JPH0223843B2 - - Google Patents

Info

Publication number
JPH0223843B2
JPH0223843B2 JP60093753A JP9375385A JPH0223843B2 JP H0223843 B2 JPH0223843 B2 JP H0223843B2 JP 60093753 A JP60093753 A JP 60093753A JP 9375385 A JP9375385 A JP 9375385A JP H0223843 B2 JPH0223843 B2 JP H0223843B2
Authority
JP
Japan
Prior art keywords
mfr
optical fiber
material layer
polymer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60093753A
Other languages
Japanese (ja)
Other versions
JPS61252507A (en
Inventor
Takashi Yamamoto
Katsuhiko Shimada
Ryuji Murata
Yasuteru Tawara
Hiroshi Terada
Kenichi Sakunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60093753A priority Critical patent/JPS61252507A/en
Publication of JPS61252507A publication Critical patent/JPS61252507A/en
Publication of JPH0223843B2 publication Critical patent/JPH0223843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、光フアイバ素線、光フアイバ心線、
光フアイバコード、あるいは光フアイバケーブル
などとして利用することのできるプラスチツク光
フアイバに関する。 〔従来技術〕 従来、光伝送用光フアイバとしては、広い波長
にわたつてすぐれた光伝送性を有する無機ガラス
系光学繊維が知られているが、加工性が悪く、曲
げ応力に弱いばかりでなく高価であることから合
成樹脂を基体とするプラスチツク光フアイバが開
発されている。合成樹脂製の光フアイバは屈折率
が大きく、かつ光の透過性が良好な重合体を芯と
し、これよりも屈折率が小さくかつ透明な重合体
を鞘として芯−鞘構造を有する繊維を製造するこ
とによつて得られる。光透過性の高い芯成分とし
て有用な重合体としては無定形の材料が好まし
く、ポリメタクリル酸メチル、あるいはポリスチ
レンが一般に使用されている。 このうちポリメタクリル酸メチルは透明性をは
じめとして力学的性質、耐候性等に優れ、高性能
プラスチツク光フアイバの芯材として工業的に用
いられている。 しかし、ポリメタクリル酸メチルを芯としたプ
ラスチツク光伝送性繊維はポリメタクリル酸メチ
ルのガラス転移温度(Tg)が100℃であり、使用
環境条件が100℃以上になると全く使用できない
ものであり、この耐熱性の制限がプラスチツク光
フアイバの用途を限られたものにしている。 このため、例えば特開昭58−18608号等におい
ては、鞘材の周囲に、例えばポリカーボネート、
ポリアミド、ポリアセタール等の耐熱性を有し且
つ高強度であるエンジニアリングプラスチツクを
用いて3層以上の構造として、光フアイバの機械
的性質や耐熱性を改良することが提案されている
が、この様な材料を用いても、耐熱性が十分では
なく、高温時の光伝送損失の劣化が起り、自動車
や船舶のエンジンルーム内といつた高温部所に設
置する光通信手段や光センサー手段としての利用
を著しく立遅らせていた。 また、この種の材料を用いて耐熱性を高めよう
とすれば、光フアイバに所望される他の性質を損
なうことにもなり、例えば繰返し屈曲による損失
増加を招くといつた問題点が生じた。 また、製造上の問題点として、芯−鞘−保護層
の3層を溶融複合紡糸により一体に賦形する場
合、各層構成材料の流動性を最適化しないと、賦
形されるフアイバに糸斑等の構造欠陥を生じ、光
伝送特性に悪影響を及ぼしたり、フアイバ接続に
支障をきたすといつた問題点を生じた。 〔発明の解決すべき問題点〕 本発明は、前述した従来のプラスチツク光フア
イバに付随する耐熱性の問題点、機械的特性劣化
の問題点、並びに製造上の問題点等を解決すべ
く、主としてフアイバの構成材料の選択、組合せ
の最適化により、構造欠陥がなく、耐熱性に優
れ、繰返し屈曲動作に対する耐性に優れ、しかも
低光伝送損失であるプラスチツク光フアイバを提
供するものである。 〔問題点を解決するための手段〕 即ち、上記問題点を解決する手段として見出さ
れた本発明のプラスチツク光フアイバは、メタク
リル酸メチルを主成分とする重合体から成る芯材
層、下記一般式〔〕で示される繰返し単位の少
なくとも1つを成分とする重合体から成る鞘材
層、及びポリカーボネートから成る保護層を基本
構成単位とし、試験温度230℃、試験荷重5Kgの
条件でそれぞれ測定された前記芯材層重合体のメ
ルトフローレート〔MFR〕1、鞘材層重合体のメ
ルトフローレート〔MFR〕2及び保護層ポリカー
ボネートのメルトフローレート〔MFR〕3が、 〔MFR〕1≦〔MFR〕2≦〔MFR〕3≦40g/10分 の関係を満足する値をとることを特徴とするもの
である。 〔実施例〕 第1図乃至第3図は、本発明のプラスチツク光
フアイバの構成例を説明するための横断面図であ
る。第1図の例は、芯材層(コア)1、鞘材層
(クラツド)2及び保護層3の3層構造を有する
光フアイバ心線である。 以下、第1図と同一の要素を同一の符号で表わ
すと、 第2図の例は、コア1、クラツド2、有機重合
体で構成される保護層3、並びに有機重合体のジ
ヤケツト材で構成される被覆層4の4層構造を有
する光フアイバケーブルである。 第3図の例は、コア1、クラツド2及び有機重
合体で構成される保護層3の3層構造の光フアイ
バ心線5の複数本を、有機重合体のジヤケツト材
の被覆層4で被覆した多心光フアイバコードであ
る。 本発明のプラスチツク光フアイバの構成は、第
1図乃至第4図の例に限定されず、少なくとも基
本構成単位が、本発明で使用するコア及びクラツ
ドで構成されていればよい。また、例えば光フア
イバ中に、鋼製やFRP製のテンシヨンメンバや
金属被膜を組込むといつた、フアイバ構成を採用
することもできるし、被覆を更に所望の層数重層
させた構成としてもよい。 本発明において前記メルトフローレート
〔MFR〕1及び〔MFR〕2は、例えば日本工業規格
JIS K7210−1976、米国材料試験規格ASTM
D1238−82、国際規格ISO 1133に準拠して測定
することのできるメルトフローレートであり、例
えばJIS K7210−1976を準拠する場合、A法(手
動切取り法)を用い、試験温度230℃、試験荷重
5Kgで測定されるものである。また、このほかの
試験条件として、ダイの長さは8.000±0.025mm、
内径は2.095±0.005mmと決められる。試料充てん
量は5g、A法の場合試料採取時間約30秒で測定
される。 また、ASTM D1238−82、ISO1133に準拠し
て測定する場合も、これらの試験条件、測定条件
を採用して測定される。更に、測定に使用される
装置及び用具、測定手順についても、それぞれの
規格にある範囲で決めることができる。 コア1,1′の基材としては、非晶性透明重合
体が好適であり、例えばメタクリル酸メチルの単
独重合体又は共重合体が挙げられ、このうち出発
モノマーの70〜100重量%がメタクリル酸メチル、
30〜0重量%がメタクリル酸メチルと共重合可能
なモノマーであることが好ましい。メタクリル酸
メチルとの共重合が可能なモノマーとしては、例
えばアクリル酸メチル、アクリル酸エチル等のビ
ニルモノマーが挙げられる。 また、これらメタクリル酸メチルを主成分とす
る重合体の水素原子の全部あるいは一部が重水素
原子で置換された重水素化重合体等も使用可能で
ある。 本発明で使用する鞘材層重合体を構成する前記
一般式〔〕の繰返し単位において、Rで表わさ
れる炭素数1〜5のアルキル基としては、例えば
メチル基、エチル基、n−プロピル基、iso−プ
ロピル基、n−ブチル基、i−ブチル基、sec−
ブチル基、tert−ブチル基等がある。Rで表わさ
れる炭素数1〜5のフツ素化アルキル基として
は、例えば−CH2F、−CH2CF3、−CH2CF2CF3
−CH2CF2CF2H、
[Industrial Application Field] The present invention relates to optical fibers, optical fiber cores,
The present invention relates to a plastic optical fiber that can be used as an optical fiber cord or optical fiber cable. [Prior Art] Conventionally, inorganic glass optical fibers have been known as optical fibers for optical transmission, which have excellent optical transmission properties over a wide range of wavelengths, but they not only have poor workability and are susceptible to bending stress. Because of their high cost, plastic optical fibers based on synthetic resins have been developed. Synthetic resin optical fibers have a core-sheath structure, with a core made of a polymer with a high refractive index and good light transmittance, and a sheath made of a transparent polymer with a lower refractive index. obtained by doing. The polymer useful as a core component with high light transparency is preferably an amorphous material, and polymethyl methacrylate or polystyrene is generally used. Among these, polymethyl methacrylate has excellent transparency, mechanical properties, weather resistance, etc., and is used industrially as a core material for high-performance plastic optical fibers. However, the glass transition temperature (Tg) of polymethyl methacrylate is 100°C, and the plastic light transmitting fiber with polymethyl methacrylate as its core cannot be used at all if the operating environment exceeds 100°C. Limitations in heat resistance limit the use of plastic optical fibers. For this reason, for example, in Japanese Patent Application Laid-Open No. 58-18608, for example, polycarbonate,
It has been proposed to improve the mechanical properties and heat resistance of optical fibers by creating a structure with three or more layers using heat-resistant and high-strength engineering plastics such as polyamide and polyacetal. Even if materials are used, they do not have sufficient heat resistance and optical transmission loss deteriorates at high temperatures, making them unsuitable for use as optical communication means or optical sensor means installed in high-temperature areas such as the engine rooms of automobiles and ships. was significantly delayed. Furthermore, if an attempt is made to increase heat resistance using this type of material, other properties desired in the optical fiber may be impaired, resulting in problems such as increased loss due to repeated bending. . In addition, there is a manufacturing problem when forming the three layers (core, sheath, and protective layer) together by melt composite spinning, unless the fluidity of the material constituting each layer is optimized, thread spots may occur on the formed fiber. This has resulted in problems such as structural defects, adversely affecting optical transmission characteristics, and interfering with fiber connections. [Problems to be Solved by the Invention] The present invention mainly aims to solve the problems of heat resistance, deterioration of mechanical properties, and manufacturing problems associated with the conventional plastic optical fibers described above. By optimizing the selection and combination of fiber constituent materials, it is possible to provide a plastic optical fiber that is free from structural defects, has excellent heat resistance, has excellent resistance to repeated bending operations, and has low optical transmission loss. [Means for Solving the Problems] That is, the plastic optical fiber of the present invention, which was discovered as a means for solving the above problems, has a core material layer made of a polymer containing methyl methacrylate as a main component, The basic constituent units are a sheath material layer made of a polymer containing at least one of the repeating units represented by the formula [] and a protective layer made of polycarbonate, and each was measured under the conditions of a test temperature of 230°C and a test load of 5 kg. The melt flow rate [MFR] 1 of the core material layer polymer, the melt flow rate [MFR] 2 of the sheath material layer polymer, and the melt flow rate [MFR] 3 of the protective layer polycarbonate are such that [MFR] 1 ≦ [MFR] ] 2 ≦ [MFR] 3 ≦ 40 g/10 minutes. [Embodiment] FIGS. 1 to 3 are cross-sectional views for explaining an example of the structure of the plastic optical fiber of the present invention. The example shown in FIG. 1 is an optical fiber core wire having a three-layer structure of a core material layer (core) 1, a sheath material layer (cladding) 2, and a protective layer 3. Hereinafter, the same elements as in Fig. 1 will be represented by the same symbols. The example in Fig. 2 is composed of a core 1, a cladding 2, a protective layer 3 made of an organic polymer, and a jacket material made of an organic polymer. This optical fiber cable has a four-layer structure including a coating layer 4. In the example shown in FIG. 3, a plurality of optical fiber cores 5 having a three-layer structure consisting of a core 1, a cladding 2, and a protective layer 3 made of an organic polymer are coated with a coating layer 4 of a jacket material made of an organic polymer. It is a multi-core optical fiber cord. The structure of the plastic optical fiber of the present invention is not limited to the examples shown in FIGS. 1 to 4, but it is sufficient that at least the basic structural unit is composed of the core and cladding used in the present invention. Furthermore, a fiber structure can be adopted, for example, a tension member made of steel or FRP or a metal coating is incorporated into the optical fiber, or a structure in which the coating is further layered by a desired number of layers is also possible. . In the present invention, the melt flow rate [MFR] 1 and [MFR] 2 are, for example, in accordance with the Japanese Industrial Standards.
JIS K7210−1976, American Materials Testing Standard ASTM
D1238-82, a melt flow rate that can be measured in accordance with the international standard ISO 1133. For example, when complying with JIS K7210-1976, method A (manual cutting method) is used, the test temperature is 230 ° C, and the test load is It is measured at 5Kg. In addition, as other test conditions, the die length was 8.000±0.025mm;
The inner diameter is determined to be 2.095±0.005mm. The sample filling amount is 5 g, and in the case of method A, the sample collection time is about 30 seconds. Also, when measuring in accordance with ASTM D1238-82 and ISO1133, these test conditions and measurement conditions are adopted. Furthermore, the equipment and tools used for measurement, as well as the measurement procedure, can be determined within the range specified by each standard. As the base material for the cores 1 and 1', an amorphous transparent polymer is suitable, such as a homopolymer or copolymer of methyl methacrylate, of which 70 to 100% by weight of the starting monomer is methacrylate. methyl acid,
Preferably, 30 to 0% by weight is a monomer copolymerizable with methyl methacrylate. Examples of monomers that can be copolymerized with methyl methacrylate include vinyl monomers such as methyl acrylate and ethyl acrylate. Also usable are deuterated polymers in which all or some of the hydrogen atoms of these polymers containing methyl methacrylate as a main component are replaced with deuterium atoms. In the repeating unit of the general formula [] constituting the sheath material layer polymer used in the present invention, examples of the alkyl group having 1 to 5 carbon atoms represented by R include a methyl group, an ethyl group, an n-propyl group, iso-propyl group, n-butyl group, i-butyl group, sec-
There are butyl groups, tert-butyl groups, etc. Examples of the fluorinated alkyl group having 1 to 5 carbon atoms represented by R include -CH2F , -CH2CF3 , -CH2CF2CF3 ,
−CH 2 CF 2 CF 2 H,

【式】【formula】

【式】−C(CF33、− CH2CH2CF2CF2CF3、−CH2CF2CF2CF2CF2H、−
CH2CF2CF2CF2CF3等がある。Rで表わされる炭
素数3〜6のシクロアルキル基としては、例えば
シクロプロピル基、シクロブチル基、シクロペン
チル基、シクロヘキシル基等がある。これらのア
ルキル基、フツ素化アルキル基及びシクロアルキ
ル基を構成する水素原子の1つ又は2つ以上が、
例えばハロゲン原子、1価の有機基等で置換され
ていてもよい。 一般式〔〕の繰返し単位において、Rのより
好ましくは、炭素数1〜3のアルキル基又は炭素
数1〜3のフツ素化アルキル基である。 また、鞘材層重合体の構成は、前記一般式
〔〕の繰返し単位の1種又は2種以上のみによ
り構成されてもよいし、あるいは前記一般式
〔〕の繰返し単位の1種又は2種以上に加えて、
以下に製造法として述べるところにある様に、他
の繰返し単位や官能基が導入されていてもよく、
この場合、前記一般式〔〕の繰返し単位の1種
又は2種以上を10モル%以上含有していることが
望ましい。 更に、前記一般式〔〕の繰返し単位のRの異
なる2種以上を用いる場合、これら繰返し単位は
任意の割合で用いることができる。例えばRが炭
素数1〜3のアルキル基である繰返し単位とRが
炭素数1〜3のフツ素化アルキル基である繰返し
単位とを任意の配合比率で組合せていることがで
きる。 鞘材層を構成する重合体は、前記一般式〔〕
で表わされる繰返し単位のもととなるモノマーで
あるα−フルオロアクリル酸アルキルエステル、
α−フルオロアクリル酸フツ素化アルキルエステ
ル及びα−フルオロアクリル酸シクロアルキルエ
スチールから選ばれる1種又は2種以上のモノマ
ー、並びに必要に応じて他の共重合可能なモノマ
ーの1種又は2種以上〔この共重合可能なモノマ
ーとしては、例えばメタクリル酸、メタクリル酸
メチル等のメタクリル酸アルキルエステル、メタ
クリル酸2,2,3,3,3−ペンタフルオロプ
ロピル等のメタクリル酸フツ素化アルキルエステ
ル、フツ化ビニリデン等が挙げられる。〕を用い、
従来公知の重合法に従い重合させることにより、
得ることができる。 鞘材層重合体の〔MFR〕2は、 〔MFR〕1≦〔MFR〕2≦〔MFR〕3≦40g/10分 である必要がある。〔MFR〕2が〔MFR〕1の値未
満であると、ノズル内でのポリマーの流れが乱れ
易くなり、芯と鞘の界面不斉、即ち構造不整によ
る光伝送損失が増加するので好ましくない。 〔MFR〕2が40g/10分を超えると、鞘の被覆
斑が大きくなり、又鞘材の重合度が低くなりす
ぎ、光フアイバの屈曲特性が悪くなるので好まし
くない。 〔MFR〕2のより好ましい範囲は、 〔MFR〕1≦〔MFR〕2≦30g/10分、 更により好ましい範囲は、 5g/10分≦〔MFR〕2≦20g/10分 である。 保護層3を構成する好適なポリカーボネートと
しては、一般式
[Formula] -C(CF 3 ) 3 , - CH 2 CH 2 CF 2 CF 2 CF 3 , -CH 2 CF 2 CF 2 CF 2 CF 2 H, -
There are CH 2 CF 2 CF 2 CF 2 CF 3 , etc. Examples of the cycloalkyl group having 3 to 6 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. One or more of the hydrogen atoms constituting these alkyl groups, fluorinated alkyl groups, and cycloalkyl groups,
For example, it may be substituted with a halogen atom, a monovalent organic group, or the like. In the repeating unit of general formula [], R is more preferably an alkyl group having 1 to 3 carbon atoms or a fluorinated alkyl group having 1 to 3 carbon atoms. Further, the structure of the sheath material layer polymer may be composed of only one or two or more types of repeating units of the above general formula [], or one or two types of repeating units of the above general formula []. In addition to the above,
As described below as a manufacturing method, other repeating units and functional groups may be introduced.
In this case, it is desirable to contain 10 mol% or more of one or more repeating units of the general formula []. Furthermore, when two or more types of repeating units of the general formula [] with different R are used, these repeating units can be used in any ratio. For example, a repeating unit in which R is an alkyl group having 1 to 3 carbon atoms and a repeating unit in which R is a fluorinated alkyl group having 1 to 3 carbon atoms may be combined in any blending ratio. The polymer constituting the sheath material layer has the above general formula []
α-fluoroacrylic acid alkyl ester, which is the monomer that forms the basis of the repeating unit represented by
One or more monomers selected from fluorinated alkyl ester of α-fluoroacrylate and cycloalkylesteryl α-fluoroacrylate, and one or two other copolymerizable monomers as necessary. [The copolymerizable monomers include, for example, methacrylic acid, methacrylic acid alkyl esters such as methyl methacrylate, methacrylic acid fluorinated alkyl esters such as 2,2,3,3,3-pentafluoropropyl methacrylate, Examples include vinylidene fluoride. ] using
By polymerizing according to conventionally known polymerization methods,
Obtainable. [MFR] 2 of the sheath material layer polymer needs to be as follows: [MFR] 1 ≦ [MFR] 2 ≦ [MFR] 3 ≦ 40 g/10 minutes. If [MFR] 2 is less than the value of [MFR] 1 , the flow of the polymer in the nozzle is likely to be disturbed and optical transmission loss due to interface asymmetry between the core and sheath, that is, structural asymmetry increases, which is not preferable. [MFR] 2 exceeding 40 g/10 minutes is not preferable because the coating of the sheath becomes large and the degree of polymerization of the sheath material becomes too low, resulting in poor bending characteristics of the optical fiber. A more preferable range of [MFR] 2 is: [MFR] 1 ≦[MFR] 2 ≦30 g/10 minutes, and an even more preferable range is: 5 g/10 minutes≦[MFR] 2 ≦20 g/10 minutes. As a suitable polycarbonate constituting the protective layer 3, the general formula

【式】で表わされ るもの、ここでR1[Formula], where R 1 is

【式】【formula】

【式】 で表される脂環族ポリカーボネート、【formula】 Alicyclic polycarbonate represented by

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

〔フアイバ特性評価方法〕[Fiber characteristics evaluation method]

(1) 光伝送損失 特開昭58−7602号公報に示された方法により
測定した。測定光波長は650nm、フアイバ入
射光の開口数が0.6の光を用いた。単位はdB/
Km。 (2) 繰返し屈曲性 フアイバをフアイバ径の5倍の径のマンドレ
ルに180゜繰り返し屈曲させ、光量保持率が50%
による屈曲回数を読み取つた。 (3) 耐熱性 フアイバを115℃、3000時間加熱した後の光
伝送損失の増加量(dB/Km)。 (4) 糸斑 レーザ線径測定機により、長さ500mにわた
り糸斑を測定した。 実施例2〜4、比較例1〜3 紡糸温度又は鞘成分の組成を第1表に示したと
おりに変えた以外は、実施例1と同じプラスチツ
ク光フアイバを得た。これらのフアイバの特性を
実施例1と同じ方法で評価し、結果を第1表に示
した。
(1) Optical transmission loss Measured by the method disclosed in Japanese Patent Application Laid-open No. 7602/1983. The measurement light wavelength was 650 nm, and the fiber incident light had a numerical aperture of 0.6. The unit is dB/
Km. (2) Repeated bendability The light intensity retention rate is 50% when the fiber is repeatedly bent 180° on a mandrel with a diameter 5 times the fiber diameter.
The number of bends was read. (3) Heat resistance Increase in optical transmission loss (dB/Km) after heating the fiber at 115℃ for 3000 hours. (4) Thread unevenness Thread unevenness was measured over a length of 500 m using a laser line diameter measuring device. Examples 2-4, Comparative Examples 1-3 Plastic optical fibers were obtained as in Example 1, except that the spinning temperature or the composition of the sheath components were changed as shown in Table 1. The properties of these fibers were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【表】 実施例9〜11、比較例12〜13 紡糸温度を、230℃、240℃、210℃、250℃とし
た以外は、実施例1と同一の光フアイバを得た。
同様に、糸斑、(損失)を評価し、結果を第2表
に示した。
[Table] Examples 9 to 11, Comparative Examples 12 to 13 Optical fibers were obtained as in Example 1, except that the spinning temperatures were 230°C, 240°C, 210°C, and 250°C.
Similarly, thread spotting (loss) was evaluated and the results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明により製造されるプラスチツク光フアイ
バは、光伝送用のフアイバとしてあらゆる用途に
使用することができ、特に自動車や船舶のエンジ
ンルームといつた過酷な条件においても使用し得
得る様な優れた耐熱性を有し、また、繰返し屈曲
動作に対する耐性が良好で、構造欠陥がなくしか
も低光伝送損失である。
The plastic optical fiber produced according to the present invention can be used for a variety of purposes as a fiber for optical transmission, and has excellent heat resistance so that it can be used even under harsh conditions such as the engine compartment of automobiles and ships. It also has good resistance to repeated bending operations, has no structural defects, and has low optical transmission loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明のプラスチツク光フ
アイバの構成例を説明するための横断面図であ
り、更に詳しくは、第1図は、光フアイバ心線の
構成例、第2図は、光フアイバケーブルの構成
例、第3図は、多心光フアイバコードの構成例を
それぞれ説明するための横断面図である。 1……芯材層(コア)、2……鞘材層(クラツ
ド)、3……保護層、4……被覆層。
1 to 3 are cross-sectional views for explaining an example of the structure of the plastic optical fiber of the present invention. More specifically, FIG. 1 is an example of the structure of the optical fiber, and FIG. Configuration Example of Optical Fiber Cable FIG. 3 is a cross-sectional view for explaining a configuration example of a multi-core optical fiber cord. 1... Core material layer (core), 2... Sheath material layer (cladding), 3... Protective layer, 4... Covering layer.

Claims (1)

【特許請求の範囲】 1 メタクリル酸メチルを主成分とする重合体か
ら成る芯材層、下記一般式〔〕で示される繰返
し単位の少なくとも1つを成分とする重合体から
成る鞘材層、及びポリカーボネートから成る保護
層を基本構成単位とし、試験温度230℃、試験荷
重5Kgの条件でそれぞれ測定された前記芯材層重
合体のメルトフローレート〔MFR〕1、鞘材層重
合体のメルトフローレート〔MFR〕2及び保護層
ポリカーボネートのメルトフローレート
〔MFR〕3が 〔MFR〕1≦〔MFR〕2≦〔MFR〕3≦40g/10分 の関係を満足する値をとることを特徴とするプラ
スチツク光フアイバ。 〔記〕 一般式〔〕 【式】 (式中Rは炭素数1〜5のアルキル基、炭素数1
〜5のフツ素化アルキル基、又は炭素数3〜6の
シクロアルキル基を表わす。) 2 保護層厚みが10〜250μmである特許請求の
範囲第1項記載のプラスチツク光フアイバ。 3 紡糸温度が215〜245℃である特許請求の範囲
第1項又は第2項記載のプラスチツク光フアイ
バ。
[Scope of Claims] 1. A core material layer made of a polymer containing methyl methacrylate as a main component, a sheath material layer made of a polymer containing at least one repeating unit represented by the following general formula [], and The melt flow rate [MFR] 1 of the core material layer polymer and the melt flow rate of the sheath material layer polymer were measured under the conditions of a test temperature of 230°C and a test load of 5 kg using a protective layer made of polycarbonate as the basic structural unit. [MFR] 2 and the melt flow rate [MFR] 3 of the protective layer polycarbonate take values that satisfy the relationship [MFR] 1 ≦ [MFR] 2 ≦ [MFR] 3 ≦ 40 g/10 min. optical fiber. [Note] General formula [] [Formula] (In the formula, R is an alkyl group having 1 to 5 carbon atoms, 1 carbon number
-5 fluorinated alkyl group or a cycloalkyl group having 3 to 6 carbon atoms. 2. The plastic optical fiber according to claim 1, wherein the protective layer has a thickness of 10 to 250 μm. 3. The plastic optical fiber according to claim 1 or 2, wherein the spinning temperature is 215 to 245°C.
JP60093753A 1985-05-02 1985-05-02 Plastic optical fiber Granted JPS61252507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093753A JPS61252507A (en) 1985-05-02 1985-05-02 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093753A JPS61252507A (en) 1985-05-02 1985-05-02 Plastic optical fiber

Publications (2)

Publication Number Publication Date
JPS61252507A JPS61252507A (en) 1986-11-10
JPH0223843B2 true JPH0223843B2 (en) 1990-05-25

Family

ID=14091187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093753A Granted JPS61252507A (en) 1985-05-02 1985-05-02 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS61252507A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982056A (en) * 1981-08-20 1991-01-01 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxide
US4999248A (en) * 1981-08-20 1991-03-12 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977026A (en) * 1981-08-20 1990-12-11 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
JPS5838707A (en) * 1981-08-20 1983-03-07 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Amorphous copolymer of perfluoro-2,2-dimethyl- 1,3-dioxol
US4975505A (en) * 1981-08-20 1990-12-04 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977008A (en) * 1981-08-20 1990-12-11 E. I Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US5006382A (en) * 1981-08-20 1991-04-09 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977297A (en) * 1981-08-20 1990-12-11 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977025A (en) * 1981-08-20 1990-12-11 E. I Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4973142A (en) * 1981-08-20 1990-11-27 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US5000547A (en) * 1981-08-20 1991-03-19 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole

Also Published As

Publication number Publication date
JPS61252507A (en) 1986-11-10

Similar Documents

Publication Publication Date Title
JP4102448B2 (en) Multicore plastic optical fiber for optical signal transmission
JPH0251483B2 (en)
JPH0223843B2 (en)
EP0307164B1 (en) Cladding material for plastic optical fiber and plastic optical fiber using the same
JP3850961B2 (en) High NA plastic optical fiber and cable
JP5304704B2 (en) Plastic optical fiber cord
JPH0223842B2 (en)
JPH10274716A (en) Plastic optical fiber high in numerical aperture
JP2696521B2 (en) Polymer for optical fiber sheath material
JP4124307B2 (en) Plastic optical fiber
JPS61231510A (en) Plastic optical fiber
JPH0532723B2 (en)
JPH07239420A (en) Wide range plastic optical fiber
JPS63106613A (en) Plastic optical fiber cord
JP3898818B2 (en) Manufacturing method of plastic optical fiber
JPH0451206A (en) Plastic optical fiber
JP4245521B2 (en) Sheath material for plastic optical fiber
JPS63180907A (en) Optical fiber
JP2787771B2 (en) Core-sheath plastic optical fiber
JP2003014952A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPH09101423A (en) Plastic optical fiber for fast transmission
JPH10221543A (en) Broadband plastic optical fiber
JPS61223706A (en) Plastic optical fiber
JP2003084148A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPS61169805A (en) Plastic optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term