JP3915345B2 - Manufacturing method of high-tensile hot-dip steel sheet - Google Patents

Manufacturing method of high-tensile hot-dip steel sheet Download PDF

Info

Publication number
JP3915345B2
JP3915345B2 JP30918199A JP30918199A JP3915345B2 JP 3915345 B2 JP3915345 B2 JP 3915345B2 JP 30918199 A JP30918199 A JP 30918199A JP 30918199 A JP30918199 A JP 30918199A JP 3915345 B2 JP3915345 B2 JP 3915345B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
plating
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30918199A
Other languages
Japanese (ja)
Other versions
JP2001131693A (en
Inventor
和秀 石井
一章 京野
一雄 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30918199A priority Critical patent/JP3915345B2/en
Publication of JP2001131693A publication Critical patent/JP2001131693A/en
Application granted granted Critical
Publication of JP3915345B2 publication Critical patent/JP3915345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高張力鋼板の表面に亜鉛、アルミ、亜鉛−アルミ合金などの溶融めっきを施した、自動車の車体などに用いて好適な高張力溶融めっき鋼板(合金化処理したものを含む)の製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費改善のための軽量化と衝突安全性の向上とを両立させるために、自動車用の鋼板として、溶融亜鉛めっきなどを施した高張力溶融めっき鋼板を適用する傾向が増加している。こうした高張力溶融めっき鋼板には、所望の強度と加工性(プレス成形性など)とともにめっき性をそなえていることが必要である。以下、主として高張力溶融亜鉛めっき鋼板について述べる。
【0003】
ところで、強度と加工性に優れた鋼板として、極低炭素鋼にSi、Mn、Pなどの強化元素を添加した極低炭素高張力鋼板がよく知られている。しかしながら、かかる強化元素を添加した鋼板を連続溶融亜鉛めっきライン(CGL)でめっきしようとすると、めっき前の焼鈍工程で、鋼板表面にSi、Mnなどの濃化層が生成し、めっき性を低下させることが知られている。
この濃化現象は、めっき前に還元性雰囲気で焼鈍するとき、Feにとっては還元性であっても、鋼中のSi、Mnなどには酸化性であるために、鋼板表面でSi、Mnなどが選択的に酸化されて酸化物層を形成し、表面にこれら元素の濃化が生じたものである。この表面酸化物は溶融亜鉛の濡れ性を著しく低下させる。その結果、高張力溶融亜鉛めっき鋼板では、めっき性が低下し、とりわけSi、Mn、Pなどの含有量が高い場合には、部分的にめっきされない不めっきが生じやすいという問題があった。
【0004】
このような高張力鋼板におけるめっき性の低下を改善させるための提案として、特開昭55−122865号公報には、めっき時の加熱に先だって高酸素分圧下で鋼板を強制的に酸化したのち還元する方法が、特開昭58−104163号公報には、溶融めっきを施す前にプレめっきを行う方法が開示されている。
【0005】
【発明が解決しようとする課題】
しかし、前者の方法では、強制酸化での表面酸化物の制御が十分に行われないと、鋼中成分及びめっき条件によっては必ずしも安定なめっきができないという問題が、また、後者の方法では、余分なプロセスを付加することになって、製造コストが上昇するという問題があった。
さらに、特開平7−70723号公報、特開平8−85858号公報には、めっき前に予め再結晶焼鈍して表面酸化物を生成させ、この酸化物を酸洗除去したのち、溶融亜鉛めっきを行う方法が提案されている。この方法により、高張力鋼のかなりのものについて不めっき欠陥を防止できるようになった。しかし、これらの方法であっても、Si含有量が高い鋼種では完全には防止できていないという問題が残っていた。
【0006】
そこで、本発明は、従来技術が抱えている上記問題を解決するための提案であり、高張力鋼とくに高Si、Mn含有の高張力鋼であっても優れためっき性をそなえた高張力溶融めっき鋼板の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは、Nbによる酸化抑制作用と連続焼鈍ライン(CAL)での焼鈍(「再結晶焼鈍」と略記)で生成した酸化膜の酸洗除去とを併用すると、連続溶融亜鉛めっきライン(CGL)でのめっき時の加熱(「めっき焼鈍」と略記)において表面でのSi、Mnの濃化が少なくなり、めっき性の大幅な向上が達成できることがわかった。
本発明は、このような知見を基盤として完成したものであり、その要旨構成は次のとおりである。
【0008】
削除
【0009】
削除
【0010】
)C:0.0005〜0.0050mass%、Si:0.10〜1.2mass%、Mn:0.50〜2.5mass%、P:0.13mass%以下、S:0.010mass%以下、Al:0.10mass%以下、N:0.005mass%以下、B:0.005mass%以下およびNb:0.02〜0.20mass%を含有し、残部はFeおよび不可避的不純物の組成からなる鋼板を、露点が0℃以下の還元性雰囲気でかつ780℃以上で再結晶焼鈍して、冷却後に表面に生成した酸化物を酸洗除去し、次いで、露点が−20℃以下の還元性雰囲気で650℃以上かつ前記再結晶焼鈍における温度以下に加熱し、この温度からの降温途中で溶融めっきすることを特徴とする高張力溶融めっき鋼板の製造方法。
【0011】
)C:0.0005〜0.0050mass%、Si:0.10〜1.2mass%、Mn:0.50〜2.5mass%、P:0.13mass%以下、S:0.010mass%以下、Al:0.10mass%以下、N:0.005mass%以下、B:0.005mass%以下、Nb:0.02〜0.20mass%および
Ti:0.020mass%以下を含有し、残部はFeおよび不可避的不純物の組成からなる鋼板を、露点が0℃以下の還元性雰囲気でかつ780℃以上で再結晶焼鈍して、冷却後に表面に生成した酸化物を酸洗除去し、次いで、露点が−20℃以下の還元性雰囲気で650℃以上かつ前記再結晶焼鈍における温度以下に加熱し、この温度からの降温途中で溶融めっきすることを特徴とする高張力溶融めっき鋼板の製造方法。
【0012】
上記(1)または(2)に記載の方法により溶融めっきした後、合金化処理することを特徴とする高張力溶融めっき鋼板の製造方法。
【0013】
【発明の実施の形態】
前述したように、本発明は、鋼中にNbを添加するとともに、再結晶焼鈍で生成した酸化膜を酸洗除去し、その後、めっき焼鈍を経てめっきするところに主な特徴である。以下に、この発明における成分組成、再結晶焼鈍条件およびめっき焼鈍条件などについて要旨構成に示した範囲に限定した理由について述べる。
【0014】
C:0.0005〜0.0050mass%
Cは、伸び及びr値の向上のためには低減することが望ましいが、0.0005mass%よりも少ないと、耐2次加工脆性の劣化や溶接部(溶接熱影響部)の強度低下を招くので好ましくなく、また、工業的に製造するのに高コストとなる。一方、C含有量が0.0050mass%を超えると、等量のTiやNbを含有させても、これら元素による材質(特に延性)改善効果が得られにくくなる。よって、C含有量は0.0005〜0.0050mass%の範囲とする。
【0015】
Si:0.10〜1.2mass%
Siは、鋼の強化に有効な元素であるが、0.10mass%未満の添加ではその効果が少ない。一方、1.2mass%を超えて含有させると、めっき焼鈍後の鋼板表面にSi酸化物が生成し、不めっき欠陥が発生しやすくなる。したがって、Siは0.10〜1.2mass%の範囲で必要な強度に応じて含有させる。
【0016】
Mn:0.50〜2.5mass%
Mnは、強度増大に寄与する元素であるが、0.50mass%未満では十分な強度を得ることができない。一方、2.5mass%を超えて添加すると、めっき焼鈍後に鋼板表面にMn酸化物が生成して不めっき欠陥を発生しやすくなり、また鋼が硬化しすぎて冷間圧延が困難になる。したがって、Mn含有量は0.50〜2.5mass%の範囲とする。
【0017】
P:0.13mass%以下
Pは、強度増加とともに、加工性(主にr値)の向上にも寄与する元素である。しかし、P含有量が0.13mass%を超えると、強度の増加が飽和するほか、凝固時の偏析が顕著になり、加工性の劣化を招き、さらに耐2次加工脆性も大幅に劣化する。したがって、Pは上限を0.13mass%として添加する。
【0018】
S:0.010mass%以下
Sは、溶融めっき後の合金化処理において、合金化むらを起こす有害な元素であるので、できるだけ低減するのが望ましい。また、S量の低減は、鋼中におけるS析出物の減少による加工性の向上、Cを固定するための有効Ti量の増加にも寄与する。よって、Sは0.010mass%以下に制限する。
【0019】
Al:0.10mass%以下
Alは、鋼の清浄化に有効な元素であり、介在物を鋼中から排除できれば、実質的に含有しなくてもよい。しかし、0.1mass%を超えて含有させた場合には、表面性状の劣化を招くので、0.1mass%以下に制限する必要がある。
【0020】
N:0.005mass%以下
Nは、延性、r値などの材質を確保するために、できるだけ低減することが望ましい。N含有量が0.005mass%以下でほぼ満足し得る特性が得られるとともに、更なる低減はコストの増加を招いて不利になるので、上限を0.005mass%とする。
【0021】
B:0.005mass%以下
Bは、耐2次加工脆性の改善に有効な元素である。この効果は0.005mass%を超えて添加してもさらなる効果の増大はなく、焼鈍条件によってはかえって加工性の低下を招くおそれがある。また、過度に添加すると、熱延母板も硬化させ圧延が困難になる。したがって、Bは0.005mass%を上限として添加する。なお、添加量の下限については特に限定はしないが、必要な耐2次加工脆性の改善程度に応じて含有させればよく、通常は0.001mass%以上を含有させることが望ましい。
【0022】
Nb:0.02〜0.20mass%
Nbは、めっき焼鈍後の鋼板表面における酸化物生成(表面濃化)を抑制し、めっき性を向上させる重要な元素である。このような効果はNb添加量が0.02mass%未満では得られない。一方、Nb添加量を増すと、再結晶温度が上昇し、とくに0.20mass%を超えると、再結晶温度が高くなりすぎて、焼鈍により生成した表面酸化物が厚くなり、酸洗除去が困難となる。したがって、Nb添加量は、0.02〜0.20mass%の範囲とする。
【0023】
Ti:0.020mass%以下
Tiは、鋼の成形性の向上に有効な元素であり、必要に応じて添加する。ただし、過度に添加すると、CALによる再結晶焼鈍の段階で生成した表面の酸化物中に混入し、この酸化物の酸洗除去を困難にする。よって、Tiは0.02mass%以下の範囲で添加する。
【0024】
上述した成分組成の鋼を用いて、公知の方法によってめっき用の鋼板を製造する。すなわち、スラブ加熱温度を1100〜1300℃とし、仕上げ温度を800〜1000℃とする熱問圧延を行い、その後酸洗し、冷問圧延を行う。冷延圧下率は50%以上とするのがよい。
次いで、以下に述べる再結晶焼鈍、酸洗、めっき焼鈍ののち、溶融めっきを行い、場合によっては、さらに合金化処理を行う。
【0025】
再結晶焼鈍
再結晶焼鈍は、再結晶温度以上に加熱(通常、CALを使用)することにより、冷間圧延により導入された歪みを解放して、鋼板に必要な機械特性と加工性を付与する役割のほか、鋼板表面直下のSiやMnを除去するために、一旦鋼板表面にSiやMnの酸化物を生成させるという役割のために行う。再結晶焼鈍が780℃未満では酸化物の生成が不十分なので、780℃以上で行う。再結晶焼鈍の雰囲気は、露点が0℃以下の条件で行う。というのは、露点が0℃より高いと、酸化物が主にFe酸化物となり、SiやMn酸化物が生成しにくくなるからである。露点0℃以下の還元性雰囲気は、窒素ガス、アルゴンガス、水素ガスの単独あるいはこれらガスを2種以上混合したものとすればよい。再結晶焼鈍時の温度履歴としては、820〜900℃で0〜120s保持した後、1〜100℃/sの速度で冷却するパターンが好ましい。
【0026】
酸化物の酸洗除去
還元雰囲気での再結晶焼鈍により、鋼板表面に生成したSiやMnの酸化物を除去するために酸洗する。こうして、SiやMnの酸化物を酸洗除去することにより、鋼板直下にSi、Mnの欠乏層を形成することができるので、後工程のめっき焼鈍によってもSiやMnの表面濃化を抑制することができる。
酸洗液としては、3〜20%塩酸を用いるのが好ましく、また、酸洗時間は3〜60秒とするのが好適である。
【0027】
めっき焼鈍
酸洗により表面のSiやMnの酸化物を除去したのち、めっき焼鈍(めっき前の加熱)を行う。溶融亜鉛めっきの場合、このめっき焼鈍はCGLを用いて行えばよい。そして、めっき焼鈍の条件は、露点−20℃以下の還元性雰囲気で650℃以上かつ上記再結晶焼鈍における温度以下で行う必要がある。
というのは、露点が−20℃より高い雰囲気では、鋼板表面に厚いFe酸化物が生成するからである。また、焼鈍温度が650℃未満では鋼板表面が活性化せず、一方、焼鈍温度が再結晶焼鈍での温度以上になると、鋼板内部のSiやMnが再結晶焼鈍で鋼板表面直下に生成したSi,Mn欠乏層を越えて、これら元素が表面に拡散し、再びSi,Mnの酸化物を形成してめっき性を低下させてしまうからである。
露点−20℃以下の還元性雰囲気は、窒素ガス、アルゴンガス、水素ガスの単独あるいはこれらガスを2種以上混合したものとすればよい。めっき焼鈍時の温度履歴としては、730〜760℃で0〜180s保持した後、1〜100℃/sの速度で冷却するパターンが好ましい。
【0028】
【実施例】
表1に示す種々の成分組成からなる鋼塊を1150〜1250℃に加熱し、仕上圧延温度を850〜950℃で熱間圧延した。この熱延鋼帯を酸洗して、圧下率77%で冷間圧延して板厚0.7mmの冷延板とし、さらに表2に示す条件で、再結晶焼鈍一酸洗−めっき焼鈍の工程を経て、CGLにて以下の条件で溶融亜鉛めっきを行った。なお、再結晶焼鈍およびめっき焼鈍での保持時間は60秒とした。再結晶焼鈍では5%H+Nガス、めっき焼鈍では7%H+Nガスを用いた。
・溶融亜鉛めっき条件
浴温:470℃
浸入板温:470℃
Al含有率:0.15mass%
めっき付着量:60g/m(片面)
めっき時間:1秒
【0029】
こうして得られた溶融亜鉛めっき鋼板から、40mm×80mmの試験片を各10枚採取し、その表面をスキャナーにより観察し、画像処理により求めた不めっき部分の面積率が0.1%以下のものを合格とした。10枚の試験片について同様な判定を行い、その合格枚数の比率から合格率を求めた。
また、発明2および3については、520℃で60秒の合金化処理を行い、合金化ムラが全くないことを確認した。
【0030】
【表1】

Figure 0003915345
【0031】
【表2】
Figure 0003915345
【0032】
得られた結果を表2に示す。表2から明らかなように、本発明に従う発明例は比較例に比べて良好なめっき性を有していることがわかる。そのうえ、合金化処理性にも優れていることがわかる。これらの結果は、いずれも鋼板表面における表面濃化を抑制することによって得られたものであると思われる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、高張力でありながら、不めっき欠陥のない溶融亜鉛めっき鋼板をはじめとする溶融めっき鋼板を提供することができる。また、本発明によれば、合金化処理性のよい溶融亜鉛めっき鋼板をも提供することが可能になる。しがって、本発明は自動車の軽量化、低燃費化に大きく寄与するものといえる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a high-tensile hot-dip galvanized steel sheet (including alloyed ones ) suitable for use in automobile bodies, etc., in which zinc, aluminum, zinc-aluminum alloy or the like is hot-plated on the surface of a high-strength steel sheet . It relates to a manufacturing method.
[0002]
[Prior art]
In recent years, there has been an increasing trend to apply high-tensile hot-dip galvanized steel sheets that have been hot-dip galvanized as steel sheets for automobiles in order to achieve both weight reduction for improving fuel economy and improved collision safety. Yes. Such a high-tensile hot-dip galvanized steel sheet needs to have plating properties as well as desired strength and workability (such as press formability). Hereinafter, the high-tensile hot dip galvanized steel sheet will be mainly described.
[0003]
By the way, as a steel plate excellent in strength and workability, an ultra-low carbon high-tensile steel plate obtained by adding a strengthening element such as Si, Mn, P to ultra-low carbon steel is well known. However, when trying to plate a steel sheet to which such strengthening elements are added with a continuous hot dip galvanizing line (CGL), a concentrated layer of Si, Mn, etc. is formed on the steel sheet surface in the annealing process before plating, thereby reducing the plating performance. It is known to let
This concentration phenomenon occurs when annealing in a reducing atmosphere before plating, even if it is reducing for Fe, it is oxidizing to Si, Mn, etc. in the steel. Is selectively oxidized to form an oxide layer, and the concentration of these elements occurs on the surface. This surface oxide significantly reduces the wettability of the molten zinc. As a result, the high-tensile hot-dip galvanized steel sheet has a problem that the plating properties are lowered, and particularly when the content of Si, Mn, P, etc. is high, non-plating that is not partially plated tends to occur.
[0004]
As a proposal for improving the deterioration of the plating property in such a high-tensile steel sheet, Japanese Patent Application Laid-Open No. 55-122865 discloses that a steel sheet is forcibly oxidized under a high oxygen partial pressure prior to heating during plating and then reduced. Japanese Patent Laid-Open No. 58-104163 discloses a method of performing pre-plating before performing hot-dip plating.
[0005]
[Problems to be solved by the invention]
However, in the former method, if the surface oxide is not sufficiently controlled by forced oxidation, there is a problem that stable plating cannot always be performed depending on the components in the steel and the plating conditions. As a result, the manufacturing cost increases.
Further, in JP-A-7-70723 and JP-A-8-85858, recrystallization annealing is performed in advance before plating to form a surface oxide, and after this oxide is pickled and removed, hot dip galvanization is performed. A way to do it has been proposed. This method has made it possible to prevent non-plating defects in a considerable number of high-strength steels. However, even with these methods, there remains a problem that the steel type having a high Si content cannot be completely prevented.
[0006]
Therefore, the present invention is a proposal for solving the above-mentioned problems of the prior art, and is a high-tensile melt that has excellent plating properties even for high-strength steel, particularly high-strength steel containing high Si and Mn. and to provide a method of manufacturing a plated steel plate.
[0007]
[Means for Solving the Problems]
When the inventors combined use of Nb oxidation inhibition and pickling removal of the oxide film generated by annealing in the continuous annealing line (CAL) (abbreviated as “recrystallization annealing”), the continuous hot dip galvanizing line (CGL) It has been found that the concentration of Si and Mn on the surface is reduced by heating at the time of plating (abbreviated as “plating annealing”), and a significant improvement in plating properties can be achieved.
The present invention has been completed on the basis of such knowledge, and the gist of the present invention is as follows.
[0008]
Delete [0009]
Delete [0010]
( 1 ) C: 0.0005 to 0.0050 mass%, Si: 0.10 to 1.2 mass%, Mn: 0.50 to 2.5 mass%, P: 0.13 mass% or less, S: 0.010 mass% Hereinafter, Al: 0.10 mass% or less, N: 0.005 mass% or less, B: 0.005 mass% or less, and Nb: 0.02 to 0.20 mass%, with the balance from the composition of Fe and inevitable impurities The resulting steel sheet is recrystallized and annealed in a reducing atmosphere with a dew point of 0 ° C. or less and at 780 ° C. or more, and the oxide formed on the surface after cooling is removed by pickling, and then the reducing property with a dew point of −20 ° C. or less. A method for producing a high-tensile hot-dip galvanized steel sheet, which is heated to 650 ° C. or higher in an atmosphere and lower than or equal to the temperature in the recrystallization annealing, and is hot-dipped in the middle of cooling from this temperature.
[0011]
( 2 ) C: 0.0005 to 0.0050 mass%, Si: 0.10 to 1.2 mass%, Mn: 0.50 to 2.5 mass%, P: 0.13 mass% or less, S: 0.010 mass% Hereinafter, Al: 0.10 mass% or less, N: 0.005 mass% or less, B: 0.005 mass% or less, Nb: 0.02 to 0.20 mass% and Ti: 0.020 mass% or less, the balance being A steel plate composed of Fe and inevitable impurities is subjected to recrystallization annealing in a reducing atmosphere with a dew point of 0 ° C. or lower and at a temperature of 780 ° C. or higher, and the oxide formed on the surface after cooling is removed by pickling. Is heated at a temperature of 650 ° C. or higher in a reducing atmosphere of −20 ° C. or lower and lower than the temperature in the recrystallization annealing, and is subjected to hot dipping in the middle of temperature lowering from this temperature. Method of manufacturing a Kki steel plate.
[0012]
( 3 ) A method for producing a high-tensile hot-dip galvanized steel sheet, characterized by subjecting it to alloying after hot-dip plating by the method described in (1) or (2 ) above .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention is mainly characterized in that Nb is added to the steel, the oxide film formed by recrystallization annealing is pickled and removed, and then plated through plating annealing. The reason why the component composition, recrystallization annealing conditions, plating annealing conditions, and the like in this invention are limited to the ranges shown in the summary configuration will be described below.
[0014]
C: 0.0005 to 0.0050 mass%
C is preferably reduced to improve the elongation and the r value. However, if it is less than 0.0005 mass%, the secondary work brittleness resistance deteriorates and the strength of the welded portion (welding heat affected zone) decreases. Therefore, it is not preferable, and the production cost is high. On the other hand, if the C content exceeds 0.0050 mass%, even if an equal amount of Ti or Nb is contained, it is difficult to obtain an effect of improving the material (particularly ductility) by these elements. Therefore, the C content is in the range of 0.0005 to 0.0050 mass%.
[0015]
Si: 0.10 to 1.2 mass%
Si is an element effective for strengthening steel, but its effect is small when added less than 0.10 mass%. On the other hand, if the content exceeds 1.2 mass%, Si oxide is generated on the surface of the steel sheet after plating annealing, and non-plating defects are likely to occur. Therefore, Si is contained in the range of 0.10 to 1.2 mass% according to the required strength.
[0016]
Mn: 0.50 to 2.5 mass%
Mn is an element that contributes to an increase in strength, but if it is less than 0.50 mass%, sufficient strength cannot be obtained. On the other hand, if added in excess of 2.5 mass%, Mn oxide is generated on the surface of the steel sheet after the plating annealing, and non-plating defects are likely to occur, and the steel is hardened so that cold rolling becomes difficult. Therefore, the Mn content is in the range of 0.50 to 2.5 mass%.
[0017]
P: 0.13 mass% or less P is an element that contributes to an improvement in workability (mainly r value) as well as an increase in strength. However, if the P content exceeds 0.13 mass%, the increase in strength is saturated, segregation during solidification becomes prominent, resulting in deterioration of workability, and further resistance to secondary work brittleness is greatly deteriorated. Therefore, P is added at an upper limit of 0.13 mass%.
[0018]
S: 0.010 mass% or less Since S is a harmful element that causes uneven alloying in the alloying treatment after hot dipping, it is desirable to reduce it as much as possible. Moreover, the reduction of the S amount contributes to the improvement of workability due to the reduction of S precipitates in the steel and the increase of the effective Ti amount for fixing C. Therefore, S is limited to 0.010 mass% or less.
[0019]
Al: 0.10 mass% or less Al is an element effective for cleaning steel, and if inclusions can be excluded from the steel, it may not be substantially contained. However, when the content exceeds 0.1 mass%, the surface properties are deteriorated, so it is necessary to limit the content to 0.1 mass% or less.
[0020]
N: 0.005 mass% or less N is desirably reduced as much as possible in order to secure materials such as ductility and r value. While an almost satisfactory characteristic can be obtained when the N content is 0.005 mass% or less, further reduction causes a cost increase, which is disadvantageous. Therefore, the upper limit is set to 0.005 mass%.
[0021]
B: 0.005 mass% or less
B is an element effective for improving secondary work brittleness resistance. Even if this effect is added in excess of 0.005 mass%, there is no further increase in effect, and depending on the annealing conditions, there is a possibility that workability may be lowered. Moreover, when it adds excessively, a hot-rolled mother board will also be hardened and rolling will become difficult. Therefore, B is added with 0.005 mass% as the upper limit. In addition, although there is no limitation in particular about the minimum of addition amount, what is necessary is just to contain according to the required improvement degree of secondary work brittleness resistance, and it is desirable to contain 0.001 mass% or more normally.
[0022]
Nb: 0.02 to 0.20 mass%
Nb is an important element that suppresses oxide formation (surface concentration) on the steel sheet surface after plating annealing and improves plating properties. Such an effect cannot be obtained when the Nb addition amount is less than 0.02 mass%. On the other hand, when the amount of Nb added is increased, the recrystallization temperature rises. In particular, when it exceeds 0.20 mass%, the recrystallization temperature becomes too high, and the surface oxide generated by annealing becomes thick, so that pickling removal is difficult. It becomes. Therefore, the Nb addition amount is in the range of 0.02 to 0.20 mass%.
[0023]
Ti: 0.020 mass% or less Ti is an element effective for improving the formability of steel, and is added as necessary. However, if it is added excessively, it will be mixed into the surface oxide produced at the stage of recrystallization annealing by CAL, making it difficult to remove the oxide by pickling. Therefore, Ti is added in a range of 0.02 mass% or less.
[0024]
A steel sheet for plating is manufactured by a known method using the steel having the above-described component composition. That is, hot rolling is performed at a slab heating temperature of 1100 to 1300 ° C. and a finishing temperature of 800 to 1000 ° C., followed by pickling and cold rolling. The cold rolling reduction ratio is preferably 50% or more.
Next, after recrystallization annealing, pickling, and plating annealing described below, hot dipping is performed, and in some cases, alloying is further performed.
[0025]
Recrystallization annealing Recrystallization annealing releases the strain introduced by cold rolling by heating above the recrystallization temperature (usually using CAL) and imparts the necessary mechanical properties and workability to the steel sheet. In addition to the role, in order to remove Si and Mn immediately below the surface of the steel sheet, this is performed for the role of once generating oxides of Si and Mn on the surface of the steel sheet. If the recrystallization annealing is less than 780 ° C., the formation of oxides is insufficient, and therefore, it is performed at 780 ° C. or higher. The atmosphere of recrystallization annealing is performed under the condition that the dew point is 0 ° C. or less. Because, when the dew point is higher than 0 ° C., the oxide is mainly Fe oxide, Si and Mn oxides is because hardly form raw. Dew point 0 ℃ the reducing atmosphere is nitrogen gas, argon gas, alone or these gases of hydrogen gas may be assumed that engaged on mixing two or more kinds. As a temperature history at the time of recrystallization annealing, a pattern of cooling at a rate of 1 to 100 ° C./s after being held at 820 to 900 ° C. for 0 to 120 s is preferable.
[0026]
Pickling removal of oxide Pickling is performed to remove oxides of Si and Mn formed on the surface of the steel sheet by recrystallization annealing in a reducing atmosphere. Thus, by removing the oxides of Si and Mn by pickling, a deficient layer of Si and Mn can be formed directly under the steel sheet, so that surface enrichment of Si and Mn is suppressed even by subsequent plating annealing. be able to.
As the pickling solution, it is preferable to use 3 to 20 % hydrochloric acid, and the pickling time is preferably 3 to 60 seconds.
[0027]
Plating annealing After removing the surface Si and Mn oxides by pickling, plating annealing (heating before plating) is performed. In the case of hot dip galvanizing, this plating annealing may be performed using CGL. And the conditions of plating annealing need to be performed at 650 degreeC or more and below the temperature in the said recrystallization annealing in a reducing atmosphere with a dew point of -20 degrees C or less.
This is because, in an atmosphere having a dew point higher than −20 ° C., a thick Fe oxide is generated on the surface of the steel sheet. In addition, when the annealing temperature is less than 650 ° C., the steel sheet surface is not activated. On the other hand, when the annealing temperature is equal to or higher than the recrystallization annealing temperature, Si or Mn inside the steel sheet is generated just under the steel sheet surface by recrystallization annealing. This is because these elements diffuse to the surface beyond the Mn-deficient layer and form oxides of Si and Mn again to lower the plating property.
Dew point -20 ° C. or less of the reducing atmosphere, nitrogen gas, argon gas, alone or these gases of hydrogen gas may be assumed that engaged on mixing two or more kinds. As a temperature history at the time of plating annealing, a pattern of cooling at a rate of 1 to 100 ° C./s after being held at 730 to 760 ° C. for 0 to 180 s is preferable.
[0028]
【Example】
The steel ingot which consists of various component composition shown in Table 1 was heated at 1150-1250 degreeC, and the hot rolling was hot-rolled at 850-950 degreeC. This hot-rolled steel strip is pickled and cold-rolled at a reduction rate of 77% to obtain a cold-rolled sheet having a thickness of 0.7 mm. Further, under the conditions shown in Table 2, recrystallization annealing and pickling and plating annealing are performed. After the process, hot dip galvanization was performed with CGL under the following conditions. In addition, the holding time in recrystallization annealing and plating annealing was set to 60 seconds. 5% H 2 + N 2 gas in the recrystallization annealing, the plated annealed using 7% H 2 + N 2 gas.
-Hot dip galvanizing conditions Bath temperature: 470 ° C
Infiltration plate temperature: 470 ° C
Al content: 0.15 mass%
Plating adhesion amount: 60 g / m 2 (single side)
Plating time: 1 second [0029]
Ten pieces each of 40 mm × 80 mm test pieces were collected from the hot dip galvanized steel sheet thus obtained, the surface of the specimen was observed with a scanner, and the area ratio of the non-plated portion obtained by image processing was 0.1% or less. Was passed. The same determination was performed on 10 test pieces, and the pass rate was determined from the ratio of the pass number.
Moreover, about invention 2 and 3, the alloying process for 60 second was performed at 520 degreeC, and it confirmed that there was no alloying nonuniformity at all.
[0030]
[Table 1]
Figure 0003915345
[0031]
[Table 2]
Figure 0003915345
[0032]
The obtained results are shown in Table 2. As is apparent from Table 2, it can be seen that the inventive examples according to the present invention have better plating properties than the comparative examples. Moreover, it can be seen that the alloying processability is also excellent. These results seem to be obtained by suppressing the surface concentration on the steel sheet surface.
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a hot dip galvanized steel sheet including a hot dip galvanized steel sheet having no unplating defects while having high tension. Further, according to the present invention, it is possible to provide a hot-dip galvanized steel sheet having a good alloying processability. Therefore, it can be said that the present invention greatly contributes to the reduction in weight and fuel consumption of automobiles.

Claims (3)

C:0.0005〜0.0050mass%、
Si:0.10〜1.2mass%、
Mn:0.50〜2.5mass%、
P:0.13mass%以下、
S:0.010mass%以下、
Al:0.10mass%以下、
N:0.005mass%以下、
B:0.005mass%以下および
Nb:0.02〜0.20mass%を含有し、残部はFeおよび不可避的不純物の組成からなる鋼板を、露点が0℃以下の還元性雰囲気でかつ780℃以上で再結晶焼鈍して、冷却後に表面に生成した酸化物を酸洗除去し、次いで、露点が−20℃以下の還元性雰囲気で650℃以上かつ前記再結晶焼鈍における温度以下に加熱し、この温度からの降温途中で溶融めっきすることを特徴とする高張力溶融めっき鋼板の製造方法。
C: 0.0005 to 0.0050 mass%,
Si: 0.10 to 1.2 mass%,
Mn: 0.50 to 2.5 mass%
P: 0.13 mass% or less,
S: 0.010 mass% or less,
Al: 0.10 mass% or less,
N: 0.005 mass% or less,
B: 0.005 mass% or less and Nb: 0.02 to 0.20 mass%, the balance being a steel plate composed of Fe and inevitable impurities, in a reducing atmosphere with a dew point of 0 ° C. or less and 780 ° C. or more Then, the oxide formed on the surface after cooling is removed by pickling, and then heated in a reducing atmosphere having a dew point of −20 ° C. or lower to 650 ° C. or higher and lower than the temperature in the recrystallization annealing. A method for producing a high-tensile hot-dip galvanized steel sheet, comprising hot-dip plating in the middle of temperature drop from temperature.
C:0.0005〜0.0050mass%、
Si:0.10〜1.2mass%、
Mn:0.50〜2.5mass%、
P:0.13mass%以下、
S:0.010mass%以下、
Al:0.10mass%以下、
N:0.005mass%以下、
B:0.005mass%以下、
Nb:0.02〜0.20mass%および
Ti:0.020mass%以下を含有し、残部はFeおよび不可避的不純物の組成からなる鋼板を、露点が0℃以下の還元性雰囲気でかつ780℃以上で再結晶焼鈍して、冷却後に表面に生成した酸化物を酸洗除去し、次いで、露点が−20℃以下の還元性雰囲気で650℃以上かつ前記再結晶焼鈍における温度以下に加熱し、この温度からの降温途中で溶融めっきすることを特徴とする高張力溶融めっき鋼板の製造方法。
C: 0.0005 to 0.0050 mass%,
Si: 0.10 to 1.2 mass%,
Mn: 0.50 to 2.5 mass%
P: 0.13 mass% or less,
S: 0.010 mass% or less,
Al: 0.10 mass% or less,
N: 0.005 mass% or less,
B: 0.005 mass% or less,
A steel plate containing Nb: 0.02 to 0.20 mass% and Ti: 0.020 mass% or less, the balance being composed of Fe and inevitable impurities, in a reducing atmosphere with a dew point of 0 ° C. or less and 780 ° C. or more Then, the oxide formed on the surface after cooling is removed by pickling, and then heated in a reducing atmosphere with a dew point of −20 ° C. or lower to 650 ° C. or higher and lower than the temperature in the recrystallization annealing. A method for producing a high-tensile hot-dip galvanized steel sheet, comprising hot-dip plating in the middle of temperature drop from temperature.
請求項または請求項に記載の方法により溶融めっきした後、合金化処理することを特徴とする高張力溶融めっき鋼板の製造方法。After dip plated by the method according to claim 1 or claim 2, the method of producing a high tensile hot dip plated steel sheet, characterized in that the alloying.
JP30918199A 1999-10-29 1999-10-29 Manufacturing method of high-tensile hot-dip steel sheet Expired - Fee Related JP3915345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30918199A JP3915345B2 (en) 1999-10-29 1999-10-29 Manufacturing method of high-tensile hot-dip steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30918199A JP3915345B2 (en) 1999-10-29 1999-10-29 Manufacturing method of high-tensile hot-dip steel sheet

Publications (2)

Publication Number Publication Date
JP2001131693A JP2001131693A (en) 2001-05-15
JP3915345B2 true JP3915345B2 (en) 2007-05-16

Family

ID=17989913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30918199A Expired - Fee Related JP3915345B2 (en) 1999-10-29 1999-10-29 Manufacturing method of high-tensile hot-dip steel sheet

Country Status (1)

Country Link
JP (1) JP3915345B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2513298C (en) 2003-01-15 2012-01-03 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2001131693A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
KR100786052B1 (en) High tensile strength hot dip plated steel sheet and method for production thereof
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
KR20010042985A (en) Steel plate, hot-dip steel plate and alloyed hot-dip steel plate and production methods therefor
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
JP5087813B2 (en) High-tensile hot-dip galvanized steel sheet with excellent plating properties and method for producing the same
JP5556033B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP3915345B2 (en) Manufacturing method of high-tensile hot-dip steel sheet
JP2002146475A (en) Galvannealed steel sheet
JPH0154413B2 (en)
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3257301B2 (en) Manufacturing method of hot-dip galvanized steel sheet from hot-rolled steel sheet
JP2002173714A (en) High tensile strength hot dip plated steel sheet and its production method
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2001192795A (en) High tensile strength hot dip plated steel plate and producing method therefor
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JP3001286B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
JPH0413419B2 (en)
WO2021006131A1 (en) Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3555483B2 (en) Cold rolled steel sheet, hot-dip coated steel sheet excellent in workability, and methods for producing them
JP3874821B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JP3728767B2 (en) High-tensile cold-rolled steel sheet excellent in hot dipping property and alloyed hot-dip galvanized steel sheet using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Ref document number: 3915345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees