JPH0973017A - Transmission type hologram element and optical pickup device - Google Patents

Transmission type hologram element and optical pickup device

Info

Publication number
JPH0973017A
JPH0973017A JP8118871A JP11887196A JPH0973017A JP H0973017 A JPH0973017 A JP H0973017A JP 8118871 A JP8118871 A JP 8118871A JP 11887196 A JP11887196 A JP 11887196A JP H0973017 A JPH0973017 A JP H0973017A
Authority
JP
Japan
Prior art keywords
light
hologram element
wavelength
information recording
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8118871A
Other languages
Japanese (ja)
Other versions
JP3338290B2 (en
Inventor
Kazushi Mori
和思 森
Atsushi Tajiri
敦志 田尻
Yasuaki Inoue
泰明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11887196A priority Critical patent/JP3338290B2/en
Priority to US08/671,197 priority patent/US5717674A/en
Priority to KR1019960026065A priority patent/KR100415774B1/en
Publication of JPH0973017A publication Critical patent/JPH0973017A/en
Application granted granted Critical
Publication of JP3338290B2 publication Critical patent/JP3338290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hologram element capable of efficiently utilize short wavelength light and to provide an optical pickup device capable of detecting the short wavelength light. SOLUTION: This device is provided with a first light source 1 which outputs light for reproducing a first information recording medium having a first wavelength, a second light source 2 which outputs light for reproducing a second information recording medium having a wavelength longer than the first wavelength, and a transmission type hologram element 4 which is provided in the outward light paths from the first and second light sources 1, 2 and is common to the first and the second light sources 1, 2 to obtain separate diffracted light fluxes separated from the outward paths corresponding to the returning fluxes from the first and second information media. The hologram 4 has a characteristic that the light for reproducing the first information recording medium has a larger product of diffraction efficiency related to the transmitting light flux through the hologram element 4 in its outward light path and the diffraction efficiency concerning the separately diffracted light flux, compared with the light for reproducing the second information recording medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は透過型ホログラム素
子と光ピックアップ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission hologram element and an optical pickup device.

【0002】[0002]

【従来の技術】近年、種々の情報記録媒体に対応する光
ピックアップ装置が研究開発されている。
2. Description of the Related Art In recent years, optical pickup devices corresponding to various information recording media have been researched and developed.

【0003】図10は、特開平3−76035号(G1
1B 7/135)公報に記載された非点収差法による
フォーカスサーボ及び3ビーム法によるトラッキングサ
ーボを行う光ピックアップ装置の構成図である。
FIG. 10 shows Japanese Patent Laid-Open No. 3-76035 (G1).
1B 7/135) is a configuration diagram of an optical pickup device which performs a focus servo by an astigmatism method and a tracking servo by a three-beam method, which are described in JP 1B 7/135).

【0004】図10中、101は情報記録媒体(光ディ
スク)、102はレーザ光(光束)を上方向に出力する
半導体レーザ、103は前記光束を3本の光束に分割す
るための3分割用回折格子、104は前記3本の光束を
透過し且つディスク101からの帰還光束(反射光束)
を回折し、該光束にフォーカス状態に対応した非点収差
を与えるためのホログラム素子、105は前記ホログラ
ム素子104を透過した3本の光束をディスク101上
に3個のスポットとして集光するための集光レンズ、1
06はホログラム素子104で回折されたディスク10
1からの帰還光束を検出する光検出器である。
In FIG. 10, 101 is an information recording medium (optical disk), 102 is a semiconductor laser which outputs a laser beam (light flux) in an upward direction, and 103 is a diffraction for three divisions for dividing the light flux into three light fluxes. A grating 104 is a return light flux (reflected light flux) that transmits the above three light fluxes and is from the disc 101.
A hologram element for diffracting the light beam and giving astigmatism corresponding to the focus state to the light beam, and 105 for converging the three light beams transmitted through the hologram element 104 as three spots on the disc 101. Condenser lens, 1
Reference numeral 06 denotes the disk 10 diffracted by the hologram element 104.
1 is a photodetector for detecting the return light flux from

【0005】[0005]

【発明が解決しようとする課題】しかしながら、斯る光
ピックアップ装置では、特定の情報記録媒体、例えば、
CD(コンパクトディスク)を再生するように光源を含
め各種光学素子が設定されているので、トラック密度
(トラックピッチ)等の記録密度が異なる他の規格の情
報記録媒体、例えばDVD(デジタルビデオディスク)
を再生できないといった問題がある。
However, in such an optical pickup device, a specific information recording medium, for example,
Since various optical elements including a light source are set so as to reproduce a CD (compact disc), information recording media of other standards having different recording densities such as track density (track pitch), for example, DVD (digital video disc)
There is a problem that can not be played.

【0006】この問題に対し、記録密度が大きい情報記
録媒体に対応した短波長光を出力する光源の使用と一部
光学系を付加することにより、記録密度が大きい情報記
録媒体と記録密度が小さい情報記録媒体の両方の再生を
行えるようにすることが提案されている。
To solve this problem, by using a light source for outputting a short wavelength light corresponding to an information recording medium having a high recording density and adding an optical system in part, an information recording medium having a high recording density and a small recording density can be obtained. It has been proposed to be able to reproduce both of the information recording media.

【0007】しかしながら、光源は一般的にその発振波
長が小さくなる程、寿命が小さくなるので、上述のよう
に短波長光を出力する光源を記録密度が小さい情報記録
媒体にも使用する場合、斯る光源の寿命は短くなる。こ
の結果、光ピックアップ装置の寿命も短くなってしまう
といった問題が起こる。
However, the life of a light source generally becomes shorter as the oscillation wavelength thereof becomes smaller. Therefore, when the light source for outputting a short wavelength light is used for an information recording medium having a small recording density as described above, Life of the light source is shortened. As a result, there arises a problem that the life of the optical pickup device is shortened.

【0008】そこで、本願発明者は、情報記録媒体の記
録密度に応じた2つの光源を備えた光ピックアップ装置
に注目した。しかし、高密度の情報記録媒体を再生する
ために、集光スポットを小さくできる短波長の光を出力
する半導体レーザを更に具備した光ピックアップ装置で
は、図11に示すように一般に使用されるSi半導体か
らなる光検出器の受光感度が短波長になる程悪化するの
で、短波長の光を感度よく検出できない恐れがある。
Therefore, the inventor of the present application paid attention to an optical pickup device provided with two light sources according to the recording density of the information recording medium. However, in order to reproduce a high-density information recording medium, in an optical pickup device further provided with a semiconductor laser that outputs a light of a short wavelength that can reduce a focused spot, a Si semiconductor that is generally used as shown in FIG. Since the light-receiving sensitivity of the photodetector consisting of 1 becomes worse as the wavelength becomes shorter, there is a possibility that the light having a short wavelength cannot be detected with high sensitivity.

【0009】本発明は上述の問題点を鑑み成されたもの
であり、短波長の光を効率よく利用可能なホログラム素
子と短波長の光を感度よく検出可能な光ピックアップ装
置を提供することが目的である。
The present invention has been made in view of the above problems, and it is possible to provide a hologram element capable of efficiently utilizing light of a short wavelength and an optical pickup device capable of sensitively detecting light of a short wavelength. Is the purpose.

【0010】[0010]

【課題を解決するための手段】本発明のホログラム素子
は、入射光束から分離してなる第1の回折次数の分離回
折光束を得るための分離手段としての透過型ホログラム
素子であって、該ホログラム素子は入射光束の波長が短
い程、前記分離回折光束に係る回折効率と該分離回折光
束の回折次数と次数の異なる第2の回折次数の回折光束
に係る回折効率との積が大きい性質を有することを特徴
とする。
A hologram element of the present invention is a transmission type hologram element as a separating means for obtaining a separated diffracted light beam of a first diffraction order which is obtained by separating an incident light beam. The element has a property that the shorter the wavelength of the incident light beam, the larger the product of the diffraction efficiency of the separated diffracted light beam and the diffraction efficiency of the second diffracted light beam of the different diffraction order of the separated diffracted light beam. It is characterized by

【0011】また、本発明のホログラム素子は、入射光
束から分離してなる第1の回折次数の分離回折光束を得
るための分離手段としての透過型ホログラム素子であっ
て、該ホログラム素子は、波長765〜800nmの光
における前記分離回折光束に係る回折効率と該光におけ
る前記第1の回折次数と次数の異なる第2の回折次数の
回折光束に係る回折効率との積に比べ、波長620〜6
60nmの光における前記分離回折光束に係る回折効率
と該光における前記第2の回折次数の回折光束に係る回
折効率との積が大きい性質を有することを特徴とする。
Further, the hologram element of the present invention is a transmission type hologram element as a separating means for obtaining a separated diffracted light beam of a first diffraction order obtained by separating the incident light beam, and the hologram element has a wavelength of Compared with the product of the diffraction efficiency of the separated diffracted light flux in the light of 765 to 800 nm and the diffraction efficiency of the diffracted light flux of the second diffraction order having a different order in the light, the wavelengths of 620 to 6
It is characterized in that the product of the diffraction efficiency of the separated diffracted light flux of 60 nm light and the diffraction efficiency of the diffracted light flux of the second diffraction order of the light is large.

【0012】特に、前記第1の回折次数の分離回折光束
は1次又は−1次の回折光であると共に、前記第2の回
折次数の光束は0次の回折光であることを特徴とする。
In particular, the separated diffracted light flux of the first diffraction order is the first-order or -1st-order diffracted light, and the second diffraction order light flux is the zero-order diffracted light. .

【0013】本発明の光ピックアップ装置は、複数の異
なる記録密度を有する情報記録媒体に対応した波長の光
を出力する複数の光源を備え、前記複数の異なる情報記
録媒体を再生可能な光ピックアップ装置であって、前記
複数の光源からの往光路中に設けられ、前記情報記録媒
体からの帰還光束から前記対応した往光路から分離して
なる分離回折光束を得るための前記複数の光源に共通の
透過型のホログラム素子を備え、前記ホログラム素子
は、前記波長が短い程、前記ホログラム素子を前記往光
路において透過する光束に係る回折効率と前記分離回折
光束に係る回折効率との積が大きい性質を有することを
特徴とする。
The optical pickup device of the present invention is provided with a plurality of light sources for outputting light having wavelengths corresponding to information recording media having a plurality of different recording densities, and is capable of reproducing the plurality of different information recording media. Is provided in the forward light path from the plurality of light sources, and is common to the plurality of light sources for obtaining a separated diffracted light flux separated from the corresponding forward light path from the return light flux from the information recording medium. A hologram element of a transmission type is provided, and the hologram element has a property that the shorter the wavelength is, the larger the product of the diffraction efficiency of the light beam passing through the hologram element in the forward optical path and the diffraction efficiency of the separated diffracted light beam is. It is characterized by having.

【0014】また、本発明の光ピックアップ装置は、複
数の異なる記録密度を有する情報記録媒体に対応した波
長の光を出力する複数の光源と、前記複数の光源から出
力された光の光束をそれぞれ対応する前記情報記録媒体
に集光するための集光手段と、前記複数の光源からの往
光路中に設けられ、前記情報記録媒体からの帰還光束か
ら前記対応した往光路から分離してなる分離回折光束を
得るための前記複数の光源に共通の透過型のホログラム
素子と、を備え、前記ホログラム素子は、前記波長が短
い程、前記ホログラム素子を前記往光路において透過す
る光束に係る回折効率と前記分離回折光束に係る回折効
率との積が大きい性質を有することを特徴とする。
Further, the optical pickup device of the present invention includes a plurality of light sources for outputting light having wavelengths corresponding to a plurality of information recording media having different recording densities, and a light flux of the light output from the plurality of light sources, respectively. A condensing means for condensing on the corresponding information recording medium, and a separation provided in the forward light path from the plurality of light sources and separated from the corresponding forward light path from the return light flux from the information recording medium. And a transmission type hologram element common to the plurality of light sources for obtaining a diffracted light beam, wherein the hologram element has a diffraction efficiency relating to a light beam transmitted through the hologram element in the forward light path as the wavelength is shorter. It is characterized by having a large product with the diffraction efficiency of the separated diffracted light flux.

【0015】また、本発明の光ピックアップ装置は、第
1の波長を有する第1の情報記録媒体再生用の光を出力
する第1の光源と、該第1の波長より長波長の第2の波
長を有する第2の情報記録媒体再生用の光を出力する第
2の光源と、前記第1、第2の光源からの往光路中に設
けられ、前記第1、第2の情報記録媒体からの帰還光束
から前記対応した往光路から分離してなる分離回折光束
を得るための前記第1、第2の光源に共通の透過型のホ
ログラム素子と、を備え、前記ホログラム素子は、第2
の情報記録媒体再生用の光に比べて第1の情報記録媒体
再生用の光の方が、前記ホログラム素子を前記往光路に
おいて透過する光束に係る回折効率と前記分離回折光束
に係る回折効率との積が大きい性質を有することを特徴
とする。
In the optical pickup device of the present invention, the first light source for outputting the light for reproducing the first information recording medium having the first wavelength and the second light source having a wavelength longer than the first wavelength are provided. A second light source that outputs a light for reproducing a second information recording medium having a wavelength, and a first light source that is provided in a forward light path from the first and second light sources. A transmission type hologram element common to the first and second light sources for obtaining a separated diffracted light flux obtained by separating the return light flux from the corresponding forward light path, and the hologram element includes a second
Of the information recording medium reproducing light, the first information recording medium reproducing light has a diffraction efficiency related to the light beam passing through the hologram element in the forward light path and a diffraction efficiency related to the separated diffracted light beam. Is characterized by having a large product of

【0016】特に、前記第1の光源は、波長620〜6
60nmの光を出力する半導体レーザであり、前記第2
の光源は、波長765〜800nmの光を出力する半導
体レーザであることを特徴とする。
Particularly, the first light source has wavelengths of 620 to 6
A semiconductor laser that outputs light of 60 nm,
The light source is a semiconductor laser that outputs light having a wavelength of 765 to 800 nm.

【0017】特に、前記往光路において透過する光束は
0次回折光であり、且つ前記分離回折光束は1次回折光
又は−1次回折光であることを特徴とする。
In particular, the luminous flux transmitted in the forward light path is a 0th-order diffracted light, and the separated diffracted luminous flux is a 1st-order diffracted light or a -1st-order diffracted light.

【0018】更に、前記ホログラム素子は、波長が短い
程、前記積の値が大きくなるようにホログラム面の格子
の溝深さが設定されていることを特徴とする。なお、前
記ホログラム素子は前記第1の波長に対する光の利用効
率が第1の極大値又はその近傍となるように格子の溝深
さを設定するのが好ましい。
Further, in the hologram element, the groove depth of the grating on the hologram surface is set such that the value of the product increases as the wavelength becomes shorter. In the hologram element, it is preferable to set the groove depth of the grating so that the light utilization efficiency for the first wavelength is at or near the first maximum value.

【0019】特に、前記ホログラム素子に至る往光路中
に3分割用回折格子を備えることを特徴とする。前記3
分割用回折格子は透過型3分割用回折格子であっもよ
く、また反射型3分割用回折格子でもよい。
In particular, it is characterized in that a three-division diffraction grating is provided in the forward optical path leading to the hologram element. 3 above
The division diffraction grating may be a transmission-type three-division diffraction grating or a reflection-type three-division diffraction grating.

【0020】また、前記ホログラム素子は透明部材から
なり、該部材の一方の面にホログラム面を有すると共
に、前記一方の面に対向する他方の面に3分割回折格子
面を有することを特徴とする。
Further, the hologram element is made of a transparent member and has a hologram surface on one surface of the member and a three-division diffraction grating surface on the other surface facing the one surface. .

【0021】前記3分割用回折格子は、入射光束から、
分割されて生じる主光束とこの両側の副光束を発生する
が、入射光束の波長が短い程、主光束に係る回折効率を
小さく且つ副光束に係る回折効率を大きくするのが好ま
しい。特に、前記主光束は0次回折光であり、且つ前記
2つの副光束は1次回折光と−1次回折光であるのがよ
い。この3分割用回折格子は、上記光束の波長が小さい
程、前記主光束の回折効率が小さく且つ前記副光束の回
折効率が大きくなるように、例えば格子の溝深さが設定
される。
The diffraction grating for three divisions is
The main light flux generated by division and the sub-light fluxes on both sides of the main light flux are generated. It is preferable that the shorter the wavelength of the incident light flux, the smaller the diffraction efficiency of the main light flux and the higher the diffraction efficiency of the sub-light flux. Particularly, it is preferable that the main light flux is a 0th-order diffracted light and the two sub-light fluxes are a 1st-order diffracted light and a -1st-order diffracted light. In this three-division diffraction grating, for example, the groove depth of the grating is set such that the smaller the wavelength of the light beam, the smaller the diffraction efficiency of the main light beam and the greater the diffraction efficiency of the sub-light beam.

【0022】この入射光束の波長が短い程、主光束の回
折効率が小さく且つ副光束の回折効率が大きい3分割用
回折格子は、情報記録媒体に集光されるこれら光束に係
る3つの集光スポットは、光束の波長が短い程、主光束
に係る集光スポット(主スポット)に対して副光束に係
る集光スポット(副スポット)の強度が大きくなる。
The shorter the wavelength of the incident light beam, the smaller the diffraction efficiency of the main light beam and the higher the diffraction efficiency of the sub-light beam. The three-division diffraction grating is composed of three light beams condensed on the information recording medium. As the wavelength of the light flux becomes shorter, the intensity of the focused light spot (sub spot) of the sub light flux becomes higher than that of the focused light spot (main spot) of the main light flux.

【0023】従って、トラック密度の大きい情報記録媒
体は、トラックピッチが小さいため、副スポットがトラ
ックに跨る面積が小さくなるが、このトラック密度の高
い情報記録媒体は波長の短い光束を上記3分割用回折格
子を介することにより生じてなる強度が大きい副スポッ
トを用いてトラッキングサーボを行える。この結果、ト
ラッキングエラー信号に含まれるノイズ成分の比率を低
減できるので、トラック密度の高い情報記録媒体に対し
ても良好なトラッキングサーボが行える。
Therefore, since the information recording medium having a high track density has a small track pitch, the area in which the sub-spots extend over the tracks is small. However, the information recording medium having a high track density divides a light beam having a short wavelength into the above three divisions. Tracking servo can be performed by using a sub-spot generated by passing through the diffraction grating and having a high intensity. As a result, the ratio of the noise component contained in the tracking error signal can be reduced, and good tracking servo can be performed even on an information recording medium having a high track density.

【0024】他方、トラック密度の小さい情報記録媒体
は、波長の長い光束を用いてトラッキングサーボを行
う。この波長の長い光束が上記3分割用回折格子を介す
ることにより、副スポットの強度が小さくなるが、この
媒体はトラックピッチ(トラック幅)が大きいので、副
スポットは大面積でトラックに跨る。よって、トラック
密度の小さい情報記録媒体に対して良好なトラッキング
サーボが行える。
On the other hand, an information recording medium having a low track density performs tracking servo by using a light flux having a long wavelength. The intensity of the sub-spot is reduced by passing the light flux having a long wavelength through the three-division diffraction grating, but since the medium has a large track pitch (track width), the sub-spot has a large area and extends over the tracks. Therefore, good tracking servo can be performed on an information recording medium having a low track density.

【0025】なお、上記光ピックアップ装置では、記録
密度の大きい情報記録媒体は、記録密度の小さい情報記
録媒体の再生光に比べて短波長の再生光で再生される。
In the above optical pickup device, an information recording medium having a high recording density is reproduced by reproducing light having a shorter wavelength than that of an information recording medium having a small recording density.

【0026】また、帰還光束を検出する光検出器はSi
系半導体からなるフォトダイオードからなってもよい。
Further, the photodetector for detecting the return light flux is Si
It may be composed of a photodiode composed of a system semiconductor.

【0027】[0027]

【発明の実施の形態】本発明の一実施形態に係る非点収
差法によるフォーカスサーボと3ビーム法によるトラッ
キングサーボを行う光ピックアップ装置を図1の概略構
成図を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An optical pickup device according to an embodiment of the present invention for performing focus servo by an astigmatism method and tracking servo by a three-beam method will be described with reference to the schematic configuration diagram of FIG.

【0028】尚、本実施形態では、情報記録媒体が再生
光入射側の透明基板表面(入射面)から記録面(反射
面)までの距離が1.2mm厚のCDを、波長780n
mのレーザ光で再生し、再生光入射側の透明基板表面
(入射面)から記録面(反射面)までの距離が0.6m
m厚であり、トラックピッチがCD(ピッチ=1.6μ
m)の約半分である高密度情報記録媒体(DVD)を、
波長635nmの光で再生する場合を示し、これら光源
と波長780nmの光に対して焦点及びNA(開口数)
補正を行う補正レンズ以外の光学素子は共通である。
In this embodiment, the information recording medium is a CD having a distance of 1.2 mm from the transparent substrate surface (incident surface) on the reproducing light incident side to the recording surface (reflecting surface) at a wavelength of 780 n.
When reproducing with m laser light, the distance from the transparent substrate surface (incident surface) on the reproduction light incident side to the recording surface (reflection surface) is 0.6 m.
The track pitch is CD (pitch = 1.6μ
m), which is about half of the high density information recording medium (DVD)
The case of reproducing with light of wavelength 635 nm is shown. Focus and NA (numerical aperture) for these light sources and light of wavelength 780 nm are shown.
The optical elements other than the correction lens for correction are common.

【0029】図1中、1は波長635nmのレーザ光
(第1の光束)を出力する半導体レーザ(第1の光
源)、2は第1の光源1に近接配置された波長780n
mのレーザ光(第2の光束)を出力する半導体レーザ
(第2の光源)である。
In FIG. 1, 1 is a semiconductor laser (first light source) that outputs a laser beam (first light flux) having a wavelength of 635 nm, and 2 is a wavelength 780 n that is arranged in proximity to the first light source 1.
This is a semiconductor laser (second light source) that outputs m laser light (second light flux).

【0030】3は第1、第2の光束をそれぞれ少なくと
も0次回折光(主光束)、トラッキングサーボ用の±1
次回折光(副光束)からなる3本の光束(図示せず)に
分割する光学ガラス又は光学樹脂等からなる所謂透過型
の3分割用回折格子である。尚、本形態では、3分割用
回折格子3は石英ガラスからなり、周期20μmの等間
隔の直線状格子からなる3分割用回折格子面を有する。
Reference numeral 3 denotes at least the 0th-order diffracted light (main light flux) of the first and second light fluxes, and ± 1 for tracking servo.
This is a so-called transmission type three-division diffraction grating made of optical glass or optical resin that divides into three light beams (not shown) made of secondary diffracted light (sub-light beams). In the present embodiment, the three-division diffraction grating 3 is made of quartz glass, and has three-division diffraction grating surfaces formed of linear gratings with an equal interval of 20 μm.

【0031】図2に示すように、上記3分割用回折格子
3により発生する0次回折光及び±1次回折光等の回折
光は、格子の溝深さtに対して回折効率(即ち、回折光
の発生率)が周期的に変化すると共に、これら周期変動
は波長によってその周期が異なる。尚、図2中、η0
η1はそれぞれ波長635nmに対する0次回折光、±
1次回折光の回折効率を示し、ξ0、ξ1はそれぞれ波長
780nmに対する0次回折光、±1次回折光の回折効
率を示す。
As shown in FIG. 2, the diffracted light such as the 0th-order diffracted light and the ± 1st-order diffracted light generated by the three-division diffraction grating 3 has a diffraction efficiency (that is, diffracted light) with respect to the groove depth t of the grating. Occurrence rate) changes periodically, and the period of these periodic fluctuations varies depending on the wavelength. In FIG. 2, η 0 ,
η 1 is the 0th-order diffracted light at a wavelength of 635 nm, ±
The diffraction efficiency of the first-order diffracted light is shown, and ξ 0 and ξ 1 show the diffraction efficiency of the 0th-order diffracted light and the ± 1st-order diffracted light with respect to the wavelength of 780 nm, respectively.

【0032】前記3分割用回折格子3は、波長が短い
程、主光束の回折効率が小さく且つ副光束の回折効率が
大きいように設計されている。本実施形態の場合、格子
深さtは約0.38μmに設定されているので、波長6
35nmに対する0次回折光の回折効率は約0.48、
±1次回折光の回折効率は約0.22であり、波長78
0nmに対する0次回折光の回折効率は約0.63、±
1次回折光の回折効率は約0.15である。
The three-division diffraction grating 3 is designed so that the shorter the wavelength, the smaller the diffraction efficiency of the main light beam and the greater the diffraction efficiency of the sub-light beam. In the case of this embodiment, since the grating depth t is set to about 0.38 μm, the wavelength 6
The diffraction efficiency of the 0th-order diffracted light with respect to 35 nm is about 0.48,
The diffraction efficiency of the ± 1st order diffracted light is about 0.22, and the wavelength 78
The diffraction efficiency of the 0th-order diffracted light with respect to 0 nm is about 0.63, ±
The diffraction efficiency of the first-order diffracted light is about 0.15.

【0033】4は3分割用回折格子3を出射した上記3
本の光束(主光束、副光束)を透過し、且つ該3本の光
束に係る情報記録媒体からの反射光束(帰還光束)に情
報記録媒体でのフォーカス状態に対応した空間変動(本
実施例では、非点収差)を与えつつ1次で透過回折した
分離回折光束を得るための光学ガラス又は光学樹脂等か
らなる透過型ホログラム素子(分離手段)である。
Reference numeral 4 denotes the above-mentioned 3 which is emitted from the diffraction grating 3 for three divisions.
Of the three light fluxes (main light flux and sub light flux) and reflected light flux (return light flux) from the information recording medium relating to the three light fluxes, spatial variation corresponding to the focus state on the information recording medium (this embodiment). Then, it is a transmission hologram element (separation means) made of optical glass or optical resin or the like for obtaining a separated diffracted light beam that is transmitted and diffracted in the first order while giving astigmatism).

【0034】本実施形態のホログラム素子は、図3に示
すようにホログラム面内の位置によって2〜4μmの間
で幅、ピッチが異なる湾曲状の格子からなるホログラム
面を有する石英ガラス製の透過型ホログラム素子であ
る。この湾曲状の格子の幅、ピッチは光源1、2とこれ
らに対応する下記で説明する光検出器との位置関係に依
存して決定される。
As shown in FIG. 3, the hologram element of this embodiment is a transmission type made of quartz glass having a hologram surface composed of curved gratings having different widths and pitches between 2 and 4 μm depending on the position in the hologram surface. It is a hologram element. The width and pitch of the curved grating are determined depending on the positional relationship between the light sources 1 and 2 and the corresponding photodetectors described below.

【0035】図4に示すように、この透過型ホログラム
素子4により発生する0次回折光及び±1次回折光等の
回折光は、格子の溝深さTに対して回折効率(即ち、回
折光の発生率)が周期的に変化すると共に、これら周期
変動は波長によってその周期が異なる。尚、図4中、φ
0、φ1はそれぞれ波長635nmに対する0次回折光、
±1次回折光の回折効率を示し、ψ0、ψ1はそれぞれ波
長780nmに対する0次回折光、±1次回折光の回折
効率を示す。
As shown in FIG. 4, the diffracted light such as the 0th-order diffracted light and the ± 1st-order diffracted light generated by the transmission hologram element 4 is diffracted with respect to the groove depth T of the grating (that is, the diffracted light Occurrence rate) changes periodically, and the period of these periodic fluctuations differs depending on the wavelength. In addition, in FIG.
0 and φ 1 are the 0th-order diffracted light with respect to the wavelength of 635 nm,
The diffraction efficiencies of the ± first-order diffracted light are shown, and ψ 0 and ψ 1 show the diffraction efficiencies of the 0th-order diffracted light and the ± 1st-order diffracted light with respect to the wavelength of 780 nm, respectively.

【0036】本形態の光ピックアップ装置では、光源1
(又は光源2)から出力された波長635nm(又は波
長780nm)のレーザ光が透過型ホログラム素子4を
0次回折で透過した後、情報記録媒体で反射され、透過
型ホログラム素子4により1次で透過回折する帰還光を
検出する構成である。
In the optical pickup device of this embodiment, the light source 1
The laser beam having a wavelength of 635 nm (or a wavelength of 780 nm) output from (or the light source 2) passes through the transmission hologram element 4 in the 0th diffraction order, is then reflected by the information recording medium, and is transmitted by the transmission hologram element 4 in the 1st order. This is a configuration for detecting the return light that is transmitted and diffracted.

【0037】従って、透過型ホログラム素子4での波長
635nmの光及び波長780nmの光に対する利用効
率は、図4に示される0次回折光の回折効率と1次回折
光(分離回折光束)の回折効率の積φ0×φ1、ψ0×ψ1
であり、図5のようになる。
Therefore, the utilization efficiency for the light of wavelength 635 nm and the light of wavelength 780 nm in the transmission hologram element 4 is the diffraction efficiency of the 0th order diffracted light and the diffraction efficiency of the 1st order diffracted light (separated diffracted light beam) shown in FIG. Product φ 0 × φ 1 , ψ 0 × ψ 1
And is as shown in FIG.

【0038】本実施形態のホログラム素子4は、波長が
短い方が利用効率が大きくなるように設計されている。
The hologram element 4 of this embodiment is designed so that the shorter the wavelength, the higher the utilization efficiency.

【0039】具体的には、本実施形態の場合、格子深さ
Tは約0.35μmに設定されている。従って、図4か
ら判るように、ホログラム素子4での波長635nmに
対する0次回折光(往路光)の回折効率は約0.49、
±1次回折光(帰還光)の回折効率は約0.21であ
り、波長780nmに対する0次回折光(往路光)の回
折効率は約0.64、±1次回折光(帰還光)の回折効
率は約0.14である。即ち、図5からも判るように、
上記ホログラム素子4での波長635nm光の利用効率
は約0.10(最大利用効率:第1の極大値)であり、
波長780nmの光の利用効率は約0.09である。
Specifically, in the case of this embodiment, the grating depth T is set to about 0.35 μm. Therefore, as can be seen from FIG. 4, the diffraction efficiency of the 0th-order diffracted light (outgoing light) for the wavelength of 635 nm in the hologram element 4 is about 0.49,
The diffraction efficiency of the ± 1st-order diffracted light (return light) is about 0.21, the diffraction efficiency of the 0th-order diffracted light (outgoing light) is about 0.64, and the diffraction efficiency of the ± 1st-order diffracted light (returned light) is about 780 nm. It is about 0.14. That is, as can be seen from FIG.
The use efficiency of the 635 nm wavelength light in the hologram element 4 is about 0.10 (maximum use efficiency: first maximum value),
The utilization efficiency of light having a wavelength of 780 nm is about 0.09.

【0040】5はサーボに対応して駆動可能に支持さ
れ、透過型ホログラム素子4を透過(0次回折)した上
記3本の光束(主、副光束)を情報記録媒体上に各集光
スポットとして集光するための集光レンズ(集光手段)
である。
Denoted at 5 is a drivable support corresponding to the servo, and the above three light beams (main and sub light beams) transmitted (0th order) through the transmission hologram element 4 are focused spots on the information recording medium. Lens (light collecting means) for collecting light as
It is.

【0041】6は波長780nmの光の場合に波長63
5nmの光に比べ、0.6mm長い位置で集光し且つN
Aを小さくするように補正する補正レンズ(集光手段)
であり、高密度記録媒体DVDを再生する場合には、図
示しない駆動装置により光路から外れ、CDを再生する
場合には、光路中に配置される。
6 is a wavelength of 63 in the case of light having a wavelength of 780 nm.
Compared with the light of 5 nm, it is condensed at a position that is 0.6 mm longer and N
Correction lens (condensing means) for correcting A so as to be small
In the case of reproducing the high-density recording medium DVD, it is deviated from the optical path by a driving device (not shown), and in the case of reproducing the CD, it is arranged in the optical path.

【0042】ここで、図6に示すように主光束に係る集
光スポット(主スポット)は情報が記録されたトラック
を走査すると共に、両副光束に係る集光スポット(副ス
ポット)は該トラックの両側を僅かに跨ぐように走査す
る。このトラック外は該トラックに比べて反射率が大き
く設定されているので、主スポットがトラックずれを起
こした場合、両副スポットからの反射強度に差が生じる
こととなる。
Here, as shown in FIG. 6, the focused spot (main spot) of the main light beam scans the track on which information is recorded, and the focused spots (sub-spots) of both sub-light beams are recorded on the track. Scan so that it slightly straddles both sides of. Since the reflectance outside the track is set to be higher than that of the track, when the main spot is displaced from the track, a difference occurs in the reflection intensity from both sub-spots.

【0043】7は集光レンズ5を通り、透過型ホログラ
ム素子4で1次で透過回折された情報記録媒体からの反
射光束(帰還光束)を検出する高密度情報記録媒体を再
生する場合に用いる6分割光検出器である。
Reference numeral 7 is used when reproducing a high density information recording medium for detecting a reflected light flux (returned light flux) from the information recording medium which is transmitted and diffracted in the first order by the transmission hologram element 4 through the condenser lens 5. It is a 6-division photodetector.

【0044】図7に示すように、この6分割光検出器7
は、上記主スポットに係る反射光束を検出して従来周知
の非点収差法によるフォーカス信号及び再生信号を出力
するための4分割光検出部7aと、上記副スポットに係
る反射光束を用いて従来周知の3ビームトラッキング法
によるトラッキングエラー信号を出力するための上記4
分割光検出部の両側に位置する光検出部7b、7bを有
する。この光検出部7b、7bは、上記副スポットに係
る反射光束をそれぞれ独立に検出し、上記主スポットの
トラックずれに応じて生じる光検出部7b、7b間の受
光量差に応じたトラッキングエラー信号を出力する。
As shown in FIG. 7, this 6-division photodetector 7
Is a four-division photodetector 7a for detecting the reflected light beam related to the main spot and outputting a focus signal and a reproduction signal by the conventionally known astigmatism method, and the conventional reflected light beam related to the sub-spot. The above-mentioned 4 for outputting a tracking error signal by the well-known three-beam tracking method
It has photodetection sections 7b, 7b located on both sides of the divided photodetection section. The photodetectors 7b and 7b independently detect the reflected light fluxes related to the sub-spots, and a tracking error signal corresponding to the difference in the amount of light received between the photodetectors 7b and 7b that occurs according to the track shift of the main spot. Is output.

【0045】図8に示すように、この6分割光検出器7
は、n+型Si基板21と、その表面に形成されたn-
半導体層22と、このn-型半導体層22の表面部分に
各分割光検出部に対応して選択的に形成されたp+型半
導体領域23を備え、これらp+型半導体領域23、n-
型半導体層22、及びn+型Si基板21とにより構成
される各分割光検出部に対応するPIN型フォトダイオ
ードを有する。
As shown in FIG. 8, this 6-division photodetector 7
Is formed selectively on the n + type Si substrate 21, the n type semiconductor layer 22 formed on the surface thereof, and on the surface portion of the n type semiconductor layer 22 corresponding to each divided photodetection section. The p + type semiconductor region 23 is provided, and the p + type semiconductor regions 23, n − are provided.
It has a PIN photodiode corresponding to each of the divided photodetection portions formed by the type semiconductor layer 22 and the n + type Si substrate 21.

【0046】8は集光レンズ5及び補正レンズ6を通
り、透過型ホログラム素子4で1次で透過回折された情
報記録媒体からの反射光束(帰還光束)を検出するCD
を再生する場合に用いる上記6分割光検出器7と同じ構
成の6分割光検出器である。
Reference numeral 8 denotes a CD which passes through the condenser lens 5 and the correction lens 6 and detects the reflected light flux (returned light flux) from the information recording medium which is first-order transmitted and diffracted by the transmission hologram element 4.
This is a 6-division photodetector having the same configuration as the 6-division photodetector 7 used for reproducing.

【0047】斯る光ピックアップ装置では、ホログラム
素子4が波長780nmの光に比べて波長635nmの
光の方が利用効率が大きくなるように設定されているの
で、ホログラム素子4による波長635nmの帰還光の
強度の低下を抑制できる。
In such an optical pickup device, the hologram element 4 is set so that the utilization efficiency of the light having the wavelength of 635 nm is higher than that of the light having the wavelength of 780 nm. It is possible to suppress a decrease in the strength of

【0048】従って、本形態のように6分割光検出器7
が従来使用されてきた短波長になるに従って感度が劣化
するSi系フォトダイオードからなる場合でも、波長6
35nmの帰還光の強度を十分に確保できるので、波長
635nmの帰還光を6分割光検出器7で感度よく検出
できる。
Therefore, as in this embodiment, the 6-division photodetector 7 is used.
Even if it consists of a Si-based photodiode whose sensitivity deteriorates as the wavelength becomes shorter, which is conventionally used,
Since the intensity of the feedback light of 35 nm can be sufficiently secured, the feedback light of the wavelength of 635 nm can be detected with high sensitivity by the 6-division photodetector 7.

【0049】一方、波長780nmの光は、波長635
nmの光に比べてホログラム素子4による減衰率は大き
いが、Si系フォトダイオードからなる6分割光検出器
8は波長780nmの光に対して十分な感度を有するの
で、波長780nmの帰還光も6分割光検出器8で感度
よく検出できる。
On the other hand, the light having a wavelength of 780 nm has a wavelength of 635.
Although the attenuation factor of the hologram element 4 is larger than that of the light of wavelength nm, the 6-division photodetector 8 composed of a Si-based photodiode has sufficient sensitivity to light of wavelength 780 nm. The split photodetector 8 can detect with high sensitivity.

【0050】従って、斯る光ピックアップ装置では、D
VD及びCDを良好に再生できる。
Therefore, in such an optical pickup device, D
VD and CD can be reproduced well.

【0051】また、この光ピックアップ装置では、3分
割用回折格子3は、波長が短い程、主光束の回折効率が
小さく且つ副光束の回折効率が大きいように設定されて
いるので、概略図である図9に示すように、情報記録媒
体上の副光束に係る集光スポット(副スポット)の光強
度は、波長635nmの方が波長780nmに比べて大
きくなる。本実施形態の場合、波長635nmでは主ス
ポットの強度/副スポットの強度は約2であり、波長7
80nmでは主スポットの強度/副スポットの強度は約
4である。
In this optical pickup device, the three-division diffraction grating 3 is set so that the shorter the wavelength, the smaller the diffraction efficiency of the main light beam and the greater the diffraction efficiency of the sub-light beam. As shown in FIG. 9, the light intensity of the focused spot (sub-spot) related to the sub-beam on the information recording medium is greater at the wavelength of 635 nm than at the wavelength of 780 nm. In the case of this embodiment, the intensity of the main spot / the intensity of the sub-spot is about 2 at the wavelength of 635 nm, and the wavelength of 7
At 80 nm, the intensity of the main spot / intensity of the sub-spot is about 4.

【0052】この装置は、トラック密度が大きい、即ち
トラックピッチが小さい高密度情報記録媒体DVDに
は、波長635nmの光を用いるので、3分割用回折格
子3の特性により副スポットの強度が大きくなり、トラ
ッキング信号のS/Nが良好となる。よって、高密度情
報記録媒体を良好なトラッキングを行いつつ再生が可能
となる。
In this device, since light having a wavelength of 635 nm is used for the high-density information recording medium DVD having a large track density, that is, a small track pitch, the intensity of the sub-spot becomes large due to the characteristics of the three-division diffraction grating 3. , The S / N of the tracking signal becomes good. Therefore, the high density information recording medium can be reproduced while performing good tracking.

【0053】一方、CDはトラック幅が大きいので、波
長780nmの光を用いても副スポットをトラックに大
面積で跨るようにでき、良好なトラッキングを行いつつ
再生が可能となる。
On the other hand, since the CD has a large track width, it is possible to extend the sub-spot over the track over a large area even when using light with a wavelength of 780 nm, and it is possible to perform reproduction while performing good tracking.

【0054】また、上述の第1、第2の光源は適宜波長
を変えることができるが、波長λ1=620〜660n
mの光束を出力する半導体レーザと、波長λ2=765
〜800nmの光束を出力すような半導体レーザである
場合、CDとトラック密度がCDの約1.5〜3倍の情
報記録媒体を共に良好なトラッキングサーボを行いつつ
再生ができる。尚、この場合、波長λ1では主スポット
の強度/副スポットの強度は約4〜7、波長λ2では主
スポットの強度/副スポットの強度は約2〜3であるこ
とが好ましい。
The wavelengths of the above-mentioned first and second light sources can be appropriately changed, but the wavelength λ 1 = 620 to 660n.
A semiconductor laser that outputs a luminous flux of m and a wavelength λ 2 = 765
In the case of a semiconductor laser that outputs a light flux of ˜800 nm, both CD and an information recording medium having a track density of about 1.5 to 3 times that of CD can be reproduced while performing good tracking servo. In this case, it is preferable strength of intensity / side spot of the main the wavelength lambda 1 spot about 4-7, the intensity of the intensity / side spot of the main the wavelength lambda 2 spot is about 2-3.

【0055】更に、上述では、透過型の3分割用回折格
子を用いた光ピックアップ装置について述べたが、反射
型の3分割用回折格子を用いた光ピックアップ装置にも
勿論適用できる。勿論、分離手段と情報記録媒体の間に
ミラー等の反射手段を介在させて、光路を折り曲げるこ
ともできる。
Furthermore, although the optical pickup device using the transmission type three-division diffraction grating has been described above, it is of course applicable to the optical pickup device using the reflection-type three-division diffraction grating. Of course, the optical path can be bent by interposing a reflecting means such as a mirror between the separating means and the information recording medium.

【0056】更に、上述では、複数の光検出手段を用い
たが、複数の記録密度の情報記録媒体に1つの光検出手
段を共通になるような構成にしても勿論よい。
Further, in the above description, a plurality of light detecting means are used, but one light detecting means may be commonly used for information recording media having a plurality of recording densities.

【0057】加えて、透過型3分割用回折格子3と透過
型ホログラム素子4を一体にした光学素子を用いてもよ
い。
In addition, an optical element in which the transmission type three-division diffraction grating 3 and the transmission type hologram element 4 are integrated may be used.

【0058】また、上記本実施形態では、再生光入射側
の透明基板表面(入射面)から記録面(反射面)までの
距離が1.2mm厚のCDと、再生光入射側の透明基板
表面(入射面)から記録面(反射面)までの距離が0.
6mm厚であり、トラックピッチがCD(ピッチ=1.
6μm)の約半分である高密度情報記録媒体(DVD)
を再生できる装置について述べたが、例えば入射面から
記録面までの距離が1.2mm厚の高密度情報記録媒体
を再生するようにもでき、本発明は入射面から記録面ま
での距離がこれらと異なる光記録媒体にも勿論適用でき
る。
Further, in this embodiment, the distance between the transparent substrate surface (incident surface) on the reproducing light incident side and the recording surface (reflection surface) is 1.2 mm, and the transparent substrate surface on the reproducing light incident side. The distance from the (incident surface) to the recording surface (reflection surface) is 0.
The track pitch is CD (pitch = 1.
High density information recording medium (DVD) which is about half of 6 μm)
However, the present invention can also reproduce a high-density information recording medium in which the distance from the incident surface to the recording surface is 1.2 mm. Of course, it can be applied to an optical recording medium different from the above.

【0059】また、本発明は3分割用回折格子を用いる
3ビーム法によるトラッキングサーボ法以外のトラッキ
ングサーボ法や、非点収差法によるフォーカスサーボ法
以外のフォーカスサーボ法にも適用できる。
The present invention can also be applied to tracking servo methods other than the tracking servo method by the three-beam method using a diffraction grating for three divisions, and focus servo methods other than the focus servo method by the astigmatism method.

【0060】[0060]

【発明の効果】本発明のホログラム素子は、短波長の光
を効率よく利用可能である。従って、このホログラム素
子を光ピックアップ装置に用いる場合、複数の記録密度
の異なる情報記録媒体(例えばCDとDVDの両方)を
良好に再生が可能となる。
The hologram element of the present invention can efficiently use light of a short wavelength. Therefore, when this hologram element is used in an optical pickup device, it is possible to favorably reproduce a plurality of information recording media having different recording densities (for example, both CD and DVD).

【0061】また、本発明の光ピックアップ装置では、
短波長の再生光の方がホログラム素子での減衰率が小さ
いので、短波長の再生光による情報記録媒体からの帰還
光の強度の低下を抑制できる。従って、Si系の光検出
器を用いても短波長の再生光で再生する記録密度の大き
い情報記録媒体を良好に再生可能である。また、長波長
の再生光による情報記録媒体からの帰還光は短波長の再
生光に比べて減衰率が大きくなるが、光検出器は長波長
側で感度がよいので、長波長の再生光で再生する記録密
度の小さい情報記録媒体も良好に再生可能である。
In the optical pickup device of the present invention,
Since the reproduction light of short wavelength has a smaller attenuation rate in the hologram element, it is possible to suppress the reduction of the intensity of the return light from the information recording medium due to the reproduction light of short wavelength. Therefore, even if the Si-based photodetector is used, it is possible to favorably reproduce the information recording medium having a high recording density which is reproduced by the reproduction light having the short wavelength. Further, the return light from the information recording medium due to the reproduction light of the long wavelength has a larger attenuation rate than the reproduction light of the short wavelength, but since the photodetector has a good sensitivity on the long wavelength side, the reproduction light of the long wavelength is used. An information recording medium having a small recording density to be reproduced can be reproduced well.

【0062】このように本発明の光ピックアップ装置で
は、複数の記録密度の異なる情報記録媒体(例えばCD
とDVDの両方)を良好に再生できる。
As described above, in the optical pickup device of the present invention, a plurality of information recording media having different recording densities (eg CD
Both DVD and DVD) can be reproduced well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る光ピックアップ装置
の概略構造図である。
FIG. 1 is a schematic structural diagram of an optical pickup device according to an embodiment of the present invention.

【図2】3分割用回折格子の格子深さtに対する波長7
80nmの光及び波長635nmの光の回折効率の関係
を示す図である。
FIG. 2 shows a wavelength 7 with respect to a grating depth t of a diffraction grating for three divisions.
It is a figure which shows the relationship of the diffraction efficiency of the light of 80 nm, and the light of wavelength 635 nm.

【図3】本実施形態で用いられるホログラム素子のホロ
グラム面を示す上面図である。
FIG. 3 is a top view showing a hologram surface of a hologram element used in this embodiment.

【図4】ホログラム素子の格子深さTに対する波長78
0nmの光及び波長635nmの光の回折効率の関係を
示す図である。
FIG. 4 shows a wavelength 78 with respect to a grating depth T of the hologram element.
It is a figure which shows the relationship of the diffraction efficiency of the light of 0 nm, and the light of wavelength 635 nm.

【図5】上記ホログラム素子の格子深さTに対する波長
780nmの光及び波長635nmの光の利用効率の関
係を示す図である。
FIG. 5 is a diagram showing a relationship between a grating depth T of the hologram element and utilization efficiency of light having a wavelength of 780 nm and light having a wavelength of 635 nm.

【図6】本実施形態の光ピックアップ装置におけるトラ
ックと主スポット及び副スポットの位置関係を示す概略
上面図である。
FIG. 6 is a schematic top view showing a positional relationship between a track and main spots and sub spots in the optical pickup device of the present embodiment.

【図7】上記光ピックアップ装置の光検出器の概略上面
図である。
FIG. 7 is a schematic top view of a photodetector of the optical pickup device.

【図8】本実施形態で用いられる6分割光検出器の一部
概略断面図である。
FIG. 8 is a partial schematic cross-sectional view of a 6-division photodetector used in this embodiment.

【図9】上記光ピックアップ装置における波長780n
m及び波長635nmの場合の主スポット、副スポット
の強度の関係を示す模式図である。
FIG. 9 shows a wavelength of 780n in the optical pickup device.
It is a schematic diagram which shows the relationship of the intensity | strength of a main spot and a sub-spot in the case of m and a wavelength of 635 nm.

【図10】従来例に係る光ピックアップ装置の概略構造
図である。
FIG. 10 is a schematic structural diagram of an optical pickup device according to a conventional example.

【図11】従来のSi系光検出器の波長に対する相対光
感度の関係を示す図である。
FIG. 11 is a diagram showing a relationship of relative photosensitivity with respect to wavelength of a conventional Si-based photodetector.

【符号の説明】[Explanation of symbols]

1 第1の光源 2 第2の光源 3 透過型3分割用回折格子 4 透過型ホログラム素子 5 集光レンズ(集光手段) 6 補正レンズ(集光手段) 7、8 光検出器 DESCRIPTION OF SYMBOLS 1 1st light source 2 2nd light source 3 Transmission type diffraction grating for 3 divisions 4 Transmission type hologram element 5 Condensing lens (condensing means) 6 Correction lens (condensing means) 7, 8 Photodetector

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 入射光束から分離してなる第1の回折次
数の分離回折光束を得るための分離手段としての透過型
ホログラム素子であって、該ホログラム素子は入射光束
の波長が短い程、前記分離回折光束に係る回折効率と該
分離回折光束の回折次数と次数の異なる第2の回折次数
の回折光束に係る回折効率との積が大きい性質を有する
ことを特徴とする透過型ホログラム素子。
1. A transmission hologram element as a separating means for obtaining a separated diffracted light beam of a first diffraction order, which is separated from an incident light beam, wherein the hologram element is A transmissive hologram element having a large product of a diffraction efficiency of a separated diffracted light beam and a diffraction efficiency of a second diffracted light beam of a different diffraction order of the separated diffracted light beam.
【請求項2】 入射光束から分離してなる第1の回折次
数の分離回折光束を得るための分離手段としての透過型
ホログラム素子であって、該ホログラム素子は、波長7
65〜800nmの光における前記分離回折光束に係る
回折効率と該光における前記第1の回折次数と次数の異
なる第2の回折次数の回折光束に係る回折効率との積に
比べ、波長620〜660nmの光における前記分離回
折光束に係る回折効率と該光における前記第2の回折次
数の回折光束に係る回折効率との積が大きい性質を有す
ることを特徴とする透過型ホログラム素子。
2. A transmission type hologram element as a separating means for obtaining a separated diffracted light beam of a first diffraction order formed by separating an incident light beam, wherein the hologram element has a wavelength of 7
Compared to the product of the diffraction efficiency of the separated diffracted light flux in the light of 65 to 800 nm and the diffraction efficiency of the diffracted light flux of the second diffraction order having a different order in the light, the wavelengths of 620 to 660 nm The transmission hologram element is characterized in that the product of the diffraction efficiency of the separated diffracted light flux of the light and the diffraction efficiency of the diffracted light flux of the second diffraction order in the light is large.
【請求項3】 前記第1の回折次数の分離回折光束は1
次又は−1次の回折光であると共に、前記第2の回折次
数の光束は0次の回折光であることを特徴とする請求項
1又は2記載の透過型ホログラム素子。
3. The separated diffracted light beam of the first diffraction order is 1
The transmissive hologram element according to claim 1 or 2, wherein the second-order or -1st-order diffracted light and the second-order diffracted light flux is a 0th-order diffracted light.
【請求項4】 複数の異なる記録密度を有する情報記録
媒体に対応した波長の光を出力する複数の光源を備え、
前記複数の異なる情報記録媒体を再生可能な光ピックア
ップ装置であって、前記複数の光源からの往光路中に設
けられ、前記情報記録媒体からの帰還光束から前記対応
した往光路から分離してなる分離回折光束を得るための
前記複数の光源に共通の透過型のホログラム素子を備
え、前記ホログラム素子は、前記波長が短い程、前記ホ
ログラム素子を前記往光路において透過する光束に係る
回折効率と前記分離回折光束に係る回折効率との積が大
きい性質を有することを特徴とする光ピックアップ装
置。
4. A plurality of light sources for outputting light of wavelengths corresponding to a plurality of information recording media having different recording densities,
An optical pickup device capable of reproducing the plurality of different information recording media, which is provided in a forward light path from the plurality of light sources, and is separated from the corresponding forward light path from a return light flux from the information recording medium. The hologram element of the transmission type common to the plurality of light sources for obtaining the separated diffracted light flux is provided, and the hologram element has a diffraction efficiency related to a light flux transmitted through the hologram element in the outward optical path as the wavelength is shorter, and An optical pickup device characterized by having a large product with a diffraction efficiency related to a separated diffracted light beam.
【請求項5】 複数の異なる記録密度を有する情報記録
媒体に対応した波長の光を出力する複数の光源と、前記
複数の光源から出力された光の光束をそれぞれ対応する
前記情報記録媒体に集光するための集光手段と、前記複
数の光源からの往光路中に設けられ、前記情報記録媒体
からの帰還光束から前記対応した往光路から分離してな
る分離回折光束を得るための前記複数の光源に共通の透
過型のホログラム素子と、を備え、前記ホログラム素子
は、前記波長が短い程、前記ホログラム素子を前記往光
路において透過する光束に係る回折効率と前記分離回折
光束に係る回折効率との積が大きい性質を有することを
特徴とする光ピックアップ装置。
5. A plurality of light sources that output light having wavelengths corresponding to a plurality of information recording media having different recording densities, and light fluxes of light output from the plurality of light sources are collected on the corresponding information recording media. Condensing means for emitting light, and the plurality of light sources provided in the forward light path from the plurality of light sources, for obtaining the separated diffracted light flux obtained by separating the return light flux from the information recording medium from the corresponding forward light flux. A transmission-type hologram element common to the light sources, the hologram element having a shorter wavelength has a diffraction efficiency related to a light beam passing through the hologram element in the forward light path and a diffraction efficiency related to the separated diffracted light beam. An optical pickup device characterized by having a large product of
【請求項6】 第1の波長を有する第1の情報記録媒体
再生用の光を出力する第1の光源と、該第1の波長より
長波長の第2の波長を有する第2の情報記録媒体再生用
の光を出力する第2の光源と、前記第1、第2の光源か
らの往光路中に設けられ、前記第1、第2の情報記録媒
体からの帰還光束から前記対応した往光路から分離して
なる分離回折光束を得るための前記第1、第2の光源に
共通の透過型のホログラム素子と、を備え、前記ホログ
ラム素子は、第2の情報記録媒体再生用の光に比べて第
1の情報記録媒体再生用の光の方が、前記ホログラム素
子を前記往光路において透過する光束に係る回折効率と
分離回折光束に係る回折効率との積が大きい性質を有す
ることを特徴とする光ピックアップ装置。
6. A first light source for outputting a light for reproducing a first information recording medium having a first wavelength, and a second information recording having a second wavelength longer than the first wavelength. A second light source which outputs light for reproducing the medium and a forward light path provided from the first and second light sources, which is provided in the forward light path, and the corresponding forward light from the return light flux from the first and second information recording media. A transmission type hologram element common to the first and second light sources for obtaining a separated diffracted light beam separated from the optical path, and the hologram element serves as light for reproducing a second information recording medium. In comparison, the light for reproducing the first information recording medium has a property that the product of the diffraction efficiency related to the light beam passing through the hologram element in the forward light path and the diffraction efficiency related to the separated diffracted light beam is large. Optical pickup device.
【請求項7】 前記第1の光源は、波長620〜660
nmの光を出力する半導体レーザであり、前記第2の光
源は、波長765〜800nmの光を出力する半導体レ
ーザであることを特徴とする請求項6記載の光ピックア
ップ装置。
7. The first light source has wavelengths of 620 to 660.
7. The optical pickup device according to claim 6, wherein the second light source is a semiconductor laser which outputs a light of wavelength nm of 765 to 800 nm.
【請求項8】 前記往光路において透過する光束は0次
回折光であり、且つ前記分離回折光束は1次回折光又は
−1次回折光であることを特徴とする請求項4、5、
6、又は7記載の光ピックアップ装置。
8. The light flux transmitted in the forward light path is a 0th-order diffracted light, and the separated diffracted light flux is a 1st-order diffracted light or a -1st-order diffracted light.
6. The optical pickup device as described in 6 or 7.
【請求項9】 前記ホログラム素子は、波長が短い程、
前記積の値が大きくなるようにホログラム面の格子の溝
深さが設定されていることを特徴とする請求項4、5、
6、7、又は8記載の光ピックアップ装置。
9. The hologram element has a shorter wavelength,
The groove depth of the grating on the hologram surface is set so that the value of the product becomes large.
The optical pickup device according to 6, 7, or 8.
【請求項10】 前記ホログラム素子に至る往光路中に
3分割用回折格子を備えることを特徴とする請求項4、
5、6、7、8、又は9記載の光ピックアップ装置。
10. A diffraction grating for three divisions is provided in a forward optical path leading to the hologram element.
The optical pickup device according to 5, 6, 7, 8 or 9.
【請求項11】 前記ホログラム素子は透明部材からな
り、該部材の一方の面にホログラム面を有すると共に、
前記一方の面に対向する他方の面に3分割回折格子面を
有することを特徴とする請求項10記載の光ピックアッ
プ装置。
11. The hologram element is made of a transparent member, and has a hologram surface on one surface of the member,
11. The optical pickup device according to claim 10, further comprising a three-division diffraction grating surface on the other surface facing the one surface.
JP11887196A 1995-06-30 1996-05-14 Transmission hologram element and optical pickup device Expired - Fee Related JP3338290B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11887196A JP3338290B2 (en) 1995-06-30 1996-05-14 Transmission hologram element and optical pickup device
US08/671,197 US5717674A (en) 1995-06-30 1996-06-27 Three-beam generating diffraction grating, transmission type holographic optical element and optical pickup apparatus using the same
KR1019960026065A KR100415774B1 (en) 1995-06-30 1996-06-29 Triple light divided diffraction grating, transmitting-type hologram element and optical pick-up apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16616695 1995-06-30
JP7-166166 1995-06-30
JP11887196A JP3338290B2 (en) 1995-06-30 1996-05-14 Transmission hologram element and optical pickup device

Publications (2)

Publication Number Publication Date
JPH0973017A true JPH0973017A (en) 1997-03-18
JP3338290B2 JP3338290B2 (en) 2002-10-28

Family

ID=26456720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887196A Expired - Fee Related JP3338290B2 (en) 1995-06-30 1996-05-14 Transmission hologram element and optical pickup device

Country Status (1)

Country Link
JP (1) JP3338290B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748860B1 (en) * 1999-07-13 2007-08-13 소니 가부시끼 가이샤 Optical head, optical recording and/or reproducing apparatus and integrated optical module
KR100809974B1 (en) * 2000-09-25 2008-03-06 코닌클리케 필립스 일렉트로닉스 엔.브이. Optical scanning device
US7436561B2 (en) 2004-08-30 2008-10-14 Sharp Kabushiki Kaisha Hologram laser unit and optical pickup apparatus
US7639574B2 (en) 2004-06-25 2009-12-29 Funai Electric Co., Ltd. Optical pickup

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748860B1 (en) * 1999-07-13 2007-08-13 소니 가부시끼 가이샤 Optical head, optical recording and/or reproducing apparatus and integrated optical module
KR100809974B1 (en) * 2000-09-25 2008-03-06 코닌클리케 필립스 일렉트로닉스 엔.브이. Optical scanning device
US7639574B2 (en) 2004-06-25 2009-12-29 Funai Electric Co., Ltd. Optical pickup
US7436561B2 (en) 2004-08-30 2008-10-14 Sharp Kabushiki Kaisha Hologram laser unit and optical pickup apparatus

Also Published As

Publication number Publication date
JP3338290B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
KR100415774B1 (en) Triple light divided diffraction grating, transmitting-type hologram element and optical pick-up apparatus using the same
JP3549301B2 (en) Optical head tracking error detector
US6778475B2 (en) Optical detector, optical pickup and optical information reproducing apparatus using optical pickup for detecting at least three light beams separated from one or more light sources
KR100403622B1 (en) Optical pickup apparatus and method for focusing light spot optimally
JPH083910B2 (en) Optical pickup device
KR20090105795A (en) Optical pickup device
US7035196B2 (en) Optical head device and optical recording and reproducing apparatus having lasers aligned in a tangential direction
JP2001084622A (en) Optical pickup device
JP2001222825A (en) Photodetector, optical pickup and optical information reproducing device using the same
JP2001028146A (en) Optical head and optical recording/reproducing device
JP3338290B2 (en) Transmission hologram element and optical pickup device
JPH05298721A (en) Optical head
JP2003162831A (en) Optical pickup
US6975576B1 (en) Optical head device and disk drive system having first and second light sources for emitting light beams of different wavelengths
JP3435067B2 (en) Optical pickup device
JP3389416B2 (en) Optical pickup device
JP2004253111A (en) Optical pickup device
KR100601599B1 (en) Optical pickup apparatus capable of suppresing cross talk from adjacent tracks
JP2002109759A (en) Optical pickup, optical disc device, and information processing device
JP2595937B2 (en) Optical head device
JP4444947B2 (en) Optical pickup device
JP4071141B2 (en) Semiconductor laser device and optical pickup device
KR100464419B1 (en) Compatible optical pickup for recording and/or reproducing
JP4031450B2 (en) Optical pickup device
JP3294092B2 (en) Optical pickup device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees