriate refractive index and a wavelength of 650 nm. Measure transmitted light intensity with light at nm. The incident light intensity iota beta, when the transmitted light intensity, the absorption coefficient under Refers to the value calculated by the formula.
  • the heat-resistant optical material of the present invention can adjust the refractive index in a wide range. Thus, it can be used for optical transmission media or cladding.
  • the heat-resistant optical material of the present invention since the heat-resistant optical material of the present invention has high transparency and can be adjusted to a high refractive index, it can be used for an optical transmission medium, for example, a core of a plastic optical fiber / optical waveguide element.
  • heat resistant optical material refractive index of the present invention n D 1. 45 or more der Rukoto are preferred.
  • the refractive index uses the value measured using an Abbe's refractometer at 25 using sodium D line as a light source.
  • the refractive index is preferably 1.47 or more, more preferably 1.48 or more, and the most preferred range is 1.48 to 1.52. If the refractive index is too low, it is not preferable because the choice of the material on the cladding material side is restricted when fabricating the plastic optical fiber. If the refractive index is too high, the transmission loss due to light scattering increases, and the coupling loss increases when joining the plastic optical fibers.
  • Structural unit A—1a is a structural unit derived from methyl methacrylate], and 1 to 100 mol% of structural unit Ml—1a; From 0 to 99 mol%.
  • This polymer is preferred because it has high transparency and excellent mechanical strength, particularly excellent bending strength and flexibility.
  • the structural units Ml-1a and A-1a are the same as those in the above formula (M-4); the structural unit A-2a is a structural unit derived from phenyl methacrylate or phenyl-1-a-fluoroacrylate).
  • This polymer is preferred because it has excellent heat resistance and low water absorption.
  • z 4 is Adamantan and its derivatives, Noruporunan and derivatives thereof, tricyclo [5.2.2 1.0 2'6] hydrocarbon moiety of decane and at least one double ring structure derivatives or selected Monovalent organic group containing 10 to 30 carbon atoms)
  • a polymer comprising 1 to 99 mol% of a structural unit M 1-la, 1 to 99 mol% of a structural unit M 1-2a, and 0 to 98 mol% of a structural unit A-1a.
  • This polymer is preferred because it has excellent heat resistance and mechanical strength, particularly excellent bending strength, and is easy to adjust the refractive index.
  • additives may be mixed within a range that does not impair heat resistance or signal transmission performance.
  • benzyl phthalate-n-butyl (refractive index: 1.575), 1-methoxyphenyl-2-phenylene (refractive index: 1.571), benzyl benzoate (refractive index: 1.568), bromobenzene (refractive index: 1.557), o-dichlorobenzene (refractive index: 1.551) m-dichlorobenzene (refractive index: 1.543) 3 ⁇ 4 1, 2'-dibromoethane (Refractive index: 1.538), 3-phenyl-1-propanol (refractive index: 1.532), diphenylphthalic acid (C 6 H 4 (COOC 6 H 5 ) 2 ), triphenyl phosphine ((C 6 H 5) 3 P) and dibenzyl phosphate Feto ((C 6 H 5 CH 2 ⁇ ) 2 PH0 2), 4, 4, one dibromobenzyl, 4, 4 'single dibro
  • These low molecular weight compounds not only simply adjust the refractive index of the heat-resistant optical material of the present invention uniformly, but also, for example, a refractive index distribution (graded grade) described in JP-A-8-110420. It functions as a dopant for obtaining an index-type optical fiber.
  • the heat resistant optical material of the present invention is also useful for obtaining a heat resistant refractive index distribution (graded index) type optical fiber.
  • the heat-resistant optical material of the present invention as an optical transmission medium and a core material of a plastic optical fiber formed of a core and a clad.
  • the above plastic optical fiber using the heat resistant optical material of the present invention has high heat resistance, it is useful when 100 or more heat resistance is required.
  • heat resistance is required in a light guide.
  • heat resistance is required to detect the parts where the atmosphere becomes hot, such as the detection of headlight illumination of a car and the positioning sensor of a melting press. The same applies to sensors in industrial lopots.
  • heat resistance of 100 ° C or more is required, for example, when wiring in the engine room, the ceiling of a car, or the instrument panel where the temperature is high in an in-vehicle LAN. The same applies to the case where it is mounted on an aircraft.
  • Plastic optical fibers in factory-automation (FA) applications also require heat resistance when exposed to high-temperature environments.
  • heat resistance is required due to the environment where there is no ordinary air conditioning equipment such as a distribution panel room on the roof of a pill or a communication base station.
  • the heat-resistant optical material of the present invention can be effectively used for these uses.
  • optical materials used for the plastic optical fiber cladding using the heat-resistant optical material have a glass transition temperature of 10 ° C. or more and a refractive index (n D ) of 1.44 or less.
  • the optical material used for the clad preferably has a glass transition temperature of 105 or more, more preferably 110 ° C or more, further preferably 120 ° C or more, particularly 130 ° C or more.
  • Heat resistance can be improved by having a high glass transition temperature, and it is preferable in that a high heat-resistant plastic optical fiber can be formed in combination with the heat-resistant optical material of the present invention used for the core. It can be used more effectively in applications where
  • the preferred polymer used as the heat-resistant cladding has a refractive index of 1.
  • a fluorinated acryl-based resin of 44 or less is usually used, and a methacrylate having a fluoroacrylyl group in a side chain, a (co) copolymer of CK-fluoroacrylate and the like are preferable.
  • a fluorine-containing acrylate having both heat resistance (high glass transition temperature) and low refractive index formula (6):
  • a fluorine-containing copolymer composed of the structural unit of the above formula (6) and a structural unit derived from methyl methacrylate is preferable.
  • a structural unit (a) of the above formula (6) and a structural unit (b) derived from methyl methacrylate are preferred.
  • a fluorine-containing copolymer having a ratio of (a) / (b) 32 68 to 64/36 mol% is preferred.
  • the layer structure of the plastic optical fiber is generally composed of a core layer and a cladding layer from the inside.
  • the caliber is not particularly limited, but usually from 125 l mm.
  • a protective layer may be provided on the outer periphery.
  • This protective layer is mainly used for the purpose of improving heat resistance, reducing bending loss, and improving impact resistance.
  • a vinylidene fluoride copolymer is used. Among them, a vinylidene fluoride Z tetrafluoroethylene copolymer is preferable.
  • the thickness of the protective layer is almost the same as that of the cladding layer.
  • a coating layer is further arranged on the outer periphery.
  • the coating layer conventionally used nylon 12, polyvinyl chloride, polyethylene, polyurethane, polypropylene and the like can be used.
  • the one in which the core layer has a single refractive index is called an SI (step index) type plastic optical fiber, which is the most common.
  • the one in which the refractive index of the core layer decreases stepwise from the inner circumference to the outer circumference is called a multi-step plastic optical fiber.
  • a fiber whose refractive index decreases smoothly from the inner circumference to the outer circumference is called a GI (graded index) plastic optical fiber.
  • the core material polymer and the clad material polymer are arranged concentrically using a composite spinning nozzle, and melt composite spinning is performed.
  • a method of forming into a par and then performing a stretching treatment under heating for the purpose of improving the mechanical strength is used.
  • the heat-resistant optical material of the present invention can be preferably used also as a core of an optical waveguide element, and specific examples of the same polymer as the core material and the clad material can be similarly preferably exemplified.
  • FIG. 1 illustrates a main structure of a typical optical waveguide device.
  • 1 is the base A plate
  • 2 is a core portion
  • 3 and 4 are clad portions.
  • Such an optical waveguide device is used to connect between optical functional devices, and light transmitted from a terminal of one of the optical functional devices passes through the core portion 2 of the optical waveguide device, for example, the core portion 2 and the clad portion. While repeating total reflection at the interface with 3 and 4, it is propagated to the other optical functional device terminal.
  • the type of the optical waveguide element can be an appropriate type such as a planar type, a strip type, a ridge type, and a buried type.
  • optical material of the present invention can be used for the core portion and the clad portion of the above-mentioned optical functional device.
  • the optical material of the present invention may be used only for the core portion or only the clad portion.
  • various functional compounds for example, a nonlinear optical material, a functional organic dye having a fluorescent property, a photorefractive material, and the like are contained in the optical material of the present invention, and are used for a core portion of a waveguide type optical functional element. It is also possible.
  • Optical waveguide devices include, for example, devices that perform operations such as switching, amplification, wavelength conversion, optical multiplexing / demultiplexing, and wavelength selection on optical communication signals, such as optical switches, optical routers, ONUs, and media converters. Available.
  • the heat-resistant optical material of the present invention may be used for other purposes other than the above, for example, for lenses (pickup lenses, lenses for glasses, lenses for cameras, Fresnel lenses for projects, contact lenses), sealing for luminous bodies such as LEDs. Materials, anti-reflective materials, optical disc substrates, cover materials for lighting equipment, display protection plates, transparent cases, display boards, automotive parts, etc.
  • MMA methyl methacrylate
  • n-laurylmercapone 0.1 g
  • azoisobutyronitrile 0.02 5 8 5 0 0111 Inside the glass flask The mixture was dissolved and mixed in, degassing and nitrogen substitution were repeated, and after sealing, polymerization was carried out at 70 ° C for 16 hours.
  • the physical property values are measured by the following methods.
  • MI Melt index
  • Each of the copolymers was mounted on a 9.5 mm inner diameter cylinder and maintained at a temperature of 230 for 5 minutes using a drop-down type flow tester manufactured by Shimadzu Corporation. Extruded through an lmm, 8 mm long orifice and expressed in grams of copolymer extruded in 10 minutes.
  • the composite fiber is spun at 230 to produce a plastic optical fiber with a diameter of 300 m (cladding material thickness 15) and a length of 100 mm.
  • the transmittance of the optical fiber is measured with light at a wavelength of 650 nm.
  • Incident light intensity I When the transmitted light intensity is, the extinction coefficient and ⁇ are calculated by the following formula.
  • the tensile strength is measured using a universal tester manufactured by Shimadzu Corporation according to ASTM D638.
  • a copolymer was obtained in the same manner as in Example 1, except that 15 g of isobornyl a-fluoroacrylate, 15 g of phenyl Q! -Fluoroacrylate, and 70 g of MMA were used as monomers.
  • the composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
  • Example 1 Same as Example 1 except that 40 g of tricyclodecanyl monofluoroacrylate and 60 g of methyl monofluoroacrylate were used as monomers To obtain a copolymer. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
  • a copolymer was obtained in the same manner as in Example 1 except that 25 g of 2-methyl-2 adamantyl ⁇ -fluoroacrylate, 25 g of isopolnyl methacrylate and 50 g of MMA were used as monomers.
  • the composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
  • Example 5
  • Example 1 In the same manner as in Example 1 except that 15 g of cyclohexyl ⁇ -fluoroacrylate, 25 g of phenyl ⁇ -fluoroacrylate and 60 g of methyl ⁇ -fluoroacrylate were used as monomers. A copolymer was obtained. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
  • a homopolymer of MMA was obtained in the same manner as in Example 1 except that only 100 g of MMA was used as a monomer.
  • Various physical properties of the obtained polymer were measured in the same manner as in Example 1. Table 1 shows the results.
  • a copolymer was obtained in the same manner as in Example 1, except that 30 g of phenylmethyl acrylate and 70 g of MMA were used as monomers.
  • the composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results. Comparative Example 3
  • a copolymer was obtained in the same manner as in Example 1 except that 25 g of 2,2,2-trifluoroethyl ⁇ -fluoroacrylate and 75 g of maraudal A were used as monomers.
  • the composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results. Comparative Example 4
  • the copolymer was prepared in the same manner as in Example 1 except that 50 g of 2,2,3,3,3-pentanofluoropropyl ⁇ -fluoroacrylate and 50 g of phenyl methacrylate were used as monomers. Got. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
  • Example 2 The same procedure as in Example 1 was repeated except that 50 g of 2,2-bis (trifluoromethyl) propanyl methacrylate, 20 g of MMA, and 30 g of 1H, 1H, 3H-tetrafluoropropyl methacrylate were used as monomers. A polymer was obtained. The glass transition temperature of the obtained polymer was 110 ° C, the MI was 37 g / 10 min, and the refractive index was 1.419.
  • a plastic optical fiber 1 was obtained in the same manner as in Example 6, except that the polymer of Example 4 was used as the core material and the polymer of Synthesis Example 1 was used as the clad material. Table 2 shows the characteristics of the obtained plastic optical fiber.
  • a plastic optical fiber was obtained in the same manner as in Example 6, except that the polymer of Comparative Example 3 was used as the core material.
  • Table 2 shows the characteristics of the obtained plastic optical fiber. Table 2
  • an optical material having both heat resistance and signal transmission ability can be provided.
  • optical transmission media specifically optical materials with signal transmission capabilities that can be used as core materials for plastic optical fibers and waveguide devices, especially the 125 ° C environment required in automobile engine rooms Or a plastic optical fiber made of an optical material that can be used in a 150 ° C environment required in an engine room of a diesel car.

Abstract

An optical material comprised of a polymer of 115°C or higher heat deformation temperature having alicyclic hydrocarbon moieties as side chains, which optical material has not only heat resistance but also signal transmission capability so as to enable use as a core material of optical transmission mediums, particularly a plastic optical fiber and a waveguide element.

Description

明 糸田 書 耐熱性光学材料およびそれを用いた光伝送用媒体 技術分野  Akira Itoda Heat-resistant optical materials and optical transmission media using them
本発明は、 光学的特性に加えて耐熱性に優れた光学材料に関する。 本発 明の光学材料は、 たとえば光伝送用媒体、 詳しくはプラスチック光フアイ バーや導波路型素子の特にコア用材料として好適である。 背景技術  The present invention relates to an optical material having excellent heat resistance in addition to optical characteristics. The optical material of the present invention is suitable, for example, as an optical transmission medium, more specifically, as a material for a plastic optical fiber or a waveguide element, particularly as a core material. Background art
従来、 プラスチック光学材料としてァクリル系樹脂、 ポリカーボネー卜、 非晶性ポリオレフィンなどが利用されている。  Conventionally, acryl resins, polycarbonates, amorphous polyolefins, and the like have been used as plastic optical materials.
アクリル系樹脂、 特にポリメチルメタクリレート ( P MMA) は可視領 域の光に対して透明で、 例えば L E Dを光源 (波長 6 5 0 nm) として用 いる通信用プラスチック光ファイバ一のコア部に通常用いられている。 し かしながら P MMAは、 耐熱性が不十分 (T g: 1 0 5 °C) なため、 耐熱 が要求される用途や場所においては形状が変化したり、 特性を損なってし まい、 実質的には 7 0 程度までの環境でしか使用できない。  Acrylic resins, especially polymethyl methacrylate (PMMA), are transparent to light in the visible region. For example, they are commonly used in the core of plastic optical fibers for communications using LEDs as a light source (wavelength: 65 nm). Has been. However, PMMA has insufficient heat resistance (Tg: 105 ° C), so it may change its shape or impair its properties in applications or places where heat resistance is required. It can only be used in environments up to about 70.
P MMAの耐熱性を改善する試みとして、 α—メチルスチレンを共重合 させる方法、 無水マレイン酸/スチレンを共重合する方法がある。 この場 合耐熱性は向上するがそれに伴い、 機械的強度が低下するため、 ファイバ 一としたのち屈曲させたときに破壊されやすくなる。  Attempts to improve the heat resistance of PMMA include a method of copolymerizing α-methylstyrene and a method of copolymerizing maleic anhydride / styrene. In this case, the heat resistance is improved, but the mechanical strength is accordingly reduced, so that the fiber is easily broken when bent after being formed.
またさらに、 耐熱性を改善するために α—フルォロアクリル酸エステル 類を共重合する方法 (特開昭 6 3 - 3 3 4 0 5号公報) が試みられている。 しかし、 本発明が目的とする耐熱性の光学材料、 特に自動車用プラスチッ ク光ファイバ一に求められている耐熱性の要求からは不十分なものである。 また、 メチルメタクリレ一トにシクロへキシルメタクリレートやフエ二 ルメ夕クリレートを共重合したメタクリル系樹脂も合成されているが (特 開昭 5 9 - 1 5 1 8号公報、 特開昭 6 1 - 3 6 3 0 7号公報) 、 これらシ クロへキシルメタクリレー卜やフエニルメタクリレートは、 P MM Aの吸 湿性を改善する目的で導入したものであり、 本発明が目的とする耐熱性の 光学材料、 特に自動車用プラスチック光ファイバ一に求められている耐熱 性の要求からは不十分なものである。 Further, in order to improve the heat resistance, a method of copolymerizing α-fluoroacrylic acid esters (JP-A-63-33405) has been attempted. However, the heat resistance of the heat-resistant optical material aimed at by the present invention, particularly, the heat resistance required for a plastic optical fiber for an automobile is insufficient. In addition, methacrylic resins in which cyclohexyl methacrylate or phenyl methacrylate is copolymerized with methyl methacrylate have also been synthesized (Japanese Patent Application Laid-Open No. 59-15818, Cyclohexyl methacrylate and phenyl methacrylate were introduced for the purpose of improving the hygroscopicity of PMMA, and the heat resistance of the present invention was improved. It is insufficient from the requirements of heat resistance required for optical materials, especially plastic optical fibers for automobiles.
一方、 ポリカーボネート樹脂は耐熱性には優れているが (T g : 1 4 5 。C) 、 これを光ファイバ一のコア材に用いた場合、 光の伝送損失が著しく 大きく、 長距離の光信号の伝送、 例えば 2 0 mを超える伝送には問題があ る。  On the other hand, polycarbonate resin is excellent in heat resistance (Tg: 145.C), but when this is used for the core material of one optical fiber, the optical transmission loss is extremely large, Transmission, for example, transmission over 20 m is problematic.
また非晶性ポリオレフィン (T g : 1 7 1 °C、 屈折率: 1 . 5 1 ) は、 耐熱性は特に高いが、 高温で大気中に曝すと、 酸素分子の影響による着色 およびゲル化が進行しやすく、 その結果、 光ファイバ一のコア材に用いた 場合、 光信号の伝送損失を増加させてしまうという問題がある。  Amorphous polyolefins (T g: 171 ° C, refractive index: 1.5 1) have particularly high heat resistance, but when exposed to air at high temperatures, coloring and gelling due to the effect of oxygen molecules may occur. It is easy to proceed, and as a result, when used as a core material of an optical fiber, there is a problem that transmission loss of an optical signal increases.
近年、 自動車の車内外の通信に関しては、 高級化、 自動化および安全性 の確保を目指した種々のセンサ、 信号処理装置、 照明等が用いられるよう になっている。 その結果、 信号処理量の増大、 それに伴う電線ケーブルの 肥大化が生じ、 車体軽量化を阻害するという問題が生じている。  In recent years, various types of sensors, signal processing devices, lighting, and the like have been used for communication between inside and outside of a vehicle, aiming at upgrading, automation, and ensuring safety. As a result, the amount of signal processing has increased, and the resulting increase in the size of the electric cables has caused a problem of hindering the weight reduction of the vehicle body.
そうした問題の解消のため、 電線ケーブルに代わって多重化 ·高速通信 を実現することができる光フアイバーの利用が望まれている。  In order to solve such problems, it is desired to use an optical fiber that can realize multiplexing and high-speed communication instead of the electric cable.
しかしながら、 これら車両に搭載する L AN用 (車載 L AN用) の通信 ケーブルにはエンジンルームや天井など高温になる部分での耐熱性が要求 され、 また、 車両設計上の要請から長距離化となる場合もあり、 耐熱性と 信号伝送能力を兼ね備えた自動車用プラスチック光フアイバーが必要とな るが、 そうした光ファイバ一は前述の理由で得られていないのが現状であ る。 However, the LAN communication cables for these vehicles (for in-vehicle LANs) are required to have heat resistance in high-temperature areas such as the engine room and ceiling. In some cases, a plastic optical fiber for automobiles that has both heat resistance and signal transmission capability is required, but such an optical fiber has not yet been obtained for the aforementioned reasons. You.
本発明の目的は、 上記従来技術に鑑み、 耐熱性と信号伝送能力を兼ね備 えた光学材料を得ることにある。  An object of the present invention is to provide an optical material having both heat resistance and signal transmission ability in view of the above-mentioned conventional technology.
さらに光伝送用媒体、 詳しくはプラスチック光フアイパーや導波路型素 子のコア用材料として利用可能な信号伝送能力を有する光学材料を得るこ とにある。  Another object of the present invention is to obtain an optical transmission medium, more specifically, an optical material having a signal transmission capability that can be used as a core material of a plastic optical fiber or a waveguide element.
特に、 自動車のエンジンルームで要求される 1 2 5 の環境、 またはデ イーゼル車のエンジンルームで要求される 1 5 0 の環境で利用可能な光 学材料を用いてなるプラスチック光ファイバ一を得ることにある。 発明の開示  In particular, to obtain a plastic optical fiber using optical materials that can be used in the environment of 125 required in the engine room of a car or in the environment of 150 required in the engine room of a diesel car It is in. Disclosure of the invention
本発明者らは、 上記課題を解決するため、 鋭意検討の結果、 側鎖に脂環 式炭化水素部位を有する特定の重合体が耐熱性に優れること見出し、 さら に、 側鎖に脂環式炭化水素部位を有する重合体のうち、 特定温度以上の熱 変形温度を有する重合体が耐熱性光学材料として有用であり、 例えば、 前 述のような車載 L AN用のプラスチック光ファイバ一に用いる光学材料と して有用であることを見出し、 本発明を完成するに至った。  Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and found that a specific polymer having an alicyclic hydrocarbon moiety in the side chain is excellent in heat resistance. Among polymers having hydrocarbon moieties, polymers having a heat distortion temperature of a specific temperature or higher are useful as heat-resistant optical materials.For example, optical polymers used in plastic optical fibers for automotive LAN as described above They have found that they are useful as materials and have completed the present invention.
すなわち本発明の耐熱性光学材料は、 側鎖に脂環式炭化水素部位を有す る重合体からなる耐熱性光学材料であつて、 該側鎖に脂環式炭化水素部位 を有する重合体の熱変形温度が 1 1 5 以上であり、 かつ、 式 (M 1 )  That is, the heat-resistant optical material of the present invention is a heat-resistant optical material comprising a polymer having an alicyclic hydrocarbon moiety in a side chain, and a polymer having an alicyclic hydrocarbon moiety in the side chain. The heat distortion temperature is 1 15 or more, and the equation (M 1)
- [M l ] 一 [A] ― (M- 1 )-[M l] one [A] ― (M-1)
[式中、 [Where,
構造単位 M lは式 (1 ) : X The structural unit Ml has the formula (1): X
I I
C H 2 ~ C C H 2 ~ C
I (1)  I (1)
c-o-z  c-o-z
o  o
(式中、 Xは H、 CH3、 F、 C 1および CF3よりなる群から選ばれる 少なくとも 1種; Zは脂環式炭化水素部位を有する炭素数 3〜 30の 1価 の有機基) で示される単量体の少なくとも 1種に由来する構造単位、 構造単位 Aは式 ( 1 ) の単量体と共重合可能な単量体の少なくとも 1種に 由来する構造単位] で示され、 構造単位 Mlを 1〜100モル%および構 造単位 Aを 0〜 99モル%含む重合体からなるものである。 (Wherein, X is at least one selected from the group consisting of H, CH 3 , F, C 1 and CF 3 ; Z is a monovalent organic group having 3 to 30 carbon atoms and having an alicyclic hydrocarbon moiety) Structural unit derived from at least one of the monomers represented by the formula, structural unit A is a structural unit derived from at least one of the monomers copolymerizable with the monomer of the formula (1)], It consists of a polymer containing 1 to 100 mol% of the structural unit Ml and 0 to 99 mol% of the structural unit A.
本発明の式 (M— 1) の重合体は、 側鎖中に脂環式炭化水素部位を有し た式 (1) のァクリル系単量体由来の構造単位 (Ml) を必須成分とする 重合体であり、 脂環式炭化水素を側鎖に導入することで、 可視領域の光に 対して透明で、 かつ高いガラス転移温度となるため、 耐熱性光学材料とし て好ましいものである。  The polymer of the formula (M-1) according to the present invention comprises, as an essential component, a structural unit (Ml) derived from an acryl-based monomer of the formula (1) having an alicyclic hydrocarbon moiety in a side chain. It is a polymer, and it is preferable as a heat-resistant optical material because it is transparent to light in the visible region and has a high glass transition temperature by introducing an alicyclic hydrocarbon into a side chain.
さらに、 上記重合体の熱変形温度が 115°C以上であり、 70 以上と いった高温環境下でも利用可能な光学材料、 例えば車載 LAN用プラスチ ック光ファイバ一に有用な材料となる。 図面の簡単な説明  Further, the above-mentioned polymer has a heat distortion temperature of 115 ° C or higher, and is an optical material usable even in a high-temperature environment of 70 or higher, for example, a material useful for a plastic optical fiber for a vehicle-mounted LAN. BRIEF DESCRIPTION OF THE FIGURES
図 1は 光導波路素子の要部構造の概略断面図である。  FIG. 1 is a schematic cross-sectional view of a main part structure of an optical waveguide device.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の式 (M— 1 ) の重合体において必須成分である構造単位 M 1は、 一般式 (M_2) :  The structural unit M 1 which is an essential component in the polymer of the formula (M-1) of the present invention has a general formula (M_2):
一 [Ml— 1] - [Ml -2] 一 (M— 2) [式中、 One [Ml-1]-[Ml -2] One (M-2) [Where,
構造単位 M 1—1は式 (2) : Structural unit M 1-1 is represented by formula (2):
CH2 = CF CH 2 = CF
I  I
C-O-Z1 (2) COZ 1 (2)
II  II
0  0
(式中、 Z1は脂環式炭化水素部位を有する炭素数 3 30の 1価の有機 基) で示される単量体の少なくとも 1種に由来する構造単位、 (Wherein, Z 1 is a monovalent organic group having 330 carbon atoms having an alicyclic hydrocarbon moiety), a structural unit derived from at least one monomer represented by the formula:
構造単位 Ml— 2は式 (3) : Structural unit Ml—2 is the formula (3):
X3 X 3
I  I
し l Then l
I (3)  I (3)
c-o-z2 coz 2
II  II
o  o
(式中、 X3は、 H CH3 C 1および CF3よりなる群から選ばれる少 なくとも 1種; Z 2は脂環式炭化水素部位を有する炭素数 3 30の 1価 の有機基) で示される単量体の少なくとも 1種に由来する構造単位] で示 され、 構造単位 M 1—1を 1 99モル%および構造単位 M 1 _ 2を 1 99モル%含む構造単位であることが好ましい。 (Wherein X 3 is at least one member selected from the group consisting of H CH 3 C 1 and CF 3 ; Z 2 is a monovalent organic group having 330 carbon atoms having an alicyclic hydrocarbon moiety) Structural unit derived from at least one of the monomers represented by the following formulas], and may be a structural unit containing 199 mol% of the structural unit M1-1 and 199 mol% of the structural unit M1_2. preferable.
本発明の好ましい重合体の第 1は、 上記 M 1— 1力 1 99モル%、 構 造単位 Ml— 2が 1 99モル%、 式 (M— 1) における任意の構造単位 Aが 0 98モル%の重合体である。  The first of the preferable polymers of the present invention is that the above-mentioned M1-1 power is 199 mol%, the structural unit Ml-2 is 199 mol%, and the arbitrary structural unit A in the formula (M-1) is 098 mol% % Polymer.
つまり、 脂肪族脂環式炭化水素部位を側鎖に有する α—フロロァクリレ —ト由来の構造単位 Μ 1— 1と式 (1) の単量体のうち式 (2) で示され る α—フロロァクリレ一ト以外の単量体由来の構造単位 Μ 1-2を必須成 分として有する重合体であり、 構造単位 Ml— 1 を導入することで耐熱性 と機械的強度、 特に曲げ強度、 さらには可とう性を付与できる。  That is, α-fluoroacrylic acid-derived structural unit ァ 1-1 having an aliphatic alicyclic hydrocarbon moiety in the side chain and α-fluoroacrylic acid represented by the formula (2) among the monomers of the formula (1) It is a polymer that has structural unit Μ 1-2 as an essential component derived from a monomer other than a single unit. By introducing structural unit Ml-1, heat resistance and mechanical strength, especially bending strength, and even more It can give flexibility.
また構造単位 Ml— 2を導入することで耐熱性と透明性を付与でき、 さ らには屈折率の調整 (例えば高屈折率化により P MM A以上に設定) が可 能である。 In addition, heat resistance and transparency can be imparted by introducing the structural unit Ml-2, In addition, it is possible to adjust the refractive index (for example, to set PMMA or higher by increasing the refractive index).
構造単位 Ml— 2は式 (3) の X3が CH3であるメタクリレート由来の 構造単位であることが特に好ましく、 上記と同様の耐熱性と透明性および 屈折率の調整機能をさらに効果的に付与できる。 It is particularly preferable that the structural unit Ml-2 is a structural unit derived from methacrylate in which X 3 in the formula (3) is CH 3 , and the above-mentioned heat resistance, transparency and refractive index adjustment functions can be more effectively achieved. Can be granted.
構造単位 M 1— 1と M 1— 2の存在比率は、 Ml— 1を 1〜99モル%、 構造単位 M 1一 2を 1〜99モル%含むものであれば良いが、 Ml - 1+ M1 -2 = 100モル%としたとき、 好ましくは Ml— 1/M1— 2が 1 0/90〜95 5モル%比、 より好ましくは 25/75〜90Zl Oモ ル%比、 特に好ましくは 40Z60〜90Z10モル%比、 さらに好まし くは 45 55〜 90 10モル%比である。  The abundance ratio of the structural units M1-1 and M1-2 may be 1-99 mol% of Ml-1 and 1-99 mol% of the structural unit M1-2, but Ml-1 + When M1 -2 = 100 mol%, the ratio of Ml-1 / M1-2 is preferably 10/90 to 955 mol%, more preferably 25/75 to 90ZlO%, particularly preferably 40Z60. 9090Z10 mol% ratio, more preferably 4555-9010 mol% ratio.
また本発明の式 (M— 1) の重合体および式 (M— 2) の構造単位を含 む重合体において任意成分である構造単位 Aは、 式 (M— 3) :  In the polymer of the present invention of the formula (M-1) and the polymer containing the structural unit of the formula (M-2), the structural unit A as an optional component is represented by the formula (M-3):
- [A - 1] 一 [A-2] - (M-3)  -[A-1] one [A-2]-(M-3)
[式中、  [Where,
構造単位 A _ 1は式 (4) : Structural unit A_1 is represented by formula (4):
X1 X 1
I (4) I (4)
C-O-R1 COR 1
II  II
ο  ο
(式中、 X1は H、 CH3、 F、 C 1および CF3よりなる群から選ばれる 少なくとも 1種; R1は水素原子、 炭素数 1〜30の直鎖または分岐状の エーテル結合を含んでいても良いアルキル基および炭素数 1〜 30の直鎖 または分岐状のエーテル結合を含んでいても良い含フッ素アルキル基より なる群から選ばれる少なくとも 1種) で示される単量体の少なくとも 1種 に由来する構造単位および Zまたは式 (5) : X2 C H 2 ~ C (Wherein, X 1 is at least one selected from the group consisting of H, CH 3 , F, C 1 and CF 3 ; R 1 is a hydrogen atom, a linear or branched ether bond having 1 to 30 carbon atoms) At least one selected from the group consisting of an alkyl group that may be contained and a fluorinated alkyl group that may contain a linear or branched ether bond having 1 to 30 carbon atoms) Structural unit derived from one kind and Z or formula (5): X 2 CH 2 ~ C
I (5)  I (5)
C-O-R2 COR 2
II  II
o  o
(式中、 X2は前記式 (4) の X1と同じ; R2は芳香族環状構造 (芳香環 ) を含む炭素数 6〜30の 1価の炭化水素基であって、 ただし R2中の水 素原子の一部または全てがフッ素原子に置換されていても良い) で示され る単量体の少なくとも 1種に由来する構造単位;構造単位 A— 2は式 (1 ) 、 (4) および (5) に示される単量体と共重合可能な単量体由来の構 造単位] で示され、 重合体中に構造単位 A— 1を 1〜 99モル%および構 造単位 A— 2を 0〜 98モル%含む構造単位であることが好ましい。 本発明の好ましい重合体の第 2は、 前記式 (M— 1) における側鎖に脂 環式炭化水素部位を有する構造単位 M 1を 1〜 99モル%、 上記脂環式炭 化水素部位を含まない構造単位 A— 1を 1〜 99モル%、 さらには任意の 構造単位 A— 2を 0〜 98モル%含む重合体である。 (Wherein, X 2 is the same as X 1 in the formula (4); a monovalent hydrocarbon group having 6 to 30 carbon atoms comprising R 2 is an aromatic ring structure (aromatic ring), provided that R 2 A part or all of the hydrogen atoms in the monomer may be substituted with a fluorine atom); a structural unit derived from at least one of the following monomers; structural unit A-2 is represented by the formula (1), (1) 4) and a structural unit derived from a monomer copolymerizable with the monomer shown in (5)], wherein 1 to 99 mol% of the structural unit A-1 and the structural unit A are contained in the polymer. Preferably, the structural unit contains 0 to 98 mol% of —2. The second of the preferable polymers of the present invention is that the structural unit M1 having an alicyclic hydrocarbon site in the side chain in the formula (M-1) is 1 to 99 mol%, and the alicyclic hydrocarbon site is It is a polymer containing 1 to 99 mol% of structural unit A-1 not containing, and 0 to 98 mol% of arbitrary structural unit A-2.
式 (4) の単量体に由来する構造単位を導入することで、 機械的特性や 透明性を付与でき、 さらには屈折率の調整 (例えば高屈折率化により PM MA以上に設定) が可能である。  By introducing a structural unit derived from the monomer of the formula (4), mechanical properties and transparency can be imparted, and the refractive index can be adjusted (for example, set to PMMA or higher by increasing the refractive index). It is.
式 (5) の単量体に由来する構造単位を導入することで、 さらなる耐熱 性や機械的特性、 低吸水性を付与でき さらには屈折率の調整 (例えば高 屈折率化により P MM A以上に設定) が可能である。  By introducing a structural unit derived from the monomer of the formula (5), further heat resistance, mechanical properties, and low water absorption can be imparted. Further, the refractive index can be adjusted (for example, PMMA or more by increasing the refractive index). Is set to).
構造単位 A— 1において X1、 X2が CH3であるメタクリレート由来の 構造単位であるときは、 耐熱性と透明性および屈折率の調整機能をさらに 効果的に付与できる点で好ましい。 When X 1 and X 2 in the structural unit A-1 are structural units derived from methacrylate, which is CH 3 , it is preferable in that heat resistance, transparency, and a function of adjusting a refractive index can be more effectively imparted.
また、 構造単位 A— 1において X1、 X2が F原子である α—フロロァ クリレート由来の構造単位であるときは、 耐熱性と機械的強度、 特に曲げ 強度、 さらには可とう性を付与できる点で好ましい。 In addition, when X 1 and X 2 in the structural unit A-1 are structural units derived from α-fluoroacrylate, which is an F atom, heat resistance and mechanical strength, particularly bending It is preferable in that it can impart strength and further flexibility.
つまり、 構造単位 A—1はなかでも、 メチルメタクリレートまたはメチ ル— αフロロァクリレートから選ばれる少なくとも 1種の単量体由来の構 造単位であることが好ましく、 機械的特性や透明性を付与できる。  That is, it is preferable that the structural unit A-1 is a structural unit derived from at least one monomer selected from methyl methacrylate and methyl-α-fluoroacrylate. Can be granted.
また構造単位 A— 1はフエニルメタクリレートおよびフエ二ルー α—フ ロロァクリレートから選ばれる少なくとも 1種の単量体由来の構造単位で あるときは、 さらなる耐熱性と低吸水性を付与できる点で好ましい。 構造単位 Μ 1と A— 1の存在比率は、 Mlを 1〜99モル%、 構造単位 A— 1を 1〜99モル%含むものであれば良いが、 M 1 +A- 1 = 100 モル%としたとき、 好ましくは Ml/A— 1が 5/95〜90/10モル %比、 より好ましくは 5 95〜60/40モル%比、 特に好ましくは 1 0X90〜50/50モル%比、 さらに好ましくは 10/90〜 40/6 0モル%比である。  When the structural unit A-1 is a structural unit derived from at least one monomer selected from phenyl methacrylate and phenyl α-fluoroacrylate, it is preferable in that it can impart further heat resistance and low water absorption. . The ratio of the structural unit Μ1 to A-1 may be 1 to 99 mol% of Ml and 1 to 99 mol% of structural unit A-1, but M1 + A-1 = 100 mol%. Preferably, the ratio of Ml / A-1 is 5/95 to 90/10 mol%, more preferably 595 to 60/40 mol%, particularly preferably 10 × 90 to 50/50 mol%. Preferably, the ratio is 10/90 to 40/60 mol%.
本発明の式 (M— 1) の重合体および式 (M-3) の構造単位を含む重 合体において式 (1) の単量体由来の構造単位 Mlにおける Xはなかでも F原子であることが好ましく、 それによつて、 耐熱性と機械的強度、 特に 曲げ強度、 さらには可とう性を付与できる。  In the polymer of the present invention comprising the polymer of the formula (M-1) and the structural unit of the formula (M-3), X in the structural unit Ml derived from the monomer of the formula (1) is preferably an F atom. Preferably, heat resistance and mechanical strength, particularly bending strength, and further flexibility can be imparted.
本発明の式 (M— 1) の重合体および式 (M-3) の構造単位を含む重 合体における側鎖を形成する Z、 式 (M-2) の構造単位を含む重合体に おける側鎖を形成する Z Z 2は炭素数 3〜 30の有機基であってその 中に脂環式の炭化水素部位を有しているものである。 Z forming a side chain in the polymer of the present invention containing the structural unit of the formula (M-1) and the polymer containing the structural unit of the formula (M-3), the side in the polymer containing the structural unit of the formula (M-2) ZZ 2 forming a chain is an organic group having 3 to 30 carbon atoms and having an alicyclic hydrocarbon moiety therein.
脂環式の炭化水素部位は単環構造の炭化水素部位であつても、 複環構造 の炭化水素部位であつても、 それらいずれをも含む炭化水素部位であつて も良い。  The alicyclic hydrocarbon moiety may be a monocyclic hydrocarbon moiety, a multicyclic hydrocarbon moiety, or a hydrocarbon moiety containing any of them.
脂環式の炭化水素部位は単環構造の炭化水素部位を含む場合、 ζ、 τ When the alicyclic hydrocarbon moiety includes a monocyclic hydrocarbon moiety, ζ, τ
Ζ 2は炭素数 7以上の有機基であることが好ましく、 それによつてより効 果的に耐熱性を付与できる。 Zeta 2 is preferably a number of 7 or more organic groups carbon, it'll connexion than effective As a result, heat resistance can be imparted.
特に、 前記 ζ、 τ ζ 2は複環構造の炭化水素部位を含む有機基であ ることが好ましく、 より効果的に耐熱性と透明性を付与できる。 In particular, ζ and τζ 2 are preferably an organic group containing a hydrocarbon moiety having a double ring structure, and can more effectively impart heat resistance and transparency.
単環構造の炭化水素部位を含む場合の前記 ζ、
Figure imgf000010_0001
ζ2は、 具体的に は、
Ζ when containing a hydrocarbon moiety having a monocyclic structure,
Figure imgf000010_0001
ζ 2 is, specifically,
(1) シクロペンチル基およびその誘導体を有する有機基、  (1) an organic group having a cyclopentyl group and a derivative thereof,
(2) シク口へキシル基およびその誘導体を有する有機基、  (2) an organic group having a hexyl group and a derivative thereof,
(3) パーヒドロビフエニル基およびその誘導体を有する有機基、 (3) an organic group having a perhydrobiphenyl group and a derivative thereof,
(4) スピロ 〔4, 4〕 ノナンおよびその誘導体を有する有機基、(4) Spiro [4, 4] nonane and an organic group having a derivative thereof,
(5) スピロ 〔4, 5〕 デカンおよびその誘導体を有する有機基 などが好ましくあげられ、 それらの一部の例として、
Figure imgf000010_0002
Figure imgf000010_0003
(5) Spiro [4,5] organic groups having decane and its derivatives are preferred, and as examples of some of them,
Figure imgf000010_0002
Figure imgf000010_0003
などがあげられる。 And so on.
またこれら例示の炭化水素基の水素原子を炭素数 1〜 5のアルキル基や フッ秦原子., さらには官能基などで置換したものであっても良い。  Further, the hydrogen atoms of these exemplified hydrocarbon groups may be substituted with an alkyl group having 1 to 5 carbon atoms, a fluorine atom, or a functional group.
複環構造の炭化水素部位を含む場合の前記 ζ、 ζ ζ2は、 具体的に は、 含 む, 含 む ζ 2 in the case of containing a hydrocarbon moiety having a multiple ring structure, specifically,
(6) ァダマンタンおよびその誘導体を有する有機基、  (6) an organic group having adamantane and a derivative thereof,
(7) ノルボルナンおよびその誘導体を有する有機基、  (7) an organic group having norbornane and a derivative thereof,
(8) パ一ヒドロアントラセンおよびその誘導体を有する有機基、 (9) パ一ヒドロナフ夕レンおよびその誘導体を有する有機基、 (8) an organic group having parahydroanthracene and a derivative thereof, (9) an organic group having perhydronaphthylene and a derivative thereof,
(10) トリシクロ 〔5. 2. 1. 02' 6 〕 デカンおよびその誘導体を 有する有機基 (10) tricyclo [5.2.2 1.0 2'6] The organic group having a decane and derivatives thereof
などがあげられ、 それらの一部の例として、 And some of them.
Figure imgf000011_0001
Figure imgf000011_0002
などがあげられる。
Figure imgf000011_0001
Figure imgf000011_0002
And so on.
またこれら例示の炭化水素基の水素原子を炭素数 1〜 5のアルキル基や フッ素原子、 さらには官能基などで置換したものであっても良い。  Further, the hydrogen atoms of these exemplified hydrocarbon groups may be substituted with an alkyl group having 1 to 5 carbon atoms, a fluorine atom, or a functional group.
さらにこれら複環構造の炭化水素部位を含む有機基のうち、 ァダマンタ ンおよびその誘導体からなる複環構造、 ノルポルナンおよびその誘導体か らなる複環構造、 トリシクロ 〔5.. 2. 1. 02' 6 〕 デカンおよびその 誘導体からなる複環構造を含むものが好ましく、 これらは特に耐熱性と透 明性を効果的に重合体に付与できる。 Further among organic groups containing a hydrocarbon portion of these double ring structure, double ring structure consisting Adamanta down and its derivatives, Noruporunan and its derivatives or Ranaru double ring structure, tricyclo [5 .. 2. 1.0 2 ' 6 ] Those containing a double ring structure composed of decane and a derivative thereof are preferable, and these can particularly effectively impart heat resistance and transparency to the polymer.
本発明の式 (M— 1) の重合体および式 (M- 2) および (M- 3) の 構造単位を含む重合体において ¾ 側鎖に脂環式構造の炭化水素部位を有す る構造単位を形成できる単量体 (式 (1) (2) および (3) ) は具体 的には、 前記 Z、 Z Z2から選ばれる少なくとも 1種の側鎖構造を有 するァクリル系単量体であり、 例えばつぎのものが例示できる。 Polymer and the formula (M- 2) and (M- 3) structure ¾ side chains that have a hydrocarbon moiety of alicyclic structure in the polymer containing structural units of the formula (M- 1) of the present invention monomer capable of forming the unit (formula (1) (2) and (3)) is specifically the Z, in Akuriru monomer which have at least one side chain structure selected from the ZZ 2 There are, for example, the following.
( I ) ノルポルナンおよびその誘導体を含む有機基を側鎖に有する単量体 (I) Monomers having an organic group in the side chain containing norpolnane and its derivatives
Figure imgf000012_0001
Figure imgf000012_0001
(式中、 Xは H、 F、 C l、 CH3または CF3 ; Rla、 R2a、 R3a、 R 4a、 R5a、 R6a、 R7a、 R8a、 R9a、 R10aは同じかまたは異なり、 H、 F、 C 1または炭素数 1〜14のハロゲン原子で置換されていてもよいァ ルキル基; R 11 aは結合手または分岐鎖を含んでいてもよい炭素数 1〜 6 のアルキレン基; nは 0、 1〜2の整数) (Where X is H, F, Cl, CH 3 or CF 3 ; R la , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a are the same Or different, H, F, C 1 or an alkyl group which may be substituted by a halogen atom having 1 to 14 carbon atoms; R 11a has 1 to 6 carbon atoms which may include a bond or a branched chain; Alkylene group; n is 0, an integer of 1-2)
より具体的には、  More specifically,
Figure imgf000012_0002
Figure imgf000013_0001
Figure imgf000012_0002
Figure imgf000013_0001
などがあげられる。 And so on.
(I I) ァダマンタンおよびその誘導体を含む有機基を側鎖に有する単量体  (II) Monomers having an organic group in the side chain containing adamantane and its derivatives
Figure imgf000013_0002
Figure imgf000013_0002
こよ Koyo
-?n
Figure imgf000013_0003
(式中、 Xは H F C l CH3 CF3; Rl R2bは環に結合した 置換基であり、 CH3 C2H5または OH; R4b R5bは結合手または 分岐鎖を有していてもよい炭素数 1 6のアルキレン基; R3bは H C H3または C2H5; nは 0または 1 2の整数) などがあげられ、 より具 体的には、
-? n
Figure imgf000013_0003
(Where X is HFC 1 CH 3 CF 3 ; R 1 R 2b is a substituent bonded to the ring, CH 3 C 2 H 5 or OH; R 4b R 5b has a bond or a branched chain. R 3b is HCH 3 or C 2 H 5 ; n is an integer of 0 or 12), and more specifically,
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
などがあげられる。 And so on.
(III) トリシクロ 〔5. 2. 1. 02' 6 〕 デカンおよびその誘導体を含 む有機基を側鎖に有する単量体 (III) tricyclo [5.2.2 1.0 2 '6] decane and monomer having a derivative thereof including organic group in the side chain
Figure imgf000015_0001
Figure imgf000015_0001
(式中、 Xは H、 F、 C 1、 CH3または CF3; R1' R2C、 R3C、 R(Wherein, X is H, F, C 1, CH 3 or CF 3; R 1 'R 2C , R 3C, R
4 c 5 c R6C D7C R8C 9 C 10 C Ό 11 < R12C R l 3 c 4 c 5 c R6C D7C R8C 9 C 10 C Ό 11 <R12C R l 3 c
R14C, R15Eは同じかまたは異なり、 H、 F、 C Iまたはハロゲン原子 で置換されていてもよい炭素数 1〜14のアルキル基; R16Cは結合手ま たは分岐鎖を含んでいてもよい炭素数 1〜 6のアルキレン基) R 14C and R 15E are the same or different, and may be an alkyl group having 1 to 14 carbon atoms which may be substituted with H, F, CI or a halogen atom; R 16C may have a bond or a branched chain. (Good alkylene group with 1 to 6 carbon atoms)
Figure imgf000015_0002
Figure imgf000015_0002
(式中、 Xは H、 F、 C l、 CH3または CF3; Rld、 R2d、 R3d、 R 4d、 R5d, R6d、 R7d、 R8d ¾ R9d ¾ R10d, Rlld ¾ R12d、 R13dは 同じかまたは異なり、 H、 F、 C 1またはハロゲン原子で置換されていて もよい炭素数 1〜14のアルキル基; R 14 dは結合手または分岐鎖を含ん でいてもよい炭素数 1〜6のアルキレン基) (Where X is H, F, Cl, CH 3 or CF 3 ; R ld , R 2d , R 3d , R 4d , R 5d , R 6d , R 7d , R 8d ¾ R 9d ¾ R 10d , R lld ¾ R 12d and R 13d are the same or different and are an alkyl group having 1 to 14 carbon atoms which may be substituted with H, F, C 1 or a halogen atom; R 14 d includes a bond or a branched chain (Alkylene group having 1 to 6 carbon atoms which may be present)
より具体的には、 More specifically,
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
などがあげられる。
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
And so on.
本発明の式 (M— 3) の構造単位を含む重合体において、 構造単位 A- 1を形成する単量体の具体例としては、 つぎのものが例示できる。  In the polymer of the present invention containing the structural unit of the formula (M-3), specific examples of the monomer forming the structural unit A-1 include the following.
式 (4) の鎖状の炭化水素基を側鎖に有する単量体の具体例としては、  Specific examples of the monomer having a chain hydrocarbon group of the formula (4) in the side chain include:
/ J / J
CH~C C —Q  CH ~ C C —Q
C-0- (CH2)n-(CF2)m-Y C-0-(CH2)n-(CF2)m-YC-0- (CH 2 ) n- (CF 2 ) mY C-0- (CH 2 ) n- (CF 2 ) mY
II II
0 O  0 O
CF2)mC2F5
Figure imgf000017_0001
CF 2 ) mC 2 F 5
Figure imgf000017_0001
CHCH
CH— Cv CH—C v
CH~Cx CH ~ C x
C-O— (CH2)mH CO— (CH 2 ) mH
C-0-(CH2)mH C-0- (CH 2 ) mH
O  O
O  O
Figure imgf000017_0002
Figure imgf000017_0002
(式中 nは 1 6の整数 mは 0 29までの整数を示す。 また Yは H もしくは F ; Rle R2e R3eは同じか異なり、 H 炭素数 1 29の エーテル結合を含んでも良いアルキル基または炭素数 1 29のエーテル 結合を含んでも良い含フッ素アルキル基) (Where n is an integer of 16 and m is an integer of up to 0 29. Y is H or F; R le R 2e R 3e is the same or different, and H is an alkyl which may contain an ether bond of 129 carbon atoms.) Or a fluorine-containing alkyl group which may contain an ether bond having 1 to 29 carbon atoms)
などがあげられる。 And so on.
より具体的には
Figure imgf000018_0001
More specifically
Figure imgf000018_0001
/CH3/ CH 3
c CH;  c CH;
CH 「 、 2 ~ C\ CH ", 2 ~ C \
C-O-C  C-O-C
C-O— CH, II 3 II 3 CO— CH, II 3 II 3
o o  o o
Figure imgf000018_0002
Figure imgf000018_0002
があげられ、 なかでもメタクリル酸、 α—フルォロアクリル酸、 アクリル 酸、 メチルメタクリレート (ΜΜΑ) 、 メチル一 α—フルォロアクリレー トが透明性、 耐熱性、 機械的強度の向上効果に優れる点で好ましい。 特にAmong them, methacrylic acid, α-fluoroacrylic acid, acrylic acid, methyl methacrylate (ΜΜΑ), and methyl α-fluoroacrylate are excellent in the effects of improving transparency, heat resistance, and mechanical strength. preferable. In particular
ΜΜΑは光学特性、 機械特性の向上効果に優れる。 ΜΜΑ is excellent in improving optical and mechanical properties.
式 (5 ) の芳香族環状構造 (芳香環) を含む炭化水素基を側鎖に有する 単量体の具体例としては、  Specific examples of the monomer having a hydrocarbon group containing an aromatic cyclic structure (aromatic ring) of the formula (5) in the side chain include:
Figure imgf000018_0003
(式中、 X2は H、 F、 C l、 CH3、 CF R R 2 f R R 4 f
Figure imgf000018_0003
(Where X 2 is H, F, Cl, CH 3 , CF RR 2 f RR 4 f
R5 fは同じかまたは異なり、 H、 F、 C 1またはハロゲン原子で置換さ れていてもよい炭素数 1〜 14のアルキル基; R 6 fは結合手または分岐 鎖を有していてもよい炭素数 1〜6のアルキレン基) などがあげられ、 具 体的には
Figure imgf000019_0001
Figure imgf000019_0002
R 5 f is the same or different and is an alkyl group having 1 to 14 carbon atoms which may be substituted by H, F, C 1 or a halogen atom; R 6 f may have a bond or a branched chain A good alkylene group having 1 to 6 carbon atoms) and the like.
Figure imgf000019_0001
Figure imgf000019_0002
が好ましくあげられる。 なお、 式 (5) 中の R 2が含む芳香族環状構造は、 ベンゼン環などの芳香族単環状構造のみでなく、 ナフ夕レン環、 アン卜ラ セン環状構造などの多重環状構造や、 ピフエ二ルなどの芳香族環状構造が 2個以上連続的に連なつた構造であってもよい。 Are preferred. In the formula (5), the aromatic cyclic structure contained in R 2 is not only an aromatic monocyclic structure such as a benzene ring, but also a multiple cyclic structure such as a naphthylene ring or an anthracene cyclic structure, or a pyridine ring. It may be a structure in which two or more aromatic cyclic structures such as phenyl are continuously connected.
なかでも、 フエニルメタクリレート.. フエニル メタクリレートが耐 熱性を向上させる点で好ましい。  Among them, phenyl methacrylate .. phenyl methacrylate is preferred from the viewpoint of improving heat resistance.
本発明の耐熱性光学材料に用いる重合体の分子量は数平均分子量で 20 00〜 1000000の範囲のものが通常使用され、 好ましくは 1000 0〜 500000、 特に好ましくは 50000〜300000である。 低 すぎる分子量は機械的特性、 特に曲げ強度が低下したり可とう性が低下す る点で好ましくない。 また、 高すぎる分子量は成形性が低下したり、 光散 乱の増加に伴う透明性低下を惹き起こす点で好ましくない。 The molecular weight of the polymer used in the heat-resistant optical material of the present invention is generally in the range of 2000 to 1,000,000 in number average molecular weight, preferably 10,000 to 500,000, particularly preferably 50,000 to 300,000. Low An excessively high molecular weight is not preferable because mechanical properties, particularly, bending strength and flexibility are reduced. On the other hand, a molecular weight that is too high is not preferred because moldability is reduced and transparency is reduced due to an increase in light scattering.
本発明の耐熱性光学材料に用いる重合体は熱変形温度で 1 15°C以上で あり、 それによつて高温の環境下でも軟化が抑えられ、 その結果、 光信号 の散乱が低減でき良好な光信号の伝送 (長距離において光信号の損失の少 ない伝送) が可能になる。  The polymer used in the heat-resistant optical material of the present invention has a heat distortion temperature of 115 ° C. or higher, which suppresses softening even in a high-temperature environment. Signal transmission (transmission with little loss of optical signal over long distances) becomes possible.
本発明における熱変形温度とは荷重たわみ温度 (HDT) のことを言い、 ASTM D 684で規格化された方法にて測定した値を用いるものであ る。 特に、 熱変形温度は 12 Ot:以上、 特に 130°C以上、 さらには 14 0°C以上のものが好ましく、 熱変形温度が高いことにより、 特にエンジン 部分周辺に位置する自動車制御用や、 航空機の制御用、 産業用口ポットの 制御用など高温の環境で利用する光学部品、 光通信媒体、 プラスチック光 ファイバーなどに有利である。  The heat distortion temperature in the present invention means a deflection temperature under load (HDT), and uses a value measured by a method standardized by ASTM D684. In particular, the heat distortion temperature is preferably 12 Ot: or more, especially 130 ° C or more, and more preferably 140 ° C or more.The high heat deformation temperature makes it possible to control automobiles, especially around engine parts, and aircraft. It is advantageous for optical components, optical communication media, plastic optical fibers, etc. used in high-temperature environments, such as for controlling air conditioners and controlling industrial mouth pots.
本発明の耐熱性光学材料は可視領域の光に対して透明性が高いことが必 要であり、 特に 650 nmの波長の光に対して透明性が高いことが望まし い。  The heat-resistant optical material of the present invention needs to have high transparency to light in the visible region, and particularly preferably has high transparency to light having a wavelength of 650 nm.
この観点から、 本発明の耐熱性光学材料は、 65 Onm波長光での吸光 係数で、 0. 015 cm— 1以下であることが好ましく、 特に 0. 014 cm— 1以下、 さらには 0. 013 cm— 1以下であることが好ましい。 そ れによって光信号の吸収損失を低減でき、 2 Om〜l 0 Omといった長距 離の光信号の伝送においても損失を低減できる。 From this viewpoint, the heat-resistant optical material of the present invention preferably has an extinction coefficient at 65 Onm wavelength light of 0.015 cm- 1 or less, particularly 0.014 cm- 1 or less, and more preferably 0.015 cm- 1 or less. It is preferably cm- 1 or less. As a result, the absorption loss of the optical signal can be reduced, and the loss can be reduced even when transmitting the optical signal over a long distance of 2 Om to 10 Om.
ここで吸光係数とは、 適当な屈折率をもったクラッド材と溶融紡糸する ことにより、 本発明の耐熱光学材料をコア材として、 長さ 10 Ommのプ ラスチック光ファイバ一を作製し、 波長 650 nmでの光で透過光強度を 測定する。 入射光強度を Ιβ、 透過光強度を としたとき、 吸光係数は下 式により計算された値をいう。 Here, the extinction coefficient means that a plastic optical fiber having a length of 10 Omm is manufactured by using a heat-resistant optical material of the present invention as a core material by melt-spinning with a clad material having an appropriate refractive index and a wavelength of 650 nm. Measure transmitted light intensity with light at nm. The incident light intensity iota beta, when the transmitted light intensity, the absorption coefficient under Refers to the value calculated by the formula.
吸光係数 = 1 κ 10 · 1 o g ( 10/ 1 ^ Extinction coefficient = 1 κ 10 · 1 og ( 1 0/1 ^
本発明の耐熱性光学材料は広い範囲で屈折率を調整することが可能であ る。 それによつて、 光伝送媒体に利用したり、 またはクラッドに利用でき る。  The heat-resistant optical material of the present invention can adjust the refractive index in a wide range. Thus, it can be used for optical transmission media or cladding.
特に本発明の耐熱性光学材料は透明性が高く、 高屈折率に調整可能であ るため光伝送媒体、 例えば、 プラスチック光フアイバゃ光導波路型素子の コアに利用することができる。  In particular, since the heat-resistant optical material of the present invention has high transparency and can be adjusted to a high refractive index, it can be used for an optical transmission medium, for example, a core of a plastic optical fiber / optical waveguide element.
その場合、 本発明の耐熱性光学材料は屈折率: nDで 1. 45以上であ ることが好ましい。 In that case, heat resistant optical material refractive index of the present invention: n D 1. 45 or more der Rukoto are preferred.
屈折率は、 ナトリゥム D線を光源として 25 においてァッベの屈折率 計を用いて測定した値を用いるものである。  The refractive index uses the value measured using an Abbe's refractometer at 25 using sodium D line as a light source.
屈折率は、 1. 47以上、 さらには 1. 48以上であることが好ましく、 最も好ましい範囲は 1. 48〜1. 52である。 屈折率が低すぎると、 プ ラスチック光ファイバ一を作製する際にクラッド材側の材料の選択が制約 される点で好ましくない。 屈折率が高すぎると、 光散乱に基づく伝送損失 が増大するほか、 プラスチック光ファイバ一の接合時に結合損失が増大す る点で好ましくない。  The refractive index is preferably 1.47 or more, more preferably 1.48 or more, and the most preferred range is 1.48 to 1.52. If the refractive index is too low, it is not preferable because the choice of the material on the cladding material side is restricted when fabricating the plastic optical fiber. If the refractive index is too high, the transmission loss due to light scattering increases, and the coupling loss increases when joining the plastic optical fibers.
以上に構造単位および物性 (特性) の観点から説明をしてきたが、 つぎ に本発明の耐熱性光学材料に使用する重合体の好ましい具体例を説明する c 重合体 ( I ) Above structural units and properties have been in terms of (characteristics) have been the description, c polymer describing a preferred embodiment of the polymers used in the heat-resistant optical material of the present invention in the following (I)
式 (M—4) :  Formula (M-4):
― [Ml— l a] — [A— l a] - (M—4)  ― [Ml — l a] — [A— l a]-(M—4)
[式中、 構造単位 Ml— 1 aは式 (2— 1) : CH2 = CF [Where the structural unit Ml-1a is the formula (2-1): CH 2 = CF
C-O-Z3 (2-1) COZ 3 (2-1)
II  II
o  o
(式中、 z 3はァダマンタンおよびその誘導体、 ノルポルナンおよびその 誘導体、 トリシクロ 〔5. 2. 1. 02' 6 〕 デカンおよびその誘導体か ら選ばれる少なくとも 1種の複環構造の炭化水素部位を含む炭素数 10〜 30の 1価の有機基) ;構造単位 A— 1 aはメチルメタクリレート由来の 構造単位]であって、 構造単位 Ml— 1 aを 1〜100モル%、 構造単位 A— l aを 0〜99モル%含む重合体。 (Wherein, z 3 is Adamantan and its derivatives, Noruporunan and derivatives thereof, tricyclo [5.2.2 1.0 2'6] hydrocarbon moiety of decane and at least one double ring structure derivatives or selected A monovalent organic group having 10 to 30 carbon atoms); Structural unit A—1a is a structural unit derived from methyl methacrylate], and 1 to 100 mol% of structural unit Ml—1a; From 0 to 99 mol%.
この重合体は高い透明性と機械的強度、 特に曲げ強度や可とう性に優れ る点で好ましい。  This polymer is preferred because it has high transparency and excellent mechanical strength, particularly excellent bending strength and flexibility.
重合体 (II) Polymer (II)
式 (M - 5) :  Equation (M-5):
一 [Ml— l a] - [A - l a] - [A - 2 a] - (M— 5) One [Ml—la]-[A-la]-[A-2a]-(M—5)
(式中、 構造単位 Ml— 1 aおよび A— 1 aは前記式 (M— 4) と同じ; 構造単位 A— 2 aはフエニルメタクリレートまたはフエニル一a—フロロ ァクリレートに由来する構造単位) であって、 構造単位 Ml— l aを 1〜 99モル%、 構造単位 A— 1 aを 0〜 98モル%、 構造単位 A— 2 aを 1 〜 99モル%含む重合体。 (Wherein, the structural units Ml-1a and A-1a are the same as those in the above formula (M-4); the structural unit A-2a is a structural unit derived from phenyl methacrylate or phenyl-1-a-fluoroacrylate). A polymer containing 1 to 99 mol% of the structural unit Ml-la, 0 to 98 mol% of the structural unit A-1a, and 1 to 99 mol% of the structural unit A-2a.
この重合体は優れた耐熱性と低い吸水性を有する点で好ましい。  This polymer is preferred because it has excellent heat resistance and low water absorption.
重合体 (ΙΠ) Polymer (ΙΠ)
式 (M - 6) :  Equation (M-6):
一 [Ml - 1 a] - [Ml— 2 a] - [A - 1 a] ― (M— 6) One [Ml-1a]-[Ml-2a]-[A-1a]-(M-6)
[式中、 構造単位 Ml— l a、 A— l aは前記式 (M— 4) と同じ;構造 単位 M 1— 2 aは式 ( 3— 1 ) : CH3 [Wherein the structural units Ml-la and A-la are the same as in the above formula (M-4); the structural unit M1-2a is the formula (3-1): CH 3
I I
C H 2 ~ C C H 2 ~ C
(3- 1)  (3-1)
c-o-z4 coz 4
II  II
o  o
(式中、 z 4はァダマンタンおよびその誘導体、 ノルポルナンおよびその 誘導体、 トリシクロ 〔5. 2. 1. 02' 6 〕 デカンおよびその誘導体か ら選ばれる少なくとも 1種の複環構造の炭化水素部位を含む炭素数 10〜 30の 1価の有機基) ] (Wherein, z 4 is Adamantan and its derivatives, Noruporunan and derivatives thereof, tricyclo [5.2.2 1.0 2'6] hydrocarbon moiety of decane and at least one double ring structure derivatives or selected Monovalent organic group containing 10 to 30 carbon atoms)
であって、 構造単位 M 1— l aを 1〜99モル%、 構造単位 M 1— 2 aを 1〜 99モル%、 構造単位 A— 1 aを 0〜 98モル%含む重合体。 A polymer comprising 1 to 99 mol% of a structural unit M 1-la, 1 to 99 mol% of a structural unit M 1-2a, and 0 to 98 mol% of a structural unit A-1a.
この重合体は耐熱性および機械的強度、 特に曲げ強度に優れ、 さらに屈 折率を調整しやすい点で好ましい。  This polymer is preferred because it has excellent heat resistance and mechanical strength, particularly excellent bending strength, and is easy to adjust the refractive index.
本発明の耐熱性光学材料を特にコアに用いる場合、 耐熱性や信号の伝送 性能を損なわない範囲で添加剤を混合しても良い。  When the heat-resistant optical material of the present invention is used particularly for a core, additives may be mixed within a range that does not impair heat resistance or signal transmission performance.
例えば、 屈折率を調節するために、 フタル酸ベンジル— n—ブチル (屈 折率: 1. 575) 、 1ーメトキシフエ二ルー 1一フエニルェタン (屈折 率: 1. 571) 、 安息香酸ベンジル (屈折率: 1. 568) 、 ブロモベ ンゼン (屈折率: 1. 557) 、 o—ジクロ口ベンゼン (屈折率: 1. 5 51) m—ジクロロベンゼン (屈折率: 1. 543) ¾ 1, 2 ' 一ジブ ロモェタン (屈折率: 1. 538) , 3—フエニル— 1一プロパノール ( 屈折率: 1. 532) 、 ジフエ二ルフタル酸 (C6H4 (COOC6H5) 2 ) 、 トリフエニルフォスフィン ((C6H5)3P) およびジベンジルフォス フェート ((C6H5CH2〇)2PH02) 、 4, 4, 一ジブロモベンジル、 4, 4' 一ジブロモビフエニル、 2, 4' —ジブ口モアセトフエノン、 3 , , 4, ージクロロアセトフエノン、 3, 4ージクロロアニリン、 2, 4 —ジブ口モア二リン、 2, 6—ジブ口モア二リン 1, 4 _ジブロモベンゼ ン等の化合物などが添加できる。 これらの低分子量化合物は単純に本発明 の耐熱性光学材料の屈折率を一様に調整するばかりではなく、 例えば特開 平 8— 1 1 0 4 2 0号公報記載の屈折率分布 (グレーデッドインデックス ) 型光ファイバ一を得るためのドーパントとして機能する。 本発明の耐熱 性光学材料は、 耐熱性の屈折率分布 (グレーデッドインデックス) 型光フ アイバーを得るのにも有用な材料である。 For example, to adjust the refractive index, benzyl phthalate-n-butyl (refractive index: 1.575), 1-methoxyphenyl-2-phenylene (refractive index: 1.571), benzyl benzoate (refractive index: 1.568), bromobenzene (refractive index: 1.557), o-dichlorobenzene (refractive index: 1.551) m-dichlorobenzene (refractive index: 1.543) ¾ 1, 2'-dibromoethane (Refractive index: 1.538), 3-phenyl-1-propanol (refractive index: 1.532), diphenylphthalic acid (C 6 H 4 (COOC 6 H 5 ) 2 ), triphenyl phosphine ((C 6 H 5) 3 P) and dibenzyl phosphate Feto ((C 6 H 5 CH 2 〇) 2 PH0 2), 4, 4, one dibromobenzyl, 4, 4 'single dibromo Biff enyl, 2, 4' - jib Mouth moacetophenone, 3,, 4, dichloroacetophenone, 3, 4 dichloroaniline, 2, 4 2,6-Jib mouth moaniline 1,4-dibromobenze A compound such as a compound can be added. These low molecular weight compounds not only simply adjust the refractive index of the heat-resistant optical material of the present invention uniformly, but also, for example, a refractive index distribution (graded grade) described in JP-A-8-110420. It functions as a dopant for obtaining an index-type optical fiber. The heat resistant optical material of the present invention is also useful for obtaining a heat resistant refractive index distribution (graded index) type optical fiber.
上記本発明の耐熱性光学材料は光伝送媒体、 コアとクラッドで形成され るプラスチック光ファイバ一のコア材に利用することが好ましい。  It is preferable to use the heat-resistant optical material of the present invention as an optical transmission medium and a core material of a plastic optical fiber formed of a core and a clad.
本発明の耐熱性光学材料を用いた上記プラスチック光ファイバ一は耐熱 性が高いため、 1 0 0で以上の耐熱が必要となる場合に有用である。 例え ば、 ライトガイドにおいては、 八ロゲン光源に接近してプラスチック光フ アイバ一を敷設する際に耐熱性が必要になる。 センサ一用途においては、 例えば車のへッドライト照明の検知ゃ溶融プレス機の位置決めセンサー等、 雰囲気が高温になる部分の検出の際に耐熱性が必要になる。 産業用ロポッ トのセンサ一も同様である。 光通信用途においては、 例えば車載 L ANに おいて高温になるエンジンルーム内、 車の天井部分、 インスト一ルドパネ ル等に配線する際には 1 0 0 °C以上の耐熱性が必要となる。 航空機に搭載 される場合も同様である。 ファクトリ一オートメーション (F A) 用途に おけるプラスチック光ファイバ一配線に関しても高温の環境に曝される場 合、 耐熱性が必要である。 また、 屋外にて使用する際や屋内であってもピ ルの屋上の配電盤室内や通信基地局等 通常の空調設備がない環境のため 耐熱性が要求されている。 本発明の耐熱性光学材料は、 これらの用途に効 果的に利用できる。  Since the above plastic optical fiber using the heat resistant optical material of the present invention has high heat resistance, it is useful when 100 or more heat resistance is required. For example, in a light guide, heat resistance is required when laying a plastic optical fiber close to an octogen light source. In one sensor application, heat resistance is required to detect the parts where the atmosphere becomes hot, such as the detection of headlight illumination of a car and the positioning sensor of a melting press. The same applies to sensors in industrial lopots. For optical communication applications, heat resistance of 100 ° C or more is required, for example, when wiring in the engine room, the ceiling of a car, or the instrument panel where the temperature is high in an in-vehicle LAN. The same applies to the case where it is mounted on an aircraft. Plastic optical fibers in factory-automation (FA) applications also require heat resistance when exposed to high-temperature environments. In addition, even when used outdoors or indoors, heat resistance is required due to the environment where there is no ordinary air conditioning equipment such as a distribution panel room on the roof of a pill or a communication base station. The heat-resistant optical material of the present invention can be effectively used for these uses.
これら、 耐熱性光学材料を用いた上記プラスチック光ファイバ一のクラ ッドに用いる光学材料はガラス転移温度が 1 0 o °c以上であって、 屈折率 (n D) が 1 . 4 4以下であることが好ましい。 クラッドに用いる光学材料は、 ガラス転移温度がなかでも 105 以上 のものが好ましく、 より好ましくは 110°C以上、 さらに好ましくは 12 0°C、 特に 130°C以上のものである。 ガラス転移温度が高いことにより 耐熱性を向上させることができ、 コアに用いる本発明の耐熱性光学材料と 組合せて、 高耐熱のプラスチック光ファイバ一を構成できる点で好ましく、 上記耐熱性を必要とする用途においてより一層効果的に利用できる。 These optical materials used for the plastic optical fiber cladding using the heat-resistant optical material have a glass transition temperature of 10 ° C. or more and a refractive index (n D ) of 1.44 or less. Preferably, there is. The optical material used for the clad preferably has a glass transition temperature of 105 or more, more preferably 110 ° C or more, further preferably 120 ° C or more, particularly 130 ° C or more. Heat resistance can be improved by having a high glass transition temperature, and it is preferable in that a high heat-resistant plastic optical fiber can be formed in combination with the heat-resistant optical material of the present invention used for the core. It can be used more effectively in applications where
上記耐熱性クラッドとして用いる重合体の好ましいものは、 屈折率 1. The preferred polymer used as the heat-resistant cladding has a refractive index of 1.
44以下の含フッ素ァクリル系樹脂が通常用いられ、 側鎖にフルォロアク リル基を有するメタクリレート、 CK—フロロァクリレートの (共) 共重合 体などが好ましい。 その中でも耐熱性 (高ガラス転移温度) と低屈折率を 兼ね備えた含フッ素ァクリレートとして式 (6) :A fluorinated acryl-based resin of 44 or less is usually used, and a methacrylate having a fluoroacrylyl group in a side chain, a (co) copolymer of CK-fluoroacrylate and the like are preferable. Among them, as a fluorine-containing acrylate having both heat resistance (high glass transition temperature) and low refractive index, formula (6):
Figure imgf000025_0001
Figure imgf000025_0001
(式中、 X3 は H、 CH3、 F、 CF3 または C 1 ; R f 1 および R f 2 は 同じかまたは異なり、 炭素数 1〜 5のパーフルォロアルキル基; Wはフッ 素原子で置換されていてもよい炭素数 1〜 5の炭化水素基) で示される構 造単位 (a) を有する重合体が好ましい。 (Wherein X 3 is H, CH 3 , F, CF 3 or C 1; R f 1 and R f 2 are the same or different, and is a perfluoroalkyl group having 1 to 5 carbon atoms; W is fluorine) A polymer having a structural unit (a) represented by the following formula: (hydrocarbon group having 1 to 5 carbon atoms which may be substituted by an atom) is preferable.
特に上記式 (6) の構造単位とメチルメタクリレート由来の構造単位と からなる含フッ素共重合体が好ましく、 例えば上記式 (6) の構造単位 ( a) とメチルメタクリレート由来の構造単位 (b) の合計を 100とした とき (a) / (b) 32 68〜64/36モル%比とからなる含フッ素 共重合体が好ましい。  In particular, a fluorine-containing copolymer composed of the structural unit of the above formula (6) and a structural unit derived from methyl methacrylate is preferable. For example, a structural unit (a) of the above formula (6) and a structural unit (b) derived from methyl methacrylate are preferred. When the total is 100, a fluorine-containing copolymer having a ratio of (a) / (b) 32 68 to 64/36 mol% is preferred.
上記プラスチック光ファイバ一の層構成は通常、 内側よりコア層、 クラ ッド層から構成される。 口径には特に制限はないが、 通常 125 から l mm程度である。 各層の厚さは通常、 コア層 Zクラッド層 = 9 8 Z 2程 度でコア層がその大部分を占める。 さらに外周に保護層があってもかまわ ない。 この保護層は主として耐熱性の向上、 曲げ損失の低減、 耐衝撃性の 向上の目的で用いられ、 通常、 フッ化ビニリデン系共重合体が用いられる。 中でもフッ化ビニリデン Zテトラフルォロェチレン共重合体が好ましい。 保護層の厚さはクラッド層とほぼ同一である。 また、 光ファイバ一ケープ ルとして使用する際にはさらにその外周に被覆層を配置する。 被覆層とし ては従来から使用されているナイロン 1 2、 ポリ塩化ビニル、 ポリエチレ ン、 ポリウレタン、 ポリプロピレン等を用いることができる。 The layer structure of the plastic optical fiber is generally composed of a core layer and a cladding layer from the inside. The caliber is not particularly limited, but usually from 125 l mm. The thickness of each layer is usually about core layer Z cladding layer = 98 Z 2, and the core layer occupies the majority. Further, a protective layer may be provided on the outer periphery. This protective layer is mainly used for the purpose of improving heat resistance, reducing bending loss, and improving impact resistance. Usually, a vinylidene fluoride copolymer is used. Among them, a vinylidene fluoride Z tetrafluoroethylene copolymer is preferable. The thickness of the protective layer is almost the same as that of the cladding layer. When used as an optical fiber cable, a coating layer is further arranged on the outer periphery. As the coating layer, conventionally used nylon 12, polyvinyl chloride, polyethylene, polyurethane, polypropylene and the like can be used.
前述の構成においてコア層が単一の屈折率からなるものは S I (ステツ プインデックス) 型プラスチック光ファイバ一と呼ばれ、 最も一般的であ る。  In the above-mentioned configuration, the one in which the core layer has a single refractive index is called an SI (step index) type plastic optical fiber, which is the most common.
コア層の屈折率が内周から外周に向かって階段状に屈折率が低下してい くものをマルチステップ型プラスチック光ファイバ一と呼ばれている。 ま た、 内周から外周に向かつて屈折率がなめらかに低下していくものを G I (グレーデッドインデックス) 型プラスチック光ファイバ一と呼ばれてい る。  The one in which the refractive index of the core layer decreases stepwise from the inner circumference to the outer circumference is called a multi-step plastic optical fiber. A fiber whose refractive index decreases smoothly from the inner circumference to the outer circumference is called a GI (graded index) plastic optical fiber.
上記プラスチック光ファイバの作製方法としては、 例えば、 S I型ブラ スチック光ファイバ一の場合、 複合紡糸ノズルを用いてコア材ポリマ一と クラッド材ポリマーを同心円状に配置し、 溶融複合紡糸することでフアイ パー状に賦形し ついで機械的強度の向上を目的として加熱下での延伸処 理を行なう方法が一般的である。  As a method for producing the plastic optical fiber, for example, in the case of the SI type plastic optical fiber, the core material polymer and the clad material polymer are arranged concentrically using a composite spinning nozzle, and melt composite spinning is performed. In general, a method of forming into a par and then performing a stretching treatment under heating for the purpose of improving the mechanical strength is used.
本発明の耐熱性光学材料は光導波路型素子のコアとしても好ましく用い ることができ、 コア材およびクラッド材として前述の同様な重合体の具体 例が同様に好ましく例示できる。  The heat-resistant optical material of the present invention can be preferably used also as a core of an optical waveguide element, and specific examples of the same polymer as the core material and the clad material can be similarly preferably exemplified.
図 1に、 典型的な光導波路素子の要部構造を例示する。 ここで、 1は基 板、 2はコア部、 3および 4はクラッド部である。 かかる光導波路素子は、 光機能素子間を接続するために使用され、 一方の光機能素子の端末から送 出された光は、 光導波路素子のコア部 2内を、 例えばコア部 2とクラッド 部 3、 4との界面で全反射を繰り返しながら、 他方の光機能素子端末へと 伝播される。 光導波路素子の形式は、 平面型、 ストリップ型、 リッジ型、 埋込み型等の適宜の形式を採ることができる。 FIG. 1 illustrates a main structure of a typical optical waveguide device. Where 1 is the base A plate, 2 is a core portion, and 3 and 4 are clad portions. Such an optical waveguide device is used to connect between optical functional devices, and light transmitted from a terminal of one of the optical functional devices passes through the core portion 2 of the optical waveguide device, for example, the core portion 2 and the clad portion. While repeating total reflection at the interface with 3 and 4, it is propagated to the other optical functional device terminal. The type of the optical waveguide element can be an appropriate type such as a planar type, a strip type, a ridge type, and a buried type.
また、 本発明の光学材料は上記光機能素子のコア部、 クラッド部にも用 いることが可能で、 コア部のみ、 またはクラッド部のみに本発明の光学材 料を用いてもよい。  Further, the optical material of the present invention can be used for the core portion and the clad portion of the above-mentioned optical functional device. The optical material of the present invention may be used only for the core portion or only the clad portion.
また、 種々の機能性化合物、 たとえば非線形光学材料や蛍光発光性の機 能性有機色素、 フォトリフラクティブ材料などを本発明の光学材料に含有 させて、 導波路型の光機能素子のコア部に用いることも可能である。  In addition, various functional compounds, for example, a nonlinear optical material, a functional organic dye having a fluorescent property, a photorefractive material, and the like are contained in the optical material of the present invention, and are used for a core portion of a waveguide type optical functional element. It is also possible.
光導波路型素子は例えば、 光通信信号に対し、 スイッチング、 増幅、 波 長変換、 光合分波、 波長選択等の作用を示す素子があり、 光スィッチ、 光 ルータ一、 ONU、 メディアコンバータ一等に利用できる。  Optical waveguide devices include, for example, devices that perform operations such as switching, amplification, wavelength conversion, optical multiplexing / demultiplexing, and wavelength selection on optical communication signals, such as optical switches, optical routers, ONUs, and media converters. Available.
本発明の耐熱性光学材料は上記以外のその他の用途として、 例えばレン ズ (ピックアップレンズ、 めがね用レンズ、 カメラ用レンズ、 プロジェク 夕一用フレネルレンズ、 コンタクトレンズ) 、 L E D等の発光体用封止材、 反射防止材、 光ディスク基板、 照明器具のカバー材、 ディスプレイ保護板、 透明ケース、 表示板、 自動車用部品等があげられる。  The heat-resistant optical material of the present invention may be used for other purposes other than the above, for example, for lenses (pickup lenses, lenses for glasses, lenses for cameras, Fresnel lenses for projects, contact lenses), sealing for luminous bodies such as LEDs. Materials, anti-reflective materials, optical disc substrates, cover materials for lighting equipment, display protection plates, transparent cases, display boards, automotive parts, etc.
つぎに、 実施例をあげて本発明を具体的に説明するが、 本発明は以下の 実施例に限られるものではない。  Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
実施例 1 Example 1
2—メチル—2ァダマンチル《—フルォロアクリレート 3 0 g、 メチル メタクリレート (MMA) 7 0 g、 n _ラウリルメルカプ夕ン 0 . 1 g、 ァゾイソブチロニトリル 0 . 0 2 5 8を5 0 0111 1のガラス製フラスコ内 で溶解混合し、 脱気および窒素置換を繰り返し、 密封した後、 70°Cで 1 6時間重合させた。 2-Methyl-2-adamantyl <<-Fluoroacrylate 30 g, methyl methacrylate (MMA) 70 g, n-laurylmercapone 0.1 g, azoisobutyronitrile 0.02 5 8 5 0 0111 Inside the glass flask The mixture was dissolved and mixed in, degassing and nitrogen substitution were repeated, and after sealing, polymerization was carried out at 70 ° C for 16 hours.
重合終了後、 生成物にアセトン 300 gを加えて溶解し、 得られた溶液 をメタノール 5リットルに注ぎ込んだ。 沈殿した重合物を液体から分離し、 1 00 の温度で 10時間減圧乾燥し、 固体状の重合体を 92 g (収率 9 2%) 得た。  After completion of the polymerization, 300 g of acetone was added to the product to dissolve it, and the obtained solution was poured into 5 liters of methanol. The precipitated polymer was separated from the liquid, and dried under reduced pressure at a temperature of 100 for 10 hours to obtain 92 g of a solid polymer (92% yield).
得られた重合体を 19 FNMR、 'HNMRおよび I R法で測定し、 2— メチルー 2ァダマンチル α—フルォロアクリレ一ト/ MMA=15/85 (モル%) の共重合体であることを確認した。 The obtained polymer was measured by 19 FNMR, 'HNMR and IR methods to confirm that it was a copolymer of 2-methyl-2 adamantyl α-fluoroacrylate / MMA = 15/85 (mol%).
また、 得られた共重合体の重量平均分子量、 屈折率、 ガラス転移温度、 熱変形温度、 メルトインデックス、 P及光係数および引張強度を調べた。 結 果を表 1に示す。  In addition, the weight average molecular weight, refractive index, glass transition temperature, heat distortion temperature, melt index, P and light coefficient, and tensile strength of the obtained copolymer were examined. Table 1 shows the results.
なお、 物性値の測定法は次の方法による。  The physical property values are measured by the following methods.
(1) 重量平均分子量 (Mw)  (1) Weight average molecular weight (Mw)
GPC法により測定する (ポリスチレン換算) 。  Measured by GPC method (polystyrene conversion).
(2) 屈折率 (nD) (2) Refractive index (n D )
ナトリウム D線を光源として 25°Cにおいて (株) ァタゴ光学機器製作 所製のアッベ屈折率計を用いて測定する。  Measure at 25 ° C using an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd. using sodium D line as a light source.
(3) ガラス転移温度 (Tg)  (3) Glass transition temperature (Tg)
セイコー電子 (株) 製の DSC (示差走査熱量計) を用いて、 1st run を昇温速度 101:/分で 200 まで上げ、 200 で 1分間維持したの ち、 降温速度 10Ό/分で 25 まで冷却し、 ついで昇温速度 10で/分 で得られる 2nd runの吸熱曲線の中間点を T gとする。  Using a DSC (Differential Scanning Calorimeter) manufactured by Seiko Denshi Co., Ltd., raise the 1st run to 200 at a heating rate of 101: / min, maintain it at 200 for 1 minute, and then cool it to 25 at a cooling rate of 10Ό / min. After cooling, the midpoint of the endothermic curve of the 2nd run obtained at a heating rate of 10 / min is defined as Tg.
(4) 熱変形温度 (HDT)  (4) Heat distortion temperature (HDT)
(株) 東洋精機製作所製の HDT試験装置を使用し、 ASTM D68 4に準じて測定する。 (5) メルトインデックス (MI) Use an HDT tester manufactured by Toyo Seiki Seisaku-sho, Ltd. to measure according to ASTM D6844. (5) Melt index (MI)
(株) 島津製作所製の降下式フローテス夕一を用い、 各共重合体を内径 9. 5 mmのシリンダーに装着し、 温度 230 で 5分間保った後、 7 k gのピストン荷重部に内径 2. lmm、 長さ 8 mmのオリフィスを通して 押し出し、 10分間に押し出された共重合体のグラム数で表わす。  Each of the copolymers was mounted on a 9.5 mm inner diameter cylinder and maintained at a temperature of 230 for 5 minutes using a drop-down type flow tester manufactured by Shimadzu Corporation. Extruded through an lmm, 8 mm long orifice and expressed in grams of copolymer extruded in 10 minutes.
(6) 吸光係数 (ε)  (6) Absorption coefficient (ε)
重合体をコア材に、 クラッド材として 2, 2, 2—トリフルォロェチル メタクリレート 50重量%、 2, 2, 3, 3—テトラフルォロプロピルメ タクリレート 30重量%、 メチルメタクリレート 20重量%からなる共重 合体を用い、 230 にて複合紡糸し、 直径 300 m (クラッド材厚さ 15 ) 、 長さ 100mmのプラスチック光学ファイバーを作製する。 この光学ファイバ一の波長 650 nmでの光で透過度を測定する。 入射光 強度を I。、 透過光強度を としたとき、 吸光係数、 εは下式により計算 する。 Using polymer as core material and cladding material from 2,2,2-trifluoroethyl methacrylate 50% by weight, 2,2,3,3-tetrafluoropropyl methacrylate 30% by weight, methyl methacrylate 20% by weight Using a co-polymer, the composite fiber is spun at 230 to produce a plastic optical fiber with a diameter of 300 m (cladding material thickness 15) and a length of 100 mm. The transmittance of the optical fiber is measured with light at a wavelength of 650 nm. Incident light intensity I. When the transmitted light intensity is, the extinction coefficient and ε are calculated by the following formula.
Figure imgf000029_0001
Figure imgf000029_0001
(7) 引張強度 (F)  (7) Tensile strength (F)
引張強度は (株) 島津製作所製の万能試験機を用い、 ASTM D63 8に準じて測定する。  The tensile strength is measured using a universal tester manufactured by Shimadzu Corporation according to ASTM D638.
実施例 2 Example 2
単量体として-, ィソボルニル a—フルォロアクリレ一卜 15 g , フエ二 ル Q!—フルォロアクリレート 1 5 g、 MM A 70 gを用いた以外は実施例 1と同様にして共重合体を得た。 得られた共重合体の組成、 および各種物 性を実施例 1と同様にして測定した。 結果を表 1に示す。  A copolymer was obtained in the same manner as in Example 1, except that 15 g of isobornyl a-fluoroacrylate, 15 g of phenyl Q! -Fluoroacrylate, and 70 g of MMA were used as monomers. Was. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
実施例 3 Example 3
単量体として、 トリシクロデカニルひ一フルォロアクリレート 40 g、 メチルひ一フルォロアクリレートの 60 gを用いた以外は実施例 1と同様 にして共重合体を得た。 得られた共重合体の組成、 および各種物性を実施 例 1と同様にして測定した。 結果を表 1に示す。 Same as Example 1 except that 40 g of tricyclodecanyl monofluoroacrylate and 60 g of methyl monofluoroacrylate were used as monomers To obtain a copolymer. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
実施例 4 Example 4
単量体として、 2—メチルー 2ァダマンチル α—フルォロアクリレート 2 5 g、 イソポルニルメタクリレート 2 5 gおよび MM A 5 0 gを用いた 以外は実施例 1と同様にして共重合体を得た。 得られた共重合体の組成、 および各種物性を実施例 1と同様にして測定した。 結果を表 1に示す。 実施例 5  A copolymer was obtained in the same manner as in Example 1 except that 25 g of 2-methyl-2 adamantyl α-fluoroacrylate, 25 g of isopolnyl methacrylate and 50 g of MMA were used as monomers. Was. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results. Example 5
単量体として、 シクロへキシル α _フルォロアクリレ一ト 1 5 g、 フエ ニル α—フルォロアクリレート 2 5 gおよびメチル α—フルォロアクリレ ート 6 0 gを用いた以外は実施例 1と同様にして共重合体を得た。 得られ た共重合体の組成、 および各種物性を実施例 1と同様にして測定した。 結 果を表 1に示す。  In the same manner as in Example 1 except that 15 g of cyclohexyl α-fluoroacrylate, 25 g of phenyl α-fluoroacrylate and 60 g of methyl α-fluoroacrylate were used as monomers. A copolymer was obtained. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
比較例 1 Comparative Example 1
単量体として、 MMA 1 0 0 gのみを用いた以外は実施例 1と同様にし て MMAの単独重合体を得た。 得られた重合体の各種物性を実施例 1と同 様にして測定した。 結果を表 1に示す。  A homopolymer of MMA was obtained in the same manner as in Example 1 except that only 100 g of MMA was used as a monomer. Various physical properties of the obtained polymer were measured in the same manner as in Example 1. Table 1 shows the results.
比較例 2 Comparative Example 2
単量体として、 フエニルメ夕クリレート 3 0 gおよび MMA 7 0 gを用 いた以外は実施例 1と同様にして共重合体を得た。 得られた共重合体の組 成、 および各種物性を実施例 1と同様にして測定した。 結果を表 1に示す。 比較例 3  A copolymer was obtained in the same manner as in Example 1, except that 30 g of phenylmethyl acrylate and 70 g of MMA were used as monomers. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results. Comparative Example 3
単量体として、 2 , 2 , 2—トリフルォロェチル α—フルォロアクリレ ート 2 5 gおよび匪 A 7 5 gを用いた以外は実施例 1と同様にして共重 合体を得た。 得られた共重合体の組成、 および各種物性を実施例 1と同様 にして測定した。 結果を表 1に示す。 比較例 4 A copolymer was obtained in the same manner as in Example 1 except that 25 g of 2,2,2-trifluoroethyl α-fluoroacrylate and 75 g of maraudal A were used as monomers. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results. Comparative Example 4
単量体として、 2 , 2 , 3 , 3, 3—ペン夕フルォロプロピル α—フル ォロアクリレートの 5 0 gおよびフエニルメタクリレート 5 0 gを用いた 以外は実施例 1と同様にして共重合体を得た。 得られた共重合体の組成、 および各種物性を実施例 1と同様にして測定した。 結果を表 1に示す。 The copolymer was prepared in the same manner as in Example 1 except that 50 g of 2,2,3,3,3-pentanofluoropropyl α-fluoroacrylate and 50 g of phenyl methacrylate were used as monomers. Got. The composition and various physical properties of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.
表 1 table 1
実施例""  Example""
2 3 4 5 2 共重合 組成 、 2 一メチルイソポル二トリシクロ 2—メチルシク口へキ |ΜΜΑ フエニ (モル%) 一 2ァダマル α—フルデカニル α - 2ァダマシル a—つ (100) タクリ ンチル α—ォロアクリ一フルォロンチル α -ルォロアク h フルォロアレ一ト ァクリ レーフルォロアリレート (21) クリレ一卜 (8) ト クリレート (11)  2 3 4 5 2 Copolymer composition, 2 1 -methylisopolditricyclo 2-methylcyclohexyl α- Fluoroacrylate h Fluoroacrylate Acrylate (21) Crylate (8) Crylate (11)
(15) (24) (15)  (15) (24) (15)
ΜΜΑ フエニゾレ α| ΜΜΑ ィソポル二 Iフエニル α MMA (85) —フルォロ (76) ルメ夕クリ—フルォロ (79) ァクリレー レー卜 ァクリレー I ΜΜΑFenizole α | ソ isoporni I Phenyl α MMA (85) —Fluoro (76) Lume evening Fluoro (79)
卜 (16) 卜  Ura (16) Ura
(11) (18)  (11) (18)
ΜΜΑ ΜΜΑ メチル a一  ΜΜΑ メ チ ル methyl a-
(81) (69) フルォロア  (81) (69) Fluororea
クリレート  Acrylate
(7 1)  (7 1)
物性 Physical properties
Mw 22万 31万 23万 30万 25万 26万 33万 屈折率 1.502 1.497 1.486 1.510 1.474 1.492 1.514 Tg (°C) 147 140 156 165 139 105 120 HDT CC) 130 121 139 140 117 90 105 M I (g/lOmin) 32 41 33 38 44 39 40 吸光係数 (Zcm) 0.0098 0.0108 0.0129 0.0125 0.0122 0.0046 0.015 引張強度 (MP a) 70 68 61 62 72 63 50 Mw 220,000 310,230,300,250,000 260,330,000 Refractive index 1.502 1.497 1.486 1.510 1.474 1.492 1.514 Tg (° C) 147 140 156 165 139 139 105 120 HDT CC) 130 121 139 140 117 90 105 MI (g / lOmin) 32 41 33 38 44 39 40 Absorption coefficient (Zcm) 0.0098 0.0108 0.0129 0.0125 0.0122 0.0046 0.015 Tensile strength (MPa) 70 68 61 62 72 63 50
合成例 1 Synthesis example 1
単量体として 2, 2—ビス (トリフルォロメチル) プロパニルメタクリ レート 50 g、 MMA20 g、 および 1H, 1 H, 3H—テトラフルォロ プロピルメタクリレート 30 gを用いた以外は実施例 1と同様にして重合 体を得た。 得られた重合体のガラス転移温度は 110°C、 M Iは 37 g/ 10mi n、 屈折率は 1. 419であった。  The same procedure as in Example 1 was repeated except that 50 g of 2,2-bis (trifluoromethyl) propanyl methacrylate, 20 g of MMA, and 30 g of 1H, 1H, 3H-tetrafluoropropyl methacrylate were used as monomers. A polymer was obtained. The glass transition temperature of the obtained polymer was 110 ° C, the MI was 37 g / 10 min, and the refractive index was 1.419.
実施例 6 Example 6
コア材として実施例 1の重合体をクラッド材として 2, 2, 2—トリフ ルォロェチルメタクリレ一ト 50重量%、 2, 2, 3, 3ーテトラフルォ 口プロピルメタクリレート 30重量%、 メチルメタクリレート 20重量% からなる共重合体を用い、 23 Ot:にて複合紡糸し、 直径 300 zm (鞘 材厚さ 15 m) 、 長さ 50mのプラスチック光ファイバ一を作製した。 このプラスチック光ファイバ一の伝送損失を 25m— 5mのカツトバック 法により入射 NA=0. 1における波長 65 Onmの伝送損失を測定した。 また、 このプラスチック光ファイバ一を 100°Cで 168時間保持し、 そ の後の波長 650 nmにおける伝送損失を同様に測定した。 結果を表 2に 示す。  2,2,2-Trifluoroethyl methacrylate 50% by weight, 2,2,3,3-tetrafluoromethyl propyl methacrylate 30% by weight, methyl methacrylate 20% by weight using the polymer of Example 1 as a cladding material as a core material %, And a composite optical fiber having a diameter of 300 zm (sheath thickness 15 m) and a length of 50 m was produced by composite spinning at 23 Ot :. The transmission loss of this plastic optical fiber was measured at a wavelength of 65 Onm at an incident NA of 0.1 using the cutback method of 25m-5m. The plastic optical fiber was kept at 100 ° C for 168 hours, and the transmission loss at a wavelength of 650 nm was measured in the same manner. Table 2 shows the results.
実施例 7 Example 7
コア材として実施例 4の重合体を用い、 クラッド材として合成例 1の重 合体を用いた以外は実施例 6と同様にしてプラスチック光ファイバ一を得 た。 得られたプラスチック光ファイバ一の特性を表 2に示す。  A plastic optical fiber 1 was obtained in the same manner as in Example 6, except that the polymer of Example 4 was used as the core material and the polymer of Synthesis Example 1 was used as the clad material. Table 2 shows the characteristics of the obtained plastic optical fiber.
比較例 5 Comparative Example 5
コア材として比較例 3の重合体を用いた以外は実施例 6と同様にしてプ ラスチック光フアイバーを得た。 得られたプラスチック光フアイバーの特 性を表 2に示す。 表 2 A plastic optical fiber was obtained in the same manner as in Example 6, except that the polymer of Comparative Example 3 was used as the core material. Table 2 shows the characteristics of the obtained plastic optical fiber. Table 2
Figure imgf000034_0001
Figure imgf000034_0001
産業上の利用可能性 Industrial applicability
本発明によれば、 耐熱性と信号伝送能力を兼ね備えた光学材料を提供す ることができる。  According to the present invention, an optical material having both heat resistance and signal transmission ability can be provided.
さらに光伝送用媒体、 詳しくはプラスチック光フアイバーや導波路型素 子のコア用材料として利用可能な信号伝送能力を有する光学材料、 特に、 自動車のエンジンルームで要求される 1 2 5 °Cの環境、 またはディーゼル 車のエンジンルームで要求される 1 5 0 °Cの環境で利用可能な光学材料を 用いてなるプラスチック光ファイバ一を提供できる。  In addition, optical transmission media, specifically optical materials with signal transmission capabilities that can be used as core materials for plastic optical fibers and waveguide devices, especially the 125 ° C environment required in automobile engine rooms Or a plastic optical fiber made of an optical material that can be used in a 150 ° C environment required in an engine room of a diesel car.

Claims

言青求の範囲 Scope of Word
1. 側鎖に脂環式炭化水素部位を有する重合体からなる耐熱性光学材料で あって、 該側鎖に脂環式炭化水素部位を有する重合体の熱変形温度が 1 15 °C以上であり、 かつ、 式 (M - 1) : 1. A heat-resistant optical material comprising a polymer having an alicyclic hydrocarbon moiety in a side chain, wherein the polymer having an alicyclic hydrocarbon moiety in a side chain has a heat deformation temperature of 115 ° C or more. Yes, and the formula (M-1):
— [Ml] - [A] _ (M- 1) 中、  — [Ml]-[A] _ (M-1)
構造単位 Mlは式 (1) :  The structural unit Ml has the formula (1):
X  X
C JT12 ~ ^ C JT12 ~ ^
I (1)  I (1)
c-o- Z  c-o- Z
II  II
o  o
(式中、 Xは H、 CH3、 F、 C 1および CF3よりなる群から選ばれ る少なくとも 1種; Zは脂環式炭化水素部位を有する炭素数 3〜 30の(Wherein, X is at least one member selected from the group consisting of H, CH 3 , F, C 1 and CF 3 ; Z is C 3-30 having an alicyclic hydrocarbon moiety)
1価の有機基) で示される単量体の少なくとも 1種に由来する構造単位、 構造単位 Aは式 ( 1 ) の単量体と共重合可能な単量体の少なくとも 1種 に由来する構造単位] で示され、 構造単位 Mlを 1〜100モル%およ び構造単位 Aを 0〜99モル%含む重合体である耐熱性光学材料。 A structural unit derived from at least one of the monomers represented by (monovalent organic group), and the structural unit A is a structure derived from at least one of the monomers copolymerizable with the monomer of the formula (1) A heat-resistant optical material which is a polymer containing 1 to 100 mol% of the structural unit Ml and 0 to 99 mol% of the structural unit A.
2. 前記側鎖に脂環式炭化水素部位を有する重合体の構造単位 Mlが、 式 (M- 2) :  2. The structural unit Ml of the polymer having an alicyclic hydrocarbon moiety in the side chain is represented by the formula (M-2):
- [M 1 - 1 ] 一 [Ml - 2] ― (M - 2)  -[M 1-1] one [Ml-2] ― (M-2)
ぼ中、  Inside
構造単位 Ml— 1は式 (2) : CH2 = CF The structural unit Ml—1 is the formula (2): CH 2 = CF
C-O-Z1 (2) COZ 1 (2)
II  II
 〇
(式中、 Z1は脂環式炭化水素部位を有する炭素数 3〜30の 1価の有 機基) で示される単量体の少なくとも 1種に由来する構造単位、 構造単位 Ml— 2は式 (3) : (Wherein, Z 1 is a monovalent organic group having 3 to 30 carbon atoms having an alicyclic hydrocarbon moiety), and a structural unit derived from at least one kind of a monomer represented by the following formula: Equation (3):
X3 X 3
I (3) I (3)
c-o-z2 coz 2
o  o
(式中、 X3は、 H、 CH3、 C 1および CF3よりなる群から選ばれる 少なくとも 1種; Z 2は脂環式炭化水素部位を有する炭素数 3〜 30の 1価の有機基) で示される単量体の少なくとも 1種に由来する構造単位 ] で示され、 構造単位 M 1— 1を 1〜 99モル%および構造単位 M 1一 2を 1〜 99モル%含む構造単位である請求の範囲第 1項記載の耐熱性 光学材料。 (Wherein X 3 is at least one selected from the group consisting of H, CH 3 , C 1 and CF 3 ; Z 2 is a monovalent organic group having 3 to 30 carbon atoms and having an alicyclic hydrocarbon moiety) ) Structural units derived from at least one of the monomers represented by the formula], wherein the structural unit contains 1-199 mol% of the structural unit M1-1 and 1-99 mol% of the structural unit M1-2. 2. The heat-resistant optical material according to claim 1.
3. 前記側鎖に脂環式炭化水素部位を有する重合体の構造単位 Aが、 式 (M— 3) :  3. The structural unit A of the polymer having an alicyclic hydrocarbon moiety in the side chain is represented by the formula (M-3):
一 [A- 1] - [A- 2] - (M- 3)  One [A-1]-[A-2]-(M-3)
[式中、  [Where,
構造単位 A— 1は式 (4) : Structural unit A—1 is the formula (4):
X1 X 1
CH2 = C CH 2 = C
(4)  (Four)
C-O-R1 COR 1
O (式中、 X1は H、 CH3、 F、 C 1および CF3よりなる群から選ばれ る少なくとも 1種; R1は水素原子、 炭素数 1〜30の直鎖または分岐 状のエーテル結合を含んでいても良いアルキル基および炭素数 1〜 30 の直鎖または分岐状のエーテル結合を含んでいても良い含フッ素アルキ ル基よりなる群から選ばれる少なくとも 1種) で示される単量体の少な くとも 1種に由来する構造単位および/または式 (5) : O (Wherein X 1 is at least one selected from the group consisting of H, CH 3 , F, C 1 and CF 3 ; R 1 is a hydrogen atom, a linear or branched ether bond having 1 to 30 carbon atoms) At least one selected from the group consisting of an alkyl group which may contain a fluorinated alkyl group which may contain a linear or branched ether bond having 1 to 30 carbon atoms) And / or a structural unit derived from at least one of the following:
X2 X 2
I I
Figure imgf000037_0001
Figure imgf000037_0001
C一〇一 R2 C-1-1 R 2
II  II
o  o
(式中、 X2は前記式 (4) の X1と同じ; R 2は芳香族環状構造を含む 炭素数 6〜 30の 1価の炭化水素基であって、 ただし R 2中の水素原子 の一部または全てがフッ素原子に置換されていても良い) で示される単 量体の少なくとも 1種に由来する構造単位;構造単位 A— 2は式 (1) 、(Wherein X 2 is the same as X 1 in the formula (4); R 2 is a monovalent hydrocarbon group having 6 to 30 carbon atoms including an aromatic ring structure, provided that a hydrogen atom in R 2 A part or all of which may be substituted with a fluorine atom); a structural unit derived from at least one monomer represented by the formula:
(4) および (5) に示される単量体と共重合可能な単量体由来の構造 単位] で示され、 重合体中に構造単位 A— 1を 1〜 99モル%および構 造単位 A— 2を 0〜 98モル%含む構造単位である請求の範囲第 1項ま たは第 2項記載の耐熱性光学材料。 A structural unit derived from a monomer copolymerizable with the monomers shown in (4) and (5)], and 1 to 99 mol% of the structural unit A-1 and the structural unit A in the polymer. 3. The heat-resistant optical material according to claim 1, which is a structural unit containing 0 to 98 mol% of 2.
4. 前記構造単位 A— 1が式 (4) で示される単量体の少なくとも 1種に 由来する構造単位である請求の範囲第 3項記載の耐熱性光学材料。  4. The heat-resistant optical material according to claim 3, wherein the structural unit A-1 is a structural unit derived from at least one of the monomers represented by the formula (4).
5. 前記構造単位 A— 1がメチルメタクリレートまたはメチルー α—フロ ロアクリレート由来の構造単位である請求の範囲第 4項記載の耐熱性光 学材料。  5. The heat-resistant optical material according to claim 4, wherein the structural unit A-1 is a structural unit derived from methyl methacrylate or methyl-α-fluoroacrylate.
6. 前記構造単位 Α— 1が式 ( 5 ) で示される単量体の少なくとも 1種に 由来する構造単位である請求の範囲第 3項記載の耐熱性光学材料。  6. The heat-resistant optical material according to claim 3, wherein the structural unit Α-1 is a structural unit derived from at least one of the monomers represented by the formula (5).
7. 前記構造単位 A— 1がフエニルメタクリレートまたはフエ二ルー - フロロァクリレート由来の構造単位である請求の範囲第 6項記載の耐熱 性光学材料。 7. The structural unit A-1 is phenyl methacrylate or phenyl- 7. The heat-resistant optical material according to claim 6, which is a structural unit derived from fluoroacrylate.
8. 前記式 (1 ) 中の Xが Fである請求の範囲第 1項または第 3項〜第 7 項のいずれかに記載の耐熱性光学材料。  8. The heat-resistant optical material according to any one of claims 1 or 3 to 7, wherein X in the formula (1) is F.
9. 式 (1 ) の Zが複環構造の炭化水素部位を有する炭素数 4〜3 0の 1 価の有機基である請求の範囲第 1項〜第 8項のいずれかに記載の耐熱性 光学材料。  9. The heat resistance according to any one of claims 1 to 8, wherein Z in the formula (1) is a monovalent organic group having 4 to 30 carbon atoms and having a hydrocarbon moiety having a bicyclic structure. Optical materials.
10. 式 (2 ) の Z 1および式 (3 ) の Z 2の少なくとも一方が複環構造の 炭化水素部位を有する炭素数 4〜 3 0の 1価の有機基である請求の範囲 第 2項〜第 8項のいずれかに記載の耐熱性光学材料。 10. The claim according to claim 2 , wherein at least one of Z 1 in the formula (2) and Z 2 in the formula (3) is a monovalent organic group having 4 to 30 carbon atoms and having a hydrocarbon moiety having a double ring structure. 9. The heat-resistant optical material according to any one of items 8 to 8.
11. 複環構造の炭化水素部位を有する 1価の有機基が、 ァダマンタンまた はその誘導体からなる複環構造を含む炭素数 1 0〜3 0の有機基である 請求の範囲第 9項または第 1 0項記載の耐熱性光学材料。  11. The monovalent organic group having a hydrocarbon moiety having a multiple ring structure is an organic group having 10 to 30 carbon atoms including a multiple ring structure composed of adamantane or a derivative thereof. Item 10. The heat-resistant optical material according to item 10.
12. 複環構造の炭化水素部位を有する 1価の有機基が、 ノルポルナンまた はその誘導体からなる複環構造を含む炭素数 7〜 3 0の有機基である請 求の範囲第 9項または第 1 0項記載の耐熱性光学材料。  12. The scope of claim 9 or claim 9, wherein the monovalent organic group having a hydrocarbon moiety having a multiple ring structure is an organic group having 7 to 30 carbon atoms including a multiple ring structure composed of norpolnane or a derivative thereof. Item 10. The heat-resistant optical material according to item 10.
13. 複環構造の炭化水素部位を有する 1価の有機基が、 トリシクロ 〔5 .  13. When the monovalent organic group having a hydrocarbon moiety having a double ring structure is tricyclo [5.
2 . 1 . 0 2'6〕 デカンまたはその誘導体からなる複環構造を含む炭素 数 1 0〜3 0の有機基である請求の範囲第 9項または第 1 0項記載の耐 熱性光学材料。 2. 1.0 2 ' 6 ] The heat-resistant optical material according to claim 9 or 10, which is an organic group having 10 to 30 carbon atoms including a double ring structure composed of decane or a derivative thereof.
14. 前記側鎖に脂環式炭化水素部位を有する重合体が、 熱変形温度が 1 3 0 以上の重合体である請求の範囲第 1項〜第 1 3項のいずれかに記載 の耐熱性光学材料。  14. The heat resistance according to any one of claims 1 to 13, wherein the polymer having an alicyclic hydrocarbon moiety in the side chain is a polymer having a heat distortion temperature of 130 or more. Optical materials.
15. 前記側鎖に脂環式炭化水素部位を有する重合体が、 6 5 0 n m波長光 での吸光係数が 0 . 0 1 5 c m— 1以下の重合体である請求の範囲第 1 項〜第 1 4項のいずれかに記載の耐熱性光学材料。 15. The polymer according to claim 1 , wherein the polymer having an alicyclic hydrocarbon moiety in the side chain is a polymer having an extinction coefficient at a wavelength of 600 nm of 0.015 cm- 1 or less. Item 15. The heat-resistant optical material according to any one of Items 14 to 14.
16. 前記側鎖に脂環式炭化水素部位を有する重合体が、 屈折率 n Dが 1 . 4 5以上の重合体である請求の範囲第 1項〜第 1 5項のいずれかに記載 の耐熱性光学材料。 16. polymers having an alicyclic hydrocarbon moiety to the side chain, the refractive index n D is 1.4 to 5 or more polymerizable first term range of body and is claimed - first item 5 according to any one Heat resistant optical material.
17. 前記側鎖に脂環式炭化水素部位を有する重合体が、 屈折率 n Dが 1 . 17. polymers having an alicyclic hydrocarbon moiety to the side chain, the refractive index n D is 1.
4 7以上の重合体である請求の範囲第 1項〜第 1 5項のいずれかに記載 の耐熱性光学材料。  The heat-resistant optical material according to any one of claims 1 to 15, which is a polymer of 47 or more.
18. 請求の範囲第 1項〜第 1 7項のいずれかに記載の耐熱性光学材料を用 いてなる光伝送用媒体。  18. An optical transmission medium using the heat-resistant optical material according to any one of claims 1 to 17.
19. コアおよびクラッドから構成されるプラスチック光ファイバ一であつ て、 コアに請求の範囲第 1 8項記載の光伝送用媒体を用いてなるプラス チック光ファイバ一。  19. A plastic optical fiber comprising a core and a clad, wherein the core comprises the optical transmission medium according to claim 18.
20. 前記クラッドが、 ガラス転移温度が 1 0 0 °C以上で屈折率 n Dが 1 . 20. The cladding has a glass transition temperature of 100 ° C. or higher and a refractive index n D of 1.
4 4以下の材料である請求の範囲第 1 9項記載のプラスチック光フアイ バー。  44. The plastic optical fiber according to claim 19, wherein the plastic optical fiber is a material of 4 or less.
21. 前記クラッドが、 ガラス転移温度が 1 0 5 °C以上の材料である請求の 範囲第 2 0項記載のプラスチック光ファイバ一。  21. The plastic optical fiber according to claim 20, wherein said cladding is made of a material having a glass transition temperature of 105 ° C or more.
22. 車両に搭載される L AN用プラスチック光ファイバ一である請求の範 囲第 1 9項〜第 2 1項のいずれかに記載のプラスチック光ファイバ一。  22. The plastic optical fiber according to any one of claims 19 to 21 which is a plastic optical fiber for LAN mounted on a vehicle.
23. コアおよびクラッドから構成される光導波路型素子であって、 コアに 請求の範囲第 1 8項記載の光伝送用媒体を用いてなる光導波路型素子。  23. An optical waveguide device comprising a core and a clad, wherein the core uses the optical transmission medium according to claim 18.
PCT/JP2004/000691 2003-02-03 2004-01-27 Heat-resistant optical material and medium for optical transmission therefrom WO2004070435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026359A JP2006188544A (en) 2003-02-03 2003-02-03 Heat-resistant optical material and medium for optical transmission using it
JP2003-026359 2003-02-03

Publications (1)

Publication Number Publication Date
WO2004070435A1 true WO2004070435A1 (en) 2004-08-19

Family

ID=32844138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000691 WO2004070435A1 (en) 2003-02-03 2004-01-27 Heat-resistant optical material and medium for optical transmission therefrom

Country Status (2)

Country Link
JP (1) JP2006188544A (en)
WO (1) WO2004070435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648160B2 (en) 2004-11-09 2014-02-11 Idemitsu Kosan Co., Ltd. Optical semiconductor sealing material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125742A (en) * 1982-01-20 1983-07-26 Konishiroku Photo Ind Co Ltd Optical resin composition and optical element
JPH02308202A (en) * 1989-05-24 1990-12-21 Hitachi Ltd Optical parts and production thereof and application device thereof
JPH06333405A (en) * 1993-05-20 1994-12-02 Matsushita Electric Works Ltd Lighting system
JPH0735929A (en) * 1993-07-19 1995-02-07 Mitsubishi Rayon Co Ltd Gradient index optical transmission body
JPH08304634A (en) * 1995-05-12 1996-11-22 Sumitomo Electric Ind Ltd Production of plastic optical fiber preform and plastic optical fiber
EP1116577A2 (en) * 2000-01-11 2001-07-18 Samsung Electronics Co., Ltd. Method for fabricating a preform for a plastic optical fiber and the preform for a plastic optical fiber fabricated thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125742A (en) * 1982-01-20 1983-07-26 Konishiroku Photo Ind Co Ltd Optical resin composition and optical element
JPH02308202A (en) * 1989-05-24 1990-12-21 Hitachi Ltd Optical parts and production thereof and application device thereof
JPH06333405A (en) * 1993-05-20 1994-12-02 Matsushita Electric Works Ltd Lighting system
JPH0735929A (en) * 1993-07-19 1995-02-07 Mitsubishi Rayon Co Ltd Gradient index optical transmission body
JPH08304634A (en) * 1995-05-12 1996-11-22 Sumitomo Electric Ind Ltd Production of plastic optical fiber preform and plastic optical fiber
EP1116577A2 (en) * 2000-01-11 2001-07-18 Samsung Electronics Co., Ltd. Method for fabricating a preform for a plastic optical fiber and the preform for a plastic optical fiber fabricated thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648160B2 (en) 2004-11-09 2014-02-11 Idemitsu Kosan Co., Ltd. Optical semiconductor sealing material

Also Published As

Publication number Publication date
JP2006188544A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2010113639A1 (en) Plastic optical fiber and plastic optical fiber code
US7706658B2 (en) Copolymer and polymerizable composition
CN101248098B (en) Copolymer and polymerizable composition
JPS63159459A (en) Resin composition
JPH0223843B2 (en)
JP3479573B2 (en) Plastic optical fiber
WO2004070435A1 (en) Heat-resistant optical material and medium for optical transmission therefrom
CN101111476B (en) Compound, polymerizable composition, optical device, and method for producing refractive index profile optical device
WO2006064966A1 (en) Method for producing refractive index profile plastic optical device
JP2011008240A (en) Plastic optical fiber and plastic optical fiber code
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
JP4052309B2 (en) Fluorine-containing optical material and fluorine-containing copolymer
JP4520364B2 (en) Amorphous copolymers, optical components and plastic optical fibers
CN101103056B (en) Polymerizable composition for forming optical device, optical device, and method for producing optical device
JP3900170B2 (en) Heat-resistant fluorine-containing optical material and optical transmission medium using the same
JPS62269906A (en) Optical transmission fiber
JPH0345908A (en) Plastic optical fiber having heat resistance
JPS62269905A (en) Optical transmission fiber
JPH10300950A (en) Plastic optical fiber
JP2005338130A (en) Plastic optical fiber, plastic optical fiber cable, and plastic optical fiber with plug
JPS59216105A (en) Optical transmission fiber
JPH0727929A (en) Optical transmission body
JP2008503598A (en) Copolymer having cyclic ether structure in main chain, optical member containing the polymer, and method for producing the same
JPH0345907A (en) Plastic optical fiber having heat resistance
JPS6367165B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP