WO2004063410A1 - High-strength hot-dip galvanized steel sheet and method for producing the same - Google Patents
High-strength hot-dip galvanized steel sheet and method for producing the same Download PDFInfo
- Publication number
- WO2004063410A1 WO2004063410A1 PCT/JP2004/000239 JP2004000239W WO2004063410A1 WO 2004063410 A1 WO2004063410 A1 WO 2004063410A1 JP 2004000239 W JP2004000239 W JP 2004000239W WO 2004063410 A1 WO2004063410 A1 WO 2004063410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot
- less
- dip galvanized
- dip
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 65
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 186
- 239000010959 steel Substances 0.000 claims abstract description 186
- 238000007747 plating Methods 0.000 claims abstract description 144
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 73
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 52
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 52
- 230000000717 retained effect Effects 0.000 claims abstract description 47
- 238000000137 annealing Methods 0.000 claims abstract description 37
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 229910052802 copper Inorganic materials 0.000 claims abstract description 20
- 229910052718 tin Inorganic materials 0.000 claims abstract description 16
- 239000002344 surface layer Substances 0.000 claims abstract description 11
- 238000005246 galvanizing Methods 0.000 claims description 63
- 239000010410 layer Substances 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 42
- 238000001816 cooling Methods 0.000 claims description 41
- 230000014509 gene expression Effects 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 230000009977 dual effect Effects 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 14
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 10
- 239000010960 cold rolled steel Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 15
- 230000001105 regulatory effect Effects 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 2
- 229910000794 TRIP steel Inorganic materials 0.000 abstract 2
- 238000010438 heat treatment Methods 0.000 description 26
- 230000009466 transformation Effects 0.000 description 23
- 230000014759 maintenance of location Effects 0.000 description 21
- 238000005275 alloying Methods 0.000 description 19
- 229910001563 bainite Inorganic materials 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 16
- 238000007598 dipping method Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 238000004299 exfoliation Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 9
- 229910001567 cementite Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011835 investigation Methods 0.000 description 8
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 6
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- -1 aluminum is improved Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/185—Hardening; Quenching with or without subsequent tempering from an intercritical temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/30—Foil or other thin sheet-metal making or treating
- Y10T29/301—Method
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
Definitions
- the present invention relates to a hot-dip galvanized steel sheet used as a corrosion-resistant steel sheet for an automobile and the like, particularly to a steel sheet having a tensile strength of about 590 to 1,080 MPa and being excellent in stretchability at press forming, to which steel sheet Si, Mn and Al that are regarded as detrimental to plating performance are added.
- plating performance includes both plating appearance and plating adhesiveness.
- hot-dip galvanized steel sheets intended in the present invention include an ordinary hot-dip galvanized steel sheet as a matter of course and also an alloyed hot-dip galvanized steel sheet subjected to heat treatment for alloying after the deposition of plating layers.
- a hot-dip galvanized steel sheet is also required to have a higher tensile strength.
- elements such as Si, Mn and Al.
- Si, Mn and Al are contained as components of a steel sheet, there arises a problem in that oxides that have poor wettability with a plating layer are formed during annealing in a reducing atmosphere, incrassate on the surface of the steel sheet and deteriorate the plating performance of the steel sheet.
- the elements such as Si, Mn and Al have a high oxidizability and for that reason they are preferentially oxidized in a reducing atmosphere, incrassate on the surface of a steel sheet, deteriorate plating wettability, generate so-called non-plated portions, and thus result in the deterioration of plating appearance.
- it is essential to suppress the formation of oxides containing Si, Mn, Al etc. as mentioned above. From this point of view, various technologies have so far been proposed. For example, Japanese Unexamined Patent Publication No. H7-
- 34210 proposes the method wherein a steel sheet is heated to 400°C to 650°C for oxidizing Fe in an atmosphere having an oxygen concentration in the range from 0.1 to 100% in the preheating zone of an annealing furnace of oxidization-reduction type equipment and thereafter subjected to ordinary reduction annealing and hot-dip galvanizing treatment, in this method however, since the effect depends on the Si content in a steel sheet, it is not said that plating performance is sufficient in the case of a steel sheet having a high Si content.
- Japanese Patent No. 3126911 proposes the method wherein plating adhesiveness is improved by forming oxides at the grain boundaries of a steel sheet containing Si and Mn through a high temperature coiling at the stage of hot rolling.
- Japanese Unexamined Patent Publication No. 2001-131693 discloses the method wherein a steel sheet is annealed firstly in a reducing atmosphere having a dew point of 0°C or lower, thereafter oxides on the surface of the steel sheet are removed by pickling, and subsequently the steel sheet is annealed secondly in a reducing atmosphere having a dew point of -20°C or lower and then subjected to hot-dip plating.
- Japanese Unexamined Patent Publication No. 2002-47547 discloses the method wherein internal oxidization is formed in the surface layer of a steel sheet by applying heat treatment after hot rolling while black skin scales are attached to the steel sheet.
- the problem of the method is that a process for black skin annealing must be added and thus the production cost also increases.
- Japanese Unexamined Patent Publication No. 2000-850658 proposes the technology wherein Ni is added in an appropriate amount to a steel containing Si and Al.
- the problem caused by the technology is that, when the technology is intended to be applied to practical production, the plating performance varies with a reduction annealing furnace only and resultantly a good steel sheet cannot be produced stably.
- a hot-rolled steel sheet and a cold-rolled steel sheet obtained by utilizing the transformation-induced plasticity of retained austenite contained in the steel are developed.
- those are the steel sheets, each of which contains retained austenite in the metallographic structure through heat treatment, that is characterized by: containing only about 0.07 to 0.4% C, about 0.3 to 2.0% Si and about 0.2 to 2.5% Mn as basic alloying elements without containing expensive alloying elements; and applying bainite transformation in the temperature range nearly from 300°C to 450°C after annealing in a dual phase zone.
- Japanese Unexamined Patent Publication Nos. Hl-230715 and H2- 217425 disclose such steel sheets.
- Such a heat history can be realized industrially in continuous annealing equipment, run-out tables after hot rolling and a coiling process, in this case, when the temperature range is from 450°C to 600°C, since the transformation of austenite is completed soon, such control as to particularly shorten the time duration where a steel sheet is retained in the temperature range from 450 °C to 600°C is required. Even when the temperature range is from 350 °C to 450 °C, since the metallographic structure varies considerably in accordance with the retention time, only poor strength and elongation are obtained in the case of deviating from prescribed conditions.
- the problem here is that, since the retention time in the temperature range from 450°C to 600°C is long and Si that deteriorates plating performance is contained as an alloying element, it is impossible to produce a plated steel sheet through hot-dip plating equipment, the surface corrosion resistance is inferior, and thus a wide range of industrial application is hindered.
- Japanese Unexamined Patent Publication Nos. H5- 247586 and H6-145788 disclose a steel sheet having the plating performance which is improved by regulating an Si concentration.
- retained austenite is formed by adding Al instead of Si.
- the problem of the method is that, since Al, like Si, is also more likely to be oxidized than Fe, Al and Si tend to incrassate and form an oxide film on the surface of a steel sheet and sufficient plating performance is not obtained.
- Japanese Unexamined Patent Publication No. H5-70886 discloses the technology wherein plating wettability is improved by adding Ni. However, the method does not disclose the relationship between Ni and the group of Si and Al that deteriorate plating wettability.
- Japanese Unexamined Patent Publication Nos. H4-333552 and H4-346644 disclose the method wherein a steel sheet is subjected to rapid low temperature heating after Ni preplating, hot-dip galvanizing and successively alloying treatment as an alloying hot-dip plating method of a high Si type high- strength steel sheet.
- the problem of the method is that new equipment is required because Ni preplating is essential. Further, this method neither makes retained austenite remain in the final structure nor refers to a means to do so.
- Japanese Unexamined Patent Publication No. 2002-234129 discloses the method wherein good properties are obtained by adding Cu, Ni and Mo to a steel sheet containing Si and Al. It says that, in the method, good plating performance and material properties can be obtained by properly adjusting the balance between the total amount of Si and Mn and the total amount of Cu, Ni and Mo.
- a problem of the method is that the patent can not always secure good plating performance when Si is contained since the plating performance of a steel containing Si and Mn is dominated by the amount of Al.
- another problem thereof is that the method is only applicable to a steel sheet having such relatively low strength as in the range from 440 to 640 MPa in tensile strength .
- the present invention has been established focusing on the problems of prior arts and the object thereof is to stably provide a hot-dip galvanized steel sheet having a high tensile strength and no non-plated portions and being excellent in workability and surface appearance even when the employed equipment has only a reduction annealing furnace and a steel sheet containing relatively large amounts of Si, Mn and Al that are regarded as likely to cause non-plated portions is used as the substrate steel sheet.
- another object of the present invention is to provide a hot-dip galvanized steel sheet: having the composition and the metallographic structure of a high- strength steel sheet excellent in press formability; being capable of securing up to a high strength in the range about from 590 to 1,080 MPa in tensile strength; and being produced through hot-dip plating equipment for the improvement of surface corrosion resistance.
- the gist of the present invention is as follows:
- a high-strength hot-dip galvanized steel sheet characterized by: containing, in weight, C: 0.03 to 0.25%, Si: 0.05 to 2.0%,
- Mn 0.5 to 2.5%
- P 0.03% or less
- S 0.02% or less
- Al 0.01 to 2.0%, with the relationship among Si, Mn and Al satisfying the following expression, Si + Al + Mn ⁇ 1.0%; a hot-dip plating layer being formed on each of the surfaces of said steel sheet; and
- a high-strength hot-dip galvanized steel sheet according to the item (1) characterized by further containing, in weight, one or both of Ni: 0.01 to 2.0% and Cr: 0.01 to 0.5%.
- a high-strength hot-dip galvanized steel sheet according to the item (2) characterized by further containing, in weight, one or more of
- a high-strength hot-dip galvanized steel sheet characterized by, when said steel sheet contains retained austenite and only Mo is added among the elements stipulated in the item (4): the relationship among Si, Al and Ni satisfying the following expressions,
- a high-strength hot-dip galvanized steel sheet characterized by, when said steel sheet contains retained austenite and Cu or Sn is further added in addition to Mo among the elements stipulated in the item (4): the relationship among Ni, Cu and Sn satisfying the following expression, 2 x Ni (%) > Cu (%) + 3 x Sn (%) ; the relationship among Si, Al, Ni, Cu and Sn satisfying the following expression,
- a method for producing a high-strength hot-dip galvanized steel sheet characterized in that the volume ratio of retained austenite in said steel sheet is in the range from 2 to 20% and a hot-dip galvanizing layer is formed on each of the surfaces of said steel sheet by subjecting a steel sheet satisfying the component ranges stipulated in the item (5) or (6) to the processes of: annealing the hot-rolled and cold-rolled steel sheet for 10 sec. to 6 min. in the dual phase coexisting temperature range of 750°C to 900°C; subsequently cooling up to 350 °C to 500 °C at a cooling rate of 2 to 200°C/sec, or occasionally heat retention for 10 min. or less in said temperature range; subsequently hot-dip galvanizing; and thereafter cooling to 250 °C or lower at a cooling rate of 5°C/sec. or more.
- a method for producing a high-strength hot-dip galvanized steel sheet characterized by subjecting a steel sheet satisfying the component ranges stipulated in the item (1) or (2), before subjecting said steel sheet to hot-dip galvanizing, to treatment in an atmosphere controlled so that: said atmosphere may have an oxygen concentration of 50 ppm or less in the temperature range from 400°C to 750°C; and, when a hydrogen concentration, a dew point and an oxygen concentration in said atmosphere are defined by H (%), D (°C) and 0 (ppm) respectively, H, D and 0 may satisfy the following expressions for 30 sec. or longer in the temperature range of 750 °C or higher, 0 ⁇ 30 ppm, and 20 x exp(0.1 x D) - ⁇ H ⁇ 2,000 x exp(0.1 x D) .
- a method for producing a high-strength hot-dip galvanized steel sheet characterized by subjecting a steel sheet satisfying the component ranges stipulated in the item (2), before subjecting said steel sheet to hot- dip galvanizing, to treatment in an atmosphere controlled so that, when a hydrogen concentration and a dew point in said atmosphere and an Ni concentration in said steel sheet are defined by H (%), D (°C) and' Ni (%) respectively, H, D and Ni may satisfy the following expression for 30 sec. or longer in the temperature range of 750°C or higher,
- Figure 1 is a graph showing the relationship between the plating appearance and the size of oxides in the surface layer of a hot-dip galvanized steel sheet according to the present invention.
- Figure 2 is a microphotograph showing an example of a section of an alloyed hot-dip galvanized steel sheet having a good plating appearance.
- Figure 3 is a graph showing the relationship between hydrogen and a dew point in an atmosphere desirable for annealing prior to hot-dip galvanizing in the present invention.
- Figure 4 is a schematic illustration of a scanning electron microphotograph of the surface of the steel sheet produced' under the condition 4 in EXAMPLE 4 after a hot-dip galvanizing layer is dissolved by fuming nitric acid.
- Figure 5 is a schematic illustration of a scanning electron microphotograph of the surface of the steel sheet produced under the condition 11 (comparative example) in EXAMPLE 4 after a hot-dip galvanizing layer is dissolved by fuming nitric acid.
- the object of regulating components in the present invention is to provide a high-strength hot-dip galvanized steel sheet excellent in press formability and the reasons therefor are hereunder explained in detail.
- C is an element that stabilizes austenite, moves from the inside of ferrite and incrassates in austenite in the dual phase coexisting temperature range and the bainite transformation temperature range.
- chemically stabilized austenite of 2 to 20% remains even after cooled to the room temperature and improves formability due to transformation-induced plasticity.
- a C concentration is less than 0.03%, retained austenite of 2% or more is hardly secured and the object of the present invention is not attained.
- a C concentration exceeding 0.25% deteriorates weldability and therefore must be avoided.
- Si does not dissolve in cementite and, by suppressing the precipitation thereof, delays the transformation from austenite in the temperature range from 350°C to 600°C. Since C incrassation into austenite is accelerated during the process, the chemical stability of austenite increases, transformation-induced plasticity is caused, and resultantly retained austenite that contributes to the improvement of formability can be secured.
- an Si amount is less than 0.05%, the effects do not show up.
- an Si concentration is raised, plating performance deteriorates. Therefore, an Si concentration must be 2.0% or less.
- Mn is an element that forms austenite and makes retained austenite remain in a metallographic structure after cooled up to the room temperature since Mn prevents austenite from being decomposed into pearlite during the cooling to 350 °C to 600 °C after the annealing in the dual phase coexisting temperature range.
- an addition amount of Mn is less than 0.5%, a cooling rate has to be so increased as to make industrial control impossible in order to suppress the decomposition into pearlite and therefore it is inappropriate.
- an Mn amount exceeds 2.5% a band structure becomes conspicuous, properties are deteriorated, a spot weld tends to break in a nugget, and therefore it is undesirable.
- Al is used as a deoxidizer, at the same time, does not dissolve in cementite like Si, suppresses the precipitation of cementite during retention in the temperature range from 350°C to 600°C, and delays the progress of transformation.
- the capability of Al in the formation of ferrite is stronger than Si, by the addition of Al, transformation starts early, C is incrassated in austenite from the time of annealing in the dual phase coexisting temperature range even for a short time of retention, chemical stability is increased, and therefore martensite that deteriorates formability scarcely exists in a metallographic structure after cooled up to the room temperature.
- the present invention good plating performance is secured by intentionally forming oxides on a steel sheet surface and resultantly suppressing the incrassation of Si, Mn and Al in the surface layer at portions where oxides are not formed.
- the area ratio of oxides formed in a steel sheet surface layer is important in the present invention.
- the reason why the area ratio of oxides on a steel sheet surface is regulated to 5% or more in the present invention is that, with an area ratio of 5% or less, the concentrations of Si, Al and Mn on a steel sheet surface are high even in the region where oxides are not formed and therefore good plating performance is not secured due to the incrassated Si, Al and Mn.
- the incrassated Si, Al and Mn hinder hot-dip galvanizing.
- an area ratio is 15% or more.
- the upper limit is set at 80%. The reason is that, in the state where oxides are formed in excess of 80%, the area ratio of portions where oxides are not formed is less than 20% and therefore good plating performance is hardly secured only with those portions. In order to secure better plating performance, it is preferable that an area ratio is 70% or less.
- an area ratio of oxides is determined by observing a steel sheet surface in the visual field of 1 mm x 1 mm with a scanning electron microscope (SEM) after dissolving a hot-dip galvanizing layer by fuming nitric acid.
- SEM scanning electron microscope
- Ni is an element that is important to the present invention and produces austenite similarly to Mn, and at the same time improves strength and plating performance. Further, Ni, like Si and Al, does not dissolve in cementite, suppresses the precipitation of cementite during retention in the temperature range from 350 °C to 600°C, and delays the progress of transformation.
- Si and Al since they are oxidized more easily than Fe, incrassate on a steel sheet surface, form Si and Al oxides, and deteriorate plating performance.
- the present inventors intended to prevent the deterioration of plating performance by incrassating Ni that was more hardly oxidized than Fe on a surface and resultantly changing the shapes of the oxides of Si and Al.
- good plating performance can be obtained by controlling the relationship among Ni, Si and Al so as to satisfy the expression Ni (%) ⁇ 1/5 x Si (%) + 1/10 x Al (%).
- Ni (%) ⁇ 1/5 x Si (%) + 1/10 x Al (%) When an addition amount of Ni is less than 0.01%, sufficient plating performance cannot be obtained in the case of a steel according to the present invention.
- the investigation is carried out for the purpose of clarifying the oxides existing at the cross- sectional area the difference between a good appearance portion and a bad appearance portion regarding hot-dip galvanizing plating performance of 0.08% C - 0.6% Si - 2.0% Mn steel, in addition to the oxides existing at the surface area.
- the length of an oxide is determined by observing a section, without applying etching, of a plated steel sheet under a magnification of 40,000 with an SEM and the length of a portion where a gap between oxides exists continuously is regarded as the length of the oxide.
- FIG. 2 A photograph of a section of the portion where good plating performance is secured in an aforementioned plated steel sheet is shown in Figure 2 as an example. It is understood from the figure that oxides 1 ⁇ m or less in length are formed in an off-and-on way. As a result of analyzing the components of the oxides with an EDX, Si, Mn and 0 were observed and therefore it was confirmed that Si and Mn type oxides were formed on the surface. The aforementioned effects are accelerated by containing either Ni or Cr in steel.
- the present inventors discovered after careful investigation regarding the surface structure of the steel sheet for improving plating that a hot-dip galvanizing ability remarkably improves to obtain a state of an inner oxidization at the surface of the steel sheet immediately under the hot-dip galvanizing layer.
- the inner oxides are intentionally formed at the steel sheet surface to secure a sufficient plating at the non-forming oxide portions for reducing concentration of Si, Mn and Al which prevent plating ability.
- Mo like Ni
- An alloyed hot-dip galvanized steel sheet according to the present invention is produced by retaining it in the temperature range from 450 °C to 600 °C after hot-dip galvanizing as described later. When a steel sheet is retained in such a temperature range, austenite retained until then is decomposed and carbide is precipitated. By adding Mo, it becomes possible to suppress transformation from austenite and secure the final austenite amount.
- Mo concentration range is from 0.05 to 0.35%.
- P is an element inevitably included in a steel as an impurity. Similarly to Si, Al and Ni, P does not dissolve in cementite and, during the retention in the temperature range from 350°C to 600°C, suppresses the precipitation of cementite and delays the progress of transformation. However, when a P concentration increases in excess of 0.03%, undesirably, the deterioration of the ductility of a steel sheet becomes conspicuous and at the same time a spot weld tends to break in a nugget. For those reasons, a P concentration is set at 0.03% or less in the present invention.
- S is also an element inevitably included in a steel like P.
- an S concentration increases, the precipitation of MnS occurs and, as a result, undesirably ductility deteriorates and at the same time a spot weld tends to break in a nugget.
- an S concentration is set at 0.02% or less in the present invention.
- Cr, V, Ti, Nb and B are elements that enhance strength and REM, Ca, Zr and Mg are elements that combine with S in a steel, reduce inclusions, and resultantly secure a good elongation.
- An addition of one or more of 0.01 to 0.5% Cr, less than 0.3% V, less than 0.06% Ti, less than 0.06% Nb, less than 0.01% B, less than 0.05% REM, less than 0.05% Ca, less than 0.05% Zr and less than 0.05% Mg as occasion demands does not impair the tenor of the present invention. ' The effects of those elements are saturated with their respective upper limits and an addition of them in excess of the upper limits only causes cost increase.
- a steel sheet according to the present invention contains the aforementioned elements as the fundamental components.
- the steel sheet also contains elements inevitably included in an ordinary steel sheet in addition to the aforementioned elements and Fe, and the tenor of the present invention is not impaired at all even when those inevitably included elements are contained by 0.2% or less in total.
- the ductility of a steel sheet according to the present invention as a final product is influenced by the volume ratio of retained austenite contained in the product.
- retained austenite contained in a metallographic structure exists stably when it does not undergo deformation, when deformation is imposed, it transforms into martensite, transformation-induced plasticity appears, and therefore a good formability as well as a high strength is obtained.
- a volume ratio of retained austenite is less than 2%, a conspicuous effect is not obtained.
- a volume ratio of retained austenite exceeds 20%, in the case of the application of extremely severe forming, a great amount of martensite may possibly exist after press forming and secondary workability and impact resistance may adversely be affected sometimes.
- the volume ratio of retained austenite is set at 20% or less in the present invention.
- the structure contains also ferrite, bainite, martensite and carbide.
- hot-dip galvanizing is adopted in the description of the present invention, it is not limited to the hot-dip galvanizing, and hot-dip aluminum plating, 5% aluminum-zinc plating that is hot-dip aluminum-zinc plating, or hot-dip plating such as so-called Galvalium plating may be adopted. The reason is that the deterioration of plating performance caused by oxides of Si, Al etc.
- an alloyed hot-dip galvanizing layer contains 8 to 15% Fe and the balance consisting of zinc and unavoidable impurities .
- the reason why an Fe content in a plating layer is regulated to 8% or more is that chemical treatment (phosphate treatment) performance and film adhesiveness are deteriorated with an Fe content of less than 8%.
- the reason why an Fe content is regulated to 15% or less is that over-alloying occurs and the plating performance at a processed portion is deteriorated with an Fe content of more than 15%.
- the thickness of an alloyed galvanizing layer is not particularly regulated in the present invention.
- a preferable thickness is 0.1 ⁇ m or more from the viewpoint of corrosion resistance and 15 ⁇ m or less from the viewpoint of workability.
- the steel sheet In continuous annealing of a cold-rolled steel sheet after cold rolling according to a production process of a high-strength hot-dip galvanized steel sheet, the steel sheet is firstly heated in the temperature range from the Acl transformation point to Ac3 transformation point in order to form a dual phase structure composed of ferrite and austenite.
- a heating temperature is lower than 650 °C at the time, it takes too much time to dissolve cementite again, the amount of existing austenite also decreases, and therefore the lower limit of a heating temperature is set at 750 °C.
- the upper limit of a heating temperature is set at 900 °C.
- a soaking time is too short, undissolved carbide is likely to exist and the amount of existing austenite decreases.
- the retention time is determined to be in the range from 10 sec. to 6 min. After the soaking, a steel sheet is cooled to 350 °C to 500°C at a cooling rate of 2 to 200°C/sec.
- the object is to carry over austenite formed by heating up to the dual phase zone to the bainite transformation range without transforming it into pearlite and to obtain prescribed properties as retained austenite and bainite at the room temperature by the subsequent treatment.
- a cooling rate is less than 2°C/sec. at the time, most part of austenite transforms into pearlite during cooling and therefore retained austenite is not secured.
- a cooling rate exceeds
- the steel sheet may be retained for 10 min. or less in the temperature range from 350°C to 500°C in some cases.
- the atmosphere may have an oxygen concentration of 50 ppm or less in the temperature range from 400°C to 750°C; and, when a hydrogen concentration, a dew point and an oxygen concentration in the atmosphere are defined by H (%), D (°C) and 0 (ppm) respectively, H, D and 0 may satisfy the following expressions for 30 sec. or longer in the temperature range of 750 °C or higher,
- an oxygen concentration is not particularly regulated in the temperature range of lower than 400 °C because oxides are scarcely formed in this temperature range.
- a desirable oxygen concentration is 100 ppm or less.
- atmospheric conditions other than an oxygen concentration on the way of heating are not particularly regulated.
- a desirable hydrogen concentration is 1% or more and a desirable dew point is 0°C or lower.
- plating performance improves further.
- the regulation of the annealing for 30 sec. or longer in the temperature range of 750 °C or higher is determined from the viewpoint of not plating performance but recrystallization related to the properties of a base material. In an atmosphere in this temperature range, when oxygen and hydrogen concentrations decrease and a dew point increases, oxides form on a steel sheet surface.
- the maximum length of surface oxides can be reduced to 3 ⁇ m or less by annealing a steel sheet in an atmosphere satisfying the aforementioned expressions.
- a hydrogen concentration to not more than 1,500 x exp ⁇ 0.1 x [D + 20 x (1 - Ni (%))] ⁇ in relation to a dew point and an oxygen concentration to not more than 20 ppm for 30 sec. or longer in the temperature range of 750 °C or higher.
- plating performance is more likely to be improved.
- the above relationship between a hydrogen concentration and a dew point is shown in Figure 3.
- H (%), D (°C) and Ni (%) respectively, H, D and Ni may satisfy the following expression for 30 sec. or longer in the temperature range of 750°C or higher,
- the steel sheet When a hot-dip galvanized steel sheet is produced, the steel sheet is cooled to 250°C or lower at a cooling rate of 5°C/sec. or more after plating.
- a cooling rate after retention is lowered to not more than 5°C/sec.
- a retention temperature exceeds 600°C
- pearlite is formed, thus retained austenite becomes not contained, further alloying reaction advances too much, and therefore an Fe concentration in a plating layer exceeds 12%.
- a retention temperature is 450 °C or lower, an alloying reaction speed of plating decreases and an Fe concentration in the plating layer decreases. Further, when a retention time is 5 sec. or less, since bainite forms insufficiently and C incrassation into not-transformed austenite is also insufficient, martensite forms during cooling, formability deteriorates, and at the same time alloying reaction of plating becomes insufficient. On the other hand, when a retention time is 2 min. or longer, excessive alloying of plating occurs and plating exfoliation and the like are likely to occur at the time of forming. Further, when a cooling rate after retention is lowered to 5°C/sec.
- a desirable hot-dip galvanizing temperature is in the range from the melting point of plating metal to 500°C. The reason is that, when a temperature is 500°C or higher, vapor from the plating bath becomes abundant and operability deteriorates. Further, it is not particularly necessary to regulate a heating rate up to a retention temperature after plating. However, a desirable heating rate is 3°C/sec. or more from the viewpoint of a plating structure and a metallographic structure.
- temperatures and cooling rates in the aforementioned processes are not necessarily constant as long as they are within the regulated ranges and, even if they vary in the respective ranges, the properties of a final product do not deteriorate at all or rather improve in some cases.
- a steel sheet after cold rolled may be plated with Ni,
- hot-dip galvanized steel sheets were produced by subjecting various steel sheets shown in Table 1 to the processes of: annealing for 100 sec. at 800°C at a heating rate of 5°C/sec. in an atmosphere of 8% hydrogen and -30°C dew point; subsequently dipping in a hot-dip galvanizing bath; and air cooling to the room temperature.
- a metal composed of zinc containing 0.14% Al was used in a hot-dip galvanizing bath.
- the dipping time was set at 4 sec. and the dipping temperature was set at 460 °C.
- the plating performance of the hot-dip galvanized steel sheets thus produced was evaluated visually.
- the evaluation results were classified by the marks, Q ⁇ no non-plated portion and X: having non-plated portions.
- the adhesiveness of hot-dip galvanizing was evaluated by exfoliation of a specimen with a tape after 0T bending and the evaluation results were classified by the marks, O: no exfoliation and X: exfoliated.
- the area ratio of oxides on a steel sheet surface was determined by observing the steel sheet surface in a visual field of 1 mm x 1 mm with a scanning electron microscope (SEM) after a plating layer of the plated steel sheet is dissolved by fuming nitric acid.
- SEM scanning electron microscope
- Figure 4 is a schematic illustration of an image of the scanning electron microscopy obtained by observing a steel sheet surface after a plating layer thereon is dissolved by fuming nitric acid after the plating of the condition No. 4 that shows good plating performance is applied.
- Figure 5 is a schematic illustration of an image of the scanning electron microscopy obtained by observing a steel sheet surface after a plating layer thereon is dissolved by fuming nitric acid after the plating of the condition No. 10.
- the black portions represent oxides and the white portions represent ones where oxides are not observed. It is understood that, whereas black oxides are scarcely observed in Figure 5, black oxides are observed in the surface layer of the steel sheet in Figure 4.
- the oxides of the condition No. 4 are the ones containing Si and Mn from the analysis of the components by EDX.
- the area ratio of oxides was 40% and good plating performance was obtained in the condition No. 4, the area ratio was 2%, non-plated portions appeared and plating performance was also inferior in the condition No. 10.
- Steel sheets were produced by subjecting steels having the components shown in Table 2 to hot rolling, cold rolling, annealing, plating and thereafter skin passing at a reduction ratio of 0.6% under the conditions shown in Table 3.
- the produced steel sheets were subjected to tensile tests, retained austenite measurement tests, welding tests, plating appearance tests and plating performance tests, those being explained below. Further, when alloyed hot-dip galvanized steel sheets were produced, they were subjected to the tests for measuring Fe concentrations in plating layers.
- the coating weight on a surface was controlled to 40 g/mm 2 .
- a JIS #5 tensile test specimen was sampled and subjected to a tensile test under the conditions of the gage thickness of 50 mm, the tensile speed of 10 mm/min. and the room temperature.
- a retained austenite measurement test a plane in the depth of one-fourth the sheet thickness from the surface was chemically polished and thereafter subjected to measurement by the method called five-peak method wherein the strengths of ⁇ -Fe and ⁇ -Fe were measured in X-ray diffraction using an Mo bulb.
- a test specimen was spot-welded under the conditions of the welding current of 10 kA, the loading pressure of 220 kg, the welding time of 12 cycles, the electrode diameter of 6 mm, the electrode of a dome shape and the tip size of 6 ⁇ -40R and the test specimen was evaluated by the number of continuous welding spots at the time when the nugget diameter reached 4 Vt (t: sheet thickness).
- the results of the evaluation were classified by the marks, O: over 1,000 continuous welding spots, ⁇ : 500 to 1,000 continuous welding spots, and X: less than 500 continuous welding spots, and the mark O was regarded as acceptable and the marks ⁇ and X were regarded as unacceptable.
- the state of the occurrence of non-plated portions was evaluated visually from the appearance of a plated steel sheet.
- the results of the evaluation were classified by the marks, ⁇ : less than 3 non-plated portions/dm 2 , Q : 4 to 10 non-plated portions/dm 2 , ⁇ : 11 to 15 non-plated portions/dm 2 , and X: 16 or more non-plated portions/dm 2 , and the marks ⁇ and O were regarded as acceptable and the marks ⁇ and X were regarded as unacceptable.
- a plated steel sheet was subjected to a 60-degree V-bending test and then a tape exfoliation test and was evaluated by the degree of blackening of the tape.
- the results of the evaluation were classified by the marks, ®: 0 to 10% in blackening degree, O : 10 to less than 20% in blackening degree, ⁇ : 20 to less than 30% in blackening degree, and X: 30% or more in blackening degree, and the marks ⁇ and O were regarded as acceptable and the marks ⁇ and X were regarded as unacceptable.
- a test specimen was measured by the IPC emission spectrometry after the plating layer thereof was dissolved by 5% hydrochloric acid containing an amine system inhibitor.
- the results of the above property evaluation tests are shown in Tables 2 to 10.
- the specimens Nos. 1 to 14 according to the present invention are the hot-dip galvanized steel sheets and the alloyed hot-dip galvanized steel sheets, while the retained austenite ratios thereof are 2 to 20% and the tensile strengths thereof are 590 to 1,080 MPa, having good total elongations, a good balance between high strength and press formability, and at the same time satisfactory plating performance and weldability.
- the specimens Nos. 15 to 29 satisfy none of the retained austenite amount, the compatibility of a high strength and a good press formability, plating performance and weldability and do not attain the object of the present invention, since the C concentration is low in the specimen No.
- the C concentration is high in the specimen No. 16
- the Si concentration is high in the specimen No. 17
- the Mn concentration is low in the specimen No. 18
- the Mn concentration is high in the specimen No. 19
- the Al concentration is high in the specimen No. 20
- the relationship between Si and Al in the steel is not satisfied in the specimen No. 21
- the P concentration is high in the specimen No. 22
- the S concentration is high in the specimen No. 23
- the Ni concentration is low in the specimen No. 24
- the Ni concentration is high in the specimen No. 25
- the Mo concentration is low in the specimen No. 26
- the Mo concentration is high in the specimen No. 27
- the relational expression between Ni and Mo is not satisfied in the specimen No. 28 and the relationship between the group of Si and Al and the group of Ni, Cu and Sn is not satisfied in the specimen No. 29.
- the underlined numerals means that they are outside the ranges stipulated in the present invention.
- the heating rate after plating is kept constant at 10°C/sec.
- the products to which alloying treatment is not applied are hot-dip galvanized steel sheets. Table 6
- the underlined numerals means that they are outside the ranges stipulated in the present invention.
- the heating rate after plating is kept constant at 10°C/sec.
- the products to which alloying treatment is not applied are hot-dip galvanized steel sheets. Table 8
- hot-dip galvanized steel sheets were produced by subjecting cold-rolled steel sheets having the components of the invention example No. 2 in Table 7 to the processes of: annealing for 100 sec. at 800°C at a heating rate of 5°C/sec. in the atmospheres shown in Table 8; subsequently dipping in a hot-dip galvanizing bath; and air cooling to the room temperature.
- an atmosphere at the time of heating was controlled to 4% hydrogen and -40°C dew point, and a metal composed of zinc containing 0.14% Al was used in a hot-dip galvanizing bath.
- the dipping time was set at 4 sec. and the dipping temperature was set at 460 °C.
- the plating performance of the hot-dip galvanized steel sheets thus produced was evaluated visually.
- the evaluation results were classified by the marks, O* a portion having good appearance and no non-plated portion, ⁇ : a portion partially having small non-plated portions 1 mm or less in size, X: a portion partially having non- plated portions over 1 mm in size, and XX: a portion not plated at all, and the marks O and ⁇ were regarded as acceptable.
- the adhesiveness of hot-dip galvanizing was evaluated by exfoliation of a specimen with a tape after 0T bending and the evaluation results were classified by the marks, O: no exfoliation, ⁇ : somewhat exfoliated, and X: considerably ' exfoliated, and the marks O and ⁇ were regarded as acceptable.
- the area ratio of oxides on a steel sheet surface 10- was determined in a visual field by of 1 mm x 1 mm with SEM after a plating layer of the plated steel sheet is dissolved by fuming nitric acid. In this measurement, in consideration of the fact that an oxide layer looked black when the oxide layer was observed by the secondary electron image of SEM was defined as the area ratio of oxides.
- Table 10 includes the lower and upper limit of hydrogen concentration obtained by the dew-point claimed in claim 9.
- hot-dip galvanized steel sheets were produced by subjecting cold-rolled steel sheets having the components of the invention example No. 5 in Table 8 to the processes of: annealing for 100 sec. at 800°C at a heating rate of 5°C/sec. in the atmospheres shown in Table 11; subsequently dipping in a hot-dip galvanizing bath; and air cooling to the room temperature.
- a metal composed of zinc containing 0.14% Al was used in a hot-dip galvanizing bath.
- the dipping time was set at 4 sec. ad the dipping temperature was set at 460°C.
- the plating performance of the hot-dip galvanized . steel sheets thus produced was evaluated visually.
- the evaluation results were classified by the marks, O* no non-plated portion and X: having non-plated portions.
- the adhesiveness of hot-dip galvanizing was evaluated by exfoliation of a specimen with a tape after 0T bending and the evaluation results were classified by the marks, Q : no exfoliation and X: exfoliated.
- the area ratio of oxides on a steel sheet surface was determined in a visual field by of 1 mm x 1 mm with SEM after a plating layer of the plated steel sheet is dissolved by fuming nitric acid.
- Table 11 includes the lower and upper limit of hydrogen concentration obtained by the dew-point and the Ni content claimed in claim 10.
- various kinds of hot-dip galvanized steel sheets were produced by subjecting various steel sheets shown in Table 3 to the processes of: annealing for 100 sec. at 800 °C at a heating rate of 5°C/sec. in an atmosphere of 5 ppm oxygen, 4% hydrogen and -40°C dew point; subsequently dipping in a hot-dip galvanizing bath; and air cooling to the room temperature.
- an atmosphere at the time of heating was controlled to 5 ppm oxygen, 4% hydrogen and - 40 °C dew point in the same way as the case of the retention at 800 °C, and a metal composed of zinc containing 0.14% Al was used in a hot-dip galvanizing bath.
- the dipping time was set at 4 sec. and the dipping temperature was set at 460 °C.
- the plating performance of the hot-dip galvanized steel sheets thus produced was evaluated visually.
- the evaluation results were classified by the marks, O: a portion having good appearance and no non-plated portion, ⁇ : a portion partially having small non-plated portions 1 mm or less in size, X: a portion partially having non- plated portions over 1 mm in size, and XX: a portion not plated at all, and the marks O and ⁇ were regarded as acceptable.
- the adhesiveness of hot-dip galvanizing was evaluated by exfoliation of a specimen with a tape after 0T bending and the evaluation results were classified by the marks, O: no exfoliation, ⁇ : somewhat exfoliated, and X: considerably exfoliated, and the marks O and ⁇ were regarded as acceptable.
- the maximum length of oxides in a steel sheet surface layer was determined by observing a section in the region of 1 mm or more, without applying etching, of a plated steel sheet under a magnification of 40,000 with an SEM and regarding the length of a portion where a gap between oxides exists continuously as the maximum length. The evaluation was made by observing three portions of each specimen. The results, together with the components of the steel sheets, are shown in Table 12.
- various kinds of hot-dip galvanized steel sheets were produced by subjecting various steel sheets shown in Table 9 to the processes of: annealing for 100 sec. at 800 °C at a heating rate of 5°C/sec. in an atmosphere of 4% hydrogen and -30 °C dew point; subsequently dipping in a hot-dip galvanizing bath; and air cooling to the room temperature.
- a metal composed of zinc containing 0.14% Al was used in a hot-dip galvanizing bath.
- the dipping time was set at 4 sec. and the dipping temperature was set at 460 °C.
- the plating performance of the hot-dip galvanized steel sheets thus produced was evaluated visually.
- the evaluation results were classified by the marks, O* n ° non-plated portion and X: having non-plated portions.
- the adhesiveness of hot-dip galvanizing was evaluated by exfoliation of a specimen with a tape after 0T bending and the evaluation results were classified by the marks, O : no exfoliation and X: exfoliated.
- existence or not of an internal oxide layer immediately under a hot-dip plating layer was determined by observing a section, after polished, of a plated steel sheet under the magnification of 10,000 with a scanning electron microscope (SEM).
- the present invention makes it possible to provide a high-strength hot-dip galvanized steel sheet having a tensile strength of about 590 to 1,080 MPa and a good press formability, and to produce the steel sheet in great efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES04702409.6T ES2633914T3 (en) | 2003-01-15 | 2004-01-15 | High strength hot dipped galvanized steel sheet and method to produce it |
US10/542,393 US7294412B2 (en) | 2003-01-15 | 2004-01-15 | High-strength hop-dip galvanized steel sheet |
CN200480002242.9A CN1985016B (en) | 2003-01-15 | 2004-01-15 | High-strength hot-dip galvanized steel sheet and method for producing the same |
CA2513298A CA2513298C (en) | 2003-01-15 | 2004-01-15 | High-strength hot-dip galvanized steel sheet and method for producing the same |
JP2006500391A JP4523937B2 (en) | 2003-01-15 | 2004-01-15 | High strength hot dip galvanized steel sheet and method for producing the same |
EP04702409.6A EP1587966B1 (en) | 2003-01-15 | 2004-01-15 | High-strength hot-dip galvanized steel sheet and method for producing the same |
US11/977,537 US7736449B2 (en) | 2003-01-15 | 2007-10-24 | High-strength hot-dip galvanized steel sheet and method for producing the same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003007087 | 2003-01-15 | ||
JP2003-007087 | 2003-01-15 | ||
JP2003-102488 | 2003-04-07 | ||
JP2003102488 | 2003-04-07 | ||
JP2003109328 | 2003-04-14 | ||
JP2003-109328 | 2003-04-14 | ||
JP2003127123 | 2003-05-02 | ||
JP2003-127123 | 2003-05-02 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10542393 A-371-Of-International | 2004-01-15 | ||
US11/977,537 Division US7736449B2 (en) | 2003-01-15 | 2007-10-24 | High-strength hot-dip galvanized steel sheet and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004063410A1 true WO2004063410A1 (en) | 2004-07-29 |
Family
ID=32719361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/000239 WO2004063410A1 (en) | 2003-01-15 | 2004-01-15 | High-strength hot-dip galvanized steel sheet and method for producing the same |
Country Status (8)
Country | Link |
---|---|
US (2) | US7294412B2 (en) |
EP (1) | EP1587966B1 (en) |
JP (1) | JP4523937B2 (en) |
KR (1) | KR100700473B1 (en) |
CN (1) | CN1985016B (en) |
CA (1) | CA2513298C (en) |
ES (1) | ES2633914T3 (en) |
WO (1) | WO2004063410A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1749895A1 (en) * | 2005-08-04 | 2007-02-07 | ARCELOR France | Manufacture of steel sheets having high resistance and excellent ductility, products thereof |
EP1889935A1 (en) * | 2005-05-30 | 2008-02-20 | JFE Steel Corporation | High-strength steel sheet plated with zinc by hot dipping with excellent formability and process for producing the same |
US20090123651A1 (en) * | 2005-10-14 | 2009-05-14 | Nobuyoshi Okada | Continuous Annealing and Hot Dip Plating Method and Continuous Annealing and Hot Dip Plating System of Steel sheet Containing Si |
EP2145973A1 (en) * | 2008-07-14 | 2010-01-20 | Kabushiki Kaisha Kobe Seiko Sho | Alloyed hot-dip galvanized steel sheet and production method thereof |
WO2015039685A1 (en) * | 2013-09-18 | 2015-03-26 | Thyssenkrupp Steel Ag | Method and device for determining the abrasion properties of a coated flat product |
WO2015039686A1 (en) * | 2013-09-18 | 2015-03-26 | Thyssenkrupp Steel Ag | Method and device for determining the abrasive-wear properties of galvannealed flat steel products |
US9290835B2 (en) * | 2005-10-05 | 2016-03-22 | Nippon Steel & Summitomo Metal Corporation | Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same |
EP2944705A4 (en) * | 2012-12-25 | 2016-08-17 | Nippon Steel & Sumitomo Metal Corp | Alloyed hot-dip galvanized steel plate and manufacturing method therefor |
EP3231887A4 (en) * | 2014-12-08 | 2017-11-22 | Posco | Ultra-high strength hot-dip galvanized steel sheet having excellent surface quality and coating adhesion, and method for manufacturing thereof |
US11530463B2 (en) | 2018-03-30 | 2022-12-20 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
US11560614B2 (en) | 2018-03-30 | 2023-01-24 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
US11795531B2 (en) | 2018-03-30 | 2023-10-24 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1634975B9 (en) * | 2003-03-31 | 2011-01-19 | Nippon Steel Corporation | Hot dip alloyed zinc coated steel sheet and method for production thereof |
EP1612288B9 (en) * | 2003-04-10 | 2010-10-27 | Nippon Steel Corporation | A method for producing a hot-dip zinc coated steel sheet having high strength |
FR2876711B1 (en) * | 2004-10-20 | 2006-12-08 | Usinor Sa | HOT-TEMPERATURE COATING PROCESS IN ZINC BATH OF CARBON-MANGANESE STEEL BANDS |
JP4555160B2 (en) * | 2005-06-01 | 2010-09-29 | 株式会社神戸製鋼所 | Steel plate for dissimilar welding with aluminum material and dissimilar material joint |
US7628869B2 (en) * | 2005-11-28 | 2009-12-08 | General Electric Company | Steel composition, articles prepared there from, and uses thereof |
WO2008135445A1 (en) * | 2007-05-02 | 2008-11-13 | Corus Staal B.V. | Method for hot dip galvanising of ahss or uhss strip material, and such material |
US8803023B2 (en) * | 2007-11-29 | 2014-08-12 | Isg Technologies | Seam welding |
CN102888555B (en) * | 2008-06-13 | 2014-09-17 | 株式会社神户制钢所 | Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials |
KR20100034118A (en) * | 2008-09-23 | 2010-04-01 | 포항공과대학교 산학협력단 | Hot-dip galvanized steel sheet having a martensitic structure with ultimate high strength and method for manufacturing the same |
JP5212056B2 (en) * | 2008-12-02 | 2013-06-19 | 新日鐵住金株式会社 | Method for producing galvannealed steel sheet |
JP5455379B2 (en) * | 2009-01-07 | 2014-03-26 | 株式会社東芝 | Medical image processing apparatus, ultrasonic diagnostic apparatus, and medical image processing program |
JP2011026674A (en) * | 2009-07-28 | 2011-02-10 | Jfe Steel Corp | High-strength hot-dip galvanized steel sheet having excellent plating peeling resistance |
JP4849186B2 (en) * | 2009-10-28 | 2012-01-11 | Jfeスチール株式会社 | Hot pressed member and method for manufacturing the same |
CN104388870B (en) * | 2009-12-29 | 2017-04-12 | Posco公司 | Hot-pressed moulded part |
JP5636683B2 (en) * | 2010-01-28 | 2014-12-10 | 新日鐵住金株式会社 | High-strength galvannealed steel sheet with excellent adhesion and manufacturing method |
KR101410435B1 (en) * | 2010-03-31 | 2014-06-20 | 신닛테츠스미킨 카부시키카이샤 | High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same |
JP5018935B2 (en) * | 2010-06-29 | 2012-09-05 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
KR20120075260A (en) * | 2010-12-28 | 2012-07-06 | 주식회사 포스코 | Hot dip plated steel sheet excellent in plating adhesiveness and method for manufacturing the hot dip plated steel sheet |
CN102383059A (en) * | 2011-10-28 | 2012-03-21 | 天津大学 | Hot rolled transformation induced plasticity (TRIP) steel and preparation method thereof |
KR101406513B1 (en) * | 2011-11-15 | 2014-06-13 | 주식회사 포스코 | Method for manufacturing coated steel shhet having excellent surface appearance |
DE102012101018B3 (en) | 2012-02-08 | 2013-03-14 | Thyssenkrupp Nirosta Gmbh | Process for hot dip coating a flat steel product |
KR101731693B1 (en) * | 2012-06-25 | 2017-04-28 | 제이에프이 스틸 가부시키가이샤 | Galvannealed steel sheet with excellent anti-powdering property |
DE102012106106A1 (en) * | 2012-07-06 | 2014-09-18 | Thyssenkrupp Steel Europe Ag | Method and device for avoiding zinc dust-induced surface defects in continuous strip galvanizing |
JP5852690B2 (en) * | 2013-04-26 | 2016-02-03 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamping |
JP6118684B2 (en) * | 2013-08-28 | 2017-04-19 | 株式会社神戸製鋼所 | Method for producing cold-rolled steel sheet with excellent surface properties |
CN103590352B (en) * | 2013-11-06 | 2015-07-08 | 湖北秭归新亚交通设施有限公司 | Processing technology for waste hot-dip galvanized road steel barrier |
WO2016111272A1 (en) * | 2015-01-09 | 2016-07-14 | 株式会社神戸製鋼所 | High-strength plated steel sheet and method for producing same |
WO2016111273A1 (en) * | 2015-01-09 | 2016-07-14 | 株式会社神戸製鋼所 | High-strength plated steel sheet and method for producing same |
MX2017009017A (en) * | 2015-01-09 | 2018-04-13 | Kobe Steel Ltd | Wire winding apparatus and wire winding method. |
JP6085348B2 (en) * | 2015-01-09 | 2017-02-22 | 株式会社神戸製鋼所 | High-strength plated steel sheet and its manufacturing method |
WO2017055895A1 (en) * | 2015-09-30 | 2017-04-06 | Arcelormittal | Method of online characterization of a layer of oxides on a steel substrate |
JP6249113B2 (en) * | 2016-01-27 | 2017-12-20 | Jfeスチール株式会社 | High yield ratio type high strength galvanized steel sheet and method for producing the same |
WO2017131054A1 (en) | 2016-01-29 | 2017-08-03 | Jfeスチール株式会社 | High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet |
US11560606B2 (en) | 2016-05-10 | 2023-01-24 | United States Steel Corporation | Methods of producing continuously cast hot rolled high strength steel sheet products |
US11993823B2 (en) | 2016-05-10 | 2024-05-28 | United States Steel Corporation | High strength annealed steel products and annealing processes for making the same |
KR102557715B1 (en) | 2016-05-10 | 2023-07-20 | 유나이테드 스테이츠 스틸 코포레이션 | Annealing process for high-strength steel products and their manufacture |
WO2018147087A1 (en) * | 2017-02-09 | 2018-08-16 | Jfeスチール株式会社 | Stainless steel plate substrate of steel plate for fuel cell separator, and method for producing same |
WO2019092467A1 (en) | 2017-11-08 | 2019-05-16 | Arcelormittal | A galvannealed steel sheet |
CN108179256A (en) * | 2018-02-06 | 2018-06-19 | 东北大学 | A kind of heat treatment method for improving Cold-Rolled TRIP Steel strength and ductility product |
JP7333786B2 (en) * | 2018-03-30 | 2023-08-25 | クリーブランド-クリフス スティール プロパティーズ、インク. | Low-alloy 3rd generation advanced high-strength steel and manufacturing process |
WO2020104832A1 (en) * | 2018-11-19 | 2020-05-28 | Arcelormittal | Dual pass, dual anneal welding method for joining high strength steels |
CN110616392B (en) * | 2019-10-24 | 2022-08-02 | 常州大学 | Surface pretreatment method for improving quality of malleable cast iron hot-dip galvanizing coating |
CN112795849B (en) * | 2020-11-20 | 2022-07-12 | 唐山钢铁集团有限责任公司 | 1300Mpa high-toughness hot-dip galvanized steel plate and production method thereof |
CN113249649B (en) * | 2021-04-16 | 2022-10-21 | 首钢集团有限公司 | Cold-rolled high-strength steel with good coating quality and preparation method thereof |
EP4332252A4 (en) * | 2021-04-27 | 2024-10-23 | Nippon Steel Corp | Alloyed hot-dip galvanized steel sheet |
US20240117476A1 (en) * | 2021-04-27 | 2024-04-11 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
MX2023011171A (en) * | 2021-04-27 | 2023-09-29 | Nippon Steel Corp | Steel sheet and plated steel sheet. |
CN115537645A (en) * | 2021-06-29 | 2022-12-30 | 宝山钢铁股份有限公司 | TRIP steel, preparation method thereof, cold-rolled steel plate and hot-dip galvanized steel plate |
WO2024203545A1 (en) * | 2023-03-28 | 2024-10-03 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet |
WO2024203544A1 (en) * | 2023-03-28 | 2024-10-03 | Jfeスチール株式会社 | Method for manufacturing high-strength, hot-dip galvenized steel sheet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1160346A1 (en) * | 1999-02-22 | 2001-12-05 | Nippon Steel Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479345A (en) | 1987-06-03 | 1989-03-24 | Nippon Steel Corp | High-strength hot rolled steel plate excellent in workability and its production |
JPH01230715A (en) | 1987-06-26 | 1989-09-14 | Nippon Steel Corp | Manufacture of high strength cold rolled steel sheet having superior press formability |
JPH0733551B2 (en) | 1989-02-18 | 1995-04-12 | 新日本製鐵株式会社 | Method for producing high strength steel sheet having excellent formability |
JP2526320B2 (en) | 1991-05-07 | 1996-08-21 | 新日本製鐵株式会社 | Method for producing high-strength galvannealed steel sheet |
JP2526322B2 (en) | 1991-05-23 | 1996-08-21 | 新日本製鐵株式会社 | Method for producing high-strength hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
JP3317303B2 (en) | 1991-09-17 | 2002-08-26 | 住友金属工業株式会社 | High tensile strength thin steel sheet with excellent local ductility and its manufacturing method |
JP2738209B2 (en) | 1992-03-02 | 1998-04-08 | 日本鋼管株式会社 | High strength and high ductility hot-dip galvanized steel sheet with excellent plating adhesion |
JP2704350B2 (en) | 1992-11-02 | 1998-01-26 | 新日本製鐵株式会社 | Manufacturing method of high strength steel sheet with good press formability |
JP3255765B2 (en) | 1993-07-14 | 2002-02-12 | 川崎製鉄株式会社 | Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet |
JP3126911B2 (en) | 1995-12-27 | 2001-01-22 | 川崎製鉄株式会社 | High strength galvanized steel sheet with good plating adhesion |
JP2000050658A (en) | 1998-07-27 | 2000-02-18 | Toyota Motor Corp | Ultrasonic motor |
JP3915345B2 (en) | 1999-10-29 | 2007-05-16 | Jfeスチール株式会社 | Manufacturing method of high-tensile hot-dip steel sheet |
TW504519B (en) * | 1999-11-08 | 2002-10-01 | Kawasaki Steel Co | Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same |
JP3494133B2 (en) | 2000-07-27 | 2004-02-03 | Jfeスチール株式会社 | Manufacturing method of hot-dip coated high strength steel sheet |
EP1342801B1 (en) * | 2000-09-12 | 2011-02-02 | JFE Steel Corporation | High tensile strength hot dip plated steel sheet and method for production thereof |
JP2002234129A (en) | 2001-02-07 | 2002-08-20 | Fuji Photo Film Co Ltd | Plate making method |
KR100747133B1 (en) * | 2001-06-06 | 2007-08-09 | 신닛뽄세이테쯔 카부시키카이샤 | High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation |
-
2004
- 2004-01-15 JP JP2006500391A patent/JP4523937B2/en not_active Expired - Fee Related
- 2004-01-15 US US10/542,393 patent/US7294412B2/en not_active Expired - Lifetime
- 2004-01-15 CA CA2513298A patent/CA2513298C/en not_active Expired - Lifetime
- 2004-01-15 KR KR1020057013049A patent/KR100700473B1/en active IP Right Grant
- 2004-01-15 CN CN200480002242.9A patent/CN1985016B/en not_active Expired - Lifetime
- 2004-01-15 EP EP04702409.6A patent/EP1587966B1/en not_active Expired - Lifetime
- 2004-01-15 WO PCT/JP2004/000239 patent/WO2004063410A1/en active Application Filing
- 2004-01-15 ES ES04702409.6T patent/ES2633914T3/en not_active Expired - Lifetime
-
2007
- 2007-10-24 US US11/977,537 patent/US7736449B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1160346A1 (en) * | 1999-02-22 | 2001-12-05 | Nippon Steel Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10450626B2 (en) | 2005-05-30 | 2019-10-22 | Jfe Steel Corporation | High-strength hot-dip galvanized steel sheet excellent in formability and method of producing same |
EP1889935A4 (en) * | 2005-05-30 | 2010-02-24 | Jfe Steel Corp | High-strength steel sheet plated with zinc by hot dipping with excellent formability and process for producing the same |
EP1889935A1 (en) * | 2005-05-30 | 2008-02-20 | JFE Steel Corporation | High-strength steel sheet plated with zinc by hot dipping with excellent formability and process for producing the same |
KR101222724B1 (en) * | 2005-08-04 | 2013-01-16 | 아르셀러미탈 프랑스 | Method of producing high-strength steel plates with excellent ductility and plates thus produced |
WO2007017565A1 (en) * | 2005-08-04 | 2007-02-15 | Arcelormittal France | Method of producing high-strength steel plates with excellent ductility and plates thus produced |
JP2009503267A (en) * | 2005-08-04 | 2009-01-29 | アルセロールミタル・フランス | Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby |
EP1749895A1 (en) * | 2005-08-04 | 2007-02-07 | ARCELOR France | Manufacture of steel sheets having high resistance and excellent ductility, products thereof |
US9732404B2 (en) | 2005-08-04 | 2017-08-15 | Arcelormittal France | Method of producing high-strength steel plates with excellent ductility and plates thus produced |
CN101263239B (en) * | 2005-08-04 | 2012-06-27 | 安赛乐米塔尔法国公司 | Method of producing high-strength steel plates with excellent ductility and plates thus produced |
US9290835B2 (en) * | 2005-10-05 | 2016-03-22 | Nippon Steel & Summitomo Metal Corporation | Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same |
US20090123651A1 (en) * | 2005-10-14 | 2009-05-14 | Nobuyoshi Okada | Continuous Annealing and Hot Dip Plating Method and Continuous Annealing and Hot Dip Plating System of Steel sheet Containing Si |
EP2145973A1 (en) * | 2008-07-14 | 2010-01-20 | Kabushiki Kaisha Kobe Seiko Sho | Alloyed hot-dip galvanized steel sheet and production method thereof |
EP2944705A4 (en) * | 2012-12-25 | 2016-08-17 | Nippon Steel & Sumitomo Metal Corp | Alloyed hot-dip galvanized steel plate and manufacturing method therefor |
US9725795B2 (en) | 2012-12-25 | 2017-08-08 | Nippon Steel & Sumitomo Metal Corporation | Galvannealed steel sheet and method of manufacturing the same |
WO2015039686A1 (en) * | 2013-09-18 | 2015-03-26 | Thyssenkrupp Steel Ag | Method and device for determining the abrasive-wear properties of galvannealed flat steel products |
US10024775B2 (en) | 2013-09-18 | 2018-07-17 | Thyssenkrupp Steel Europe Ag | Method and device for determining the abrasion properties of a coated flat product |
WO2015039685A1 (en) * | 2013-09-18 | 2015-03-26 | Thyssenkrupp Steel Ag | Method and device for determining the abrasion properties of a coated flat product |
EP3231887A4 (en) * | 2014-12-08 | 2017-11-22 | Posco | Ultra-high strength hot-dip galvanized steel sheet having excellent surface quality and coating adhesion, and method for manufacturing thereof |
US10344361B2 (en) | 2014-12-08 | 2019-07-09 | Posco | Ultra-high strength, hot-dip galvanized steel sheet having excellent surface quality and coating adhesion |
US11530463B2 (en) | 2018-03-30 | 2022-12-20 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
US11560614B2 (en) | 2018-03-30 | 2023-01-24 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
US11795531B2 (en) | 2018-03-30 | 2023-10-24 | Jfe Steel Corporation | High-strength galvanized steel sheet, high strength member, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
EP1587966B1 (en) | 2017-05-17 |
US20060124907A1 (en) | 2006-06-15 |
ES2633914T3 (en) | 2017-09-26 |
US20080053576A1 (en) | 2008-03-06 |
US7736449B2 (en) | 2010-06-15 |
CA2513298A1 (en) | 2004-07-29 |
KR100700473B1 (en) | 2007-03-28 |
CA2513298C (en) | 2012-01-03 |
JP4523937B2 (en) | 2010-08-11 |
CN1985016A (en) | 2007-06-20 |
JP2006517257A (en) | 2006-07-20 |
EP1587966A1 (en) | 2005-10-26 |
US7294412B2 (en) | 2007-11-13 |
KR20050092113A (en) | 2005-09-20 |
CN1985016B (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7294412B2 (en) | High-strength hop-dip galvanized steel sheet | |
JP6599902B2 (en) | High-strength multiphase steel, manufacturing method and use | |
EP1675970B1 (en) | A cold-rolled steel sheet having a tensile strength of 780 mpa or more an excellent local formability and a suppressed increase in weld hardness | |
US8840834B2 (en) | High-strength steel sheet and method for manufacturing the same | |
JP4635525B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
CN108291283B (en) | High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet | |
WO2020136988A1 (en) | High-strength hot-dip galvanized steel sheet and method for manufacturing same | |
EP3409807B1 (en) | High-yield ratio high-strength galvanized steel sheet, and method for producing same | |
KR20190076307A (en) | High-strength steel sheet having excellent workablity and method for manufacturing thereof | |
EP3929321B1 (en) | Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor | |
WO2012043863A1 (en) | High-strength hot-dip galvanized steel sheet having excellent fatigue characteristics and manufacturing method therefor | |
WO2017168958A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
WO2016157258A1 (en) | High-strength steel sheet and production method therefor | |
WO2016120914A1 (en) | High-strength plated steel sheet and production method for same | |
KR20230038239A (en) | Hot-pressed member and manufacturing method thereof | |
EP1932932A1 (en) | Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same | |
WO2016157257A1 (en) | High-strength steel sheet and production method therefor | |
JP2006283156A (en) | High-strength cold rolled steel sheet having excellent formability and weldability, high-strength hot dip galvanized steel sheet, high-strength alloyed galvannealed steel sheet, production method of high-strength cold rolled steel sheet, production method of high-strength hot dip galvanized steel sheet, and production method of high-strength alloyed galvannealed steel sheet | |
JP4150277B2 (en) | High strength galvannealed steel sheet excellent in press formability and method for producing the same | |
KR102632877B1 (en) | Ultra high strength galva-annealed steel sheet having excellent surface properties and method of manufacturing the same | |
KR102606996B1 (en) | High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same | |
JP3872595B2 (en) | Cold rolled steel sheet with low in-plane anisotropy and excellent formability | |
JP5971155B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet | |
JP7288184B2 (en) | Method for producing hot-dip Zn-Al-Mg plated steel sheet | |
CN116806274A (en) | High-strength steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006500391 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2970/DELNP/2005 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2004702409 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004702409 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006124907 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2513298 Country of ref document: CA Ref document number: 10542393 Country of ref document: US Ref document number: 1020057013049 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048022429 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057013049 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004702409 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10542393 Country of ref document: US |