JPS62269906A - Optical transmission fiber - Google Patents

Optical transmission fiber

Info

Publication number
JPS62269906A
JPS62269906A JP61112814A JP11281486A JPS62269906A JP S62269906 A JPS62269906 A JP S62269906A JP 61112814 A JP61112814 A JP 61112814A JP 11281486 A JP11281486 A JP 11281486A JP S62269906 A JPS62269906 A JP S62269906A
Authority
JP
Japan
Prior art keywords
meth
acrylate
component
refractive index
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61112814A
Other languages
Japanese (ja)
Inventor
Hideo Nakamoto
中本 英夫
Hiroshi Fukushima
福島 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61112814A priority Critical patent/JPS62269906A/en
Publication of JPS62269906A publication Critical patent/JPS62269906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the title fiber having excellent flexibility and anti- environmental capability by composing a core component of a photopolymerized polymer of a photocurable liquid resin contg. silicone poly(meth)acrylate having >=2 (meth)acryloyl groups in one molecule, as a main component, and by composing a sheath component of a specific org. polymer respectively. CONSTITUTION:The core component is the photopolymerized polymer (A) composed of the photocurable liquid resin contg. silicone poly(meth)acrylate having >=2 (meth)acryloyl groups in the one molecule as the main component. The sheath component is composed of the org. polymer (B) which has a refractive index lower than that of the core component by >=0.01 and is substantially transparence and has the good flexibility. The silicone poly(meth)acrylate is preferably composed of a condensate of polymethyl phenyl methoxy siloxane and 2-hydroxy ethyl methacrylate, and has the high refractive index and the high transparence, and gives the core material having he good flexibility and heat-resisting property.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明は可撓性及び耐環境特性に極めて優れた光伝送性
繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a light transmitting fiber that has excellent flexibility and environmental resistance.

〔従来技術〕[Prior art]

従来、光伝送性繊維としては、広い波長にわたって優れ
た光伝送性を有する無機ガラス系のものが知られている
が、この繊維は加工性が悪く、曲げ応力に弱いばかりで
なく高価であるため、合成樹脂を基本とする光伝送性繊
維が開発されている。合成樹脂製の光伝送性繊維は、屈
折率が大きく、かつ光の透過性が良好な重合体を心とし
、これよりも屈折率が小さく、かつ透明な重合体を鞘と
して、心−鞘構造を有する繊維を製造することによって
得られる。光透過性が高い心成分として有用な重合体と
しては、無定形の材料が好ましく、ポリメタクリル酸メ
チルあるいはポリスチレンが一般に使用されている。
Conventionally, inorganic glass-based fibers have been known to have excellent optical transmission properties over a wide range of wavelengths, but these fibers have poor processability, are susceptible to bending stress, and are expensive. , optically transmitting fibers based on synthetic resins have been developed. Optical transmitting fibers made of synthetic resin have a core-sheath structure, with a core made of a polymer with a high refractive index and good light transmittance, and a sheath made of a transparent polymer with a lower refractive index. It can be obtained by producing fibers with As a polymer useful as a core component having high light transmittance, an amorphous material is preferable, and polymethyl methacrylate or polystyrene is generally used.

これら心成分重合体のうち、ポリメタクリル酸メチルは
透明性、力学的性質、熱的性質、耐候性等に優れ、高性
能プラスチック光学繊維の心材として工業的に用いられ
ている。しかしこのポリメタクリル酸メチルを心とした
プラスチック光伝送性繊維も可撓性においては充分では
なく、直径が1TIa以上になると剛直で折−れやすく
なり、大容量の光を送るライトガイド等の大口径である
ことが要求される用途においては十分な特性を発揮する
ことができない。このため大口径で柔軟な光伝送性繊維
の開発が要請されている。また、ポリメタクリル酸メチ
ルを心としたプラスチック光伝送性繊維は、ポリメタク
リル酸メチルのガラス転移温度が100℃であるため、
環境条件が100℃以上になると全く使用することがで
きず、耐薬品性及び耐熱水性も劣るため、プラスチック
光伝送性繊維の用途が限られている。
Among these core component polymers, polymethyl methacrylate has excellent transparency, mechanical properties, thermal properties, weather resistance, etc., and is used industrially as a core material for high-performance plastic optical fibers. However, this plastic light transmitting fiber made mainly of polymethyl methacrylate does not have sufficient flexibility, and when the diameter exceeds 1 TIa, it becomes rigid and easy to break, making it suitable for use in light guides etc. that transmit a large amount of light. It cannot exhibit sufficient characteristics in applications that require a large diameter. For this reason, there is a need for the development of flexible optically transmitting fibers with large diameters. In addition, plastic light transmitting fibers mainly made of polymethyl methacrylate have a glass transition temperature of 100°C, so
If the environmental conditions exceed 100° C., they cannot be used at all, and their chemical resistance and hot water resistance are also poor, so the uses of plastic optical fibers are limited.

〔発明の構成〕[Structure of the invention]

そこで本発明者らは、このような従来のプラスチック光
伝送性繊維の欠点を克服し、可撓性に侵れ、耐熱性、耐
寒性、耐湿性、耐振動性、耐放射線性等の耐環境特性が
大幅に向上した全プラスチック光伝送繊維を開発すべる
鋭意検討の結果、本発明に到達した。
Therefore, the present inventors have overcome the drawbacks of conventional plastic light transmitting fibers, and have developed environmental resistance such as flexibility, corrosion resistance, heat resistance, cold resistance, moisture resistance, vibration resistance, radiation resistance, etc. As a result of extensive research into developing an all-plastic optical transmission fiber with significantly improved properties, we have arrived at the present invention.

本発明は、1分子中に(メタ)アクリロイル基を2個以
上有するシリコーンポリ(メタ)アクリレートを主成分
とする光硬化性液状樹脂の光重合体(A)を心成分とし
、該心成分の屈折率より0.01以上低い屈折率を有し
、実質的に透明で可撓性良好な有機重合体(B)を鞘成
分とすることを特徴とする光伝送性繊維である。
The present invention uses a photopolymer (A) of a photocurable liquid resin as a core component, the main component of which is a silicone poly(meth)acrylate having two or more (meth)acryloyl groups in one molecule; The light transmitting fiber is characterized in that the sheath component is an organic polymer (B) which has a refractive index lower than the refractive index by 0.01 or more and is substantially transparent and has good flexibility.

本発明の光伝送繊維の心成分に用いられる光重合体(A
)は、1分子中に(メタ)アクリロイル基を2個以上有
するシリコーンポリ(メタ)アクリレートを主成分とす
る光硬化性液状樹脂を光重合させたものである。シリコ
、−ンボリ(メタ)アクリレートは、アルコキシ基含有
シロキサン樹脂をヒドロキシ基含有(メタ)アクリレー
トと脱アルコール反応させることにより得られる。ヒド
ロキシ7基含有(メタ)アクリレートとしては、例えば
2−ヒドロキシエチル(メタ)アクリレート、2−ヒド
ロキシプロピル(メタ)アクリレート、4−ヒドロキシ
ブチル(メタ)アクリレート、モノエポキシ化合物の(
メタ)アクリル酸付加物等、並びにこれらの2種以上の
混合物が用いられる。シリコーンポリ(メタ)アクリレ
ートは、1分子中に(メタ)アクリロイル基を2個以上
有していることが必要である。(メタ)アクリロイル基
が2個未満となると、得られる光硬化性液状樹脂の光に
対する活性が低下するばかりでな(、心成分となる光重
合体の耐熱性も悪化するので好ましくない。
Photopolymer (A) used as the core component of the optical transmission fiber of the present invention
) is obtained by photopolymerizing a photocurable liquid resin whose main component is silicone poly(meth)acrylate having two or more (meth)acryloyl groups in one molecule. Silico-boly(meth)acrylate is obtained by subjecting an alkoxy group-containing siloxane resin to a dealcoholization reaction with a hydroxy group-containing (meth)acrylate. Examples of the (meth)acrylate containing 7 hydroxy groups include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and monoepoxy compound (meth)acrylate.
Meth)acrylic acid adducts, etc., and mixtures of two or more of these are used. Silicone poly(meth)acrylate needs to have two or more (meth)acryloyl groups in one molecule. If the number of (meth)acryloyl groups is less than two, it is not preferable because not only the light activity of the resulting photocurable liquid resin decreases (but also the heat resistance of the photopolymer serving as the core component deteriorates).

シリコーンポリ(メタ)アクリレートとしては、例えば
ポリメチルフェニルメトキシシロキサンと2−ヒドロキ
シエチル(メタ)アクリレートの縮合物、ポリメチルメ
トキシシロキサンと2−ヒドロキシアルキル(メタ)ア
クリレートの縮合物などが用いられる。特にポリメチル
フェニルメトキシシロキサンと2−ヒドロキシエチルメ
タクリレートの縮合物が好ましく、高屈折率及び高光透
過性を示し、かつ可撓性及び耐・熱性良好な心材を得る
ことができる。
As the silicone poly(meth)acrylate, for example, a condensate of polymethylphenylmethoxysiloxane and 2-hydroxyethyl (meth)acrylate, a condensate of polymethylmethoxysiloxane and 2-hydroxyalkyl (meth)acrylate, etc. are used. Particularly preferred is a condensate of polymethylphenylmethoxysiloxane and 2-hydroxyethyl methacrylate, which can provide a core material that exhibits a high refractive index and high light transmittance, and has good flexibility, good heat resistance, and good heat resistance.

本発明に用いられる光硬化性液状樹脂は、前記のシリコ
ーンポリ(メタ)アクリレート単独でもさしつかえない
が、モノビニル化合物、例えば炭素数1〜12のアルキ
ル(メタ)アクリレート、テトラヒドロフルフリル(メ
タ)アクリレート、シクロヘキシル(メタ)アクリレー
ト、フェノキシエチル(メタ)アクリレート等を併用し
てもよい。
The photocurable liquid resin used in the present invention may be the silicone poly(meth)acrylate alone, but may also be a monovinyl compound such as an alkyl(meth)acrylate having 1 to 12 carbon atoms, tetrahydrofurfuryl(meth)acrylate, Cyclohexyl (meth)acrylate, phenoxyethyl (meth)acrylate, etc. may be used in combination.

本発明に用いられる鞘成分は、心成分重合体の屈折率よ
り0.01以上低い屈折率を有し、実質的に透明な有機
重合体CB)であることが必要である。屈折率の差が0
.01未満では得られる光伝送性繊維の開口数が小さい
ばかりでなく、伝送損失は極めて太き(なり、さらに鞘
成分の屈折率が心成分の屈折率より太き(なると光は全
(伝送されない。
The sheath component used in the present invention needs to be a substantially transparent organic polymer CB) having a refractive index lower by 0.01 or more than the refractive index of the core component polymer. The difference in refractive index is 0
.. If it is less than 0.01, not only will the numerical aperture of the resulting light-transmitting fiber be small, but the transmission loss will be extremely large, and furthermore, if the refractive index of the sheath component is thicker than the refractive index of the core component, all of the light will not be transmitted. .

本発明の光伝送性繊維の鞘成分として用いられる有機重
合体CB)としては、例えばポリテトラフルオロエチレ
ン、テトラフルオロエチレン/パーフルオロアルキルビ
ニルエーテル共重合体、テトラフルオロエチレン/ヘキ
サフルオロプロピレン共重合体、エチレン−酢酸ビニル
共重合体、塩化ビニル樹脂、シリコーン樹脂等があげら
れる。
Examples of the organic polymer CB) used as the sheath component of the light transmitting fiber of the present invention include polytetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene/hexafluoropropylene copolymer, Examples include ethylene-vinyl acetate copolymer, vinyl chloride resin, and silicone resin.

本発明の光伝送繊維は可撓性に優れていることから、心
部の径を従来の光伝送性繊維の範囲である5〜6000
μm及びこれよりさらに大きくすることができる。例え
ば心部の径が50間程度の超極太の光伝送路も製造可能
である。
Since the optical transmission fiber of the present invention has excellent flexibility, the diameter of the core can be adjusted to 5 to 6000, which is within the range of conventional optical transmission fibers.
μm and even larger. For example, it is possible to manufacture an extremely thick optical transmission line with a core diameter of about 50 mm.

鞘層の厚さは1μm以上とすることが光の企及の 射のために必要となるが、鞘層の厚さ、上限は使用目的
に応じて適宜選択することができる。
Although the thickness of the sheath layer is required to be 1 μm or more for the purpose of light emission, the upper limit of the thickness of the sheath layer can be appropriately selected depending on the purpose of use.

本発明の光伝送性繊維を補強するために、別種のポリマ
ー例えばポリアミド、ポリエステル繊維、ポリアミド繊
維、金属繊維、炭素繊維等のテンションメンバーを併用
して光フアイバーケーブルとすることもできる。
In order to reinforce the light transmitting fiber of the present invention, an optical fiber cable can be made by using a tension member of another type of polymer such as polyamide, polyester fiber, polyamide fiber, metal fiber, carbon fiber, etc. in combination.

本発明の光伝送繊維を製造する方法としては、例えば心
成分の光硬化性液状樹脂を繊維状にして硬化させたのち
、鞘成分重合体で被覆する方法、あるいは鞘成分重合体
を中空繊維に賦形し、その中に心成分の液状樹脂を吸引
あるいは圧入したのち、光により硬化し、光伝送性繊維
とする方法があげられる。
The optical transmission fiber of the present invention can be produced by, for example, forming a photocurable liquid resin as a core component into a fiber, curing it, and then coating it with a sheath component polymer, or forming a sheath component polymer into a hollow fiber. One method is to shape the fiber, suck or press the core liquid resin into it, and then harden it with light to form a light-transmitting fiber.

下記実施例中の「部」は「重量部」を意味する。"Parts" in the following examples mean "parts by weight."

実施例1 ポリメチルフェニルメトキシシロキサンのメトキシ基1
モルに対し、2−ヒドロキシエチルメタクリレート1.
05モルを用い、ナトリウムメチラートの存在下に脱メ
タノール反応を実施してシリコーンメタクリレート(1
分子当りメタクリロイル基を1243個含有)を得た。
Example 1 Methoxy group 1 of polymethylphenylmethoxysiloxane
per mole of 2-hydroxyethyl methacrylate 1.
Silicone methacrylate (1
(containing 1243 methacryloyl groups per molecule) was obtained.

このシリコーンメタクリレート100部にベンゾインエ
チルエーテルを0.2部混合溶解させて粘度620 c
ps (25℃)の液状光硬化性樹脂を得た。この液状
光硬化性樹脂をクリーンルーム内で孔径0.1μmのポ
リテトラフルオロエチレン製フィルターで濾過したのち
脱泡し、心底分用前駆体を調製した。この前駆体を0.
6ワツト/(m”のケミカルランプを用いて365ナノ
メーターの紫外線強度が0.6 ミ’Jワット/cm2
となる条件で60分間紫外線を照射した。得られた光重
合体の物性は、屈折率nD1−56、引張り強さ3゜5
 kg/lyn’及び伸び45%であった。
0.2 parts of benzoin ethyl ether was mixed and dissolved in 100 parts of this silicone methacrylate to give a viscosity of 620 c.
A liquid photocurable resin of ps (25° C.) was obtained. This liquid photocurable resin was filtered in a clean room using a polytetrafluoroethylene filter with a pore size of 0.1 μm, and then defoamed to prepare a precursor for the bottom portion. This precursor was added to 0.
The UV intensity at 365 nanometers using a chemical lamp of 6 watts/(m") is 0.6 m'J watts/cm2.
Ultraviolet rays were irradiated for 60 minutes under the following conditions. The physical properties of the obtained photopolymer are as follows: refractive index nD1-56, tensile strength 3°5
kg/lyn' and elongation was 45%.

一方、テトラフルオロエチレン/ヘキサフルオロプロビ
レy85/15共重合体(nDl、34 )を625℃
で中空形相ノズルより溶融押出し、内径1゜5朋φ、外
径2.3 mxφの中空糸を得た。
On the other hand, tetrafluoroethylene/hexafluoropropylene y85/15 copolymer (nDl, 34) was heated at 625°C.
The fibers were melt-extruded through a hollow nozzle to obtain hollow fibers with an inner diameter of 1°5 mm and an outer diameter of 2.3 m x φ.

この中空糸を100mに切り、一端を真空ボ/ブに継ぎ
、他端より前記の心底分用前駆体を6kg/Crn2G
で圧入した。心材の注入が完了したのち、前記の紫外線
照射条件で紫外線を40分間照射し重合を完結し、光伝
送性繊維を得た。
This hollow fiber was cut into 100m lengths, one end was connected to a vacuum tube, and the above-mentioned core base precursor was added at 6kg/Crn2G from the other end.
I pressed it in. After the injection of the core material was completed, ultraviolet rays were irradiated for 40 minutes under the above-mentioned ultraviolet irradiation conditions to complete polymerization and to obtain a light transmitting fiber.

この光伝送性繊維の660 nmにおける伝送損失及び
可撓性評価結果を第1表に示す。この伝   ゛透性、
繊維を180°Cで200時間加熱しても、あるいは−
40℃で200時間放置しても伝送損失は全(変化しな
かった。
Table 1 shows the transmission loss and flexibility evaluation results at 660 nm for this optically transmitting fiber. This transparency,
Even if the fibers are heated at 180°C for 200 hours, or -
Even after being left at 40°C for 200 hours, the transmission loss remained unchanged.

実施例2〜4 シリコーンポリメタクリレートに代えて第1表に示すシ
リコーンポリ(メタ)アクリレートを用い、その他は実
施例1と同様にして光伝送性繊維を得た。得られた光伝
送性繊維の660mmにおける伝送損失及び可撓性評価
結果を第1表に併せて示す。
Examples 2 to 4 Light transmitting fibers were obtained in the same manner as in Example 1 except that silicone poly(meth)acrylate shown in Table 1 was used in place of silicone polymethacrylate. Table 1 also shows the transmission loss and flexibility evaluation results at 660 mm of the obtained optically transmitting fiber.

比較例1 シリコーンポリメタクリレートに代えてメタクリル酸2
モルとエポキシ当漬190のビスフェノールA型ジェポ
キシ樹脂1モルとから誘導されるエポキシメタクリレー
トを用い、その他は実施例1と同様にして光伝送性繊維
を得た。
Comparative Example 1 Methacrylic acid 2 instead of silicone polymethacrylate
A light transmitting fiber was obtained in the same manner as in Example 1 except that epoxy methacrylate derived from 1 mole of bisphenol A-type gepoxy resin with 190 mol of epoxy dipping was used.

得られた繊維の光伝送損失は1570 dE /kmで
実施例1に比べかなり悪く、また可撓性試験後は光を全
(伝送しなかった。
The optical transmission loss of the obtained fiber was 1570 dE/km, which was considerably worse than that of Example 1, and it did not transmit any light after the flexibility test.

比較例2 シリコーンポリメタクリレートに代えてアクリル酸2モ
ル、無水フタル酸1モル及びネオペンチルグリコール2
モルから合成されたオリゴエステルアクリレートを用い
、その他は実施例1と同様にして光伝送性繊維を得た。
Comparative Example 2 2 moles of acrylic acid, 1 mole of phthalic anhydride, and 2 moles of neopentyl glycol instead of silicone polymethacrylate
A light transmitting fiber was obtained in the same manner as in Example 1 except that oligoester acrylate synthesized from mole was used.

得られた繊維の光伝送性繊維は1010 dB / k
mと実施例1の光伝送性は維よりも太き(、また可撓性
試験後も3050 dB / kmと光伝送性が大幅に
低下した。
The optical transmittance of the resulting fiber is 1010 dB/k
The optical transmission performance of Example 1 was 3050 dB/km, which was thicker than that of the fiber (and even after the flexibility test, the optical transmission performance was significantly lowered to 3050 dB/km).

実施例5〜8 鞘材中空糸を第2表に示すものに代え、その他は実施例
1と同様にして光伝送性繊維を得た。
Examples 5 to 8 Light transmitting fibers were obtained in the same manner as in Example 1 except that the hollow fibers of the sheath material were replaced with those shown in Table 2.

得られた光伝送性繊維の伝送損失評価結果を第2表に併
せて示す。
Table 2 also shows the transmission loss evaluation results of the optically transmittable fibers obtained.

第  2  表Table 2

Claims (1)

【特許請求の範囲】 1、1分子中に(メタ)アクリロイル基を2個以上有す
るシリコーンポリ(メタ)アクリレートを主成分とする
光硬化性液状樹脂の光重合体(A)を心成分とし、該心
成分の屈折率より0.01以上低い屈折率を有し、実質
的に透明で可撓性良好な有機重合体(B)を鞘成分とす
ることを特徴とする光伝送性繊維。 2、シリコーンポリ(メタ)アクリレートがポリメチル
フエニルメトキシシロキサンと2−ヒドロキシエチルメ
タクリレートの縮合物である特許請求の範囲第1項に記
載の光伝送性繊維。
[Scope of Claims] 1. A photopolymer (A) of a photocurable liquid resin whose main component is silicone poly(meth)acrylate having two or more (meth)acryloyl groups in one molecule as a core component, A light transmitting fiber characterized in that the sheath component is an organic polymer (B) that is substantially transparent and has good flexibility and has a refractive index that is 0.01 or more lower than the refractive index of the core component. 2. The light transmitting fiber according to claim 1, wherein the silicone poly(meth)acrylate is a condensate of polymethylphenylmethoxysiloxane and 2-hydroxyethyl methacrylate.
JP61112814A 1986-05-19 1986-05-19 Optical transmission fiber Pending JPS62269906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112814A JPS62269906A (en) 1986-05-19 1986-05-19 Optical transmission fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112814A JPS62269906A (en) 1986-05-19 1986-05-19 Optical transmission fiber

Publications (1)

Publication Number Publication Date
JPS62269906A true JPS62269906A (en) 1987-11-24

Family

ID=14596196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112814A Pending JPS62269906A (en) 1986-05-19 1986-05-19 Optical transmission fiber

Country Status (1)

Country Link
JP (1) JPS62269906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180615A1 (en) * 2017-03-31 2018-10-04 信越化学工業株式会社 Fiber treatment agent for electron beam fixing
JP2018172836A (en) * 2017-03-31 2018-11-08 信越化学工業株式会社 Fiber treatment agent for fixing by electron beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180615A1 (en) * 2017-03-31 2018-10-04 信越化学工業株式会社 Fiber treatment agent for electron beam fixing
JP2018172836A (en) * 2017-03-31 2018-11-08 信越化学工業株式会社 Fiber treatment agent for fixing by electron beam
US11214920B2 (en) 2017-03-31 2022-01-04 Shin-Etsu Chemical Co., Ltd. Fiber treatment agent for electron beam fixing

Similar Documents

Publication Publication Date Title
US4762392A (en) Plastic optical fibers
US5080508A (en) Plastic optical fibers
EP0488390A1 (en) Plastic optical fibers
JPS63159459A (en) Resin composition
JPS62269906A (en) Optical transmission fiber
JPS6043613A (en) Light-transmittable fiber
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
JPS62269905A (en) Optical transmission fiber
JPH05181022A (en) Light transmission body made of synthetic resin and production thereof
JPH0345908A (en) Plastic optical fiber having heat resistance
JPS6042712A (en) Light transmitting fiber
WO2004070435A1 (en) Heat-resistant optical material and medium for optical transmission therefrom
JP5235426B2 (en) Manufacturing method of plastic optical fiber cable
JPS62204209A (en) Plastic optical fiber
JP2006195078A (en) Multicore plastic optical fiber and multicore plastic optical fiber cable
JPS6377008A (en) Plastic optical fiber
JPS63146004A (en) Optical transmission fiber
JPH04350802A (en) Plastic optical fiber
JPH0345907A (en) Plastic optical fiber having heat resistance
JPS6340104A (en) Optical fiber
JP4393599B2 (en) Optical fiber
JPS59216105A (en) Optical transmission fiber
JPH0727929A (en) Optical transmission body
JPS62118307A (en) Optical fiber
JPS61273504A (en) Plastic optical fiber