WO2004068481A1 - Optical integrated unit and optical pickup device provided with it - Google Patents

Optical integrated unit and optical pickup device provided with it Download PDF

Info

Publication number
WO2004068481A1
WO2004068481A1 PCT/JP2004/000555 JP2004000555W WO2004068481A1 WO 2004068481 A1 WO2004068481 A1 WO 2004068481A1 JP 2004000555 W JP2004000555 W JP 2004000555W WO 2004068481 A1 WO2004068481 A1 WO 2004068481A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
diffracted
optical
hologram
Prior art date
Application number
PCT/JP2004/000555
Other languages
French (fr)
Japanese (ja)
Inventor
Renzaburo Miki
Keiji Sakai
Tomiyuki Numata
Tetsuo Ueyama
Hiroshige Makioka
Osamu Miyazaki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2004068481A1 publication Critical patent/WO2004068481A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/133Shape of individual detector elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation

Definitions

  • the present invention relates to an optical integrated unit for optically recording information on an information recording medium or optically reading information from the information recording medium, and an optical pickup device including the same.
  • the first prior art optical pickup device includes a hologram for miniaturization, thinning, and high reliability.
  • the hologram is divided into two in the radial direction of the disk, and one of the two is further divided into two in the track direction.
  • This prior art optical pickup device detects a force error signal in half of the laser light reflected by the optical disk, a track error signal in the other half, and an information signal as a whole.
  • FIG. 9 is a diagram showing a schematic configuration of the optical integrated unit 1 of the second prior art.
  • FIG. 10 is a diagram showing a positional relationship among the hologram 2, the diffraction grating 3, and the first to sixth light receiving area portions 11 to 16 in the optical integrated unit 1.
  • the optical pickup device includes an optical integrated unit 1 and objective lens means for condensing a laser beam from the optical integrated unit 1 on an optical disk.
  • the optical integrated unit 1 includes a hologram 2, a diffraction grating 3, and a light receiving unit 4.
  • the light receiving surface 5 of the light receiving portion 4 is divided into one light receiving region 7a and the other light receiving region 7b with respect to a virtual plane 6 perpendicular to the light receiving surface 5, and the one light receiving region 7a has , First, third and fifth light receiving area portions 11, 13, and 15 are provided, and the other light receiving area 7 b includes second, fourth and sixth light receiving area portions 12, 14 and 16 are provided.
  • the hologram 2 is divided as in the first prior art described above, so that the first to It has three diffraction planes 2a to 2c.
  • the first diffraction surface 2a guides the laser light toward the first light receiving region 11 and the second light receiving region 12 and the second diffraction surface 2b guides the laser light to the third light receiving region 13 and the fourth light receiving region.
  • the third diffractive surface 2c guides the laser light toward the fifth light-receiving area 15 and the sixth light-receiving area 16.
  • a diffraction grating 3 having a different diffraction efficiency in the radial direction of the disc is interposed between the hologram 2 and the light receiving section 4.
  • the diffraction grating 3 diffracts the laser beams L a1 and L b1 guided toward the first light receiving region portion 11 and the third light receiving region portion 13 of one light receiving region 7a. Therefore, the laser light diffracted by the diffraction grating 3 is guided to the first light receiving area portion 11 and the third light receiving area portion 13 and is canceled by the objective lens shift and the offset generated by the tilt of the optical disk. Signal is generated. As a result, offset correction of the push-pull signal can be performed, and stable tracking servo performance can be obtained.
  • FIG. 11 is a diagram showing transmission positions of the laser beams L a 1, L a 2, L bl, L b 2, L c 1, and L c 2 from the hologram 2 on a virtual plane including the diffraction grating 3. It is. As shown in FIG. 11, on a virtual plane including the diffraction grating 3, the laser beams guided toward the respective light receiving regions 11 to 16 are not sufficiently separated, and the third light receiving region The laser beam Lb1 guided toward the portion 13 and the laser beam Lc1 guided toward the fifth light receiving region portion 15 overlap.
  • Even the laser beam L c 1 guided toward the light is diffracted by the diffraction grating 3. That is, not only the laser light for generating the cancel signal but also the laser light for detecting the focus error signal is diffracted by the diffraction grating 3.
  • the focus error signal is affected by the change in the transmittance due to the diffraction grating 3, and the influence appears as noise in the focus error signal.
  • the gain cannot be increased sufficiently even if it is inserted, and the servo suppression is insufficient.
  • the second light receiving area of the other light receiving area 7 When the diffraction grating 3 is provided so as to diffract the laser beams L a 2 and L b 2 guided to the region portion 12 and the fourth light receiving region portion 14, the light is guided toward the sixth light receiving region portion 16. Even the laser beam Lc2 to be emitted is diffracted by the diffraction grating 3, so that the track error signal becomes unstable and the error rate of the information signal may be extremely deteriorated.
  • the laser beams L a1 and L b1 guided toward the first light receiving region portion 11 and the third light receiving region portion 13 of one light receiving region 7a are diffracted.
  • the diffraction grating 3 cannot be arranged to be diffracted by the grating 3.
  • only the laser beams La2 and Lb2 guided toward the second light-receiving region portion 12 and the fourth light-receiving region portion 14 of the other light-receiving region 7b are diffracted by the diffraction grating 3. Neither can the folding grid 3 be placed.
  • the diffraction grating 3 cannot be arranged avoiding the optical path of the diffracted light that does not need to be diffracted by the diffraction grating 3, and erroneous detection occurs. .
  • An object of the present invention is to provide an optical integrated unit and an optical pick-up device provided with the optical integrated unit, which can easily prevent the problem of erroneous detection.
  • the present invention has a light receiving surface perpendicular to a predetermined first axis, and divides this light receiving surface into one light receiving region and the other light receiving region with respect to a virtual plane including the predetermined first axis, A light-receiving portion provided with a plurality of light-receiving regions along a second axis at which the virtual plane intersects the light-receiving surface; and a plurality of light-receiving portions provided in the one light-receiving region.
  • a first diffractive surface that guides the laser light toward a predetermined second light receiving area of the plurality of light receiving areas in the other light receiving area;
  • the laser is directed toward a predetermined third light-receiving area portion of the plurality of light-receiving areas in the one light-receiving area and a predetermined fourth light-receiving area of the plurality of light-receiving areas in the other light-receiving area.
  • a second diffractive surface, a predetermined fifth light receiving area of the plurality of light receiving areas in the one light receiving area, and a sixth light receiving area of the plurality of light receiving areas in the other light receiving area A third diffraction surface for guiding the laser light toward the portion, a hologram provided perpendicular to the predetermined first axis and facing the light receiving surface;
  • a part of the diffracted light that is interposed between the light receiving unit and the hologram and diffracted by the first diffraction surface of the hologram is transmitted, guided to the first light receiving region, and by the second diffraction surface of the hologram.
  • the light receiving surface of the light receiving section is divided into one light receiving area and the other light receiving area with respect to the virtual one plane, and one light receiving area is divided into the first, third, and fifth light receiving areas.
  • the other light receiving area is divided into second, fourth, and sixth light receiving area portions.
  • the hologram diffracts the guided laser beam by the first to third diffraction surfaces, and the diffracted beams are received by first to sixth light receiving regions of the light receiving unit.
  • the optical element transmits a part of the diffracted light diffracted by the first diffraction surface of the hologram, guides the diffracted light to the first light receiving region in the one light receiving region, and diffracts the diffracted light by the second diffraction surface. Is provided between the light receiving unit and the hologram so that a part of the light is transmitted and guided to a fourth light receiving area in the other light receiving area.
  • each of the diffracted lights diffracted by the first to third diffractive surfaces is converted into a diffracted light that needs to be transmitted through the optical element and a diffracted light that does not need to be transmitted through the optical element.
  • the optical element can be arranged avoiding the optical path. Therefore, it is possible to easily prevent a problem that even the diffracted light that does not need to be transmitted through the optical element is transmitted through the optical element and erroneous detection occurs.
  • the first diffractive surface is provided with + n (here, n is a positive integer greater than or equal to 1) guides the first order diffracted light, and guides the 1 n order diffracted light toward the second light receiving area,
  • the second diffractive surface guides + n order diffracted light toward the third light receiving region, and guides 1 n order diffracted light toward the fourth light receiving region,
  • the third diffractive surface guides + n-order diffracted light toward the fifth light-receiving area, and guides 1 n-order diffracted light toward the sixth light-receiving area.
  • the first to third diffractive surfaces of the hologram guide the + nth-order diffracted light and the 1nth-order diffracted light toward predetermined light-receiving regions.
  • the + n order and 1 n order diffracted lights from the first diffracting surface are sufficiently separated even near the hologram, and the + n order diffracted light and 1 n order diffracted light from the second diffracting surface are also well separated near the hologram.
  • the optical element should be arranged so as to avoid the optical path of the diffracted light that does not need to pass through the optical element. Becomes easier.
  • the optical element includes a part on the optical path of a part of the diffracted light diffracted by the first diffraction surface of the hologram, and a part of the diffracted light diffracted by the second and second diffraction surfaces of the hologram. And on the optical path.
  • the optical elements are individually provided, unnecessary portions of the optical elements are reduced, and even the diffracted light guided to the remaining light receiving areas other than the first light receiving area and the fourth light receiving area is an optical element. It is possible to prevent the inconvenience of transmitting light as much as possible.
  • the present invention also provides a light emitting unit that generates laser light
  • a light branching element for guiding the laser light from the light emitting section to the information recording medium and guiding the laser light reflected by the information recording medium to the hologram.
  • the light branching element guides the laser light from the light emitting section to the information recording medium, and guides the laser light reflected by the information recording medium to the hologram.
  • hologram Guides the guided laser beam to each light receiving area of the light receiving section as described above.
  • the present invention provides the optical integrated unit
  • An objective lens means for converging laser light from the optical integrated unit onto an information recording medium for converging laser light from the optical integrated unit onto an information recording medium.
  • the objective lens means focuses the laser light from the optical integrated unit on the information recording medium, and each light receiving area of the light receiving unit of the optical integrated unit is reflected by the information recording medium. Receives laser light. Since the optical integrated unit is prevented from being erroneously detected, the information can be accurately recorded on the information recording medium or the information can be accurately read from the information recording medium.
  • FIG. 1 is a diagram showing a schematic configuration of an optical integrated unit 21 according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a positional relationship among the hologram 31, the optical element 32, and the first to sixth light receiving area portions 41 to 46.
  • FIG. 3 shows the transmission positions of the diffracted light L a 1, L a 2, L bl, L b 2, L c 1, and L c 2 from the hologram 31 1 on a virtual plane including the optical element 32.
  • FIG. FIG. 4 is a plan view schematically showing a part of the optical element 32.
  • FIG. 5 is a diagram showing a transmission position on the optical element 32 of the diffracted light La 1 guided toward the first light receiving area portion 41.
  • FIG. 6 is a diagram showing a schematic configuration of an optical integrated unit 61 according to still another embodiment of the present invention.
  • FIG. 7 is a diagram showing a positional relationship among the hologram 31, the optical element 62, and the first to sixth light receiving area portions 41 to 46.
  • FIG. 8 shows the transmission positions of the diffracted lights L a 1, L a 2, L b 1, L b 2, L c 1, and L c 2 from the hologram 31 1 on a virtual plane including the optical element 62.
  • FIG. FIG. 9 is a diagram showing a schematic configuration of the optical integrated unit 1 of the second prior art.
  • FIG. 10 is a diagram showing the positional relationship between the hologram 2 , the diffraction grating 3, and the first to sixth light receiving region portions 11 to 16 in the optical integrated unit 1. As shown in FIG.
  • FIG. 11 shows the transmission positions of the laser beams La1, La2, Lb1, Lb2, Lc1, and Lc2 from the hologram 2 on a virtual plane including the diffraction grating 3.
  • FIG. 1 is a diagram showing a schematic configuration of an optical integrated unit 21 according to one embodiment of the present invention.
  • the optical integrated unit 21 according to the present embodiment is mounted on, for example, an optical pickup device that optically records information on an information recording medium or optically reads information from an information recording medium.
  • the information recording medium 20 is an optical disk such as a digital versatile disk (DVD).
  • the optical integrated unit 21 includes a light emitting section 22, a hologram element 23, a light branching element 24, and a light receiving section 25.
  • the light emitting section 22 is provided on the stem 26.
  • the light emitting section 22 generates a laser beam.
  • the light emitting section 22 is realized by, for example, a laser diode (LaD) chip.
  • the hologram element 23 has a hologram 31 and an optical element 32.
  • the hologram 31 is a multi-segment hologram.
  • the optical element 32 is a diffraction grating.
  • the light receiving section 25 is provided with first to sixth light receiving area portions 41 to 46 (see FIG. 2 to be described later), and each light receiving area portion 41 to 46 is a laser beam from the hologram element 23. The light is received.
  • the light splitting element 24 guides the laser light from the light emitting section 22 to the optical disk, and guides the laser light reflected by the optical disk to the hologram 31 of the hologram element 23.
  • the optical branching element 24 has a first surface 33 and a second surface 34. The first side 3 3 The laser light from the light emitting section 22 is transmitted, and the laser light reflected by the optical disk is reflected. The second surface 34 reflects the laser light reflected by the first surface 33.
  • the laser light from the light emitting section 22 passes through the first surface 33 and is guided to the optical disk, and the laser light reflected by the optical disk is reflected by the first surface 33 and further by the second surface 34.
  • the light is reflected and guided to the hologram 31 of the hologram element 23.
  • the laser beam guided to the hologram 31 in this manner is received by the respective light receiving area portions 41 to 46 of the light receiving section 25.
  • the optical integrated unit 21 according to the present embodiment is used in, for example, an optical pickup device, it is not necessary to separately provide the light emitting unit 22 and the light receiving unit 25, so that adjustment of the signal detection system is unnecessary. The assemblability is improved. Further, the optical integrated unit of the present embodiment including the light emitting section 22 and the light receiving section 25 can be handled as one optical component, and therefore the number of optical components is reduced.
  • FIG. 2 is a diagram showing a positional relationship among the hologram 31, the optical element 32, and the first to sixth light receiving area portions 41 to 46.
  • the light receiving section 25 has a light receiving surface 36 perpendicular to the first axis L1 determined in advance.
  • the light receiving surface 36 is divided into one light receiving region 38a and the other light receiving region 38b with respect to the virtual one plane 37 including the predetermined first axis L1.
  • the hologram 31 has first to third diffraction surfaces 31a to 31c.
  • the first to third diffraction surfaces 31a to 31c are provided perpendicular to the first axis L1 and facing the light receiving surface 36.
  • the hologram 31 has a circular shape, and the center of the hologram 31 is arranged on the predetermined first axis L1.
  • a boundary 48 a between the second diffraction surface 31 b and the third diffraction surface 31 c extends from the center of the hologram 31 toward one X 1 in a first direction perpendicular to the virtual plane 37.
  • a boundary 48 b between the first diffraction surface 31 a and the third diffraction surface 31 c extends from the center of the hologram 31 toward the other X 2 in the first direction X.
  • the boundary 48c between the first diffraction surface 31a and the second diffraction surface 31b is perpendicular to the predetermined first axis L1 and perpendicular to the first direction X from the center of the hologram 31. Extending in the second direction Y toward one side Y1. In one light receiving area 38a of the light receiving surface 36, along the second axis L2 where the virtual plane 37 and the light receiving surface 36 intersect, the first light receiving area portion 41, the third light receiving area An area portion 43 and a fifth light receiving area portion 45 are provided.
  • the fifth light receiving area portion 45 is spaced apart from the hologram 31 in one direction X1 of the first direction X and is substantially the same as the hologram 31 in the direction along the second axis L2, that is, in the second direction Y. Is provided at the position.
  • the first light receiving area portion 41 is provided at an interval in the first direction Y1 in the second direction Y more than the fifth light receiving area portion 45.
  • the third light receiving region portion 43 is provided at a distance from the fifth light receiving region portion 45 in the second direction Y2 in the second direction Y.
  • a second light receiving area part 42, a fourth light receiving area part 44, and a sixth light receiving area part 46 are provided along the second axis L2.
  • the sixth light receiving region portion 46 is provided at an interval in the other direction X2 of the first direction X with respect to the hologram 31 and in the second direction Y at substantially the same position as the hologram 31.
  • the second light receiving area portion 42 is provided at a distance from the other Y 2 in the second direction Y with respect to the sixth light receiving area portion 46.
  • the fourth light receiving area portion 44 is provided at an interval in one Y1 in the second direction Y more than the sixth light receiving area portion 46.
  • the first light receiving area portion 41 has three portions 4 11, 4 12, and 4 13. The three portions 4 1 1, 4 1 1 2 and 4 1 3 are spaced from each other along the second axis L 2.
  • the fourth light receiving area portion 44 has three portions 4 4 1, 4 4 2 and 4 4 3. The three parts 4 4 1, 4 4 2, 4 4 3 are spaced apart from each other along the second axis L 2.
  • the fifth light receiving area portion 45 has two portions 451, 452. The two portions 451, 452 are provided adjacent to each other along the second axis L2.
  • the first diffraction surface 3 la includes a predetermined first light receiving region portion 41 of the plurality of light receiving region portions 41, 43, and 45 in the one light receiving region 38 a and the other light receiving region 3.
  • the laser light is guided toward a predetermined second light receiving area portion 42 among a plurality of light receiving area portions 42, 44, and 46 in 8b.
  • the second diffraction surface 3 lb is determined in advance among a plurality of light receiving area portions 41, 43, 45 in the one light receiving area 38a.
  • the laser beam is guided toward a predetermined fourth light receiving region portion 44 among the plurality of light receiving region portions 42, 44, 46 in the third light receiving region portion 43 and the other light receiving region 38b.
  • the third diffraction surface 31c is formed of a predetermined fifth light-receiving region portion 45 of the plurality of light-receiving region portions 41, 43, and 45 in the one light-receiving region 38a and the other light-receiving region 38b in the other light-receiving region 38b.
  • the laser beam is guided toward a predetermined sixth light receiving area 46 among the plurality of light receiving areas 42, 44, 46.
  • the first diffraction surface 3 la guides the + 1st-order diffracted light La 1 toward the first light-receiving area portion 41, and _ 1st-order light diffraction toward the second light-receiving area portion 42 Lead La2.
  • the second diffraction surface 31b guides the + 1st-order diffracted light Lb1 toward the third light receiving area 43, and guides the first-order diffracted light Lb2 toward the fourth light receiving area 44.
  • the third diffraction surface 31c guides the + first-order diffracted light Lc1 toward the fifth light-receiving area portion 45, and guides the first-order diffracted light Lc2 toward the sixth light-receiving area portion.
  • the first to third diffraction surfaces 31a to 31c of the hologram 31 are composed of the + first-order diffracted lights Lal, Lbl, Lc1 and the -first-order diffracted lights La2, Lb2, L c 2 is guided toward predetermined light receiving area portions 41 to 46.
  • the + 1st-order diffracted light La1 and the first-order diffracted light La2 from the first diffraction surface 31a are sufficiently separated even in the vicinity of the hologram 31, and the + 1st-order diffracted light from the second diffraction surface 31b.
  • the optical element 32 should be arranged avoiding the optical path of the diffracted light La2, Lbl, Lcl, Lc2 that does not need to be transmitted through the optical element 32 because it is sufficiently separated even in the vicinity of 31. Becomes easier.
  • the optical element 32 is interposed between the light receiving unit 25 and the hologram 31.
  • the optical element 32 further diffracts the + 1st-order diffracted light La1, which is a part of the diffracted light diffracted by the first diffraction surface 31a of the hologram 31, to obtain the + 1st and 0th order.
  • the first-order diffraction light L all to L al 3 is guided to three portions 4 1 1, 4 1 2, 4 1 3 of the first light receiving area portion 41, respectively.
  • the optical element 32 further diffracts the first-order diffracted light L b 2, which is a part of the diffracted light diffracted by the second diffraction surface 31 b of the hologram 31, so that the + 1st and 0th orders First-order diffracted light Lb2 1 to Lb23 is converted to the fourth light-receiving area. It leads to three parts 4 4 1, 4 4 2 and 4 4 3 of part 4 4 respectively.
  • FIG. 3 shows diffracted light L a 1, L a 2, L b l, L b 2, and L c from the hologram 31.
  • FIG. 3 is a diagram showing transmission positions of 1, Lc 2 on a virtual plane including an optical element 32.
  • the optical element 32 is arranged on the optical path of the diffracted light L a 1 guided toward the first light receiving area portion 41 and the optical path of the diffracted light L b 2 guided toward the fourth light receiving area portion 44. It is placed on top.
  • the diffracted light Lb1 guided toward the third light receiving area portion 43 and the diffracted light Lc1 guided toward the fifth light receiving area portion 45 are partially formed on a virtual plane including the optical element 32. Are overlapping. Further, the diffracted light L a 2 guided toward the second light receiving area portion 42 and the diffracted light L c 2 guided toward the sixth light receiving area portion 46 are one on a virtual plane including the optical element 32. The parts overlap.
  • the diffracted light L a 1 guided toward the first light receiving area portion 41 on the virtual one plane including the optical element 32 includes the remaining light receiving areas excluding the first light receiving area portion 41.
  • the diffracted lights L a2, L bl, L b2, L c 1, L c 2 guided toward the region portions 42 to 46 do not overlap and are sufficiently separated therefrom.
  • the diffracted light L b 2 guided toward the fourth light receiving area portion 4 4 on the virtual one plane including the optical element 32 includes the remaining light receiving area portions 4 1 to 4 excluding the fourth light receiving area portion 4 4.
  • Diffracted light L a 1, L a 2, L bl, L cl, and L c 2 guided toward 43, 45, and 46 do not overlap and are sufficiently separated therefrom.
  • the optical element 32 transmits a part L a1 of the diffracted light diffracted by the first diffraction surface 31 a of the hologram 31 so as to allow one of the light receiving regions 38 a to pass therethrough.
  • the diffracted light diffracted by the second diffractive surface 31b and transmitted through a part Lb2 of the other light-receiving area 38b It is provided between the light receiving part 25 and the hologram 31 so as to lead to 44.
  • FIG. 4 is a plan view schematically showing a part of the optical element 32.
  • FIG. 5 is a diagram showing a transmission position on the optical element 32 of the diffracted light L a1 guided toward the first light receiving area portion 41.
  • the transmittance changes in the first direction X.
  • the optical element 32 is a diffraction grating, so that the diffraction efficiency changes in the first direction X.
  • a plurality of grooves 51 are formed in the optical element 32 along the first direction X.
  • the pitch P between the gratings of the optical element 32 is constant regardless of the position in the first direction X.
  • the duty D of the optical element 32 changes continuously in the first direction X. Assuming that the group width is WG and the land width is WL,
  • the duty D of the optical element 32 gradually increases as it goes to one X1 of the first direction X.
  • the initial value of the duty D is set to 0.5 or more, as the duty D increases, the diffraction efficiencies of the + 1st-order and 1st-order diffracted lights diffracted by the optical element 32 decrease, and the The diffraction efficiency of the diffracted 0th-order diffracted light increases.
  • the duty D1 at the end of the other side X2 in the first direction X of the optical element 32 is, for example, 0.6, and the duty D2 at one end X1 of the optical element 32 in the first direction X is For example, 0.9 is selected.
  • the data at the center between the two ends of the optical element 32 in the first direction X Utility D3 is selected to be 0.75, for example.
  • the center between the two ends of the optical element 32 in the first direction X and the center of the hologram 31 are at the same position in the first direction X (see FIG. 3 described above).
  • the transmission position of the diffracted light L b 2 guided toward the fourth light receiving area portion 4 4 on the optical element 32 moves to one X 1 in the first direction X, the light is diffracted by the optical element 32.
  • the light quantity of the + first-order diffracted light Lb21 and the first-order diffracted light Lb23 decreases, and the light quantity of the 0th-order diffracted light Lb22 increases.
  • the transmission position of the diffracted light L b 2 guided toward the fourth light receiving area portion 4 4 on the optical element 32 moves to the other X 2 in the first direction X, the light is diffracted by the optical element 32.
  • + The light quantity of the first-order diffracted light Lb21 and the primary diffracted light Lb23 increases, and the light quantity of the zero-order diffracted light Lb22 decreases.
  • an optical pickup unit 55 includes an optical integrated unit 21 according to the above-described embodiment and a laser beam from the optical integrated unit 21.
  • Objective lens means including an objective lens 56 for focusing light on an optical disk.
  • the first direction X corresponds to a predetermined radial direction of the optical disk 20
  • the second direction Y corresponds to a track direction perpendicular to the radial direction of the optical disk 20.
  • the optical pickup device 55 of the present embodiment based on the output signals from the respective light receiving area portions 41 to 46 of the light receiving section 25 of the optical integrated unit 21, the information signal RF and the focus error The signal FES and the track error signal TES are generated.
  • the output signals from the three portions 41 1 to 4 13 of the first light receiving region 4 1 are S 11 to S 13
  • the output signal from the second light receiving region 42 is S 2
  • the output signal from the area 43 is S 3
  • the output signals from the three sections 44 1 to 443 of the fourth light receiving area 44 are S 41 to S 43
  • the two signals of the fifth light receiving area 45 The output signals from the parts 451 and 452 are S51 and S52
  • the output signal from the sixth light receiving area 46 is S6.
  • the information signal RF, the focus error signal FES, and the track error signal TES are expressed by the following equations (2) to (4).
  • Equation 4 the first term on the right-hand side is a push-pull signal ( ⁇ ⁇ signal), and the coefficients a1 and following the second term on the right-hand side are cancel signals.
  • the coefficient a1 is a coefficient for converting the shift amount of the objective lens 56 and the tilt amount of the optical disc 20 into an offset amount in the push-pull signal.
  • the cancel signal is a signal for correcting an offset generated in the push-pull signal due to the shift of the objective lens 56 and the inclination of the optical disc 20 or the like.
  • the coefficient 01 is a coefficient determined by the depth of the groove 51 of the optical element 32.
  • the coefficient] 31 is diffracted by the optical element 32, and the + first-order diffracted lights Lall, Lb21 and the first-order diffracted lights La13, Lb23, diffracted by the optical element 32. It is a coefficient for adjusting the difference in diffraction efficiency between the 0th-order diffracted light L a12 and L b22.
  • the coefficient 1 is obtained by diffracting the first-order diffracted light L a 1 diffracted by the first diffraction surface 31 a of the hologram 31 1 and diffracted by the second diffraction surface 31 b of the hologram 31 — the first-order diffracted light L b When 2 passes through predetermined positions on the optical element 3 2 respectively,
  • Predetermined positions on the optical element 32 are the + first-order diffracted light La1 diffracted by the first diffraction surface 31a of the hologram 31 and the one diffracted by the second diffraction surface 31b of the hologram 31. This is the transmission position of the first-order diffracted light Lb2 on the optical element 32 when there is no shift of the objective lens 56 and no tilt of the optical disc 20, that is, when there is no offset.
  • the + first-order diffracted lights La 11 1 and Lb 21 and the first-order diffracted lights La 13 and Lb 2 diffracted by the optical element 32 are used.
  • 3 and the 0-order diffracted light L a1 2, L b 2 2 diffracted by the optical element 32 are calculated. + 1st-order diffracted light L all, Lb 21 and 1st-order diffracted light L a1 3, Lb 23 diffracted by optical element 3 2, and 0-order diffracted light L a 1 2 diffracted by optical element 3 2 , Lb22, as described above, the direction of change in the amount of light is opposite. Therefore, the sensitivity to the shift of the objective lens 56 and the tilt of the optical disk 20 increases.
  • the optical pickup device 55 of the present embodiment generates the information signal RF, the focus error signal FES, and the track error signal TESS using the so-called one-beam PP method.
  • the one-beam PP method is used, the recording light amount can be increased and the recording speed can be increased.
  • the optical pickup device 55 can extract only the shift of the optical axis between spots and pits on the optical disc 20, that is, the shift in the tracking direction, and correct the shift. Therefore, in the optical pickup device 55, stable tracking servo performance can be achieved regardless of the shift of the objective lens 56 and the tilt of the optical disk 20.
  • the objective lens means focuses the laser light from the optical integrated unit 21 on the optical disc 20, and the light receiving area of the light receiving unit 25 of the optical integrated unit 21. 41 to 46 receive the laser beam reflected by the optical disk 20. Since the optical integrated unit 21 is prevented from being erroneously detected, information can be accurately recorded on the optical disk 20 or information can be accurately read from the optical disk 20. Is improved.
  • FIG. 6 is a diagram showing a schematic configuration of an optical integrated unit 61 according to still another embodiment of the present invention.
  • FIG. 7 is a diagram showing a positional relationship among the hologram 31, the optical element 62, and the first to sixth light receiving area portions 41 to 46.
  • optical integrated unit 61 of the present embodiment is similar to the optical integrated unit 21 of the above-described embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.
  • the optical element 62 is provided on the optical path of the diffracted light L a 1 guided toward the first light receiving region portion 41 and the diffracted light L guided toward the fourth light receiving region portion 44. b2 on the optical path.
  • the optical element 62 is guided toward the first light receiving region portion 44 and the first portion 62 a provided on the optical path of the diffracted light L a 1 guided toward the first light receiving region portion 41.
  • a second portion 62b provided on the optical path of the diffracted light Lb2.
  • the duty D 1a at the end of the other part X 2 in the first direction X of the first part 62 a is selected to be 0.6
  • the duty D 2 at the end of one end X 1 of the first direction X is selected.
  • a is chosen to be, for example, 0.9.
  • the duty D lb of the end of the other portion X 2 in the first direction X of the second portion 6 2 b is, for example, 0.6
  • the duty D 2 b of the end of one end X 1 in the first direction X is selected. Is chosen, for example, as 0.9.
  • the optical elements 62 are individually provided, unnecessary portions of the optical element 62 are reduced, and the remaining light receiving areas 42, 4 3 excluding the first light receiving area 41 and the fourth light receiving area 44 are removed. , 45, and 46 can be prevented as much as possible from transmitting even the diffracted lights L a2, L bl, L cl, and L c 2 through the optical element 62.
  • the change in the amount of light according to the transmission position on the optical element 62 of the diffracted lights La 1 and Lb 2 guided toward the first light receiving area portion 41 and the fourth light receiving area portion 44 is performed.
  • the sensitivity of the cancel signal for correcting the offset caused by the shift can be improved.
  • optical pickup device 65 By combining the optical integrated unit 61 of the present embodiment with objective lens means including an objective lens 66 for condensing the laser light from the optical integrated unit 61 on the optical disk 20, An optical pick-up device 65 according to still another embodiment of the present invention is realized.
  • This optical pickup device 65 can achieve the same effect as the optical pickup device 55 of the above-described embodiment.
  • the track error signal TES is generated based on Expression 4.
  • the error signal TE S is given by
  • Equation 6 the first term on the right-hand side is a push-pull signal (PP signal), and the coefficients ⁇ 2 and subsequent to the second term on the right-hand side are cancel signals.
  • the coefficient ⁇ ; 2 is a coefficient for converting the shift amount of the objective lens and the tilt amount of the optical disk into an offset amount in the push-pull signal.
  • the coefficient / 32 is obtained by subtracting the + 1st-order diffracted light La1 diffracted by the first diffraction surface 31a of the hologram 311 and the one diffracted by the second diffraction surface 31b of the hologram 31.
  • each of the output signals S Output signals SI2 and S42 are not required among 11 to S13, S2, S3, S41 to S43, S51, S52, and S6. Therefore, the scale of the arithmetic circuit in the optical integrated unit can be reduced, In addition, the number of pins can be reduced. As a result, the optical integrated unit 21 can be further downsized, and thus the optical pickup device can be further downsized.
  • the track error signal TES is generated based on Expression 4 or Expression 6.
  • the track error signal TES is
  • the first term on the right-hand side is a push-pull signal ( ⁇ ⁇ signal), and the coefficient ⁇ 3 and the subsequent terms in the second term on the right-hand side are cancel signals.
  • the coefficient ⁇ 3 is a coefficient for converting the shift amount of the objective lens and the tilt amount of the optical disc into an offset amount in the push-pull signal.
  • the coefficient 3 is diffracted by the first diffraction surface L a 1 diffracted by the first diffraction surface 31 a of the hologram 31 1 and diffracted by the second diffraction surface 31 b of the hologram 31 1 —
  • the folded light L b 2 passes through predetermined positions on the optical elements 32 and 62, respectively,
  • each of the output signals S 11 1 to S 13, S 2, S 3, S 41 1 to S 43, S 51, S 52, and S 6 are output signals S 11, IS, S 41, and S 43 Not required. Therefore, it is possible to reduce the scale of the operation route in the optical integrated unit 21 and to reduce the number of pins. Thereby, the optical integrated unit can be further miniaturized, and thus the optical pickup device can be further miniaturized.
  • the optical element includes: a part of the diffracted light by the first diffraction surface toward one light receiving region of the light receiving unit; and a diffraction by the second diffraction surface toward the other light receiving region of the light receiving unit. It is arranged at a position where a part of light is transmitted.
  • the optical elements are arranged as described above, it is necessary to transmit each diffracted light diffracted by the first to third diffractive surfaces through the optical element and the diffracted light through the optical element.
  • the characteristics of the first to third diffraction planes of the hologram so that they can be separated back and forth in the direction along the second axis with the unrefracted light, there is no need to transmit the optical element, for example, the third diffraction plane It is possible to dispose the optical element while avoiding the optical path of the diffracted light due to. Therefore, it is possible to easily prevent a problem that even the diffracted light that does not need to be transmitted through the optical element is transmitted through the optical element and erroneous detection occurs.
  • the first to third diffraction surfaces of the hologram guide the + nth-order diffracted light and the ⁇ nth-order diffracted light toward predetermined light receiving regions.
  • the + n order and 1 n order diffracted lights from the first diffracting surface are sufficiently separated even near the hologram, and the + n order diffracted light and 1 n order diffracted light from the second diffracting surface are also well separated near the hologram. Since the + n-order and -n-order diffracted lights from the third diffraction surface are sufficiently separated even in the vicinity of the hologram, the optical element is avoided by avoiding the optical path of the diffracted light that does not need to pass through the optical element. It becomes easy to arrange.
  • the optical element is configured to detect a part of the diffracted light diffracted by the first diffraction surface of the hologram and a part of the diffracted light diffracted by the second diffraction surface of the hologram. Since the optical element is provided separately on the optical path, unnecessary portions of the optical element are reduced, and as a result, up to the diffracted light guided to each of the remaining light receiving regions except the first light receiving region and the fourth light receiving region. It is possible to prevent, as much as possible, a problem that the light passes through the optical element.
  • the light branching element guides the laser light from the light emitting portion to the information recording medium, and the light branching element guides the laser light reflected by the information recording medium to the hologram, and the hologram guides the laser light.
  • the emitted laser light is guided to each light receiving area of the light receiving section.
  • the objective lens means focuses the laser beam from the optical integrated unit on the information recording medium, and each light receiving area of the light receiving unit of the optical integrated unit is reflected by the information recording medium.
  • the received laser beam is received. Since the optical integrated unit is prevented from being erroneously detected, information can be accurately recorded on the information recording medium, or the information can be accurately read from the information recording medium, thereby improving reliability. You.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

An optical integrated unit and an optical pickup device capable of easily preventing such troubles as erroneous detections. The light receiving surface (36) of a light receiving unit (25) is divided into one light receiving area (38a) and the other light receiving area (38b) with respect to a virtual one plane (37), and one light receiving area (38a) is subdivided into first, third and fifth light receiving area portions (41, 43, 45) and the other light receiving area (38b) into second, fourth and sixth light receiving area portions (42, 44, 46). The first to third diffraction planes (31a-31b) of a hologram (31) guide a laser beam toward first to sixth light receiving area portions (41-46) of the light receiving unit (25). An optical element (32) is provided between the light receiving unit (25) and a hologram (431) so as to transmit part (La1) of a diffraction light diffracted by the first diffraction plane (31a) of the hologram (31) and guide it to the first light receiving area portion (41) in one light receiving area (38a), and to transmit part (Lb2) of a diffraction light diffracted by the second diffraction plane (31b) and guide it to the fourth light receiving area portion (44) in the other light receiving area (38b).

Description

明. 細 書  Specification
光集積化ュニットおよびそれを備えた光ピックアップ装置  Optical integrated unit and optical pickup device having the same
【技術分野】  【Technical field】
本発明は、 情報記録媒体に光学的に情報を記録し、 または情報記録媒体から光 学的に情報を読み取るための光集積化ュニットおよびそれを備えた光ピックアツ プ装置に関する。  The present invention relates to an optical integrated unit for optically recording information on an information recording medium or optically reading information from the information recording medium, and an optical pickup device including the same.
【背景技術】  [Background Art]
第 1の先行技術の光ピックアップ装置は、 小形化、 薄形化および高信頼性化を 図るためのホログラムを備える。 前記ホログラムは、 ディスク半径方向に 2分割 され、 かつその一方は、 さらにトラック方向に 2分割される。 この先行技術の光 ピックァップ装置は、 光ディスクによつて反射されたレーザ光の半分でフォー力 ス誤差信号を、 もう半分でトラック誤差信号を、 全体で情報信号を検出する。 こ の先行技術の光ピックアップ装置では、 トラッキングが合っているにも拘わらず、 対物レンズのシフトおよび光ディスクの傾きによってオフセットが生じ、 ディ ト ラックと判定してしまうという問題がある (たとえば特開平 9— 1 6 1 2 8 2号 公報参照) 。  The first prior art optical pickup device includes a hologram for miniaturization, thinning, and high reliability. The hologram is divided into two in the radial direction of the disk, and one of the two is further divided into two in the track direction. This prior art optical pickup device detects a force error signal in half of the laser light reflected by the optical disk, a track error signal in the other half, and an information signal as a whole. In this prior art optical pickup device, there is a problem that an offset occurs due to the shift of the objective lens and the tilt of the optical disc, and the disc is determined to be a detrack even though the tracking is correct (for example, Japanese Patent Application Laid-Open No. — See Publication No. 16 1 2 82).
このような問題を解決するための技術は、 特願 2 0 0 2 - 2 4 8 4 7 9号に提 案されている。 図 9は、 第 2の先行技術の光集積化ユニット 1の概略的な構成を 示す図である。 図 1 0は、 光集積化ユニット 1におけるホログラム 2、 回折格子 3および第 1〜第 6受光領域部分 1 1〜1 6の位置関係を示す図である。 光ピッ クアップ装置は、 光集積化ユニット 1と、 この光集積化ユニット 1からのレーザ 光を光ディスク上に集光させる対物レンズ手段と含んで構成される。  Techniques for solving such a problem are proposed in Japanese Patent Application No. 2002-248484. FIG. 9 is a diagram showing a schematic configuration of the optical integrated unit 1 of the second prior art. FIG. 10 is a diagram showing a positional relationship among the hologram 2, the diffraction grating 3, and the first to sixth light receiving area portions 11 to 16 in the optical integrated unit 1. As shown in FIG. The optical pickup device includes an optical integrated unit 1 and objective lens means for condensing a laser beam from the optical integrated unit 1 on an optical disk.
光集積化ユニット 1は、 ホログラム 2、 回折格子 3および受光部 4を含む。 受 光部 4の受光面 5は、 この受光面 5に垂直な仮想一平面 6に関して一方の受光領 域 7 aと他方の受光領域 7 bとに分割され、 前記一方の受光領域 7 aには、 第 1、 第 3および第 5受光領域部分 1 1, 1 3, 1 5が設けられ、 前記他方の受光領域 7 bには、 第 2、 第 4およぴ第 6受光領域部分 1 2, 1 4, 1 6が設けられる。 ホログラム 2は、 前述の第 1の先行技術のように分割され、 したがって第 1〜第 3回折面 2 a ~ 2 cを有する。 第 1回折面 2 aは、 第 1受光領域部分 1 1および 第 2受光領域部分 1 2に向けてレーザ光を導き、 第 2回折面 2 bは、 第 3受光領 域部分 1 3および第 4受光領域部分 1 4に向けてレーザ光を導き、 第 3回折面 2 cは、 第 5受光領域部分 1 5および第 6受光領域部分 1 6に向けてレーザ光を導 <。 The optical integrated unit 1 includes a hologram 2, a diffraction grating 3, and a light receiving unit 4. The light receiving surface 5 of the light receiving portion 4 is divided into one light receiving region 7a and the other light receiving region 7b with respect to a virtual plane 6 perpendicular to the light receiving surface 5, and the one light receiving region 7a has , First, third and fifth light receiving area portions 11, 13, and 15 are provided, and the other light receiving area 7 b includes second, fourth and sixth light receiving area portions 12, 14 and 16 are provided. The hologram 2 is divided as in the first prior art described above, so that the first to It has three diffraction planes 2a to 2c. The first diffraction surface 2a guides the laser light toward the first light receiving region 11 and the second light receiving region 12 and the second diffraction surface 2b guides the laser light to the third light receiving region 13 and the fourth light receiving region. The third diffractive surface 2c guides the laser light toward the fifth light-receiving area 15 and the sixth light-receiving area 16.
ホログラム 2と受光部 4との間には、 ディスク半径方向に回折効率を異ならせ た回折格子 3が介在される。 この回折格子 3は、 一方の受光領域 7 aの、 第 1受 光領域部分 1 1および第 3受光領域部分 1 3に向けて導かれるレーザ光 L a 1, L b 1を回折させる。 したがって第 1受光領域部分 1 1および第 3受光領域部分 1 3には、 回折格子 3によって回折されたレーザ光が導かれ、 対物レンズのシフ トおよび光ディスクの傾きによって生じるオフセットを補正するためのキャンセ ル信号が生成される。 これによつてプッシュプル信号のオフセット捕正を行うこ とができ、 安定したトラッキングサーボ性能を得ることができる。  A diffraction grating 3 having a different diffraction efficiency in the radial direction of the disc is interposed between the hologram 2 and the light receiving section 4. The diffraction grating 3 diffracts the laser beams L a1 and L b1 guided toward the first light receiving region portion 11 and the third light receiving region portion 13 of one light receiving region 7a. Therefore, the laser light diffracted by the diffraction grating 3 is guided to the first light receiving area portion 11 and the third light receiving area portion 13 and is canceled by the objective lens shift and the offset generated by the tilt of the optical disk. Signal is generated. As a result, offset correction of the push-pull signal can be performed, and stable tracking servo performance can be obtained.
図 1 1は、 ホログラム 2からのレーザ光 L a 1 , L a 2 , L b l, L b 2 , L c 1 , L c 2の、 回折格子 3を含む仮想一平面上の透過位置を示す図である。 こ の図 1 1に示されるように、 回折格子 3を含む仮想一平面上では、 各受光領域部 分 1 1〜1 6に向けて導かれるレーザ光は充分に分離されず、 第 3受光領域部分 1 3に向けて導かれるレーザ光 L b 1と第 5受光領域部分 1 5に向けて導かれる レーザ光 L c 1とは重なり合う。 したがって前記第 2の先行技術では、 第 1受光 領域部分 1 1および第 3受光領域部分 1 3に向けて導かれるレーザ光 L a 1 , L b 1だけでなく、 第 5受光領域部分 1 5に向けて導かれるレーザ光 L c 1までも が回折格子 3によって回折されてしまう。 すなわちキャンセル信号を生成するた めのレーザ光だけでなく、 フオーカス誤差信号を検出するためのレーザ光までも が、 回折格子 3によって回折されてしまう。 これによつてフォーカス誤差信号は、 回折格子 3による透過率変化の影響を受け、 その影響はフォーカス誤差信号にノ ィズとなって現れてしまうので、 フォーカスサーポが引き込めなくなったり、 引 き込めても充分にゲインを上げることができず、 サーボの抑え込みが不充分であ つたりする。 一方の受光領域 7 aの、 第 1受光領域部分 1 1および第 3受光領域部分 1 3に 向けて導かれるレーザ光 L a 1 , L b 1ではなく、 他方の受光領域 7 の、 第 2 受光領域部分 1 2および第 4受光領域部分 1 4に向けて導かれるレーザ光 L a 2, L b 2を回折させるように回折格子 3が設けられると、 第 6受光領域部分 1 6に 向けて導かれるレーザ光 L c 2までもが回折格子 3によって回折されてしまい、 トラック誤差信号が不安定になるとともに、 情報信号のエラーレートが極端に悪 くなる恐れがある。 FIG. 11 is a diagram showing transmission positions of the laser beams L a 1, L a 2, L bl, L b 2, L c 1, and L c 2 from the hologram 2 on a virtual plane including the diffraction grating 3. It is. As shown in FIG. 11, on a virtual plane including the diffraction grating 3, the laser beams guided toward the respective light receiving regions 11 to 16 are not sufficiently separated, and the third light receiving region The laser beam Lb1 guided toward the portion 13 and the laser beam Lc1 guided toward the fifth light receiving region portion 15 overlap. Therefore, in the second prior art, not only the laser beams L a 1 and L b 1 guided toward the first light receiving region portion 11 and the third light receiving region portion 13 but also the fifth light receiving region portion 15 Even the laser beam L c 1 guided toward the light is diffracted by the diffraction grating 3. That is, not only the laser light for generating the cancel signal but also the laser light for detecting the focus error signal is diffracted by the diffraction grating 3. As a result, the focus error signal is affected by the change in the transmittance due to the diffraction grating 3, and the influence appears as noise in the focus error signal. The gain cannot be increased sufficiently even if it is inserted, and the servo suppression is insufficient. Instead of the laser light L a 1, L b 1 guided toward the first light receiving area portion 11 and the third light receiving area portion 13 of one light receiving area 7 a, the second light receiving area of the other light receiving area 7 When the diffraction grating 3 is provided so as to diffract the laser beams L a 2 and L b 2 guided to the region portion 12 and the fourth light receiving region portion 14, the light is guided toward the sixth light receiving region portion 16. Even the laser beam Lc2 to be emitted is diffracted by the diffraction grating 3, so that the track error signal becomes unstable and the error rate of the information signal may be extremely deteriorated.
前記第 2の先行技術では、 一方の受光領域 7 aの、 第 1受光領域部分 1 1およ び第 3受光領域部分 1 3に向けて導かれるレーザ光 L a 1, L b 1だけが回折格 子 3によって回折されるように回折格子 3を配置することはできない。 また他方 の受光領域 7 bの、 第 2受光領域部分 1 2および第 4受光領域部分 1 4に向けて 導かれるレーザ光 L a 2 , L b 2だけが回折格子 3によって回折されるように回 折格子 3を配置することもできない。 このように前記第 2の先行技術では、 回折 格子 3によって回折される必要がない回折光の光経路を避けて回折格子 3を配置 することができず、 誤検出が生じてしまうという問題がある。  According to the second prior art, only the laser beams L a1 and L b1 guided toward the first light receiving region portion 11 and the third light receiving region portion 13 of one light receiving region 7a are diffracted. The diffraction grating 3 cannot be arranged to be diffracted by the grating 3. In addition, only the laser beams La2 and Lb2 guided toward the second light-receiving region portion 12 and the fourth light-receiving region portion 14 of the other light-receiving region 7b are diffracted by the diffraction grating 3. Neither can the folding grid 3 be placed. As described above, in the second prior art, there is a problem that the diffraction grating 3 cannot be arranged avoiding the optical path of the diffracted light that does not need to be diffracted by the diffraction grating 3, and erroneous detection occurs. .
【発明の開示】  DISCLOSURE OF THE INVENTION
本発明の目的は、 誤検出が生じてしまうという不具合を容易に防止することが できる光集積化ユエットおよぴそれを備えた光ピックアツプ装置を提供すること である。  SUMMARY OF THE INVENTION An object of the present invention is to provide an optical integrated unit and an optical pick-up device provided with the optical integrated unit, which can easily prevent the problem of erroneous detection.
本発明は、 予め定める第 1軸線に垂直な受光面を有し、 この受光面を、 前記予 め定める第 1軸線を含む仮想一平面に関して一方の受光領域と他方の受光領域と に分割し、 一方の受光領域および他方の受光領域には、 前記仮想一平面と受光面 とが交差する第 2軸線に沿って各複数の受光領域部分が設けられる受光部と、 前記一方の受光領域内の複数の受光領域部分のうち予め定める第 1受光領域部 分おょぴ前記他方の受光領域内の複数の受光領域部分のうち予め定める第 2受光 領域部分に向けてレーザ光を導く第 1回折面と、 前記一方の受光領域内の複数の 受光領域部分のうち予め定める第 3受光領域部分おょぴ前記他方の受光領域内の 複数の受光領域部分のうち予め定める第 4受光領域部分に向けてレーザ光を導く 第 2回折面と、 前記一方の受光領域内の複数の受光領域部分のうち予め定める第 5受光領域部分および前記他方の受光領域内の複数の受光領域部分のうち予め定 める第 6受光領域部分に向けてレーザ光を導く第 3回折面とが、 前記予め定める 第 1軸線に垂直にかつ受光面に臨んで設けられるホログラムと、 The present invention has a light receiving surface perpendicular to a predetermined first axis, and divides this light receiving surface into one light receiving region and the other light receiving region with respect to a virtual plane including the predetermined first axis, A light-receiving portion provided with a plurality of light-receiving regions along a second axis at which the virtual plane intersects the light-receiving surface; and a plurality of light-receiving portions provided in the one light-receiving region. A first diffractive surface that guides the laser light toward a predetermined second light receiving area of the plurality of light receiving areas in the other light receiving area; The laser is directed toward a predetermined third light-receiving area portion of the plurality of light-receiving areas in the one light-receiving area and a predetermined fourth light-receiving area of the plurality of light-receiving areas in the other light-receiving area. Guide the light A second diffractive surface, a predetermined fifth light receiving area of the plurality of light receiving areas in the one light receiving area, and a sixth light receiving area of the plurality of light receiving areas in the other light receiving area A third diffraction surface for guiding the laser light toward the portion, a hologram provided perpendicular to the predetermined first axis and facing the light receiving surface;
前記受光部とホログラムとの間に介在され、 ホログラムの第 1回折面によって 回折された回折光の一部を透過させて、 前記第 1受光領域部分に導き、 かつホロ グラムの第 2回折面によって回折された回折光の一部を透過させて、 前記第 4受 光領域部分に導く光学素子とを含むことを特徴とする光集積化ュニットである。 本発明に従えば、 受光部の受光面は前記仮想一平面に関して一方の受光領域と 他方の受光領域とに分割され、 さらに一方の受光領域は第 1、 第 3および第 5受 光領域部分に分割され、 他方の受光領域は第 2、 第 4および第 6受光領域部分に 分割される。 ホログラムは、 導かれたレーザ光を前記第 1〜第 3回折面によって 回折し、 その回折された各回折光は前記受光部の第 1〜第 6受光領域部分によつ て受光される。 光学素子は、 ホログラムの第 1回折面によって回折された回折光 の一部を透過させて、 前記一方の受光領域内の第 1受光領域部分に導き、 かつ第 2回折面によって回折された回折光の一部を透過させて、 前記他方の受光領域内 の第 4受光領域部分に導くように、 前記受光部とホログラムとの間に設けられる。 このように受光部の一方の受光領域に向かう第 1回折面による回折光の一部と、 受光部の他方の受光領域に向かう第 2回折面による回折光の一部とが透過する位 置に前記光学素子が配置されるので、 第 1〜第 3回折面によって回折された各回 折光を、 前記光学素子を透過させる必要がある回折光と、 前記光学素子を透過さ せる必要がない回折光とに第 2軸線に沿う方向に関して前後に振り分けられるよ うにホログラムの第 1〜第 3回折面の特性を適宜選択することによって、 光学素 子を透過させる必要がないたとえば第 3回折面による回折光の光経路を避けて光 学素子を配置することが可能となる。 したがって光学素子を透過させる必要がな い回折光までもが光学素子を透過してしまい、 誤検出が生じてしまうという不具 合を容易に防止することができる。  A part of the diffracted light that is interposed between the light receiving unit and the hologram and diffracted by the first diffraction surface of the hologram is transmitted, guided to the first light receiving region, and by the second diffraction surface of the hologram. An optical element that transmits a part of the diffracted diffracted light and guides the diffracted light to the fourth light receiving area. According to the present invention, the light receiving surface of the light receiving section is divided into one light receiving area and the other light receiving area with respect to the virtual one plane, and one light receiving area is divided into the first, third, and fifth light receiving areas. The other light receiving area is divided into second, fourth, and sixth light receiving area portions. The hologram diffracts the guided laser beam by the first to third diffraction surfaces, and the diffracted beams are received by first to sixth light receiving regions of the light receiving unit. The optical element transmits a part of the diffracted light diffracted by the first diffraction surface of the hologram, guides the diffracted light to the first light receiving region in the one light receiving region, and diffracts the diffracted light by the second diffraction surface. Is provided between the light receiving unit and the hologram so that a part of the light is transmitted and guided to a fourth light receiving area in the other light receiving area. As described above, the position where a part of the diffracted light by the first diffraction surface toward one light receiving region of the light receiving unit and a part of the diffracted light by the second diffraction surface toward the other light receiving region of the light receiving unit are transmitted. Since the optical element is disposed, each of the diffracted lights diffracted by the first to third diffractive surfaces is converted into a diffracted light that needs to be transmitted through the optical element and a diffracted light that does not need to be transmitted through the optical element. By appropriately selecting the characteristics of the first to third diffraction surfaces of the hologram so that they can be sorted back and forth with respect to the direction along the second axis, it is not necessary to transmit the optical element. The optical element can be arranged avoiding the optical path. Therefore, it is possible to easily prevent a problem that even the diffracted light that does not need to be transmitted through the optical element is transmitted through the optical element and erroneous detection occurs.
また本発明は、 前記第 1回折面は、 第 1受光領域部分に向けては + n (ここに、 nは 1以上の正の整数) 次回折光を導き、 かつ第 2受光領域部分に向けては一 n 次回折光を導き、 Further, according to the present invention, the first diffractive surface is provided with + n (here, n is a positive integer greater than or equal to 1) guides the first order diffracted light, and guides the 1 n order diffracted light toward the second light receiving area,
前記第 2回折面は、 第 3受光領域部分に向けては + n次回折光を導き、 かつ第 4受光領域部分に向けては一 n次回折光を導き、  The second diffractive surface guides + n order diffracted light toward the third light receiving region, and guides 1 n order diffracted light toward the fourth light receiving region,
前記第 3回折面は、 第 5受光領域部分に向けては + n次回折光を導き、 かつ第 6受光領域部分に向けては一 n次回折光を導くことを特徴とする。  The third diffractive surface guides + n-order diffracted light toward the fifth light-receiving area, and guides 1 n-order diffracted light toward the sixth light-receiving area.
本発明に従えば、 ホログラムの第 1〜第 3回折面は、 + n次回折光および一 n 次回折光を、 所定の各受光領域部分に向けて導く。 第 1回折面からの + n次回折 光および一 n次回折光はホログラムの近傍でも充分に分離され、 第 2回折面から の + n次回折光および一 n次回折光はホログラムの近傍でも充分に分離され、 第 3回折面からの + n次回折光および一 n次回折光はホログラムの近傍でも充分に 分離されるので、 光学素子を透過させる必要がない回折光の光経路を避けて光学 素子を配置することが容易となる。  According to the present invention, the first to third diffractive surfaces of the hologram guide the + nth-order diffracted light and the 1nth-order diffracted light toward predetermined light-receiving regions. The + n order and 1 n order diffracted lights from the first diffracting surface are sufficiently separated even near the hologram, and the + n order diffracted light and 1 n order diffracted light from the second diffracting surface are also well separated near the hologram. Since the + n-order diffraction light and the 1-nth-order diffraction light from the third diffraction surface are sufficiently separated even in the vicinity of the hologram, the optical element should be arranged so as to avoid the optical path of the diffracted light that does not need to pass through the optical element. Becomes easier.
また本発明は、 前記光学素子は、 ホログラムの第 1回折面によって回折された 前記回折光の一部の光経路上と、 ホログラムの第、 2回折面によって回折された前 記回折光の一部の光経路上とに、 個別に設けられることを特徴とする。  Also, in the invention, it is preferable that the optical element includes a part on the optical path of a part of the diffracted light diffracted by the first diffraction surface of the hologram, and a part of the diffracted light diffracted by the second and second diffraction surfaces of the hologram. And on the optical path.
本発明に従えば、 ホログラムの第 1回折面によって回折された前記回折光の一 部の光経路上と、 ホログラムの第 2回折面によって回折された前記回折光の一部 の光経路上とに、 個別に光学素子が設けられるので、 光学素子は不要な部分が削 減され、 第 1受光領域部分および第 4受光領域部分を除く残余の各受光領域部分 に導かれる回折光までもが光学素子を透過してしまうという不具合を可及的に防 止することができる。  According to the present invention, on the optical path of a part of the diffracted light diffracted by the first diffraction surface of the hologram and on the optical path of a part of the diffracted light diffracted by the second diffraction surface of the hologram Since the optical elements are individually provided, unnecessary portions of the optical elements are reduced, and even the diffracted light guided to the remaining light receiving areas other than the first light receiving area and the fourth light receiving area is an optical element. It is possible to prevent the inconvenience of transmitting light as much as possible.
また本発明は、 レーザ光を発生する発光部と、  The present invention also provides a light emitting unit that generates laser light,
発光部からのレーザ光を情報記録媒体に導き、 かつ情報記録媒体によって反射 されたレーザ光を前記ホログラムに導く光分岐素子とをさらに含むことを特徴と する。  A light branching element for guiding the laser light from the light emitting section to the information recording medium and guiding the laser light reflected by the information recording medium to the hologram.
本発明に従えば、 光分岐素子は、 発光部からのレーザ光を情報記録媒体に導き、 かつ情報記録媒体によって反射されたレーザ光をホログラムに導く。 ホログラム は、 導かれたレーザ光を、 前述のように受光部の各受光領域部分に導く。 このよ うな本発明の光集積化ュニットがたとえば光ピックアップ装置に用いられる場合、 発光部と受光部とを個別に設ける必要がないので、 信号検出系の調整が不要であ り、 組立て性が向上される。 また発光部おょぴ受光部などを含む本発明の光集積 化ュニットは 1つの光学部品として扱うことができ、 したがって光学部品点数が 低減される。 According to the invention, the light branching element guides the laser light from the light emitting section to the information recording medium, and guides the laser light reflected by the information recording medium to the hologram. hologram Guides the guided laser beam to each light receiving area of the light receiving section as described above. When such an optical integrated unit of the present invention is used in, for example, an optical pickup device, it is not necessary to separately provide a light-emitting unit and a light-receiving unit, so that adjustment of a signal detection system is not required, and assemblability is improved. Is done. Further, the optical integrated unit of the present invention including the light emitting unit and the light receiving unit can be treated as one optical component, and therefore the number of optical components is reduced.
また本発明は、 前記光集積化ユニットと、  Further, the present invention provides the optical integrated unit,
光集積化ュニットからのレーザ光を情報記録媒体上に集光させる対物レンズ手 段とを含むことを特徴とする光ピックアップ装置である。  An objective lens means for converging laser light from the optical integrated unit onto an information recording medium.
本発明に従えば、 対物レンズ手段が光集積化ュニットからのレーザ光を情報記 録媒体上に集光させるとともに、 光集積化ュニットの受光部の各受光領域部分が 情報記録媒体によって反射されたレーザ光を受光する。 前記光集積化ュニットは、 誤検出が生じるという不具合が防止されているので、 情報記録媒体に正確に情報 を記録し、 または情報記録媒体から正確に情報を読み取ることができる。  According to the present invention, the objective lens means focuses the laser light from the optical integrated unit on the information recording medium, and each light receiving area of the light receiving unit of the optical integrated unit is reflected by the information recording medium. Receives laser light. Since the optical integrated unit is prevented from being erroneously detected, the information can be accurately recorded on the information recording medium or the information can be accurately read from the information recording medium.
【図面の簡単な説明】  [Brief description of the drawings]
本発明の目的、 特色、 および利点は、 下記の詳細な説明と図面とからより明確 になるであろう。  The objects, features and advantages of the present invention will become more apparent from the following detailed description and drawings.
図 1は、 本発明の実施の一形態の光集積化ュニット 2 1の概略的な構成を示す 図である。  FIG. 1 is a diagram showing a schematic configuration of an optical integrated unit 21 according to one embodiment of the present invention.
図 2は、 ホログラム 3 1、 光学素子 3 2および第 1〜第 6受光領域部分 4 1〜 4 6の位置関係を示す図である。  FIG. 2 is a diagram showing a positional relationship among the hologram 31, the optical element 32, and the first to sixth light receiving area portions 41 to 46.
図 3は、 ホログラム 3 1からの回折光 L a 1 , L a 2 , L b l, L b 2 , L c 1, L c 2の、 光学素子 3 2を含む仮想一平面上の透過位置を示す図である。 図 4は、 光学素子 3 2の一部を概略的に示す平面図である。  FIG. 3 shows the transmission positions of the diffracted light L a 1, L a 2, L bl, L b 2, L c 1, and L c 2 from the hologram 31 1 on a virtual plane including the optical element 32. FIG. FIG. 4 is a plan view schematically showing a part of the optical element 32.
図 5は、 第 1受光領域部分 4 1に向けて導かれる回折光 L a 1の、 光学素子 3 2上の透過位置を示す図である。  FIG. 5 is a diagram showing a transmission position on the optical element 32 of the diffracted light La 1 guided toward the first light receiving area portion 41.
図 6は、 本発明の実施のさらに他の形態の光集積化ユニット 6 1の概略的な構 成を示す図である。 図 7は、 ホログラム 3 1、 光学素子 6 2および第 1〜第 6受光領域部分 4 1〜 4 6の位置関係を示す図である。 FIG. 6 is a diagram showing a schematic configuration of an optical integrated unit 61 according to still another embodiment of the present invention. FIG. 7 is a diagram showing a positional relationship among the hologram 31, the optical element 62, and the first to sixth light receiving area portions 41 to 46.
図 8は、 ホログラム 3 1からの回折光 L a 1 , L a 2 , L b 1 , L b 2 , L c 1, L c 2の、 光学素子 6 2を含む仮想一平面上の透過位置を示す図である。 図 9は、 第 2の先行技術の光集積化ュニット 1の概略的な構成を示す図である。 図 1 0は、 光集積化ユエット 1におけるホログラム2、 回折格子 3およぴ第 1 〜第 6受光領域部分 1 1〜1 6の位置関係を示す図である。 FIG. 8 shows the transmission positions of the diffracted lights L a 1, L a 2, L b 1, L b 2, L c 1, and L c 2 from the hologram 31 1 on a virtual plane including the optical element 62. FIG. FIG. 9 is a diagram showing a schematic configuration of the optical integrated unit 1 of the second prior art. FIG. 10 is a diagram showing the positional relationship between the hologram 2 , the diffraction grating 3, and the first to sixth light receiving region portions 11 to 16 in the optical integrated unit 1. As shown in FIG.
図 1 1は、 ホログラム 2からのレーザ光 L a 1 , L a 2 , L b 1 , L b 2 , L c 1 , L c 2の、 回折格子 3を含む仮想一平面上の透過位置を示す図である。 【発明を実施するための最良の形態】  FIG. 11 shows the transmission positions of the laser beams La1, La2, Lb1, Lb2, Lc1, and Lc2 from the hologram 2 on a virtual plane including the diffraction grating 3. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参考にして本発明の好適な実施例を詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
図 1は、 本発明の実施の一形態の光集積化ュニット 2 1の概略的な構成を示す 図である。 本実施の形態の光集積化ユエット 2 1は、 たとえば、 情報記録媒体に 光学的に情報を記録し、 または情報記録媒体から光学的に情報を読み取る光ピッ クアップ装置などに搭載される。 前記情報記録媒体 2 0は、 たとえばデジタルバ ーサタイルディスク (Digital Versati le Di sc, 略称 D V D ) などの光ディスク である。 光集積化ユニット 2 1は、 発光部 2 2、 ホログラム素子 2 3、 光分岐素 子 2 4および受光部 2 5を含む。  FIG. 1 is a diagram showing a schematic configuration of an optical integrated unit 21 according to one embodiment of the present invention. The optical integrated unit 21 according to the present embodiment is mounted on, for example, an optical pickup device that optically records information on an information recording medium or optically reads information from an information recording medium. The information recording medium 20 is an optical disk such as a digital versatile disk (DVD). The optical integrated unit 21 includes a light emitting section 22, a hologram element 23, a light branching element 24, and a light receiving section 25.
発光部 2 2は、 ステム 2 6に設けられる。 発光部 2 2は、 レーザ光を発生する。 発光部 2 2は、 たとえばレーザダイオード (Laser Diode, 略称 L D ) チップに よって実現される。 ホログラム素子 2 3は、 ホログラム 3 1および光学素子 3 2 を有する。 ホログラム 3 1は、 多分割ホログラムである。 光学素子 3 2は、 回折 格子である。 受光部 2 5には、 第 1〜第 6受光領域部分 4 1〜4 6 (後述の図 2 参照) が設けられ、 各受光領域部分 4 1〜4 6は、 ホログラム素子 2 3からのレ 一ザ光を受光する。  The light emitting section 22 is provided on the stem 26. The light emitting section 22 generates a laser beam. The light emitting section 22 is realized by, for example, a laser diode (LaD) chip. The hologram element 23 has a hologram 31 and an optical element 32. The hologram 31 is a multi-segment hologram. The optical element 32 is a diffraction grating. The light receiving section 25 is provided with first to sixth light receiving area portions 41 to 46 (see FIG. 2 to be described later), and each light receiving area portion 41 to 46 is a laser beam from the hologram element 23. The light is received.
光分岐素子 2 4は、 発光部 2 2からのレーザ光を光ディスクに導き、 かつ光デ イスクによって反射されたレーザ光をホログラム素子 2 3のホログラム 3 1に導 く。 光分岐素子 2 4は、 第 1面 3 3およぴ第 2面 3 4を有する。 第 1面 3 3は、 発光部 2 2からのレーザ光は透過させ、 光ディスクによって反射されたレーザ光 は反射させる。 第 2面 3 4は、 第 1面 3 3によって反射されたレーザ光を反射さ せる。 The light splitting element 24 guides the laser light from the light emitting section 22 to the optical disk, and guides the laser light reflected by the optical disk to the hologram 31 of the hologram element 23. The optical branching element 24 has a first surface 33 and a second surface 34. The first side 3 3 The laser light from the light emitting section 22 is transmitted, and the laser light reflected by the optical disk is reflected. The second surface 34 reflects the laser light reflected by the first surface 33.
発光部 2 2からのレーザ光は、 第 1面 3 3を透過して光ディスクに導かれ、 光 ディスクによって反射されたレーザ光は、 第 1面 3 3によって反射され、 さらに 第 2面 3 4によって反射されてホログラム素子 2 3のホログラム 3 1に導かれる。 こうしてホログラム 3 1に導かれたレーザ光は、 受光部 2 5の各受光領域部分 4 1〜4 6で受光される。  The laser light from the light emitting section 22 passes through the first surface 33 and is guided to the optical disk, and the laser light reflected by the optical disk is reflected by the first surface 33 and further by the second surface 34. The light is reflected and guided to the hologram 31 of the hologram element 23. The laser beam guided to the hologram 31 in this manner is received by the respective light receiving area portions 41 to 46 of the light receiving section 25.
本実施の形態の光集積化ュニット 2 1がたとえば光ピックアップ装置に用いら れる場合、 発光部 2 2と受光部 2 5とを個別に設ける必要がないので、 信号検出 系の調整が不要であり、 組立て性が向上される。 また発光部 2 2および受光部 2 5などを含む本実施の形態の光集積化ュニットは 1つの光学部品として扱うこと ができ、 したがって光学部品点数が低減される。  When the optical integrated unit 21 according to the present embodiment is used in, for example, an optical pickup device, it is not necessary to separately provide the light emitting unit 22 and the light receiving unit 25, so that adjustment of the signal detection system is unnecessary. The assemblability is improved. Further, the optical integrated unit of the present embodiment including the light emitting section 22 and the light receiving section 25 can be handled as one optical component, and therefore the number of optical components is reduced.
図 2は、 ホログラム 3 1、 光学素子 3 2および第 1〜第 6受光領域部分 4 1〜 4 6の位置関係を示す図である。 受光部 2 5は、 予め定める第 1軸線 L 1に垂直 な受光面 3 6を有する。 この受光面 3 6は、 前記予め定める第 1軸線 L 1を含む 仮想一平面 3 7に関して一方の受光領域 3 8 aと他方の受光領域 3 8 bとに分割 される。 ホログラム 3 1は、 第 1〜第 3回折面 3 1 a〜3 1 cを有する。 第 1〜 第 3回折面 3 1 a〜3 1 cは、 前記予め定める第 1軸線 L 1に垂直にかつ受光面 3 6に臨んで設けられる。  FIG. 2 is a diagram showing a positional relationship among the hologram 31, the optical element 32, and the first to sixth light receiving area portions 41 to 46. The light receiving section 25 has a light receiving surface 36 perpendicular to the first axis L1 determined in advance. The light receiving surface 36 is divided into one light receiving region 38a and the other light receiving region 38b with respect to the virtual one plane 37 including the predetermined first axis L1. The hologram 31 has first to third diffraction surfaces 31a to 31c. The first to third diffraction surfaces 31a to 31c are provided perpendicular to the first axis L1 and facing the light receiving surface 36.
ホログラム 3 1は円形状であり、 このホログラム 3 1の中心は前記予め定める 第 1軸線 L 1上に配置される。 第 2回折面 3 1 bと第 3回折面 3 1 cとの境界 4 8 aは、 ホログラム 3 1の中心から、 前記仮想一平面 3 7に垂直な第 1方向 の 一方 X 1に向かって延びる。 第 1回折面 3 1 aと第 3回折面 3 1 cとの境界 4 8 bは、 ホログラム 3 1の中心から、 第 1方向 Xの他方 X 2に向かって延びる。 第 1回折面 3 1 aと第 2回折面 3 1 bとの境界 4 8 cは、 ホログラム 3 1の中心か ら、 前記予め定める第 1軸線 L 1に垂直で、 かつ第 1方向 Xに垂直な第 2方向 Y の一方 Y 1に向かって延びる。 受光面 3 6の一方の受光領域 3 8 aには、 前記仮想一平面 3 7と受光面 3 6と が交差する第 2軸線 L 2に沿って、 第 1受光領域部分 4 1、 第 3受光領域部分 4 3および第 5受光領域部分 4 5が設けられる。 第 5受光領域部分 4 5は、 ホログ ラム 3 1に関して第 1方向 Xの一方 X 1に間隔をあけ、 かつ第 2軸線 L 2に沿う 方向、 すなわち第 2方向 Yに、 ホログラム 3 1とほぼ同一の位置に設けられる。 第 1受光領域部分 4 1は、 第 5受光領域部分 4 5よりも第 2方向 Yの一方 Y 1に 間隔をあけて設けられる。 第 3受光領域部分 4 3は、 第 5受光領域部分 4 5より も第 2方向 Yの他方 Y 2に間隔をあけて設けられる。 The hologram 31 has a circular shape, and the center of the hologram 31 is arranged on the predetermined first axis L1. A boundary 48 a between the second diffraction surface 31 b and the third diffraction surface 31 c extends from the center of the hologram 31 toward one X 1 in a first direction perpendicular to the virtual plane 37. . A boundary 48 b between the first diffraction surface 31 a and the third diffraction surface 31 c extends from the center of the hologram 31 toward the other X 2 in the first direction X. The boundary 48c between the first diffraction surface 31a and the second diffraction surface 31b is perpendicular to the predetermined first axis L1 and perpendicular to the first direction X from the center of the hologram 31. Extending in the second direction Y toward one side Y1. In one light receiving area 38a of the light receiving surface 36, along the second axis L2 where the virtual plane 37 and the light receiving surface 36 intersect, the first light receiving area portion 41, the third light receiving area An area portion 43 and a fifth light receiving area portion 45 are provided. The fifth light receiving area portion 45 is spaced apart from the hologram 31 in one direction X1 of the first direction X and is substantially the same as the hologram 31 in the direction along the second axis L2, that is, in the second direction Y. Is provided at the position. The first light receiving area portion 41 is provided at an interval in the first direction Y1 in the second direction Y more than the fifth light receiving area portion 45. The third light receiving region portion 43 is provided at a distance from the fifth light receiving region portion 45 in the second direction Y2 in the second direction Y.
受光面 3 6の他方の受光領域 3 8 bには、 第 2軸線 L 2に沿って、 第 2受光領 域部分 4 2、 第 4受光領域部分 4 4および第 6受光領域部分 4 6が設けられる。 第 6受光領域部分 4 6は、 ホログラム 3 1に関して第 1方向 Xの他方 X 2に間隔 をあけ、 かつ第 2方向 Yに、 ホログラム 3 1とほぼ同一の位置に設けられる。 第 2受光領域部分 4 2は、 第 6受光領域部分 4 6よりも第 2方向 Yの他方 Y 2に間 隔をあけて設けられる。 第 4受光領域部分 4 4は、 第 6受光領域部分 4 6よりも 第 2方向 Yの一方 Y 1に間隔をあけて設けられる。  In the other light receiving area 38b of the light receiving surface 36, a second light receiving area part 42, a fourth light receiving area part 44, and a sixth light receiving area part 46 are provided along the second axis L2. Can be The sixth light receiving region portion 46 is provided at an interval in the other direction X2 of the first direction X with respect to the hologram 31 and in the second direction Y at substantially the same position as the hologram 31. The second light receiving area portion 42 is provided at a distance from the other Y 2 in the second direction Y with respect to the sixth light receiving area portion 46. The fourth light receiving area portion 44 is provided at an interval in one Y1 in the second direction Y more than the sixth light receiving area portion 46.
第 1受光領域部分 4 1は、 3つの部分 4 1 1, 4 1 2 , 4 1 3を有する。 この 3つの部分 4 1 1, 4 1 2, 4 1 3は、 第 2軸線 L 2に沿って、 相互に間隔をあ けて設けられる。 第 4受光領域部分 4 4は、 3つの部分 4 4 1, 4 4 2, 4 4 3 を有する。 この 3つの部分 4 4 1, 4 4 2, 4 4 3は、 第 2軸線 L 2に沿って、 相互に間隔をあけて設けられる。 第 5受光領域部分 4 5は、 2つの部分 4 5 1, 4 5 2を有する。 この 2つの部分 4 5 1 , 4 5 2は、 第 2軸線 L 2に沿って、 相 互に隣接して設けられる。  The first light receiving area portion 41 has three portions 4 11, 4 12, and 4 13. The three portions 4 1 1, 4 1 1 2 and 4 1 3 are spaced from each other along the second axis L 2. The fourth light receiving area portion 44 has three portions 4 4 1, 4 4 2 and 4 4 3. The three parts 4 4 1, 4 4 2, 4 4 3 are spaced apart from each other along the second axis L 2. The fifth light receiving area portion 45 has two portions 451, 452. The two portions 451, 452 are provided adjacent to each other along the second axis L2.
ホログラム 3 1の第 1〜第 3回折面 3 1 a ~ 3 1 cには、 相互に異なる回折格 子が形成される。 第 1回折面 3 l aは、 前記一方の受光領域 3 8 a内の複数の受 光領域部分 4 1, 4 3, 4 5のうち予め定める第 1受光領域部分 4 1および前記 他方の受光領域 3 8 b内の複数の受光領域部分 4 2, 4 4, 4 6のうち予め定め る第 2受光領域部分 4 2に向けてレーザ光を導く。 第 2回折面 3 l bは、 前記一 方の受光領域 3 8 a内の複数の受光領域部分 4 1, 4 3, 4 5のうち予め定める 第 3受光領域部分 43および前記他方の受光領域 38 b内の複数の受光領域部分 42, 44, 46のうち予め定める第 4受光領域部分 44に向けてレーザ光を導 く。 第 3回折面 3 1 cは、 前記一方の受光領域 38 a内の複数の受光領域部分 4 1 , 43, 45のうち予め定める第 5受光領域部分 45および前記他方の受光領 域 38 b内の複数の受光領域部分 42, 44, 46のうち予め定める第 6受光領 域部分 46に向けてレーザ光を導く。 Different diffraction gratings are formed on the first to third diffraction surfaces 31 a to 31 c of the hologram 31. The first diffraction surface 3 la includes a predetermined first light receiving region portion 41 of the plurality of light receiving region portions 41, 43, and 45 in the one light receiving region 38 a and the other light receiving region 3. The laser light is guided toward a predetermined second light receiving area portion 42 among a plurality of light receiving area portions 42, 44, and 46 in 8b. The second diffraction surface 3 lb is determined in advance among a plurality of light receiving area portions 41, 43, 45 in the one light receiving area 38a. The laser beam is guided toward a predetermined fourth light receiving region portion 44 among the plurality of light receiving region portions 42, 44, 46 in the third light receiving region portion 43 and the other light receiving region 38b. The third diffraction surface 31c is formed of a predetermined fifth light-receiving region portion 45 of the plurality of light-receiving region portions 41, 43, and 45 in the one light-receiving region 38a and the other light-receiving region 38b in the other light-receiving region 38b. The laser beam is guided toward a predetermined sixth light receiving area 46 among the plurality of light receiving areas 42, 44, 46.
本実施の形態においては、 第 1回折面 3 l aは、 第 1受光領域部分 41に向け ては + 1次回折光 L a 1を導き、 かつ第 2受光領域部分 42に向けては _ 1次回 折光 L a 2を導く。 第 2回折面 3 1 bは、 第 3受光領域部分 43に向けては + 1 次回折光 L b 1を導き、 かつ第 4受光領域部分 44に向けては一 1次回折光 L b 2を導く。 第 3回折面 3 1 cは、 第 5受光領域部分 45に向けては + 1次回折光 L c 1を導き、 かつ第 6受光領域部分 46に向けては一 1次回折光 L c 2を導く。 このようにホログラム 3 1の第 1〜第 3回折面 3 1 a〜3 1 cは、 + 1次回折 光 L a l, L b l, L c 1および— 1次回折光 L a 2, L b 2, L c 2を、 所定 の各受光領域部分 4 1〜46に向けて導く。 第 1回折面 3 1 aからの + 1次回折 光 L a 1および一 1次回折光 L a 2はホログラム 3 1の近傍でも充分に分離され、 第 2回折面 3 1 bからの + 1次回折光 L b 1および一 1次回折光 L b 2はホログ ラム 3 1の近傍でも充分に分離され、 第 3回折面 3 1 cからの + 1次回折光 L c 1および一 1次回折光 L c 2はホログラム 3 1の近傍でも充分に分離されるので、 光学素子 32を透過させる必要がない回折光 L a 2, L b l, L c l, L c 2の 光経路を避けて光学素子 3 2を配置することが容易となる。  In the present embodiment, the first diffraction surface 3 la guides the + 1st-order diffracted light La 1 toward the first light-receiving area portion 41, and _ 1st-order light diffraction toward the second light-receiving area portion 42 Lead La2. The second diffraction surface 31b guides the + 1st-order diffracted light Lb1 toward the third light receiving area 43, and guides the first-order diffracted light Lb2 toward the fourth light receiving area 44. The third diffraction surface 31c guides the + first-order diffracted light Lc1 toward the fifth light-receiving area portion 45, and guides the first-order diffracted light Lc2 toward the sixth light-receiving area portion. Thus, the first to third diffraction surfaces 31a to 31c of the hologram 31 are composed of the + first-order diffracted lights Lal, Lbl, Lc1 and the -first-order diffracted lights La2, Lb2, L c 2 is guided toward predetermined light receiving area portions 41 to 46. The + 1st-order diffracted light La1 and the first-order diffracted light La2 from the first diffraction surface 31a are sufficiently separated even in the vicinity of the hologram 31, and the + 1st-order diffracted light from the second diffraction surface 31b. L b 1 and the first-order diffracted light L b 2 are sufficiently separated even in the vicinity of the hologram 31, and the + first-order diffracted light L c 1 and the first-order diffracted light L c 2 from the third diffraction surface 31 c are holograms The optical element 32 should be arranged avoiding the optical path of the diffracted light La2, Lbl, Lcl, Lc2 that does not need to be transmitted through the optical element 32 because it is sufficiently separated even in the vicinity of 31. Becomes easier.
光学素子 32は、 受光部 25とホログラム 3 1との間に介在される。 この光学 素子 3 2は、 ホログラム 3 1の第 1回折面 3 1 aによって回折された回折光の一 部である + 1次回折光 L a 1をさらに回折させ、 + 1次、 0次おょぴ一 1次の回 折光 L a l l〜L a l 3を、 第 1受光領域部分 41の 3つの部分 4 1 1 , 4 1 2, 4 1 3にそれぞれ導く。 またこの光学素子 32は、 ホログラム 3 1の第 2回折面 3 1 bによって回折された回折光の一部である一 1次回折光 L b 2をさらに回折 させ、 + 1次、 0次おょぴー 1次の回折光 L b 2 1〜L b 2 3を、 第 4受光領域 部分 4 4の 3つの部分 4 4 1, 4 4 2 , 4 4 3にそれぞれ導く。 The optical element 32 is interposed between the light receiving unit 25 and the hologram 31. The optical element 32 further diffracts the + 1st-order diffracted light La1, which is a part of the diffracted light diffracted by the first diffraction surface 31a of the hologram 31, to obtain the + 1st and 0th order. The first-order diffraction light L all to L al 3 is guided to three portions 4 1 1, 4 1 2, 4 1 3 of the first light receiving area portion 41, respectively. The optical element 32 further diffracts the first-order diffracted light L b 2, which is a part of the diffracted light diffracted by the second diffraction surface 31 b of the hologram 31, so that the + 1st and 0th orders First-order diffracted light Lb2 1 to Lb23 is converted to the fourth light-receiving area. It leads to three parts 4 4 1, 4 4 2 and 4 4 3 of part 4 4 respectively.
図 3は、 ホログラム 3 1からの回折光 L a 1, L a 2 , L b l , L b 2 , L c FIG. 3 shows diffracted light L a 1, L a 2, L b l, L b 2, and L c from the hologram 31.
1, L c 2の、 光学素子 3 2を含む仮想一平面上の透過位置を示す図である。 光 学素子 3 2は、 第 1受光領域部分 4 1に向けて導かれる回折光 L a 1の光経路上 と、 第 4受光領域部分 4 4に向けて導かれる回折光 L b 2の光経路上とに配置さ れる。 FIG. 3 is a diagram showing transmission positions of 1, Lc 2 on a virtual plane including an optical element 32. The optical element 32 is arranged on the optical path of the diffracted light L a 1 guided toward the first light receiving area portion 41 and the optical path of the diffracted light L b 2 guided toward the fourth light receiving area portion 44. It is placed on top.
第 3受光領域部分 4 3に向けて導かれる回折光 L b 1および第 5受光領域部分 4 5に向けて導かれる回折光 L c 1は、 光学素子 3 2を含む仮想一平面上では一 部が重なり合つている。 また第 2受光領域部分 4 2に向けて導かれる回折光 L a 2および第 6受光領域部分 4 6に向けて導かれる回折光 L c 2は、 光学素子 3 2 を含む仮想一平面上では一部が重なり合っている。  The diffracted light Lb1 guided toward the third light receiving area portion 43 and the diffracted light Lc1 guided toward the fifth light receiving area portion 45 are partially formed on a virtual plane including the optical element 32. Are overlapping. Further, the diffracted light L a 2 guided toward the second light receiving area portion 42 and the diffracted light L c 2 guided toward the sixth light receiving area portion 46 are one on a virtual plane including the optical element 32. The parts overlap.
これに対して、 第 1受光領域部分 4 1に向けて導かれる回折光 L a 1は、 光学 素子 3 2を含む仮想一平面上では、 第 1受光領域部分 4 1を除く残余の各受光領 域部分 4 2〜4 6に向けて導かれる回折光 L a 2 , L b l , L b 2, L c 1 , L c 2と重なり合わず、 それらから充分に分離されている。 また第 4受光領域部分 4 4に向けて導かれる回折光 L b 2は、 光学素子 3 2を含む仮想一平面上では、 第 4受光領域部分 4 4を除く残余の各受光領域部分 4 1〜4 3, 4 5, 4 6に向 けて導かれる回折光 L a 1 , L a 2 , L b l , L c l, L c 2と重なり合わず、 それらから充分に分離されている。  On the other hand, the diffracted light L a 1 guided toward the first light receiving area portion 41 on the virtual one plane including the optical element 32 includes the remaining light receiving areas excluding the first light receiving area portion 41. The diffracted lights L a2, L bl, L b2, L c 1, L c 2 guided toward the region portions 42 to 46 do not overlap and are sufficiently separated therefrom. Further, the diffracted light L b 2 guided toward the fourth light receiving area portion 4 4 on the virtual one plane including the optical element 32 includes the remaining light receiving area portions 4 1 to 4 excluding the fourth light receiving area portion 4 4. Diffracted light L a 1, L a 2, L bl, L cl, and L c 2 guided toward 43, 45, and 46 do not overlap and are sufficiently separated therefrom.
本実施の形態では、 光学素子 3 2は、 ホログラム 3 1の第 1回折面 3 1 aによ つて回折された回折光の一部 L a 1を透過させて、 一方の受光領域 3 8 a内の第 1受光領域部分 4 1に導き、 かつ第 2回折面 3 1 bによって回折された回折光の 一部 L b 2を透過させて、 他方の受光領域 3 8 b内の第 4受光領域部分 4 4に導 くように、 受光部 2 5とホログラム 3 1との間に設けられる。  In the present embodiment, the optical element 32 transmits a part L a1 of the diffracted light diffracted by the first diffraction surface 31 a of the hologram 31 so as to allow one of the light receiving regions 38 a to pass therethrough. Of the diffracted light diffracted by the second diffractive surface 31b and transmitted through a part Lb2 of the other light-receiving area 38b. It is provided between the light receiving part 25 and the hologram 31 so as to lead to 44.
このように受光部 2 5の一方の受光領域 3 8 aに向かう第 1回折面 3 1 aによ る回折光の一部 L a 1と、 受光部 2 5の他方の受光領域 3 8 bに向かう第 2回折 面 3 1 bによる回折光の一部 L b 2とが透過する位置に前記光学素子 3 2が配置 されるので、 前述のように第 1〜第 3回折面 3 1 a〜3 1 cによって回折された 各回折光 L a 1 , L a 2 , L b l, L b 2 , L c 1 , L c 2を、 前記光学素子 3 2を透過させる必要がある回折光 L a 1, L b 2と、 前記光学素子 32を透過さ せる必要がない回折光 L a 2, Lb l , L c l, L c 2とに第 2軸線 L 2に沿う 方向 (第 2方向 Y) に関して前後に振り分けられるようにホログラム 31の第 1 〜第 3回折面 31 a〜3 1 cの特性を選択することによって、 光学素子 32を透 過させる必要がない回折光 L a 2, L b l, L c l, L c 2の光経路を避けて光 学素子 32を配置することが可能となる。 したがって第 1受光領域部分 41およ ぴ第 4受光領域部分 44を除く残余の各受光領域部分 42, 43, 45, 46に 導かれる回折光 L a 2, L b l, L c l, L c 2までもが光学素子 32を透過し てしまい、 誤検出が生じてしまうという不具合を容易に防止することができる。 図 4は、 光学素子 32の一部を概略的に示す平面図である。 図 5は、 第 1受光 領域部分 41に向けて導かれる回折光 L a 1の、 光学素子 32上の透過位置を示 す図である。 光学素子 32は、 透過率が第 1方向 Xに変化する。 本実施の形態で は、 光学素子 32は回折格子であり、 したがって回折効率が第 1方向 Xに変化す る。 光学素子 32には、 第 1方向 Xに沿って、 複数の溝 5 1が形成される。 光学 素子 32の格子間ピッチ Pは、 第 1方向 Xの位置に拘わらず一定である。 In this way, a part L a 1 of the diffracted light by the first diffraction surface 31 a toward the one light receiving area 38 a of the light receiving section 25 and the other light receiving area 38 b of the light receiving section 25 Since the optical element 32 is disposed at a position where a part of the diffracted light Lb2 by the second diffractive surface 31b that is directed therethrough is transmitted, the first to third diffractive surfaces 31a-3 Diffracted by 1 c Each diffracted light L a 1, L a 2, L bl, L b 2, L c 1, L c 2, the diffracted light L a 1, L b 2 which needs to be transmitted through the optical element 32, The hologram 31 can be distributed back and forth in the direction along the second axis L2 (second direction Y) with the diffracted lights La2, Lbl, Lcl, and Lc2 that do not need to be transmitted through the optical element 32. By selecting the characteristics of the first to third diffraction surfaces 31a to 31c, the optical paths of the diffracted lights La2, Lbl, Lcl, and Lc2 that do not need to be transmitted through the optical element 32 are selected. It is possible to dispose the optical element 32 while avoiding the problem. Therefore, up to the diffracted light L a 2, L bl, L cl, and L c 2 guided to the remaining light receiving areas 42, 43, 45, and 46 excluding the first light receiving area 41 and the fourth light receiving area 44. It is possible to easily prevent a problem that the light passes through the optical element 32 and erroneous detection occurs. FIG. 4 is a plan view schematically showing a part of the optical element 32. FIG. FIG. 5 is a diagram showing a transmission position on the optical element 32 of the diffracted light L a1 guided toward the first light receiving area portion 41. In the optical element 32, the transmittance changes in the first direction X. In the present embodiment, the optical element 32 is a diffraction grating, so that the diffraction efficiency changes in the first direction X. A plurality of grooves 51 are formed in the optical element 32 along the first direction X. The pitch P between the gratings of the optical element 32 is constant regardless of the position in the first direction X.
光学素子 32のデューティ Dは、 第 1方向 Xに連続的に変化する。 前記デュー ディ Dは、 グループ幅を WG、 ランド幅を WLとすると、 次式、  The duty D of the optical element 32 changes continuously in the first direction X. Assuming that the group width is WG and the land width is WL,
D=WL/ (WG+WL) … (1) で表される。  D = WL / (WG + WL)… expressed by (1).
光学素子 32のデューティ Dは、 第 1方向 Xの一方 X 1に進むにつれて徐々に 増加する。 デューティ Dの初期値を 0. 5以上に設定した場合、 デューティ Dが 増加するにつれて、 光学素子 32によって回折された + 1次回折光および一 1次 回折光の回折効率は低くなり、 光学素子 32によって回折された 0次回折光の回 折効率は高くなる。  The duty D of the optical element 32 gradually increases as it goes to one X1 of the first direction X. When the initial value of the duty D is set to 0.5 or more, as the duty D increases, the diffraction efficiencies of the + 1st-order and 1st-order diffracted lights diffracted by the optical element 32 decrease, and the The diffraction efficiency of the diffracted 0th-order diffracted light increases.
光学素子 32の第 1方向 Xの他方 X 2の端部のデューティ D 1は、 たとえば 0. 6に選ばれ、 光学素子 32の第 1方向 Xの一方 X 1の端部のデューティ D 2は、 たとえば 0. 9に選ばれる。 光学素子 32の第 1方向 Xの両端部間の中央部のデ ユーティ D 3は、 たとえば 0 . 7 5に選ばれる。 前記光学素子 3 2の第 1方向 X の両端部間の中央部と、 ホログラム 3 1の中心とは、 第 1方向 Xに同一の位置で ある (前述の図 3参照) 。 The duty D1 at the end of the other side X2 in the first direction X of the optical element 32 is, for example, 0.6, and the duty D2 at one end X1 of the optical element 32 in the first direction X is For example, 0.9 is selected. The data at the center between the two ends of the optical element 32 in the first direction X Utility D3 is selected to be 0.75, for example. The center between the two ends of the optical element 32 in the first direction X and the center of the hologram 31 are at the same position in the first direction X (see FIG. 3 described above).
第 1受光領域部分 4 1に向けて導かれる回折光 L a 1の、 光学素子 3 2上の透 過位置が、 所定位置 5 2から図 5の仮想線 5 3で示される位置へ移動した場合、 すなわち第 1方向 Xの一方 X 1へ移動した場合、 光学素子 3 2によって回折され た + 1次回折光 L a 1 1および一 1次回折光 L a 1 3の光量が低下し、 0次回折 光し a 1 2の光量が増加する。 第 1受光領域部分 4 1に向けて導かれる回折光 L a 1の、 光学素子 3 2上の透過位置が、 所定位置 5 2から図 5の仮想線 5 4で示 される位置へ移動した場合、 すなわち第 1方向 Xの他方 X 2へ移動した場合、 光 学素子 3 2によって回折された + 1次回折光 L a 1 1および一 1次回折光 L a 1 3の光量が増加し、 0次回折光 L a 1 2の光量が低下する。  When the transmission position of the diffracted light L a 1 guided toward the first light receiving area portion 41 on the optical element 32 moves from a predetermined position 52 to a position indicated by a virtual line 53 in FIG. That is, when the light moves to one X1 in the first direction X, the light quantity of the + 1st-order diffracted light La 11 and the 1st-order diffracted light La 13 diffracted by the optical element 32 decreases, and the 0th-order diffracted light Then the light quantity of a 1 2 increases. When the transmission position of the diffracted light L a 1 guided toward the first light receiving area portion 41 on the optical element 32 moves from a predetermined position 52 to a position indicated by a virtual line 54 in FIG. In other words, when the light moves to the other X 2 in the first direction X, the light quantity of the + 1st-order diffracted light La 11 and the 1st-order diffracted light La 13 diffracted by the optical element 32 increases, and the 0th-order diffracted light The light amount of La 12 decreases.
第 4受光領域部分 4 4に向けて導かれる回折光 L b 2の、 光学素子 3 2上の透 過位置が、 第 1方向 Xの一方 X 1へ移動した場合、 光学素子 3 2によって回折さ れた + 1次回折光 L b 2 1および一 1次回折光 L b 2 3の光量が低下し、 0次回 折光 L b 2 2の光量が増加する。 第 4受光領域部分 4 4に向けて導かれる回折光 L b 2の、 光学素子 3 2上の透過位置が、 第 1方向 Xの他方 X 2へ移動した場合、 光学素子 3 2によって回折された + 1次回折光 L b 2 1および一 1次回折光 L b 2 3の光量が増加し、 0次回折光 L b 2 2の光量が低下する。  When the transmission position of the diffracted light L b 2 guided toward the fourth light receiving area portion 4 4 on the optical element 32 moves to one X 1 in the first direction X, the light is diffracted by the optical element 32. The light quantity of the + first-order diffracted light Lb21 and the first-order diffracted light Lb23 decreases, and the light quantity of the 0th-order diffracted light Lb22 increases. When the transmission position of the diffracted light L b 2 guided toward the fourth light receiving area portion 4 4 on the optical element 32 moves to the other X 2 in the first direction X, the light is diffracted by the optical element 32. + The light quantity of the first-order diffracted light Lb21 and the primary diffracted light Lb23 increases, and the light quantity of the zero-order diffracted light Lb22 decreases.
本発明の実施の他の形態の光ピックアツプ装置 5 5は、 図 1に示されるように、 前述の実施の形態の光集積化ュニット 2 1と、 この光集積化ュニット 2 1からの レーザ光を光ディスク上に集光させる対物レンズ 5 6を含む対物レンズ手段とを 含む。 本実施の形態においては、 第 1方向 Xは、 光ディスク 2 0の予め定める半 径方向に対応し、 第 2方向 Yは、 光ディスク 2 0の前記半径方向に垂直なトラッ ク方向に対応する。 本実施の形態の光ピックアップ装置 5 5では、 光集積化ュニ ット 2 1の受光部 2 5の各受光領域部分 4 1 〜 4 6からの出力信号に基づいて、 情報信号 R F、 フォーカス誤差信号 F E Sおよびトラック誤差信号 T E Sが生成 される。 第 1受光領域部分 4 1の 3つの部分 41 1〜4 1 3からの各出力信号を S 1 1 〜S 1 3とし、 第 2受光領域部分 42からの出力信号を S 2とし、 第 3受光領域 部分 43からの出力信号を S 3とし、 第 4受光領域部分 44の 3つの部分 44 1 〜443からの各出力信号を S 4 1〜S 43とし、 第 5受光領域部分 45の 2つ の部分 45 1, 45 2からの各出力信号を S 5 1, S 5 2とし、 第 6受光領域部 分 46からの出力信号を S 6とする。 このとき、 情報信号 RF、 フォーカス誤差 信号 FE Sおよびトラック誤差信号 TE Sは、 以下の式 2〜式 4、 As shown in FIG. 1, an optical pickup unit 55 according to another embodiment of the present invention includes an optical integrated unit 21 according to the above-described embodiment and a laser beam from the optical integrated unit 21. Objective lens means including an objective lens 56 for focusing light on an optical disk. In the present embodiment, the first direction X corresponds to a predetermined radial direction of the optical disk 20, and the second direction Y corresponds to a track direction perpendicular to the radial direction of the optical disk 20. In the optical pickup device 55 of the present embodiment, based on the output signals from the respective light receiving area portions 41 to 46 of the light receiving section 25 of the optical integrated unit 21, the information signal RF and the focus error The signal FES and the track error signal TES are generated. The output signals from the three portions 41 1 to 4 13 of the first light receiving region 4 1 are S 11 to S 13, the output signal from the second light receiving region 42 is S 2, and the third light receiving The output signal from the area 43 is S 3, the output signals from the three sections 44 1 to 443 of the fourth light receiving area 44 are S 41 to S 43, and the two signals of the fifth light receiving area 45 The output signals from the parts 451 and 452 are S51 and S52, and the output signal from the sixth light receiving area 46 is S6. At this time, the information signal RF, the focus error signal FES, and the track error signal TES are expressed by the following equations (2) to (4).
RF = S 2 + S 3 + S 6 … (2) RF = S 2 + S 3 + S 6… (2)
FE S = S 52-S 5 1 '·· (3) T E S = (S 3 - S 2) — a 1 X { (S 1 2 + S 42) FE S = S 52-S 5 1 '(3) T E S = (S 3-S 2) — a 1 X {(S 1 2 + S 42)
— β 1 X (S 1 1 + S 1 3 + S 41 + S 43) } ··· (4) に基づいてそれぞれ生成される。  — Β 1 X (S 1 1 + S 1 3 + S 41 + S 43)} ··· (4)
式 4において、 右辺の第 1項はプッシュプル信号 (Ρ Ρ信号) であり、 右辺の 第 2項の係数 a 1以降はキャンセル信号である。 係数 a 1は、 対物レンズ 5 6の シフト量および光ディスク 20の傾き量をプッシュプル信号におけるオフセット 量に換算するための係数である。 キャンセル信号は、 対物レンズ 56のシフトぉ ょぴ光ディスク 20の傾きなどによってプッシュプル信号に生じるオフセットを 捕正するための信号である。  In Equation 4, the first term on the right-hand side is a push-pull signal (Ρ Ρ signal), and the coefficients a1 and following the second term on the right-hand side are cancel signals. The coefficient a1 is a coefficient for converting the shift amount of the objective lens 56 and the tilt amount of the optical disc 20 into an offset amount in the push-pull signal. The cancel signal is a signal for correcting an offset generated in the push-pull signal due to the shift of the objective lens 56 and the inclination of the optical disc 20 or the like.
また式 4において、 係数 01は、 光学素子 32の溝 5 1の深さによって決まる 係数である。 この係数 ]3 1は、 光学素子 3 2によって回折された + 1次回折光 L a l l , L b 2 1および一 1次回折光 L a 1 3, L b 2 3と、 光学素子 32によ つて回折された 0次回折光 L a 1 2, L b 22との回折効率の差を調整する係数 である。 この係数 1は、 ホログラム 3 1の第 1回折面 3 1 aによって回折され た + 1次回折光 L a 1およびホログラム 3 1の第 2回折面 3 1 bによって回折さ れた— 1次回折光 L b 2が光学素子 3 2上の所定位置をそれぞれ透過するときに、 次式、  In Equation 4, the coefficient 01 is a coefficient determined by the depth of the groove 51 of the optical element 32. The coefficient] 31 is diffracted by the optical element 32, and the + first-order diffracted lights Lall, Lb21 and the first-order diffracted lights La13, Lb23, diffracted by the optical element 32. It is a coefficient for adjusting the difference in diffraction efficiency between the 0th-order diffracted light L a12 and L b22. The coefficient 1 is obtained by diffracting the first-order diffracted light L a 1 diffracted by the first diffraction surface 31 a of the hologram 31 1 and diffracted by the second diffraction surface 31 b of the hologram 31 — the first-order diffracted light L b When 2 passes through predetermined positions on the optical element 3 2 respectively,
(S 1 2 + S 4 2)  (S 1 2 + S 4 2)
一 β 1 X (S 1 1 + S 1 3 + S 4 1 + S 43) = 0 … (5) を満たすように決定される。 前記光学素子 3 2上の所定位置は、 ホログラム 3 1 の第 1回折面 3 1 aによって回折された + 1次回折光 L a 1およびホログラム 3 1の第 2回折面 3 1 bによって回折された一 1次回折光 L b 2の、 対物レンズ 5 6のシフトおよび光ディスク 2 0の傾きがないとき、 すなわちオフセットがない ときの、 光学素子 3 2上の透過位置である。 One β 1 X (S 1 1 + S 13 + S 4 1 + S 43) = 0… (5) Is determined to satisfy. Predetermined positions on the optical element 32 are the + first-order diffracted light La1 diffracted by the first diffraction surface 31a of the hologram 31 and the one diffracted by the second diffraction surface 31b of the hologram 31. This is the transmission position of the first-order diffracted light Lb2 on the optical element 32 when there is no shift of the objective lens 56 and no tilt of the optical disc 20, that is, when there is no offset.
本実施の形態では、 係数 α 1以降の演算においては、 光学素子 3 2によって回 折された + 1次回折光 L a 1 1 , L b 2 1および一 1次回折光 L a 1 3, L b 2 3と、 光学素子 3 2によって回折された 0次回折光 L a 1 2 , L b 2 2との差動 を演算している。 光学素子 3 2によって回折された + 1次回折光 L a l l , L b 2 1および一 1次回折光 L a 1 3 , L b 2 3と、 光学素子 3 2によって回折され た 0次回折光 L a 1 2 , L b 2 2とは、 前述のように光量の変化の方向が反対で ある。 したがって対物レンズ 5 6のシフトおよび光ディスク 2 0の傾きに対する 感度は高くなる。  In the present embodiment, in the calculation after the coefficient α 1, the + first-order diffracted lights La 11 1 and Lb 21 and the first-order diffracted lights La 13 and Lb 2 diffracted by the optical element 32 are used. 3 and the 0-order diffracted light L a1 2, L b 2 2 diffracted by the optical element 32 are calculated. + 1st-order diffracted light L all, Lb 21 and 1st-order diffracted light L a1 3, Lb 23 diffracted by optical element 3 2, and 0-order diffracted light L a 1 2 diffracted by optical element 3 2 , Lb22, as described above, the direction of change in the amount of light is opposite. Therefore, the sensitivity to the shift of the objective lens 56 and the tilt of the optical disk 20 increases.
以上のようにして本実施の形態の光ピックアップ装置 5 5では、 いわゆる 1ビ ーム P P法を用いて、 情報信号 R F、 フォーカス誤差信号 F E Sおよびトラック 誤差信号 T E Sを生成する。 1 ビーム P P法を用いる場合、 記録光量を大きくし て、 記録スピードを大きくすることができる。 この光ピックアップ装置 5 5は、 光ディスク 2 0におけるスポットおよびピット間の光軸のずれ、 すなわちトラッ キング方向のずれだけを抽出して、 そのずれを補正することができる。 したがつ てこの光ピックアップ装置 5 5では、 対物レンズ 5 6のシフトおよび光ディスク 2 0の傾きに拘わらず、 安定したトラッキングサーボ性能を達成することができ る。  As described above, the optical pickup device 55 of the present embodiment generates the information signal RF, the focus error signal FES, and the track error signal TESS using the so-called one-beam PP method. When the one-beam PP method is used, the recording light amount can be increased and the recording speed can be increased. The optical pickup device 55 can extract only the shift of the optical axis between spots and pits on the optical disc 20, that is, the shift in the tracking direction, and correct the shift. Therefore, in the optical pickup device 55, stable tracking servo performance can be achieved regardless of the shift of the objective lens 56 and the tilt of the optical disk 20.
本実施の形態では、 対物レンズ手段が光集積化ュニット 2 1からのレーザ光を 光ディスク 2 0上に集光させるとともに、 光集積化ュ-ット 2 1の受光部 2 5の 各受光領域部分 4 1〜4 6が光ディスク 2 0によって反射されたレーザ光を受光 する。 前記光集積化ユニット 2 1は、 誤検出が生じるという不具合が防止されて いるので、 光ディスク 2 0に正確に情報を記録し、 または光ディスク 2 0から正 確に情報を読み取ることができ、 信頼性が向上される。 図 6は、 本発明の実施のさらに他の形態の光集積化ュニット 6 1の概略的な構 成を示す図である。 図 7は、 ホログラム 3 1、 光学素子 6 2および第 1〜第 6受 光領域部分 4 1 ~46の位置関係を示す図である。 図 8は、 ホログラム 3 1から の回折光 L a l, L a 2 , L b 1 , L b 2 , L c l, L c 2の、 光学素子 6 2を 含む仮想一平面上の透過位置を示す図である。 本実施の形態の光集積化ュ-ット 6 1は、 前述の実施の形態の光集積化ュニット 2 1と類似するので、 同様の部分 は同一の参照符を付して説明を省略する。 In the present embodiment, the objective lens means focuses the laser light from the optical integrated unit 21 on the optical disc 20, and the light receiving area of the light receiving unit 25 of the optical integrated unit 21. 41 to 46 receive the laser beam reflected by the optical disk 20. Since the optical integrated unit 21 is prevented from being erroneously detected, information can be accurately recorded on the optical disk 20 or information can be accurately read from the optical disk 20. Is improved. FIG. 6 is a diagram showing a schematic configuration of an optical integrated unit 61 according to still another embodiment of the present invention. FIG. 7 is a diagram showing a positional relationship among the hologram 31, the optical element 62, and the first to sixth light receiving area portions 41 to 46. FIG. 8 is a diagram showing transmission positions of the diffracted lights L al, La 2, L b 1, L b 2, L cl, and L c 2 from the hologram 31 1 on a virtual plane including the optical element 62. It is. Since the optical integrated unit 61 of the present embodiment is similar to the optical integrated unit 21 of the above-described embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.
本実施の形態においては、 光学素子 6 2は、 第 1受光領域部分 4 1に向けて導 かれる回折光 L a 1の光経路上と、 第 4受光領域部分 44に向けて導かれる回折 光 L b 2の光経路上とに、 個別に設けられる。 光学素子 6 2は、 第 1受光領域部 分 4 1に向けて導かれる回折光 L a 1の光経路上に設けられる第 1部分 6 2 aと、 第 4受光領域部分 44に向けて導かれる回折光 L b 2の光経路上に設けられる第 2部分 6 2 bとを有する。  In the present embodiment, the optical element 62 is provided on the optical path of the diffracted light L a 1 guided toward the first light receiving region portion 41 and the diffracted light L guided toward the fourth light receiving region portion 44. b2 on the optical path. The optical element 62 is guided toward the first light receiving region portion 44 and the first portion 62 a provided on the optical path of the diffracted light L a 1 guided toward the first light receiving region portion 41. A second portion 62b provided on the optical path of the diffracted light Lb2.
第 1部分 6 2 aの、 第 1方向 Xの他方 X 2の端部のデューティ D 1 aは、 たと えば 0. 6に選ばれ、 第 1方向 Xの一方 X 1の端部のデューティ D 2 aは、 たと えば 0. 9に選ばれる。 また第 2部分 6 2 bの、 第 1方向 Xの他方 X 2の端部の デューティ D l bは、 たとえば 0. 6に選ばれ、 第 1方向 Xの一方 X 1の端部の デューティ D 2 bは、 たとえば 0. 9に選ばれる。  For example, the duty D 1a at the end of the other part X 2 in the first direction X of the first part 62 a is selected to be 0.6, and the duty D 2 at the end of one end X 1 of the first direction X is selected. a is chosen to be, for example, 0.9. In addition, the duty D lb of the end of the other portion X 2 in the first direction X of the second portion 6 2 b is, for example, 0.6, and the duty D 2 b of the end of one end X 1 in the first direction X is selected. Is chosen, for example, as 0.9.
本実施の形態では、 第 1受光領域部分 4 1に向けて導かれる回折光 L a 1の光 経路上と、 第 4受光領域部分 44に向けて導かれる回折光 L b 2の光経路上とに、 個別に光学素子 6 2が設けられるので、 光学素子 6 2は不要な部分が削減され、 第 1受光領域部分 41および第 4受光領域部分 44を除く残余の各受光領域部分 42, 4 3, 4 5, 46に導かれる回折光 L a 2, L b l , L c l, L c 2まで もが光学素子 6 2を透過してしまうということを可及的に防止することができる。 また前述のように第 1受光領域部分 4 1および第 4受光領域部分 44に向けて 導かれる回折光 L a 1, L b 2の、 光学素子 6 2上の透過位置に応じた光量の変 化を大きくすることができ、 たとえば光ピックァップ装置に本実施の形態の光集 積化ュニット 6 1が用いられた場合、 対物レンズのシフトおよび光ディスクの傾 きによって生じるオフセットを補正するためのキャンセル信号の感度を向上する ことができる。 In the present embodiment, on the optical path of the diffracted light L a1 guided toward the first light receiving area portion 41, and on the optical path of the diffracted light L b 2 guided toward the fourth light receiving area portion 44. In addition, since the optical elements 62 are individually provided, unnecessary portions of the optical element 62 are reduced, and the remaining light receiving areas 42, 4 3 excluding the first light receiving area 41 and the fourth light receiving area 44 are removed. , 45, and 46 can be prevented as much as possible from transmitting even the diffracted lights L a2, L bl, L cl, and L c 2 through the optical element 62. In addition, as described above, the change in the amount of light according to the transmission position on the optical element 62 of the diffracted lights La 1 and Lb 2 guided toward the first light receiving area portion 41 and the fourth light receiving area portion 44. For example, when the optical integration unit 61 of the present embodiment is used in an optical pickup device, the shift of the objective lens and the tilt of the optical disk are performed. The sensitivity of the cancel signal for correcting the offset caused by the shift can be improved.
本実施の形態の光集積化ュニット 6 1と、 光集積化ュエツト 6 1からのレーザ 光を光ディスク 2 0上に集光させる対物レンズ 6 6を含む対物レンズ手段とを組 み合せることによって、 本発明の実施のさらに他の形態の光ピックアツプ装置 6 5が実現される。 この光ピックアップ装置 6 5は、 前述の実施の形態の光ピック アップ装置 5 5と同様の効果を達成することができる。  By combining the optical integrated unit 61 of the present embodiment with objective lens means including an objective lens 66 for condensing the laser light from the optical integrated unit 61 on the optical disk 20, An optical pick-up device 65 according to still another embodiment of the present invention is realized. This optical pickup device 65 can achieve the same effect as the optical pickup device 55 of the above-described embodiment.
前述の実施の各形態の光ピックアップ装置 5 5, 6 5では、 トラック誤差信号 TE Sは式 4に基づいて生成されるが、 本発明の実施のさらに他の形態の光ピッ クアップ装置では、 トラック誤差信号 TE Sは、 次式、  In the optical pickup devices 55 and 65 according to the above-described embodiments, the track error signal TES is generated based on Expression 4. However, in the optical pickup device according to still another embodiment of the present invention, The error signal TE S is given by
T E S = (S 3 - S 2) - α 2 X { ( S 2 + S 3)  T E S = (S 3-S 2)-α 2 X {(S 2 + S 3)
- i3 2 X (S 1 1 + S 1 3 + S 4 1 + S 4 3) } … (6) に基づいて生成される。  -i3 2 X (S1 1 + S1 3 + S4 1 + S4 3)}… Generated based on (6).
式 6において、 右辺の第 1項はプッシュプル信号 (P P信号) であり、 右辺の 第 2項の係数 α 2以降はキャンセル信号である。 係数 ο; 2は、 対物レンズのシフ ト量および光ディスクの傾き量をプッシュプル信号におけるオフセット量に換算 するための係数である。 係数 /3 2は、 ホログラム 3 1の第 1回折面 3 1 aによつ て回折された + 1次回折光 L a 1およびホログラム 3 1の第 2回折面 3 1 bによ つて回折された一 1次回折光 L b 2が光学素子 3 2, 6 2上の所定位置をそれぞ れ透過するときに、 次式、  In Equation 6, the first term on the right-hand side is a push-pull signal (PP signal), and the coefficients α 2 and subsequent to the second term on the right-hand side are cancel signals. The coefficient ο; 2 is a coefficient for converting the shift amount of the objective lens and the tilt amount of the optical disk into an offset amount in the push-pull signal. The coefficient / 32 is obtained by subtracting the + 1st-order diffracted light La1 diffracted by the first diffraction surface 31a of the hologram 311 and the one diffracted by the second diffraction surface 31b of the hologram 31. When the first-order diffracted light L b 2 passes through predetermined positions on the optical elements 32 and 62, respectively,
(S 2 + S 3)  (S 2 + S 3)
— β 2 X (S 1 1 + S 1 3 + S 4 1 + S 4 3) = 0 … (7) を満たすように決定される。  — Β 2 X (S 1 1 + S 13 + S 4 1 + S 4 3) = 0… (7) is determined.
式 6に基づいてトラック誤差信号 T E Sを生成する本実施の形態の光ピックァ ップ装置では、 情報信号 R F、 フォーカス誤差信号 F E Sおよびトラック誤差信 号 TE Sを生成するにあたって、 前述の各出力信号 S 1 1〜S 1 3, S 2, S 3 , S 4 1〜S 4 3, S 5 1 , S 5 2, S 6のうち、 出力信号 S I 2, S 4 2が不要 である。 したがって光集積化ュニット内の演算回路規模を小さくすることができ、 かつピン数も少なくすることができる。 これによつて光集積化ュニット 2 1をさ らに小形化することができ、 したがって光ピックアップ装置をさらに小形化する ことができる。 In the optical pickup device of the present embodiment that generates the track error signal TES based on Equation 6, when generating the information signal RF, the focus error signal FES, and the track error signal TES, each of the output signals S Output signals SI2 and S42 are not required among 11 to S13, S2, S3, S41 to S43, S51, S52, and S6. Therefore, the scale of the arithmetic circuit in the optical integrated unit can be reduced, In addition, the number of pins can be reduced. As a result, the optical integrated unit 21 can be further downsized, and thus the optical pickup device can be further downsized.
前述の実施の各形態の光ピックアップ装置 5 5, 6 5では、 トラック誤差信号 T E Sは式 4または式 6に基づいて生成されるが、 本発明の実施のさらに他の形 態の光ピックアップ装置では、 トラック誤差信号 T E Sは、 次式、  In the optical pickup devices 55 and 65 according to the above-described embodiments, the track error signal TES is generated based on Expression 4 or Expression 6. However, in the optical pickup devices according to still another embodiment of the present invention, , The track error signal TES is
T E S = (S 3— S 2) - α 3 X { (S 2 + S 3)  T E S = (S 3— S 2)-α 3 X {(S 2 + S 3)
- β 3 Χ (S 1 2 + S 4 2) } … (8) に基づいて生成される。  -β 3 Χ (S 1 2 + S 4 2)} ... Generated based on (8).
式 8において、 右辺の第 1項はプッシュプル信号 (Ρ Ρ信号) であり、 右辺の 第 2項の係数 α 3以降はキャンセル信号である。 係数 α 3は、 対物レンズのシフ ト量および光ディスクの傾き量をプッシュプル信号におけるオフセット量に換算 するための係数である。 係数 3は、 ホログラム 3 1の第 1回折面 3 1 aによつ て回折された + 1次回折光 L a 1およびホログラム 3 1の第 2回折面 3 1 bによ つて回折された— 1次回折光 L b 2が光学素子 3 2, 6 2上の所定位置をそれぞ れ透過するときに、 次式、  In Equation 8, the first term on the right-hand side is a push-pull signal (Ρ Ρ signal), and the coefficient α 3 and the subsequent terms in the second term on the right-hand side are cancel signals. The coefficient α3 is a coefficient for converting the shift amount of the objective lens and the tilt amount of the optical disc into an offset amount in the push-pull signal. The coefficient 3 is diffracted by the first diffraction surface L a 1 diffracted by the first diffraction surface 31 a of the hologram 31 1 and diffracted by the second diffraction surface 31 b of the hologram 31 1 — When the folded light L b 2 passes through predetermined positions on the optical elements 32 and 62, respectively,
(S 2 + S 3) - J3 3 X (S 1 2 + S 4 2) = 0 ··■ (9) を満たすように決定される。  (S 2 + S 3)-J 3 3 X (S 1 2 + S 4 2) = 0 It is determined so as to satisfy (9).
式 8に基づいてトラック誤差信号 T E Sを生成する本実施の形態の光ピックァ ップ装置では、 情報信号 R F、 フォーカス誤差信号 F E Sおよびトラック誤差信 号 TE Sを生成するにあたって、 前述の各出力信号 S 1 1〜S 1 3, S 2, S 3, S 4 1〜S 4 3, S 5 1, S 5 2 , S 6のうち、 出力信号 S 1 1, I S , S 4 1, S 4 3が不要である。 したがって光集積化ユニット 2 1内の演算同路規模を 小さくすることができ、 かつピン数も少なくするごとができる。 これによつて光 集積化ユニットをさらに小形化することができ、 したがって光ピックアップ装置 をさらに小形化することができる。  In the optical pickup device according to the present embodiment that generates the track error signal TES based on Equation 8, when generating the information signal RF, the focus error signal FES, and the track error signal TES, each of the output signals S 11 1 to S 13, S 2, S 3, S 41 1 to S 43, S 51, S 52, and S 6 are output signals S 11, IS, S 41, and S 43 Not required. Therefore, it is possible to reduce the scale of the operation route in the optical integrated unit 21 and to reduce the number of pins. Thereby, the optical integrated unit can be further miniaturized, and thus the optical pickup device can be further miniaturized.
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形態で実施できる。 したがって、 前述の実施形態はあらゆる点で単なる例示に過 ぎず、 本発明の範囲は特許請求の範囲に示すものであって、 明細書本文には何ら 拘束されない。 さらに、 特許請求の範囲に属する変形や変更は全て本発明の範囲 内のものである。 The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above embodiments are merely illustrative in all respects. However, the scope of the present invention is defined by the appended claims, and is not limited by the specification. Further, all modifications and changes belonging to the claims are within the scope of the present invention.
【産業上の利用可能性】  [Industrial applicability]
以上のように本発明によれば、 光学素子は、 受光部の一方の受光領域に向かう 第 1回折面による回折光の一部と、 受光部の他方の受光領域に向かう第 2回折面 による回折光の一部とが透過する位置に配置される。 このように光学素子が配置 される本発明では、 第 1〜第 3回折面によって回折された各回折光を、 前記光学 素子を透過させる必要がある回折光と、 前記光学素子を透過させる必要がない回 折光とに第 2軸線に沿う方向に関して前後に振り分けられるようにホログラムの 第 1〜第 3回折面の特性を適宜選択することによって、 光学素子を透過させる必 要がないたとえば第 3回折面による回折光の光経路を避けて光学素子を配置する ことが可能となる。 したがって光学素子を透過させる必要がない回折光までもが 光学素子を透過してしまい、 誤検出が生じてしまうという不具合を容易に防止す ることができる。  As described above, according to the present invention, the optical element includes: a part of the diffracted light by the first diffraction surface toward one light receiving region of the light receiving unit; and a diffraction by the second diffraction surface toward the other light receiving region of the light receiving unit. It is arranged at a position where a part of light is transmitted. In the present invention in which the optical elements are arranged as described above, it is necessary to transmit each diffracted light diffracted by the first to third diffractive surfaces through the optical element and the diffracted light through the optical element. By appropriately selecting the characteristics of the first to third diffraction planes of the hologram so that they can be separated back and forth in the direction along the second axis with the unrefracted light, there is no need to transmit the optical element, for example, the third diffraction plane It is possible to dispose the optical element while avoiding the optical path of the diffracted light due to. Therefore, it is possible to easily prevent a problem that even the diffracted light that does not need to be transmitted through the optical element is transmitted through the optical element and erroneous detection occurs.
また本発明によれば、 ホログラムの第 1〜第 3回折面は、 + n次回折光および —n次回折光を、 所定の各受光領域部分に向けて導く。 第 1回折面からの + n次 回折光および一 n次回折光はホログラムの近傍でも充分に分離され、 第 2回折面 からの + n次回折光および一 n次回折光はホログラムの近傍でも充分に分離され、 第 3回折面からの + n次回折光および— n次回折光はホ口グラムの近傍でも充分 に分離されるので、 光学素子を透過させる必要がない回折光の光経路を避けて光 学素子を配置することが容易となる。  Further, according to the present invention, the first to third diffraction surfaces of the hologram guide the + nth-order diffracted light and the −nth-order diffracted light toward predetermined light receiving regions. The + n order and 1 n order diffracted lights from the first diffracting surface are sufficiently separated even near the hologram, and the + n order diffracted light and 1 n order diffracted light from the second diffracting surface are also well separated near the hologram. Since the + n-order and -n-order diffracted lights from the third diffraction surface are sufficiently separated even in the vicinity of the hologram, the optical element is avoided by avoiding the optical path of the diffracted light that does not need to pass through the optical element. It becomes easy to arrange.
また本発明によれば、 光学素子が、 ホログラムの第 1回折面によって回折され た前記回折光の一部の光経路上と、 ホログラムの第 2回折面によって回折された 前記回折光の一部の光経路上とに個別に設けられるので、 光学素子は不要な部分 が削減され、 これによつて第 1受光領域部分および第 4受光領域部分を除く残余 の各受光領域部分に導かれる回折光までもが光学素子を透過してしまうという不 具合を可及的に防止することができる。 また本発明によれば、 光分岐素子が発光部からのレーザ光を情報記録媒体に導 き、 また光分岐素子が情報記録媒体によつて反射されたレーザ光をホログラムに 導き、 ホログラムがその導かれたレーザ光を、 受光部の各受光領域部分に導く。 このような本発明の光集積化ュニットがたとえば光ピックアツプ装置に用いられ る場合、 発光部と受光部とを個別に設ける必要がないので、 信号検出系の調整が 不要であり、 組立て性が向上される。 また発光部おょぴ受光部などを含む本発明 の光集積化ュニットは 1つの光学部品として扱うことができ、 したがって光学部 品点数が低減される。 Further, according to the present invention, the optical element is configured to detect a part of the diffracted light diffracted by the first diffraction surface of the hologram and a part of the diffracted light diffracted by the second diffraction surface of the hologram. Since the optical element is provided separately on the optical path, unnecessary portions of the optical element are reduced, and as a result, up to the diffracted light guided to each of the remaining light receiving regions except the first light receiving region and the fourth light receiving region. It is possible to prevent, as much as possible, a problem that the light passes through the optical element. According to the invention, the light branching element guides the laser light from the light emitting portion to the information recording medium, and the light branching element guides the laser light reflected by the information recording medium to the hologram, and the hologram guides the laser light. The emitted laser light is guided to each light receiving area of the light receiving section. When such an optical integrated unit of the present invention is used in, for example, an optical pickup device, it is not necessary to separately provide a light-emitting unit and a light-receiving unit, so that adjustment of a signal detection system is unnecessary, and assemblability is improved. Is done. Further, the optical integrated unit of the present invention including the light emitting unit and the light receiving unit can be treated as one optical component, and therefore the number of optical components is reduced.
また本発明によれば、 対物レンズ手段が光集積化ュニットからのレーザ光を情 報記録媒体上に集光させるとともに、 光集積化ュニットの受光部の各受光領域部 分が情報記録媒体によって反射されたレーザ光を受光する。 前記光集積化ュニッ トは誤検出が生じるという不具合が防止されているので、 情報記録媒体に正確に 情報を記録し、 または情報記録媒体から正確に情報を読み取ることができ、 信頼 性が向上される。  Further, according to the present invention, the objective lens means focuses the laser beam from the optical integrated unit on the information recording medium, and each light receiving area of the light receiving unit of the optical integrated unit is reflected by the information recording medium. The received laser beam is received. Since the optical integrated unit is prevented from being erroneously detected, information can be accurately recorded on the information recording medium, or the information can be accurately read from the information recording medium, thereby improving reliability. You.

Claims

請 求 の 範 囲 The scope of the claims
1 . 予め定める第 1軸線に垂直な受光面を有し、 この受光面を、 前記予め定め る第 1軸線を含む仮想一平面に関して一方の受光領域と他方の受光領域とに分割 し、 一方の受光領域および他方の受光領域には、 前記仮想一平面と受光面とが交 差する第 2軸線に沿って各複数の受光領域部分が設けられる受光部と、  1. It has a light receiving surface perpendicular to a predetermined first axis, and divides this light receiving surface into one light receiving region and the other light receiving region with respect to a virtual plane including the predetermined first axis. A light-receiving section provided with a plurality of light-receiving areas along a second axis at which the virtual plane intersects the light-receiving surface;
前記一方の受光領域内の複数の受光領域部分のうち予め定める第 1受光領域部 分および前記他方の受光領域内の複数の受光領域部分のうち予め定める第 2受光 領域部分に向けてレーザ光を導く第 1回折面と、 前記一方の受光領域内の複数の 受光領域部分のうち予め定める第 3受光領域部分おょぴ前記他方の受光領域内の 複数の受光領域部分のうち予め定める第 4受光領域部分に向けてレーザ光を導く 第 2回折面と、 前記一方の受光領域内の複数の受光領域部分のうち予め定める第 5受光領域部分および前記他方の受光領域内の複数の受光領域部分のうち予め定 める第 6受光領域部分に向けてレーザ光を導く第 3回折面とが、 前記予め定める 第 1軸線に垂直にかつ受光面に臨んで設けられるホログラムと、  The laser beam is directed toward a predetermined first light receiving region of the plurality of light receiving regions in the one light receiving region and a predetermined second light receiving region of the plurality of light receiving regions in the other light receiving region. A first diffractive surface to be guided, a third light receiving region portion among a plurality of light receiving region portions in the one light receiving region, and a fourth light receiving region among a plurality of light receiving region portions in the other light receiving region. A second diffraction surface for guiding the laser light toward the region, a predetermined fifth light receiving region among the plurality of light receiving regions in the one light receiving region, and a plurality of light receiving regions in the other light receiving region; A third diffraction surface that guides the laser beam toward a predetermined sixth light receiving area; a hologram provided perpendicularly to the predetermined first axis and facing the light receiving surface;
前記受光部とホログラムとの間に介在され、 ホログラムの第 1回折面によって 回折された回折光の一部を透過させて、 前記第 1受光領域部分に導き、 かつホロ グラムの第 2回折面によって回折された回折光の一部を透過させて、 前記第 4受 光領域部分に導く光学素子とを含むことを特徴とする光集積化ュニット。  A part of the diffracted light that is interposed between the light receiving unit and the hologram and diffracted by the first diffraction surface of the hologram is transmitted therethrough, guided to the first light receiving region, and is converted by the second diffraction surface of the hologram. An optical element that transmits a part of the diffracted light and guides the diffracted light to the fourth light receiving area.
2 . 前記第 1回折面は、 第 1受光領域部分に向けては + n (ここに、 nは 1以 上の正の整数) 次回折光を導き、 かつ第 2受光領域部分に向けては一 n次回折光 を導き、  2. The first diffractive surface guides + n (where n is a positive integer equal to or greater than 1) order diffracted light toward the first light receiving region, and one-dimensional diffracted light toward the second light receiving region. guide the nth order diffracted light,
前記第 2回折面は、 第 3受光領域部分に向けては + n次回折光を導き、 かつ第 4受光領域部分に向けては一 n次回折光を導き、  The second diffractive surface guides + n order diffracted light toward the third light receiving region, and guides 1 n order diffracted light toward the fourth light receiving region,
前記第 3回折面は、 第 5受光領域部分に向けては + n次回折光を導き、 かつ第 6受光領域部分に向けては一 n次回折光を導くことを特徴とする請求項 1記載の 光集積化ュニット。  2. The light according to claim 1, wherein the third diffractive surface guides + n-order diffracted light toward a fifth light-receiving area, and guides 1 n-order diffracted light toward a sixth light-receiving area. 3. Integrated unit.
3 . 前記光学素子は、 ホログラムの第 1回折面によって回折された前記回折光 の一部の光経路上と、 ホログラムの第 2回折面によつて回折された前記回折光の 一部の光経路上とに、 個別に設けられることを特徴とする請求項 1または 2記載 の光集積化ュ-ット。 3. The optical element includes a part on an optical path of the diffracted light diffracted by the first diffraction surface of the hologram and a part of the diffracted light diffracted by the second diffraction surface of the hologram. 3. The optical integrated unit according to claim 1, wherein the optical integrated unit is provided separately on some optical paths.
4 . レーザ光を発生する発光部と、  4. A light emitting section for generating a laser beam,
発光部からのレーザ光を情報記録媒体に導き、 かつ情報記録媒体によって反射 されたレーザ光を前記ホログラムに導く光分岐素子とをさらに含むことを特徴と する請求項 1〜 3のうちのいずれか 1つに記載の光集積化ュエツト。  4. An optical branching device for guiding a laser beam from a light emitting section to an information recording medium, and for guiding a laser beam reflected by the information recording medium to the hologram. An optical integrated unit according to one of the above.
5 . 前記請求項 4記載の光集積化ユニットと、  5. The optical integrated unit according to claim 4,
光集積化ュエツトからのレーザ光を情報記録媒体上に集光させる対物レンズ手 段とを含むことを特徴とする光ピックアツプ装置。  An optical pickup device, comprising: an objective lens means for converging laser light from the optical integrated unit onto an information recording medium.
PCT/JP2004/000555 2003-01-29 2004-01-22 Optical integrated unit and optical pickup device provided with it WO2004068481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-020614 2003-01-29
JP2003020614A JP4160411B2 (en) 2003-01-29 2003-01-29 Optical integrated unit and optical pickup device having the same

Publications (1)

Publication Number Publication Date
WO2004068481A1 true WO2004068481A1 (en) 2004-08-12

Family

ID=32820630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000555 WO2004068481A1 (en) 2003-01-29 2004-01-22 Optical integrated unit and optical pickup device provided with it

Country Status (2)

Country Link
JP (1) JP4160411B2 (en)
WO (1) WO2004068481A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297875A (en) * 1995-04-25 1996-11-12 Sony Corp Optical pickup
JP2001250291A (en) * 2000-03-08 2001-09-14 Matsushita Electric Ind Co Ltd Optical head
JP2001273666A (en) * 2000-03-27 2001-10-05 Sharp Corp Optical integrated unit, optical pickup device and method for adjusting optical integrated unit
JP2003248960A (en) * 2002-02-25 2003-09-05 Sony Corp Optical pickup and disk drive system
JP2004071126A (en) * 2002-08-09 2004-03-04 Sharp Corp Optical pickup device
JP2004110924A (en) * 2002-09-18 2004-04-08 Sharp Corp Optical integration unit and optical pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297875A (en) * 1995-04-25 1996-11-12 Sony Corp Optical pickup
JP2001250291A (en) * 2000-03-08 2001-09-14 Matsushita Electric Ind Co Ltd Optical head
JP2001273666A (en) * 2000-03-27 2001-10-05 Sharp Corp Optical integrated unit, optical pickup device and method for adjusting optical integrated unit
JP2003248960A (en) * 2002-02-25 2003-09-05 Sony Corp Optical pickup and disk drive system
JP2004071126A (en) * 2002-08-09 2004-03-04 Sharp Corp Optical pickup device
JP2004110924A (en) * 2002-09-18 2004-04-08 Sharp Corp Optical integration unit and optical pickup device

Also Published As

Publication number Publication date
JP2004265458A (en) 2004-09-24
JP4160411B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2865223B2 (en) Polarizing plate for optical pickup and optical pickup device
TW501116B (en) Optical device, optical semiconductor device, and optical information processor comprising them
US6104689A (en) Sensor system for optical disc drive
JP2005108331A (en) Optical pickup and hologram laser
US20060237624A1 (en) Optical pickup apparatus
KR20040066802A (en) Optical pickup device and optical disk device and optical device and composite optical element
JP4646930B2 (en) Diffraction element position adjustment method
KR100915490B1 (en) Optical pickup device, optical disc device and laser emitter
JPH1011785A (en) Optical head
WO2004068481A1 (en) Optical integrated unit and optical pickup device provided with it
JP4177296B2 (en) Optical pickup and optical disk apparatus
JP3455399B2 (en) Optical disk sensor system
JP4396413B2 (en) Optical pickup device, optical disc device
WO2003081582A1 (en) Optical pickup
JP4071141B2 (en) Semiconductor laser device and optical pickup device
JP2638778B2 (en) Optical head device
JP4254151B2 (en) Optical pickup device and optical disk device
JP2007287278A (en) Optical pickup device
JP2010135017A (en) Optical pickup device and information recording and reproducing device
JP3389416B2 (en) Optical pickup device
JPH0973017A (en) Transmission type hologram element and optical pickup device
JP4011529B2 (en) Optical pickup device
US20060018215A1 (en) Optical pickup device
JP4053455B2 (en) Optical integrated unit and optical pickup device including the same
JPH07230629A (en) Optical head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase