WO2004066908A2 - Composition comprenant lipides cationiques et un polynucleotide ou un polpeptide et methode pour leur delivrance ciblee - Google Patents

Composition comprenant lipides cationiques et un polynucleotide ou un polpeptide et methode pour leur delivrance ciblee Download PDF

Info

Publication number
WO2004066908A2
WO2004066908A2 PCT/FR2004/000088 FR2004000088W WO2004066908A2 WO 2004066908 A2 WO2004066908 A2 WO 2004066908A2 FR 2004000088 W FR2004000088 W FR 2004000088W WO 2004066908 A2 WO2004066908 A2 WO 2004066908A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polynucleotide
polypeptide
compound
corresponds
Prior art date
Application number
PCT/FR2004/000088
Other languages
English (en)
Other versions
WO2004066908A3 (fr
Inventor
Jean Haensler
Original Assignee
Sanofi Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi Pasteur filed Critical Sanofi Pasteur
Publication of WO2004066908A2 publication Critical patent/WO2004066908A2/fr
Publication of WO2004066908A3 publication Critical patent/WO2004066908A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0033Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids

Definitions

  • the subject of the invention is in particular vectors for the in vitro or in vivo delivery of pharmaceutical active principles, in particular of polynucleotide and of polypeptide.
  • nucleic acids Numerous methods and compounds have already been proposed for introducing nucleic acids into cells. These include (i) the co-precipitation of nucleic acid and calcium phosphate or DEAE dextran, (ii) the use of cationic polymers substituted or not with ligands, or (iii) the use of cationic lipids which form complexes with negatively charged polynucleotides and facilitate their passage through the cytoplasmic membrane.
  • lipospermins such as 5-carboxyspermylglycine-dioctadecylamide (DOGS) and 2,3 diolyloxy-N- [2 (sperminecarboxamido) ethyl] -N, N-dimethyl- trifluoroacetate propanammonium supplied under the respective trade names of Transfectam TM and Lipofectamine TM; (ii) N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) sold in association with a neutral lipid, dioleoylphosphatidylethanolamine (DOPE) under the name Lipofectin TM; (iii) lipopolylysines (Zhou et al., Biochem.
  • DOGS 5-carboxyspermylglycine-dioctadecylamide
  • DOPE dioleoylphosphatidylethanolamine
  • DOTMA (1,2-dioleoyloxy-3-trimethylammonio) propane (DOTAP) supplied by the company Avant! Polar Lipids;
  • DOTAP (1,2-dioleoyloxy-3-trimethylammonio) propane supplied by the company Avant! Polar Lipids;
  • cationic triacylated lipids such as O, O ', O "-tridodecanoyl-N- ( ⁇ - trimethylammoniododecanoyl) -tris- (hydroxymethyl) aminomethane and its analogs described in WO96 / 32102.
  • reagents are in particular capable of forming a charge complex with a polynucleotide insofar as they carry one or more positive charges, constituted by one or more protonated amino groups or ammoniums located at the hydrophilic end of their polar head. They make it possible to deliver the polynucleotides at the tissue level in a non-specific manner.
  • Targeted transfer methods have also been proposed.
  • the principle of these methods consists either in the incorporation of a targeting compound, such as a glycolipid specific for a particular cell lectin, in the lipid layers of liposomes containing a cationic lipid such as DOGS (Remy et al. , PNAS (1995) 92: 1744); either in the coupling of a compound allowing targeting with a cationic polymer such as polylysine (Wu & Wu, J. Biol. Chem. (1988) 263: 14621; Wagner et al. PNAS (1990) 87: 3410; Huckett and al. Biochem. Pharmacol. (1990) 40: 253; Midoux et al. Nucleic Acids Res. (1993) 21: 871) or polyethyleneimine PEI (Diebold et al. J. Biol. Chem. (1999) 274: 19087) .
  • a targeting compound such as a glycolipid specific for a particular
  • the positive charge of this compound is a quaternary ammonium located at the junction between its lipophilic part and its polar head. Surprisingly, this positive charge nevertheless remains accessible for the complexation of polymeric molecules carrying negative charges, despite the steric bulk.
  • composition which comprises a negatively charged polynucleotide or polypeptide and a compound corresponding to formula (I):
  • Ri and R 2 are saturated or unsaturated aliphatic chains containing from 3 to 24 carbon atoms; and either R 3 corresponds to formula (F)
  • X is a pharmaceutically acceptable anion; and (i) Rt and Rs each represent a hydrogen atom; and R ⁇ is such that R 3 constitutes a peptide radical comprising an amino acid sequence which is a targeting ligand or a labeling element; or (ii) R4, R 5 and R- 6 are such that R 3 constitutes a radical which is a targeting ligand or a labeling element; either R3 corresponds to the formula (F ') R7 R8 in which:
  • R is a binding agent corresponding to the formula (F ")
  • X is a pharmaceutically acceptable anion
  • R 9 and Rio identical or different, each represent (i) a hydrogen atom or (ii) a methyl, ethyl, propyl or higher alkyl radical containing from 1 to 22 carbon atoms, substituted or not, interrupted or not with one or more heteroatoms chosen from O, S and N or by one or more saturated, unsaturated or aromatic carbocyclic or heterocyclic radicals; and
  • Ru represents (i) a single bond or (ii) an aliphatic chain containing from 1 to 22 carbon atoms, linear or branched, substituted or not, saturated or unsaturated, interrupted or not by one or more heteroatoms chosen from O, S and N or by one or more saturated, unsaturated or aromatic carbocyclic or heterocyclic radicals; and Rs is a targeting ligand or a labeling element.
  • a compound advantageously corresponds to formula (I) in which Ri and R 2 are aliphatic chains of 8 to 18, preferably of 12 to 16 carbon atoms.
  • anion X present in formulas (F) and (F ") is advantageously chosen from Br-, Cl-, I- and F-
  • targeting ligand is meant a compound capable of interacting in a specific or non-specific manner (eg hydrophobic or electrostatic interaction) with a receptor present in a tissue, incorporated or not in a cell membrane.
  • marking element is meant a compound easily detectable in a tissue, an organ or a cell by physicochemical techniques preferably based on measurements of fluorescence or radioactivity.
  • this radical comprises a sequence recognized by a membrane receptor, advantageously from 3 to 15, preferably from 3 to 10, very preferably from 3 to 5 amino acids.
  • the amino acid sequences recognized by receptors are generally very short, e.g. from 3 to 5 amino acids.
  • the sequence constituting the radical R3 contains additional amino acids.
  • a sequence recognized by a membrane receptor there is cited (i) the sequence RGD, YIGSR or their counterparts capable of recognizing cellular integrins such as fibronectin or laminin (S. Zalipsky et al, Bioconjug. Chem. ( 1995) 6: 705 and T.
  • radical R3 corresponding to formula (F) without being a peptide radical
  • aminoglycosides such as galactosamine or glucosamine
  • ⁇ , ⁇ -dimethylaminoethylacetate for targeting acetylcholine esterase and other acetylcholine receptors
  • These ligands have a primary, secondary or tertiary amino group allowing them to react with dihexadecyl bromomalonate and its analogs.
  • the ligand of a membrane receptor does not contain an amino group (R8), it should then be coupled beforehand to a binding agent carrying an amino group (R7) in order to obtain an R3 derivative of formula ( F ").
  • a binding agent carrying an amino group (R7) in order to obtain an R3 derivative of formula ( F ").
  • the labeling element can be a compound which makes it possible to follow the fate of the composition in an organism or a cell. It can be a compound carrying a radioelement such as tyramine which lends itself to radiolabelling by iodination with radioactive iodine. Tyramine has an amine group and thus falls into the category of radicals R3 of formula (F). It can also be a chromophore such as a fluorophore. By way of illustration, mention may be made of 5- (aminoacetamido) fluorescein sold by the company Molecular Probes, which also falls into the category of radicals R3 of formula (F).
  • a composition according to the invention may contain two compounds of formula (I), one being intended for targeting and delivery, the other making it possible to trace the fate of the composition in the host organism.
  • a composition according to the invention can comprise (a) a compound corresponding to formula (I) in which: Ri and R 2 are as defined above; and either R3 corresponds to formula (F)
  • X is a pharmaceutically acceptable anion; and (i) R 4 and Rs each represent a hydrogen atom; and Rg is such that R 3 constitutes a peptide radical having an amino acid sequence which is a targeting ligand; or (ii) R4, R5 and Rg are such that R 3 constitutes a radical which is a targeting ligand; either R 3 corresponds to the formula (I ") R7 R8 in which: R is as defined above; and
  • R 3 is a targeting ligand
  • X is a pharmaceutically acceptable anion; and (i) R 4 and Rs each represent a hydrogen atom; and
  • R ⁇ is such that R $ constitutes a peptide radical comprising an amino acid sequence which is a labeling element; or (ii) R4, R5 and R ⁇ are such that R 3 constitutes a radical which is a marking element; either R 3 corresponds to the formula (I ") R7 R8 in which:
  • R 7 is as defined above; and Rs is a marking element.
  • the compounds of formula (I) can be obtained according to the method of Menger & Johnston (supra) by reaction between malonic acid and an excess of fatty alcohol comprising from 3 to 24, preferably from 8 to 18, so as to most preferably 12 to 16 carbon atoms, to form a malonic diester which is, for example, bromylated or fluorinated to a bromomalonic or fluoromalonic diester.
  • the bromo or fluoromalonic diester is then brought into contact with a targeting ligand or a cell labeling element comprising a primary, secondary or tertiary amine group capable of substituting the bromine or fluorine atom to bind the targeting element (or labeling) on the malonic diester via a protonable secondary or tertiary amine or via a quaternary ammonium.
  • a targeting ligand or a cell labeling element comprising a primary, secondary or tertiary amine group capable of substituting the bromine or fluorine atom to bind the targeting element (or labeling) on the malonic diester via a protonable secondary or tertiary amine or via a quaternary ammonium.
  • the compounds of formula (I) can be incorporated into liposomes, mixed micelles of lipids and detergents, microspheres or lipid microparticles or in oily emulsions. This incorporation advantageously takes place before mixing with the polynucleotide or the polypeptide.
  • a compound of formula (I) can be combined (i) with a neutral lipid such as cholesterol, a lecithin or a phosphatidylethanolamine to form liposomes; (ii) a detergent such as Tween 80 to form mixed micelles; (iii) a metabolizable vegetable or animal oil, such as for example squalene or soybean oil, within lipid microspheres or an oily emulsion.
  • a neutral lipid such as cholesterol, a lecithin or a phosphatidylethanolamine
  • a detergent such as Tween 80
  • a metabolizable vegetable or animal oil such as for example squalene or soybean oil
  • the invention also relates to an ex vivo or in vitro transfection method according to which eukaryotic cells in culture are brought into contact with a composition according to the invention.
  • the invention also relates to the use of a compound corresponding to formula (I) as defined above, in the manufacture of a medicament containing a polynucleotide or a polypeptide as active ingredient; the compound of formula (I) being intended to facilitate the penetration of the polynucleotide or the polypeptide into the cells of the individual in need of such a medicament.
  • This medicament is advantageously intended to be administered by the intramuscular route.
  • the polynucleotide can be a polydeoxyribonucleotide (DNA) or a polyribonucleotide (RNA). Its origin does not matter: natural or artificial gold. It can be of animal, human, plant, bacterial or viral origin.
  • Its function as a therapeutic agent can be an antisense function which controls the expression of a gene, its transcription into RNA or its translation into protein in a host cell. It can also act as a ribozyme or code for a polypeptide of interest.
  • the polynucleotide operatively codes for a polypeptide of pharmaceutical interest which, when expressed in the host cell, makes it possible to compensate for a dysfunction of the receptor organism.
  • a composition according to the invention is therefore useful in gene therapy in vivo or ex vivo.
  • the polynucleotide can also operatively encode a polypeptide capable of generating an immune response against it in humans or animals.
  • a polypeptide capable of generating an immune response against it in humans or animals.
  • Such polypeptide can be specific for a pathogenic organism (infectious agent) or a tumor state (antigen-associated with a tumor). Consequently, a composition according to the invention finds a particular application in the field of vaccines and immunotherapy, in particular for treating or preventing cancers or bacterial or viral infections.
  • polypeptide any chain of amino acids whatever its size. Thus this term covers in particular the concepts of peptide and protein.
  • the polynucleotide is advantageously F DNA and preferably is in the form of vector e.g, plasmid vector.
  • vector e.g, plasmid vector.
  • the DNA sequence coding for the antigenic or therapeutic polypeptide is placed under the control of elements ensuring its expression in the host organism.
  • the promoter of the early region of the genome of cytomegalovims is in common use.
  • a pharmaceutical composition according to the invention can be used in gene therapy in vivo or ex vivo. This is why, in another aspect, the invention also relates to a method for treating a disease induced by the absence or deficiency of a gene, method according to which:
  • composition according to the invention is administered which comprises a polynucleotide comprising a gene capable of correcting the disease and a compound corresponding to formula (I) to a patient in need of such treatment; or
  • composition useful in gene therapy involves a polynucleotide comprising a therapeutic gene t ' .e., A gene encoding a polypeptide having a therapeutic effect. This polypeptide can be homologous with respect to the target cell (t ' .e. A polypeptide which is normally expressed in the absence of pathogenic condition).
  • the expression of the polypeptide following the administration of a composition according to the invention makes it possible to overcome an insufficient expression or the expression of an inactive or weakly active polypeptide.
  • the therapeutic gene can also code for a variant form of the cellular polypeptide which has increased stability, altered activity, etc.
  • the polypeptide can also be heterogeneous with respect to the target cell and, for example, can supplement or modify an aberrant or deficient activity.
  • the subject of the invention is also the combined use as described above of a polynucleotide coding for a polypeptide capable of correcting a genetic deficiency and of a compound corresponding to formula (I), in the manufacture of a medicament intended for the treatment of this genetic deficiency.
  • a composition according to the invention can also be useful in the field of immunization (e.g. vaccination) and immunotherapy.
  • the composition involves a polynucleotide comprising a sequence coding for an antigenic polypeptide which may be either a polypeptide expressed under natural conditions by a pathogenic organism (infectious agent, such as a virus or a bacteria) or a polypeptide mammal whose aberrant expression is characteristic of a cancerous state.
  • infectious agent such as a virus or a bacteria
  • a polypeptide mammal whose aberrant expression is characteristic of a cancerous state.
  • the subject of the invention is also the combined use as described above of a polynucleotide coding for a polypeptide specific for an infectious agent or for cancer and for a compound responding to the formula (I), in the manufacture of a medicament intended for the treatment or prevention of an infectious disease or of cancer.
  • composition according to the invention can be administered by the route most favorable to treatment, without particular exclusion.
  • a composition according to the invention useful in the field of immunization or immunotherapy can be administered by any route commonly used in these fields. Nevertheless, it is indicated that the channels which allow access to cells rich in acetylcholine membrane receptors are particularly suitable; for example, the intramuscular route.
  • the amount of polynucleotide to be administered depends on a large number of factors, such as the disease itself, the nature of the polynucleotide, eg antisense DNA / RNA or plasmid DNA, the strength of the plasmid promoter, the biological activity of the polypeptide expressed by the gene, the physical condition of the individual or animal, the. of the mammal for which the composition is intended, the method of administration and the type of formulation.
  • a dose effective in prophylaxis or therapy in a human adult is between 10 ⁇ g and 5 mg, advantageously between 100 ⁇ g and 5 mg, preferably between 250 ⁇ g and 3 mg.
  • Administration can be carried out as a single dose or repeated at intervals.
  • a polynucleotide encoding a negatively charged polypeptide can be replaced by the polypeptide itself in the compositions according to the invention, for all prophylactic or therapeutic purposes.
  • negatively charged polypeptide is meant a polypeptide characterized by an overall negative charge / positive charge ratio greater than zero, at neutral pH. Such a polypeptide must mainly consist of acidic amino acids.
  • the ratio of negative charges brought by the polynucleotide or the polypeptide / positive charges brought by the compound of formula (I) is advantageously between 0.1 and 100, preferably between 0.5 and 20.
  • a composition according to the invention can be manufactured in a conventional manner according to the directives in use in the fields of gene therapy, vaccines or immunotherapy and in particular by simple mixing of the constituents in an aqueous medium.
  • a composition contains a pharmaceutically acceptable carrier or diluent and can be in liquid or solid form e.g. lyophilized. If necessary, the solid form can be reconstituted in a liquid medium before use.
  • Example 1 illustrate, in a nonlimiting manner, some modes of implementation of the invention.
  • Example 1 The steps of Example 1 are repeated, initially mixing 11.43 mg of 2C ⁇ 6 OAc and 22.3 mg of dioleoylphosphatidylethanolamine (DOPE; 30 ⁇ mol) in 500 ⁇ l of chloroform. A suspension of liposomes is obtained at 7.5 mM of 2C 16 OAc and 15 mM of DOPE in water which is stored at 4 ° C.
  • DOPE dioleoylphosphatidylethanolamine
  • Example 3 Transfection of the plasmid pCMV- ⁇ Gal in CHO cells using the liposomes prepared in example 1 or 2, comprising 2Ci 6 ⁇ Ac.
  • the liposome suspensions obtained in Examples 1 and 2 are each diluted in deionized water to reach a concentration of 0.747 mM of positive charges with a view to their use for transfecting the plasmid pCMN- ⁇ Gal in CHO cells in culture according to the method described by Felgner et al, J. Tiss. Cooked. Meth. (1993) 15: 63.
  • PCMN- ⁇ Gal - liposomes complexes with different DNA and liposome contents are prepared as follows:
  • 66 ⁇ l of ⁇ MEM medium are distributed in each well of the first column of a 96-well plate (well A1 to Hl) and 60 ⁇ l in all the other wells.
  • 54 ⁇ l of the 0.747 mM solution of positive charges of the lipid formulation obtained according to Example 1 or 2 are added to each well of the first column.
  • a lipid formulation is then diluted in series by transferring 60 ⁇ l from each well of column 1 to the corresponding well of column 2, then 60 ⁇ l of each well of column 2 to the corresponding well of column 3, and thus immediately to column 8 (well A8-H8).
  • Different dilutions of the plasmid solution are made in a second 96-well plate, each containing 70 ⁇ l of ⁇ MEM medium.
  • 70 ⁇ l of a solution containing 80 ⁇ g of pCMN-bGal / ml of ⁇ MEM medium are added to each well of the first row of the plate (well A1-A8).
  • a serial dilution of the plasmid solution is then carried out by transferring 70 ⁇ l from each well in the first row to the corresponding well in the second row, then 70 ⁇ l from each well in the second row to the corresponding well in the third row, and thus immediately to the eighth row (well H1-H8).
  • the pCMN- ⁇ Gal - liposomes complexes having different DNA and liposome contents are obtained by transferring 60 ⁇ l from each well of the plate containing the plasmids into the corresponding well of the plate containing the liposomes. After 10 minutes of incubation, 100 ⁇ l of the resulting complexes are transferred to the cells. The cells are incubated at 37 ° C. in a humid atmosphere containing 5% of CO2. At the end of the fifth hour of transfection, fetal calf serum (SNF) is added to the cultures (by adding 50 ⁇ l of ⁇ MEM containing 30% SNF to each well containing cells). After 24 hours of culture, another 100 ⁇ l of ⁇ MEM containing 10% SNF is added to all the wells containing cells.
  • SNF fetal calf serum
  • the transfection efficiency is measured at 48 hours after lysis of the cells by the assay of beta-galactosidase encoded by the plasmid pCMN- ⁇ Gal.
  • the assay of the enzyme is carried out using FO ⁇ PG (ortho nitrophenyl galactoside) as substrate to detect and measure according to a colorimetric method the activity of beta-galactosidase manufactured by transfected cells.
  • the beta-galactosidase transforms the colorless ONPG into galactose and orthonitrophenol colored in yellow (adsorption at 405 nm).
  • results obtained are shown in the tables below where the optical density read at 405 nm is indicated for each well.
  • the wells of the 9 th column correspond to negative controls representing the background noise, while the wells of the 10 th column are used to make a standard range of beta-galactosidase of 400 ng of enzyme / ml (well A 10) at 3.125 ng / ml (well H10).
  • Example 4 Transfection of the plasmid pCMN-Luc in CHO cells using the liposomes prepared in Example 1 or 2, comprising 2C ⁇ 6 OAc.
  • the liposomes of Example 1 are diluted in ⁇ MEM medium so as to obtain concentrations of 0.084 mM and 0.042 mM in 2C ⁇ 6 OAc and the liposomes of Example 2 are similarly diluted so as to obtain a concentration of 0.042 mM in 2C ⁇ 6 OAc.
  • DNA-liposome complexes are prepared by adding 40 ⁇ g of pCMV-Luc (ie approximately 0.12 ⁇ mol of anionic phosphate groups) diluted in 1 ml of ⁇ MEM medium to 1 ml of the liposome suspensions diluted in ⁇ MEM as indicated above.
  • the ratio of cationic to anionic charges within the DNA - liposome complexes can then be estimated at 0.7 for preparations at 0.084 mM in 2C ⁇ 6 OAc and at 0.35 for preparations at 0.042 mM in 2C ⁇ 6 OAc.
  • Acetylcoline esterase is an enzyme capable of binding and hydrolyzing the acetylcholine end of 2C ⁇ 6 OAc to expose the primary alcohol function of choline at the end of the polar head of 2C 16 OAc. It has been described that following the exposure of this alcohol function, the 2C ⁇ 6 OAc molecule reorganizes by ejecting one of its fatty chains by intramolecular attack on the hydroxyl on one of the carbonyl bonds of the molecule. A fatty chain derivative is thus formed, capable of destabilizing the bilayers of the liposomes (Menger & Johnston, Jr, J. Am. Chem. Soc. (1991) 113: 5467). Acetylcoline esterase is therefore expected to destroy the liposomes containing 2C ⁇ 6 OAc and denature the complexes formed between 2C ⁇ 6 OAc and DNA, which should result in a decrease in transfection activity.
  • a stock solution of acetylcoline esterase is prepared by dissolving acetylcoline esterase type VS from Sigma so as to obtain an enzyme solution at 10 "5 M in 25 mM sodium phosphate buffer, pH 7.2, containing 50% (v / v) of glycerol The enzyme is then introduced at increasing concentrations of 0 - 10 "9 M - 10 " 8 M - 10 " 7 M into the cell culture medium by diluting the enzyme solution stored in the culture medium of these cells.
  • transfection efficiency is assessed 48 hours later, as in Example 3, and is expressed as a% of the transfection efficiency of the control (transfection carried out under the same conditions as above but in the absence acetylcoline esterase). The results are presented in table 4 below.
  • Example 5 Transfection of the plasmid pNR-Luc + in the quadriceps muscle of BALB / c mice using the liposomes prepared in example 1 or 2, comprising 2C 16 OAc.
  • a marker gene transfer is carried out in vivo by injecting DNA - liposome complexes directly into the quadriceps muscle of mice.
  • this test we use the plasmid pNR-Luc + coding for luciferase and the construction of which has been described in Haensler et al., Vaccine (1999) 17: 628.
  • the mice are sacrificed to remove the quadriceps and measure the expression of the plasmid pNR-Luc + by assaying the enzymatic activity of the luciferase produced after having released it by grinding the muscle in an adequate lysis buffer using a ball mill.
  • the details of this protocol are described in Haensler et al. (Supra).
  • the luciferase content of the muscle is calculated by plotting the enzymatic activity measured by chemiluminescence on a standard curve constructed from ground quadriceps muscles in the presence of known quantities of pure luciferase marketed by Analytical Luminescence Labs, San Diego, CA.
  • the formulations tested are a formulation containing liposomes such as those obtained in Example 1, a formulation containing liposomes such as those obtained in Example 2, a formulation containing a cationic lipid of the prior art, DC-Chol , the DC-Chol liposomes having been prepared according to the same process and at the same concentration as the liposomes of Example 1, and a formulation containing the plasmid pNR-Luc + nu, that is to say devoid of agent complexing.
  • the DNA - liposome complexes are prepared by adding 500 ⁇ l of liposomal suspension diluted to half (0.373 mM in cationic lipid) or to 1/10 (0.075 mM in cationic lipid) on 500 ⁇ l of deionized water containing 200 ⁇ g of plasmid pNR- Luc +. The mixture is incubated for 0.5 to 2 hours before being injected into the quadriceps of BALB / c mice under anesthesia at a rate of 50 ⁇ l (or 10 ⁇ g of DNA) per quadriceps.
  • the ratio of cationic charges to anionic charges within the DNA - liposome complexes is estimated at 0.3 for the preparations at 0.373 mM in 2C ⁇ OAc and at 0.06 for the preparations at 0.075 mM in 2C ⁇ 6 OAc.
  • Each product is tested on a group of 3 mice. The product is injected into the two quadriceps of each of the mice. Six days after the injections, the quadriceps are removed and treated separately to measure the amount of luciferase produced. The average results over 6 quadriceps are presented in table 5 below in ng of luciferase per muscle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

L'invention a pour objet une composition qui comprend un polynucléotide ou un polypeptide chargé négativement et le bromure de 2-propanaminium, N-[2­(acetyloxy)ethyl]-1,3-bis(hexadecyloxy)-N,N-dimethyl-1,3-dioxo- ou un composé de structure et d'action équivalente. Un tel composé permet de délivrer de manière sélective le 20 polynucléotide ou le polypeptide dans des tissus riches en récepteur acétylcholine. Ainsi, la composition selon l'invention est utile en transfection in vitro ou ex vivo, et dans le domaine de la thérapie génique, de la vaccination et de l'immunothérapie.

Description

COMPOSES ET METHODE POUR LA DELIVRANCE CIBLEE DE PRINCIPES ACTIFS
L'invention a notamment pour objet des vecteurs de délivrance in vitro ou in vivo de principes actifs pharmaceutiques, notamment de polynucleotide et de polypeptide.
La délivrance intracellulaire d'un principe actif spécifique trouve application dans de nombreux domaines allant de la biologie cellulaire à la médecine. En biologie cellulaire, l'introduction dans des cellules de gènes (transfection) d'ARNm ou d'ARNi, d'oligonucléotides antisens, de ribozymes, de peptides et de protéines peut être utilisée notamment pour l'étude de la régulation de l'expression de gènes. En médecine, ces techniques ont été développées pour la délivrance de protéines thérapeutiques, d'oligonucléotides antisens et ribozymes (thérapies antisens) et de gènes (thérapie génique) pour pallier une déficience métabolique ou à un désordre génétique. Ces techniques sont également utilisées en vaccination pour la délivrance d'antigènes peptidiques et protéiques et de vaccins à base d'ADN.
De nombreuses méthodes et composés ont déjà été proposés pour introduire des acides nucléiques dans des cellules. Il s'agit notamment de (i) la co-précipitation d'acide nucléique et de phosphate de calcium ou de dextran DEAE, (ii) l'utilisation de polymères cationiques substitués ou non par des ligands, ou encore (iii) l'utilisation de lipides cationiques qui forment des complexes avec des polynucléotides chargés négativement et facilitent leur passage au travers de la membrane cytoplasmique.
Parmi les lipides cationiques connus on peut notamment citer (i) les lipospermines telles que le 5-carboxyspermylglycine-dioctadécylamide (DOGS) et le trifluoroacétate de 2,3 diolyloxy-N- [2(sperminecarboxamido)ethyl] -N,N-dimethyl-propanammonium fournie sous les dénominations commerciales respectives de Transfectam™ et Lipofectamine™ ; (ii) le chlorure de N-[l-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium (DOTMA) commercialisé en association avec un lipide neutre, la dioleoylphosphatidylethanolamine (DOPE) sous la dénomination Lipofectin™ ; (iii) des lipopolylysines (Zhou et al., Biochem. Biophys. Acta, (1991) 1065 : 8) ; (iv) des détergents à ammonium quaternaire, tels que le cétyltriméthylammonium ou le bromure de diméthyldioctadécyl-ammonium (DDAB), commercialisé en association avec un lipide neutre sous la dénomination Transfectace™ ; (v) des dérivés cationiques du cholestérol tel que le 3β[N-(N',N'-diméthylaminométhane)- carbamoyljcholestérol (DC-Chol) (Gao &. Huang, Biochem. Biophys. Res. Commun. (1979) : 280) ; (vi) des analogues métabolisables du DOTMA tels que le (1,2-dioleoyloxy- 3-triméthylammonio)propane (DOTAP) fourni par la société Avant! Polar Lipids ; (vii) des lipides cationiques triacylés tels que le O,O',O"-tridodécanoyl-N-(ω- triméthylammoniododécanoyl)-tris-(hydroxyméthyl) aminométhane et ses analogues décrits dans WO96/32102.
Ces réactifs sont notamment capables de former un complexe de charge avec un polynucleotide dans la mesure où ils sont porteurs d'une ou plusieurs charges positives, constituées par un ou plusieurs groupements aminés protonés ou ammoniums localisés à l'extrémité hydrophile de leur tête polaire. Ils permettent de délivrer les polynucléotides au niveau des tissus de manière non spécifique.
Des méthodes de transfert ciblé ont aussi été proposées. Le principe de ces méthodes consiste soit dans l'incorporation d'un composé permettant le ciblage, tel qu'un glycolipide spécifique d'une lectine cellulaire particulière, dans les couches lipidiques de liposomes contenant un lipide cationique comme le DOGS (Remy et al., PNAS (1995) 92 : 1744) ; soit dans le couplage d'un composé permettant le ciblage avec un polymère cationique comme la polylysine (Wu & Wu, J. Biol. Chem. (1988) 263 : 14621 ; Wagner et al. PNAS (1990) 87 : 3410 ; Huckett et al. Biochem. Pharmacol. (1990) 40 : 253 ; Midoux et al. Nucleic Acids Res.(1993) 21 : 871) ou la polyethylèneimine PEI (Diebold et al. J. Biol. Chem.(1999) 274 : 19087).
Jusqu'à présent aucune des méthodes déjà connues ne permet une livraison cellulaire ciblée, basée sur une interaction directe et sélective entre le lipide cationique et un récepteur présent en grande quantité ou de manière spécifique à la surface des cellules-cible.
On a maintenant trouvé que le bromure de 2-propanaminium, N-[2-(acetyloxy)ethyl]-l,3- bis(hexadecyloxy)-N,N-dimethyl-l,3-dioxo- (aussi appelé 2Ci6OAc) permettait de transférer de manière préférentielle un composé porteur de charge négative tel qu'un polynucléotide ou un polypeptide dans des tissus riches en récepteurs acétylcholine telles que les tissus musculaires et certaines tumeurs.
La formule développée (0) de ce composé est la suivante :
Figure imgf000004_0001
Ainsi que l'on peut aisément s'en rendre compte, la charge positive de ce composé est un ammonium quaternaire situé à la jonction entre sa partie lipophile et sa tête polaire. De manière surprenante, cette charge positive reste néanmoins accessible pour la complexation de molécules polymériques porteuses de charges négatives, malgré l'encombrement stérique.
C'est pourquoi l'invention a pour objet une composition qui comprend un polynucleotide ou un polypeptide chargé négativement et un composé répondant à la formule (I) :
Figure imgf000004_0002
dans laquelle :
Ri et R2, identiques ou différents, sont des chaînes aliphatiques saturées ou insaturées contenant de 3 à 24 atomes de carbone ; et soit R3 répond à la formule (F)
Figure imgf000004_0003
dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et (i) Rt et Rs représentent chacun un atome d'hydrogène ; et Rβ est de telle sorte que R3 constitue un radical peptidique comportant une séquence d'acides aminés qui est un ligand de ciblage ou un élément de marquage ; ou (ii) R4, R5 et R-6 sont de telle sorte que R3 constitue un radical qui est un ligand de ciblage ou un élément de marquage ; soit R3 répond à la formule (F ') R7 R8 dans laquelle :
R est un agent de liaison répondant à la formule (F")
Figure imgf000005_0001
dans laquelle : X est un anion acceptable d'un point de vue pharmaceutique ; et
R9 et Rio, identiques ou différents, représentent chacun (i) un atome d'hydrogène ou (ii) un radical méthyl, éthyl, propyl ou alkyl supérieur comportant de 1 à 22 atomes de carbone, substitué ou non, interrompu ou non par un ou plusieurs hétéroatomes choisis parmi O, S et N ou par un ou plusieurs radicaux carbocycliques ou hétérocycliques, saturés, insaturés ou aromatiques ; et
Ru représente (i) une liaison simple ou (ii) une chaîne aliphatique comportant de 1 à 22 atomes de carbone, linéaire ou ramifiée, substituée ou non, saturée ou insaturée, interrompue ou non par un ou plusieurs hétéroatomes choisis parmi O, S et N ou par un ou plusieurs radicaux carbocycliques ou hétérocycliques, saturés, insaturés ou aromatiques ; et Rs est un ligand de ciblage ou un élément de marquage.
Aux fins de la présente invention, un composé répond avantageusement à la formule (I) dans laquelle Ri et R2 sont des chaînes aliphatiques de 8 à 18, de préférence de 12 à 16 atomes de carbone.
L'anion X présent dans les formules (F) et (F") est avantageusement choisi parmi Br-, Cl-, I- et F-
Par « ligand de ciblage » on entend un composé capable d'interagir de manière spécifique ou non spécifique (e.g. interaction hydrophobe ou électrostatique) avec un récepteur présent dans un tissu, incorporé ou non dans une membrane cellulaire. Par « élément de marquage » on entend un composé facilement détectable dans un tissu, un organe ou une cellule par des techniques physico-chimiques préférentiellement basées sur des mesures de fluorescence ou de radioactivité.
Lorsque R3 répond à la formule (F) en constituant un radical peptidique, ce radical comprend une séquence reconnue par un récepteur de membrane, avantageusement de 3 à 15, de préférence de 3 à 10, de manière tout à fait préférée de 3 à 5 acides aminés. Les séquences d'acides aminés reconnues par des récepteurs (usuellement appelées « motifs ») sont généralement très courtes, e.g. de 3 à 5 acides aminés. Mais il est tout à fait possible que la séquence constituant le radical R3 contienne des acides aminés additionnels. A titre d'exemple de séquence reconnue par un récepteur membranaire, on cite (i) la séquence RGD, YIGSR ou leurs homologues capables de reconnaître des intégrines cellulaires comme la fibronectine ou la laminine (S. Zalipsky et al, Bioconjug. Chem. (1995) 6 : 705 et T. Nishiya & S. Sloan, Biochem. Biophys. Res. Commun., (1996) 224 : 242) ou (ii) HAN (His-Ala-Nal), ligand des Ν- et E-cadherines des cellules neuronales, musculaires et épithéliales (J. Willems et al. FEBS Lett, (1995) 363 : 289).
A titre d'exemple de radical R3 répondant à la formule (F) sans être un radical peptidique, on cite des aminoglycosides tels que la galactosamine ou la glucosamine ; et le Ν,Ν- diméthylaminoethylacétate pour le ciblage de l'acétylcholine estérase et autres récepteurs à Pacétylcholine (F. Menger et D. Johnston Jr, J. Am. Chem. Soc. (1991) 113 : 5467). Ces ligands possèdent un groupement aminé primaire, secondaire ou tertiaire leur permettant de réagir avec le dihexadecyl bromomalonate et ses analogues.
Lorsque le ligand d'un récepteur membranaire ne comporte pas de groupement aminé (R8), il convient alors de le coupler au préalable à un agent de liaison porteur d'un groupement aminé (R7) afin d'obtenir un dérivé R3 de formule (F"). C'est en particulier le cas pour le NAD ou ses analogues, ligands du CD38 (NAD+ glycohydrolase) pour lequel la fonctionalisation a été décrite dans J. Salord et F. Schuber, Biochem. Biophys. Acta, (1988) 971 : 197. C'est aussi le cas pour le galactose et ses analogues, ligands du récepteur Gal/GalNAc présent à la surface des hépatocytes (le., le récepteur des asialoglycoprotéines) pour lesquels la fonctionalisation a été décrite dans A. Kichler et F. Schuber, Glycoconj. J., (1995) 12 : 275. Ainsi en pratique, il est possible d'utiliser tout type de ligand pour former un composé de formule (I). C'est pourquoi on incorpore par référence E. Forssen et M. Willis, Adv. Drug. Del. Rev., (1998) 29 : 249, qui offre une liste plus exhaustive de ligands utiles aux fins de la présente invention.
L'élément de marquage peut être un composé qui permet de suivre le devenir de la composition dans un organisme ou une cellule. Il peut s'agir d'un composé porteur d'un radioélément tel que la tyramine qui se prête au radiomarquage par iodination à l'iode radioactif. La tyramine comporte un groupement amine et rentre ainsi dans la catégorie des radicaux R3 de formule (F). Il peut s'agir aussi d'un chromophore tel qu'un fluorophore. A titre d'illustration, on cite la 5-(aminoacétamido)fluorescéine vendue par la société Molecular Probes, qui rentre aussi dans la catégorie des radicaux R3 de formule (F).
Sous un aspect particulier, une composition selon l'invention peut contenir deux composés de formule (I) l'un étant destiné au ciblage et à la délivrance, l'autre permettant de tracer le devenir de la composition dans l'organisme-hôte. Ainsi, une composition selon l'invention peut comprendre (a) un composé répondant à la formule (I) dans laquelle : Ri et R2 sont tels que précédemment définis ; et soit R3 répond à la formule (F)
Figure imgf000007_0001
dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et (i) R4 et Rs représentent chacun un atome d'hydrogène ; et Rg est de telle sorte que R3 constitue un radical peptidique comportant une séquence d'acides aminés qui est un ligand de ciblage ; ou (ii) R4, R5 et Rg sont de telle sorte que R3 constitue un radical qui est un ligand de ciblage ; soit R3 répond à la formule (I") R7 R8 dans laquelle : R est tel que défini précédemment ; et
Rs est un ligand de ciblage ; et (b) un composé répondant à la formule (I) dans laquelle : Ri et R2 sont tels que définis précédemment ; et soit R3 répond à la formule (F)
Figure imgf000008_0001
dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et (i) R4 et Rs représentent chacun un atome d'hydrogène ; et
Rβ est de telle sorte que R$ constitue un radical peptidique comportant une séquence d'acides aminés qui est un élément de marquage ; ou (ii) R4, R5 et Rβ sont de telle sorte que R3 constitue un radical qui est un élément de marquage ; soit R3 répond à la formule (I") R7 R8 dans laquelle :
R7 est tel que défini précédemment ; et Rs est un élément de marquage.
Les composés de formule (I) peuvent être obtenus selon la méthode de Menger & Johnston (supra) par réaction entre l'acide malonique et un excès d'alcool gras comprenant de 3 à 24, de préférence de 8 à 18, de manière tout à fait préférée de 12 à 16 atomes de carbone, pour former un diester malonique qui est, par exemple, bromylé ou fluoré en un diester bromomalonique ou fluoromalonique. Le diester bromo ou fluoromalonique est ensuite mis en contact avec ligand de ciblage ou un élément de marquage cellulaire comportant un groupement amine primaire, secondaire ou tertiaire capable de substituer l'atome de brome ou de fluor pour lier l'élément de ciblage (ou de marquage) sur le diester malonique via une amine secondaire ou tertiaire protonable ou via un ammonium quaternaire.
Aux fins de la présente invention, les composés de formule (I) peuvent être incorporés dans des liposomes, des micelles mixtes de lipides et de détergents, des microsphères ou microparticules lipidiques ou dans des émulsions huileuses. Cette incorporation s'effectue avantageusement avant mélange avec le polynucleotide ou le polypeptide. Selon des modes de réalisation particuliers, un composé de formule (I) peut être associé (i) à un lipide neutre tel que le cholestérol, une lécithine ou une phosphatidyléthanolamine pour former des liposomes ; (ii) à un détergent tel que le Tween 80 pour former des micelles mixtes ; (iii) à une huile végétale ou animale métabolisable, comme par exemple le squalène ou l'huile de soja, au sein de microsphères lipidiques ou d'une émulsion huileuse. Les méthodes pour la préparation de ces formulations lipidiques sont connues par l'homme de métier et publiées dans la littérature ; par exemple dans Colloïdale Drug Delivery Systems, 1994, Edited by Jôrg Kreuter dans Drugs and the Pharmaceutical Sciences, vol. 66, James Swarbrick Eds, Applied Analytical Industries, Inc., Wilmington, North Carolina.
Selon un aspect particulier, l'invention a aussi pour objet une méthode de transfection ex vivo ou in vitro selon laquelle on met en contact des cellules eucaryotes en culture avec une composition selon l'invention.
Sous un autre aspect, l'invention a aussi pour objet l'usage d'un composé répondant à la formule (I) telle que définie précédemment, dans la fabrication d'un médicament contenant un polynucleotide ou un polypeptide à titre de principe actif ; le composé de formule (I) étant destiné à faciliter la pénétration du polynucleotide ou du polypeptide dans les cellules de l'individu ayant besoin d'un tel médicament. Ce médicament est avantageusement destiné à être administré par voie intramusculaire.
Aux fins de la présente invention, le polynucleotide peut être un polydeoxyribonucléotide (ADN) ou un polyribonucléotide (ARN). Son origine n'importe pas : naturelle or artificielle. Il peut être d'origine animale, humaine, végétale, bactérienne ou virale.
Sa fonction à titre d'agent thérapeutique peut être une fonction antisens venant contrôler l'expression d'un gène, sa transcription en ARN ou sa traduction en protéine dans une cellule-hôte. Il peut aussi agir en tant que ribozyme ou coder pour un polypeptide d'intérêt.
Sous un aspect particulier, le polynucleotide code de manière opérante pour un polypeptide d'intérêt pharmaceutique qui, lors de son expression dans la cellule-hôte, permet de pallier un disfonctionnement de l'organisme récepteur. Une composition selon l'invention est par conséquent utile en thérapie génique in vivo ou ex vivo.
Le polynucleotide peut aussi coder de manière opérante pour un polypeptide capable de générer une réponse immune à son encontre chez les humains ou les animaux. Un tel polypeptide peut être spécifique d'un organisme pathogène (agent infectieux) ou d'un état tumoral (antigène-associé à une tumeur). Par conséquent, une composition selon l'invention trouve une application particulière dans le domaine des vaccins et de l'immunothérapie, notamment pour traiter ou prévenir des cancers ou des infections bactériennes ou virales.
Par « polypeptide » on entend tout enchaînement d'acides aminés quelle que soit sa taille. Ainsi ce terme recouvre notamment les notions de peptide et de protéine.
Pour usage dans les domaines de la thérapie génique, des vaccins et de l'immunothérapie, le polynucleotide est avantageusement de F ADN et de préférence, se présente sous forme de vecteur e.g, de vecteur plasmidique. Pour des raisons de sécurité, un tel vecteur doit être non-infectieux et ne pas se répliquer dans l'organisme-hôte. De plus, il ne doit pas être capable de s'intégrer de manière substantielle dans le génome de l'organisme-hôte. Dans un tel vecteur, la séquence d'ADN codant pour le polypeptide antigénique ou thérapeutique est placée sous le contrôle d'éléments assurant son expression dans l'organisme-hôte. A cet effet, le promoteur de la région précoce du génome du cytomégalovims est d'un usage courant.
Tel que mentionné ci-dessus, une composition pharmaceutique selon l'invention peut être utilisée en thérapie génique in vivo ou ex vivo. C'est pourquoi, sous un autre aspect, l'invention a également pour objet une méthode pour traiter une maladie induite par l'absence ou la déficience d'un gène, méthode selon laquelle :
(i) on administre une composition selon l'invention qui comprend un polynucleotide comportant un gène capable de corriger la maladie et un composé répondant à la formule (I) à un patient ayant besoin d'un tel traitement ; ou
(ii) on collecte des cellules appropriées à partir d'un patient ayant besoin d'un tel traitement, on met ces cellules en contact avec une composition selon l'invention qui comprend un polynucleotide comportant un gène capable de corriger la maladie et un composé répondant à la formule (I), de manière à ce que les cellules soient transfectées et on réimplante les cellules transfectées chez le patient. Une composition utile en thérapie génique met en jeu un polynucleotide comportant un gène thérapeutique t'.e., un gène codant pour un polypeptide ayant un effet thérapeutique. Ce polypeptide peut être homologue vis-à-vis de la cellule-cible (t'.e. un polypeptide qui est normalement exprimé en l'absence de condition pathogène). Dans ce cas, l'expression du polypeptide suite à l'administration d'une composition selon l'invention, permet de surmonter une expression insuffisante ou l'expression d'un polypeptide inactif ou faiblement actif. Le gène thérapeutique peut aussi coder pour une forme variante du polypeptide cellulaire qui possède une stabilité accrue, une activité modifiée, etc. Le polypeptide peut être aussi hétérogène vis-à-vis de la cellule-cible et, par exemple, peut supplémenter ou modifier une activité aberrante ou déficiente.
En d'autres termes, l'invention a aussi pour objet l'usage combiné tel que décrit ci-dessus d'un polynucleotide codant pour un polypeptide capable de corriger une déficience génétique et d'un composé répondant à la formule (I), dans la fabrication d'un médicament destiné au traitement de cette déficience génétique.
Une composition selon l'invention peut aussi être utile dans le domaine de l'immunisation (e.g. de la vaccination) et de l'immunothérapie. Dans ce cas, la composition met en jeu un polynucleotide comportant une séquence codant pour un polypeptide antigénique qui peut être soit un polypeptide exprimé dans des conditions naturelles par un organisme pathogène (agent infectieux, tel qu'un virus ou une bactérie) ou un polypeptide de mammifère dont l'expression aberrante est caractéristique d'un état cancéreux. On parle respectivement d'antigène spécifique d'un agent infectieux et d'antigène associé à une rumeur.
En d'autres termes, l'invention a aussi pour objet l'usage combiné tel que décrit ci-dessus d'un polynucleotide codant pour un polypeptide spécifique d'un agent infectieux ou d'un cancer et d'un composé répondant à la formule (I), dans la fabrication d'un médicament destiné au traitement ou à la prévention d'une maladie infectieuse ou d'un cancer.
Dans les traitements thérapeutiques in vivo, une composition selon l'invention peut être administrée par la voie la plus favorable au traitement, sans exclusion particulière. Une composition selon l'invention utile dans le domaine de l'immunisation ou de l'immunothérapie peut être administrée par n'importe quelle voie communément en usage dans ces domaines. Néanmoins, on indique que les voies qui permettent l'accès à des cellules riches en récepteurs membranaires de l'acétylcholine sont tout particulièrement appropriées ; par exemple, la voie intramusculaire.
En général, la quantité de polynucleotide devant être administré dépend d'un grand nombre de facteurs, tels que la maladie elle-même, la nature du polynucleotide, e.g. ADN / ARN antisens ou ADN plasmidique, la force du promoteur du plasmide, l'activité biologique du polypeptide exprimé par le gène, la condition physique de l'individu ou de l'animal, la. du mammifère auquel la composition est destinée, la méthode d'administration et le type de formulation. En général, une dose efficace en prophylaxie ou en thérapie chez un adulte humain est comprise entre 10 μg et 5 mg, avantageusement entre 100 μg et 5 mg, de préférence entre 250 μg et 3 mg. L'administration peut être réalisée en dose unique ou répétée par intervalles.
De manière alternative, un polynucleotide codant pour un polypeptide chargé négativement peut être remplacé par le polypeptide lui-même dans les compositions selon l'invention, à toutes fins prophylactiques ou thérapeutiques. Par « polypeptide chargé négativement » on entend un polypeptide caractérisé par un rapport global charges négatives /charges positives supérieur à zéro, à pH neutre. Un tel polypeptide doit être majoritairement constitué par des acides aminés acides.
Dans les compositions selon l'invention, le rapport des charges négatives apportées par le polynucleotide ou le polypeptide / charges positives apportées par le composé de formule (I) est avantageusement compris entre 0.1 et 100, de préférence entre 0.5 et 20.
Une composition selon l'invention peut être fabriquée de manière conventionnelle selon les directives en usage dans les domaines de la thérapie génique, des vaccins ou de l'immunothérapie et notamment par simple mélange des constituants en milieu aqueux. Une composition contient un véhicule support ou diluant acceptable d'un point de vue pharmaceutique et peut être sous forme liquide ou solide e.g. lyophilisée. Si nécessaire, la forme solide peut être reconstituée en milieu liquide avant usage.
Les exemples suivants illustrent, de façon non limitative, quelques modes de mise en œuvre de l'invention. Exemple 1
On synthétise du bromure de 2-propanaminium, N-[2-(acetyloxy)ethyl]-l,3- bis(hexadecyloxy)-N,N-dimethyl-l,3-dioxo- selon la méthode de Menger & Johnston, Am. Chem. Soc. (1991) 113 : 5467. Ce composé est appelé de manière courante le 2Cι6OAc.
On dissout 11.43 mg (15 μmoles) de 2Cι6OAc dans 500 μl de chloroforme dans un pilulier en verre et on évapore la solution sous un flux d'azote pour former un film lipidique sur les parois et le fond du pilulier. Le film lipidique formé est encore séché pendant 4 heures sous vide poussé puis réhydraté avec 2 ml d'eau désionisée. Après une nuit à 4°C, la suspension obtenue est soumise à sonication dans un bain à ultrasons à 55°C pendant 2-10 minutes pour former une suspension homogène de liposomes. Cette suspension de liposomes à 7.5 mM de 2Cι6OAc en eau est conservée à 4°C.
Exemple 2
On répète les étapes de l'exemple 1 en mélangeant au départ 11.43 mg de 2Cι6OAc et 22.3 mg de dioléoylphosphatidyléthanolamine (DOPE ; 30 μmoles) dans 500 μl de chloroforme. On obtient une suspension de liposomes à 7.5 mM de 2C16OAc et 15 mM de DOPE en eau qui est conservée à 4°C.
Exemple 3 : Transfection du plasmide pCMV-βGal dans des cellules CHO à l'aide des liposomes préparés dans l'exemple 1 ou 2, comportant le 2Ci6θAc.
Les suspensions de liposomes obtenues dans les exemples 1 et 2 sont chacune diluées dans de l'eau désionisée pour atteindre une concentration de 0.747 mM de charges positives en vue de leur utilisation pour transfecter le plasmide pCMN-βGal dans des cellules CHO en culture selon la méthode décrite par Felgner et al, J. Tiss. Cuit. Meth. (1993) 15 : 63.
Les cellules CHO sont mises en culture dans une plaque à 96 puits (10 000 - 30 000 cellules par puits) un jour avant l'essai de transfection. On prépare des complexes pCMN-βGal - liposomes à différentes teneurs en ADN et en liposomes de la façon suivante :
1) Dilution de la formulation lipidique
On distribue 66 μl de milieu αMEM dans chaque puits de la première colonne d'une plaque à 96 puits (puits Al à Hl) et 60 μl dans tous les autres puits. On rajoute 54 μl de la solution à 0.747 mM de charges positives de la formulation lipidique obtenue selon l'exemple 1 ou 2 dans chaque puits de la première colonne. On effectue ensuite une dilution en série de la formulation lipidique en transférant 60 μl de chaque puits de la colonne 1 au puits correspondant de la colonne 2, puis 60 μl de chaque puits de la colonne 2 au puits correspondant de la colonne 3, et ainsi de suite jusqu'à la colonne 8 (puits A8-H8).
2) Dilution du plasmide pCMV-βGάl
On réalise différentes dilutions de la solution plasmidique dans une seconde plaque à 96 puits contenant chacun 70 μl de milieu αMEM. On rajoute 70 μl d'une solution contenant 80 μg de pCMN-bGal / ml de milieu αMEM dans chaque puits de la première rangée de la plaque (puits A1-A8). On effectue ensuite une dilution en série de la solution plasmidique en transférant 70 μl de chaque puits de la première rangée au puits correspondant de la deuxième rangée, puis 70 μl de chaque puits de la deuxième rangée au puits correspondant de la troisième rangée, et ainsi de suite jusqu'à la huitième rangée (puits H1-H8).
3) Formation des complexes ADN — liposomes et transfection . Les complexes pCMN-βGal - liposomes possédant différentes teneurs en ADN et en liposomes sont obtenus en transférant 60 μl de chaque puits de la plaque contenant les plasmides dans le puits correspondant de la plaque contenant les liposomes. Après 10 minutes d'incubation, 100 μl des complexes résultants sont transférés sur les cellules. Les cellules sont incubées à 37°C en atmosphère humide comportant 5 % de CO2. Au bout de la cinquième heure de transfection, on ajoute aux cultures du sérum de veau fœtal (SNF) (par addition de 50 μl de αMEM contenant 30 % de SNF dans chaque puits contenant des cellules). Au bout de 24 heures de culture on ajoute encore 100 μl de αMEM contenant 10 % de SNF dans tous les puits contenant des cellules.
4) Révélation de la transfection L'efficacité de transfection est mesurée à 48 heures après lyse des cellules par le dosage de la bêta-galactosidase codée par le plasmide pCMN-βGal. Le dosage de l'enzyme est réalisé en utilisant de FOΝPG (ortho nitrophényl galactoside) comme substrat pour détecter et mesurer selon une méthode colorimétrique l'activité de la bêta-galactosidase fabriquée par les cellules transfectées. La bêta-galactosidase transforme l'ONPG incolore en galactose et orthonitrophénol coloré en jaune (adsorption à 405 nm).
Les résultats obtenus sont représentés sur les tableaux ci-après où on indique, pour chaque puits, la densité optique lue à 405 nm. Pour chacun des deux tableaux, les puits de la 9ème colonne correspondent à des témoins négatifs représentant le bruit de fond, alors que les puits de la 10ème colonne sont utilisés pour faire une gamme étalon de bêta-galactosidase de 400 ng d'enzyme/ml (puits A 10) à 3.125 ng/ml (puits H10).
Tableau 1 : résultats obtenus avec les liposomes de 2Cι6OAc de l'exemple 1
Figure imgf000015_0001
Tableau 2 : résultats obtenus avec des liposomes de 2Cι6OAc/DOPE de l'exemple 2
Figure imgf000016_0001
Exemple 4 : Transfection du plasmide pCMN-Luc dans des cellules CHO à l'aide des liposomes préparés à l'exemple 1 ou 2, comportant le 2Cι6OAc.
Les liposomes de l'exemple 1 sont dilués dans du milieu αMEM de manière à obtenir des concentrations de 0.084 mM et 0.042 mM en 2Cι6OAc et les liposomes de l'exemple 2 sont dilués pareillement de manière à obtenir une concentration de 0.042 mM en 2Cι6OAc.
On prépare des complexes ADN - liposomes en ajoutant 40 μg de pCMV-Luc (soit env. 0.12 μmole de groupements phosphates anioniques) dilué dans 1 ml de milieu αMEM à 1 ml des suspensions de liposomes diluées en αMEM comme indiqué ci-dessus. Le rapport des charges cationiques sur anioniques au sein des complexes ADN - liposomes peut alors être estimé à 0.7 pour les préparations à 0.084 mM en 2Cι6OAc et à 0.35 pour les préparations à 0.042 mM en 2Cι6OAc.
Après 10 minutes d'incubation, on dépose, en duplicats, 1ml des complexes formés sur des cellules CHO en culture à environ 40 % de confluence dans des boîtes de Pétri de 60 mm de diamètre. Au bout de 4.5 heures de transfection, 0.5 ml de milieu αMEM contenant 30 % de SNF est ajouté dans chacune des boîtes. On ajoute encore 1 ml de milieu αMEM contenant 10 % de SNF 24 heures après la transfection. L'efficacité de la transfection est appréciée à 48 heures, après lyse des cellules par le dosage de la luciférase codée par le plasmide pCMN-Luc. Le dosage de l'enzyme est réalisé selon la technique décrite par De Wet et al, Mol.Cell Biol. (1987) 7 : 725, en utilisant de la luciférine comme substrat pour détecter et mesurer par luminescence l'activité de la luciférase fabriquée par les cellules transfectées.
Les résultats sont exprimés dans le tableau 3 ci-dessous en activité luciférase par puits (RLU/10 secondes; Moyenne de doublets).
Tableau 3
Figure imgf000017_0001
Exemple 5 : Influence de la présence d'acetylcoline estérase sur le pouvoir transfectant des liposomes préparés dans l'exemple 1 ou 2.
L'acetylcoline estérase est une enzyme capable de lier et d'hydrolyser l'extrémité acéthylcholine du 2Cι6OAc pour exposer la fonction alcool primaire de la choline à l'extrémité de la tête polaire du 2C16OAc. Il a été décrit, que suite à l'exposition de cette fonction alcool, la molécule de 2Cι6OAc se réorganise en éjectant une de ses chaînes grasses par attaque intramoléculaire de l'hydroxyle sur l'une des liaisons carbonyle de la molécule. Il se forme ainsi un dérivé à une chaîne grasse, capable de déstabiliser les bicouches des liposomes (Menger & Johnston, Jr, J. Am. Chem. Soc. (1991) 113 : 5467). On s'attend donc à ce que l'acetylcoline estérase détruise les liposomes contenant le 2Cι6OAc et dénature les complexes formés entre le 2Cι6OAc et l'ADN, ce qui devrait se traduire par une diminution de l'activité de transfection.
Une solution stock d'acetylcoline estérase est préparée en dissolvant l'acetylcoline estérase type V-S de chez Sigma de manière à obtenir une solution d'enzyme à 10"5 M dans du tampon 25 mM en phosphate de sodium, pH 7.2, contenant 50 % (v/v) de glycérol. L'enzyme est ensuite introduite à des concentrations croissantes de 0 - 10"9 M - 10"8 M - 10" 7 M dans le milieu de culture des cellules par dilution de la solution enzymatique stock dans le milieu de culture de ces cellules.
Deux situations différentes sont étudiées :
1) L'acétylcholine estérase à 0 - 10"9 M - 10"8 M - 10"7 M dans 1 ml de milieu de culture αMEM sans sérum est incubée avec les cellules CHO pendant les 30 minutes précédant la transfection puis le milieu contenant l'acetylcoline estérase est éliminé et remplacé par le milieu contenant les complexes ADN - liposomes. Le protocole de transfection se poursuit alors en absence d'enzyme comme dans l'exemple 3.
2) Après les 30 minutes de pré-incubation, le milieu de pré-incubation contenant les concentrations croissantes d'acetylcoline estérase n'est pas retiré mais dilué directement au demi avec 1 ml de milieu contenant les complexes ADN - liposomes. La transfection se poursuit alors comme dans l'exemple 3 mais en présence d'enzyme.
Dans les deux cas, l'efficacité de transfection est appréciée 48 heures après, comme dans l'exemple 3, et est exprimée en % de l'efficacité de transfection du contrôle (transfection réalisée dans les mêmes conditions que ci-dessus mais en absence d'acetylcoline estérase). Les résultats sont présentés dans le tableau 4 ci-après
Figure imgf000019_0001
ND = Non Déterminé
La diminution de l'activité de transfection en présence de concentrations croissantes d'acetylcoline estérase suggère que les complexes 2Cι6OAc - ADN sont dénaturés et montre que le lipide cationique est susceptible de lier un récepteur (ici l'acetylcoline estérase) même lorsqu'il est engagé dans un complexe avec un polynucleotide (ici le plasmide pCMN-Luc).
Lorsque le 2C16OAc est combiné à un excès de DOPE, l'activité de transfection des complexes ADN - liposomes parait moins sensible à la présence d'acetylcoline estérase soluble, les variations d'activité luciférase d'un facteur inférieur ou égal à 2, étant considérées comme non-significatives.
Exemple 5 : Transfection du plasmide pNR-Luc+ dans le muscle quadriceps de souris BALB/c à l'aide des liposomes préparés dans l'exemple 1 ou 2, comportant le 2C16OAc.
On réalise un transfert de gène marqueur in vivo en injectant des complexes ADN - liposomes directement dans le muscle quadriceps de souris. Dans cet essai on utilise le plasmide pNR-Luc+ codant pour la luciférase et dont la construction a été décrite dans Haensler et al., Vaccine (1999) 17 : 628. Six jours après l'injection, on sacrifie les souris pour prélever les quadriceps et mesurer l'expression du plasmide pNR-Luc+ en dosant l'activité enzymatique de la luciférase produite après l'avoir libéré par broyage du muscle dans un tampon de lyse adéquat à l'aide d'un broyeur à billes. Les détails de ce protocole sont décrits dans Haensler et al. (supra). La teneur du muscle en luciférase est calculée en reportant l'activité enzymatique mesurée par chimioluminescence sur une courbe-étalon construite à partir de muscles quadriceps broyés en présence de quantités connues de luciférase pure commercialisée par Analytical Luminescence Labs, San Diego, CA.
Les formulations testées sont une formulation contenant des liposomes tels que ceux obtenus à l'exemple 1, une formulation contenant des liposomes tels que ceux obtenus à l'exemple 2, une formulation contenant un lipide cationique de l'art antérieur, le DC-Chol, les liposomes de DC-Chol ayant été préparés selon le même procédé et à la même concentration que les liposomes de l'exemple 1, et une formulation contenant le plasmide pNR-Luc+ nu, c'est-à-dire dépourvu d'agent complexant.
On prépare les complexes ADN - liposomes on rajoutant 500 μl de suspension liposomique diluée au demi (0.373 mM en lipide cationique) ou au l/10ème (0.075 mM en lipide cationique) sur 500 μl d'eau désionisée contenant 200 μg de plasmide pNR-Luc+. Le mélange est incubé de 0.5 à 2 heures avant d'être injecté dans le quadriceps de souris BALB/c sous anesthésie à raison de 50 μl (soit 10 μg d'ADN) par quadriceps. Le rapport des charges cationiques sur charges anioniques au sein des complexes ADN - liposomes est estimé à 0.3 pour les préparations à 0.373 mM en 2Cι OAc et à 0.06 pour les préparations à 0.075 mM en 2Cι6OAc. Chaque produit est testé sur un groupe de 3 souris. On injecte le produit dans les deux quadriceps de chacune des souris. Six jours après les injections, les quadriceps sont prélevés et traités séparément pour mesurer la quantité de luciférase produite. Les résultats moyennes sur 6 quadriceps sont présentés sur le tableau 5 ci-dessous en ng de luciférase par muscle.
Figure imgf000021_0001
Ces résultats indiquent que, contrairement aux agents de transfection à base de lipides cationiques de l'art antérieur (i.a., DC-Chol), qui inhibent généralement le transfert de gène lorsqu'on injecte F ADN directement dans le muscle sous forme de complexes avec ces lipides cationiques, le 2Cι6OAc augmente de manière significative le transfert de gène dans le muscle. Ces résultats indiquent que les récepteurs à l'acéthylcholine et l'acetylcoline estérase présents en grande quantité dans les tissus musculaires peuvent participer activement au mécanisme de transfection en favorisant la rétention des complexes ADN - 2C16OAc dans le muscle et la libération d'ADN actif (non dégradé) de ces complexes.

Claims

Revendications
1. Une composition qui comprend un polynucleotide ou un polypeptide chargé négativement et un composé répondant à la formule (I)
Figure imgf000022_0001
dans laquelle :
Ri et R2, identiques ou différents, sont des chaînes aliphatiques saturées ou insaturées contenant de 3 à 24 atomes de carbone ; et soit R3 répond à la formule (F) X- N+-R6 (I*)
I R5 dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et (i) R4 et R5 représentent chacun un atome d'hydrogène ; et
Rβ est de telle sorte que R3 constitue un radical peptidique comportant une séquence d'acides aminés qui est un ligand de ciblage ou un élément de marquage ; ou (ii) Rj, R5 et Rβ sont de telle sorte que R3 constitue un radical qui est un ligand de ciblage ou un élément de marquage ; soit R3 répond à la formule (F ') R7 R8 dans laquelle : R7 est un agent de liaison répondant à la formule (F ")
Figure imgf000022_0002
dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et R9 et Rio, identiques ou différents, représentent chacun (i) un atome d'hydrogène ou (ii) un radical méthyl, éthyl, propyl ou alkyl supérieur comportant de 1 à 22 atomes de carbone, substitué ou non, interrompu ou non par un ou plusieurs hétéroatomes choisis parmi O, S et N ou par un ou plusieurs radicaux carbocycliques ou hétérocycliques, saturés, insaturés ou aromatiques ; et
Ru représente (i) une liaison simple ou (ii) une chaîne aliphatique comportant de 1 à 22 atomes de carbone, linéaire ou ramifiée, substituée ou non, saturée ou insaturée, interrompue ou non par un ou plusieurs hétéroatomes choisis parmi O, S et N ou par un ou plusieurs radicaux carbocycliques ou hétérocycliques, saturés, insaturés ou aromatiques ; et Rs est un ligand de ciblage ou un élément de marquage.
2. Une composition selon la revendication 1, comprenant un polynucleotide et un composé de formule (I).
3. Une composition selon la revendication 2, dans laquelle le polynucleotide est un ribozyme, un polynucleotide antisens ou code pour un polypeptide.
4. Une composition selon l'une des revendications 1 à 3, qui comprend (a) un composé répondant à la formule (I) dans laquelle : Ri et R2 sont tels que définis dans la revendication 1 ; et soit R3 répond à la formule (F)
dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et (i) R4 et R5 représentent chacun un atome d'hydrogène ; et
Rβ est de telle sorte que R3 constitue un radical peptidique comportant une séquence d'acides aminés qui est un ligand de ciblage ; ou (ii) R4, R5 et Re sont de telle sorte que R3 constitue un radical qui est un ligand de ciblage ; soit R3 répond à la formule (F ') R7 R8 dans laquelle : R est tel que défini dans la revendication 1 ; et
Rs est un ligand de ciblage ; et
(b) un composé répondant à la formule (I) dans laquelle :
Ri et R2 sont tels que définis dans la revendication 1 ; et soit R$ répond à la formule (F)
^4 X- N+-R6 (I')
I
R5 dans laquelle :
X est un anion acceptable d'un point de vue pharmaceutique ; et (i) R4 et R5 représentent chacun un atome d'hydrogène ; et Rβ est de telle sorte que R3 constitue un radical peptidique comportant une séquence d'acides aminés qui est un élément de marquage ; ou (ii) R4, R5 et Rβ sont de telle sorte que R3 constitue un radical qui est un élément de marquage ; soit R3 répond à la formule (I") R7 R8 dans laquelle :
R est tel que défini dans la revendication 1 ; et Rs est un élément de marquage.
5. Une composition selon l'une des revendications 1 à 3, dans laquelle le composé répond à la formule (I) dans laquelle R3 répond (i) à la formule (F) dans laquelle X est un anion choisi parmi Br-, Cl-, I- ou F- (ii) à la formule (I") dans laquelle R7 répond à la formule (F") dans laquelle X est un anion choisi parmi Br-, Cl-, I- ou F-
6. Une composition selon la revendication 5, dans laquelle le composé répondant à la formule (I) est le bromure de 2-propanaminium, N-[2-(acetyloxy)ethyl]-l,3- bis(hexadecyloxy)-N,N-dimethyl- 1 ,3-dioxo-.
7. Une composition selon l'une des revendications 1 à 6, qui comprend en outre un co- lipide, une huile ou un détergent associé au sein de microparticules lipidiques, de micelles mixtes, de liposomes ou d'une émulsion huileuse, au composé répondant à la formule (I) telle que définie dans la revendication 1, 5 ou 6.
8. Une méthode de transfection ex vivo ou in vitro selon laquelle on met en contact des cellules eucaryotes en culture avec une composition selon l'une des revendications 2 à 6.
9. L'usage d'un composé répondant à la formule (I) telle que définie dans la revendication 1 ou 5, dans la fabrication d'un médicament contenant un polynucleotide ou un polypeptide à titre de principe actif ; le composé de formule
(I) étant destiné à faciliter la pénétration du polynucleotide ou du polypeptide dans les cellules de l'individu ayant besoin d'un tel médicament.
10. L'usage selon la revendication 9, d'un composé répondant à la formule (I) telle que définie dans la revendication 1 ou 5, dans la fabrication d'un médicament contenant un polynucleotide ou un polypeptide et destiné à être administré par voie intramusculaire.
11. L'usage selon la revendication 9 ou 10, d'un composé répondant à la formule (I) telle que définie dans la revendication 1 ou 5, dans la fabrication d'un médicament contenant un polynucleotide ; qui est un polynucleotide antisens, un ribozyme ou qui code pour un polypeptide.
12. L'usage selon l'une des revendications 9 à 11, d'un composé répondant à la formule (I) telle que définie dans la revendication 1 ou 5, dans la fabrication d'un médicament contenant un polynucleotide ; qui est de F ADN.
13. L'usage selon l'une des revendications 9 à 12, d'un composé de formule (I) qui est le bromure de 2-propanaminium, N-[2-(acetyloxy)ethyl]-l,3-bis(hexadecyloxy)- N,N-dimethyl-l,3-dioxo-.
PCT/FR2004/000088 2003-01-17 2004-01-16 Composition comprenant lipides cationiques et un polynucleotide ou un polpeptide et methode pour leur delivrance ciblee WO2004066908A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0300489 2003-01-17
FR03/00489 2003-01-17

Publications (2)

Publication Number Publication Date
WO2004066908A2 true WO2004066908A2 (fr) 2004-08-12
WO2004066908A3 WO2004066908A3 (fr) 2004-10-07

Family

ID=32799432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000088 WO2004066908A2 (fr) 2003-01-17 2004-01-16 Composition comprenant lipides cationiques et un polynucleotide ou un polpeptide et methode pour leur delivrance ciblee

Country Status (1)

Country Link
WO (1) WO2004066908A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037194A1 (fr) * 1995-05-26 1996-11-28 Somatix Therapy Corporation Vehicules d'apport medicamenteux comprenant des complexes d'acides nucleiques/de lipides stables
WO1999025320A1 (fr) * 1997-11-19 1999-05-27 Georgetown University Apport cible de gene dans un liposome vecteur

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037194A1 (fr) * 1995-05-26 1996-11-28 Somatix Therapy Corporation Vehicules d'apport medicamenteux comprenant des complexes d'acides nucleiques/de lipides stables
WO1999025320A1 (fr) * 1997-11-19 1999-05-27 Georgetown University Apport cible de gene dans un liposome vecteur

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BENNETT ET AL: "CATIONIC LIPID-MEDIATED GENE DELIVERY TO MURINE LUNG: CORRELATION OF LIPID HYDRATION WITH IN VIVO TRANSFECTION ACTIVITY" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 40, 5 décembre 1997 (1997-12-05), pages 4069-4078, XP002088280 ISSN: 0022-2623 *
FORSSEN ERIC ET AL: "Ligand-targeted liposomes" ADVANCED DRUG DELIVERY REVIEWS, vol. 29, no. 3, 2 février 1998 (1998-02-02), pages 249-271, XP002290051 ISSN: 0169-409X cité dans la demande *
GAUCHERON JEROME ET AL: "Synthesis and properties of novel tetraalkyl cationic lipids" BIOCONJUGATE CHEMISTRY, vol. 13, no. 3, mai 2002 (2002-05), pages 671-675, XP002290052 ISSN: 1043-1802 *
MENGER F M ET AL: "SPECIFIC ENZYME-INDUCED DECAPSULATION" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 113, 1991, pages 5467-5468, XP000942189 ISSN: 0002-7863 cité dans la demande *
SONG L Y ET AL: "Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes" BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES, AMSTERDAM, NL, vol. 1558, no. 1, 2 janvier 2002 (2002-01-02), pages 1-13, XP004326959 ISSN: 0005-2736 *
XIAOHUAI ZHOU ET AL: "TARGETED DELIVERY OF DNA BY LIPOSOMES AND POLYMERS" JOURNAL OF CONTROLLED RELEASE, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 19, no. 1 / 3, 1 mars 1992 (1992-03-01), pages 269-274, XP000261538 ISSN: 0168-3659 *
ZHOU X ET AL: "DNA TRANSFECTION MEDIATED BY CATIONIC LIPOSOMES CONTAINING LIPOPOLYLYSINE: CHARACTERIZATION AND MECHANISM OF ACTION" BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES, AMSTERDAM, NL, vol. 1189, 1994, pages 195-203, XP000619500 ISSN: 0005-2736 *

Also Published As

Publication number Publication date
WO2004066908A3 (fr) 2004-10-07

Similar Documents

Publication Publication Date Title
US10624852B2 (en) Liposomes comprising a calcium phosphate-containing precipitate
EP0769942B1 (fr) Utilisation d'un compose amphipathique cationique comme agent de transfection, comme adjuvant de vaccin, ou comme medicament
EP0809705B1 (fr) Compositions contenant des acides nucleiques, preparation et utilisation
JP6280120B2 (ja) 干渉rnaの内在性メカニズムを調節することができる核酸配列を送達するための製剤
CN109563511A (zh) 用于递送信使rna的组合物和方法
JPH11512712A (ja) 生物学的に活性な物質を細胞に送達するためのエマルジョンおよびミセル処方物
FR2726764A1 (fr) Adjuvant pour composition vaccinale
EP0537326A1 (fr) Vecteur de delivrance d'arn
CN101970687A (zh) 用于体内基因输送的自组装胶束样纳米颗粒
FR2998899A1 (fr) Methode de criblage a haut-debit pour l'identification de biomarqueurs, cibles therapeutiques ou d'agents therapeutiques
EP1007097B1 (fr) Formulation de particules agent(s) de transfection cationique(s)/acides nucleiques stabilisees
KR102537540B1 (ko) 만노스를 포함하는 지질 나노입자 또는 이의 용도
WO2004066908A2 (fr) Composition comprenant lipides cationiques et un polynucleotide ou un polpeptide et methode pour leur delivrance ciblee
CN117545467A (zh) 含有核酸的纳米颗粒
CN102369282B (zh) 核酸复合体及核酸转运用组合物
EP2193204B1 (fr) Compositions comprenant des lipophosphoramides et leurs utilisations en therapie genique
EP3999520B1 (fr) Complexe hybride htiarn / nanoparticule et son utilisation pour traitement d'une maladie du système digestif
JP2023542341A (ja) 標的化された抗原送達システム及びその使用
EP4312989A1 (fr) Formulation pour la délivrance d'arn messager
WO2024028785A1 (fr) Nanoparticules lipidiques multicomposants ayant une fusogénicité cellulaire élevée pour l'administration d'acides nucléiques et procédé de préparation associé
FR3136375A1 (fr) Microbulles lipidiques pour la délivrance ciblée d’actifs
FR3043558A1 (fr) Composition immunogene sous forme d'emulsion comprenant deux phases dispersees, l'une comprenant un antigene et l'autre comprenant un agent immunostimulant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase