WO2004060630A1 - Powder slush molding machine and powder slush molding method - Google Patents

Powder slush molding machine and powder slush molding method Download PDF

Info

Publication number
WO2004060630A1
WO2004060630A1 PCT/JP2002/013629 JP0213629W WO2004060630A1 WO 2004060630 A1 WO2004060630 A1 WO 2004060630A1 JP 0213629 W JP0213629 W JP 0213629W WO 2004060630 A1 WO2004060630 A1 WO 2004060630A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
section
hot air
powder
slush molding
Prior art date
Application number
PCT/JP2002/013629
Other languages
French (fr)
Japanese (ja)
Inventor
Takemi Matsuno
Original Assignee
Nakata Coating Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakata Coating Co.,Ltd. filed Critical Nakata Coating Co.,Ltd.
Priority to PCT/JP2002/013629 priority Critical patent/WO2004060630A1/en
Priority to AU2002361099A priority patent/AU2002361099A1/en
Priority to CNB028047842A priority patent/CN1318200C/en
Priority to JP2004564421A priority patent/JP3696875B2/en
Priority to KR1020037010372A priority patent/KR100551141B1/en
Publication of WO2004060630A1 publication Critical patent/WO2004060630A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • B29C2035/046Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames dried air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings

Definitions

  • the present invention relates to a powder slush molding machine and a powder slush molding method, and more particularly, to a powder slush molding machine and a powder slush capable of uniformly adhering powder (powder resin) to a large-sized and complicated mold. It relates to a molding method. Background art
  • powder slush molding methods for slush molding using powder have been widely practiced in manufacturing large, complex-shaped sheet materials such as interior materials of automobiles.
  • Japanese Patent Application Laid-Open No. 3-202239 discloses a method in which a tentative heating step and a preheating step each controlled at a predetermined temperature are provided to heat a mold to a uniform temperature and use a mold. After that, a method for forming leather is characterized in that the leather is immersed in water at a predetermined temperature and cooled slowly.
  • Japanese Patent Application Laid-Open No. 4-191018 discloses that a slash molding die is a porous die, and an opening of a duct for supplying hot air is brought into contact with a material input port of the die. There is disclosed a method of heating a slush molding die, which comprises feeding hot air from the duct into the die.
  • Japanese Patent Application Laid-Open No. 2002-2107661 and Japanese Patent Application Laid-Open No. 2002-2107662 disclose a heating furnace, a heating chamber and a hot air control chamber. Installation, hot air control Inside the room, a heating device for a resin powder molding die equipped with an air volume adjustment damper that supports openable and closable blades and a wind direction adjustment nozzle having a cylindrical nozzle body, and a primary main hot air port and multiple A heating apparatus for a resin powder molding die having a primary secondary hot air port is disclosed.
  • the applicant has disclosed in Japanese Patent Application Laid-Open No. Hei 9-2484882, as shown in FIG. 12, a mold for molding resin powder through an openable upper opening into and out of the furnace. Then, in a powder slush molding machine with a furnace structure that heats the mold in the furnace with the upper opening closed, the hot air blow-out part, which has a hot air control mechanism for blowing hot air from below into the mold, has a bottom surface inside the furnace.
  • a powder slush molding machine that is installed in the furnace and has an energy recovery unit for recovering thermal energy in the furnace is proposed in the furnace.
  • a powder slush molding machine including a mold heating section, a powder slash section, and a mold cooling section, wherein the mold heating section includes From below, a hot air blower for blowing hot air with a flow rate of 15 mZ seconds or more, and hot air after heating the mold, provided along the corners or sides of the bottom inside the furnace of the mold heating section An energy recovery unit for recovering the powder and a powder slush molding machine having the same are provided.
  • a sheet-like material is formed from a powder using a powder slush molding machine including a mold heating unit, a powder slash unit, and a mold cooling unit.
  • a powder slush molding method comprising: a hot air blowing portion; and an energy recovery portion provided along a corner or a side portion of a bottom surface of the furnace of the mold heating portion for recovering hot air after heating the mold.
  • the mold heating section provided with, hot air with a flow velocity of 15 mZ seconds or more is blown from below the mold.
  • the obtained sheet-like material is reheated in the mold heating portion, and the spray device and the shower device in the mold cooling portion. It is preferable to sequentially cool the mold to which the sheet-like material has adhered.
  • FIG. 1 is a view provided for explaining the overall arrangement of the powder slush molding machine of the present invention.
  • Figure 2 is a diagram provided to explain the relationship among the furnace bottom, hot air blow-out part and energy recovery part in the mold heating part (part 1).
  • Fig. 3 shows the bottom inside the furnace, the hot air outlet, and the energy It is a diagram provided to explain another relationship with the collection part (part 2).
  • FIG. 4 is a diagram provided to explain an outline of a hot air control mechanism in a mold heating unit.
  • FIG. 5 is a diagram provided to explain the relationship between the hot air blowing section of the mold heating section and the hot air generating and circulating device.
  • FIG. 6 is a diagram provided to explain a side hot air blowing part of a mold heating part.
  • FIG. 7 is a diagram provided to explain a powder slush molding method (part 1).
  • FIG. 8 is a diagram provided to explain a powder slush molding method (part 2).
  • FIG. 9 is a diagram provided to explain the function of the pressure adjusting device at the time of powder slush molding.
  • FIG. 10 is a diagram provided to explain a hammering device.
  • FIG. 11 is a diagram provided to explain a mold cooling unit.
  • FIG. 12 is a diagram provided to explain the relationship between a conventional hot-air blowing unit and a hot-air generating and circulating device.
  • a powder having a powder slash section (A section), a mold heating section (B section), and a mold cooling section (C section) is provided.
  • Slash molding machine 10 Then, as exemplified in FIG. 3 (a), a hot air blowing section 1 for blowing hot air 14 having a flow velocity of 15 seconds or more from below the mold 12 to the mold heating section (section B). 6 and the inside of the furnace of the mold heating section (part B) are provided along the corners or sides of the bottom surface 18, and heat generated after heating the mold 12
  • An energy recovery unit 24 for recovering the wind 14 and a powder slush molding machine 10 characterized by comprising:
  • FIGS. 7 and 8 illustrate a powder slush molding method using the powder slush molding machine 10. The powder slush molding method will be described with reference to the drawings.
  • the structure of the hot air blowing section is not particularly limited as long as it is connected to a hot air generating and circulating device to be described later and has a function of blowing hot air having a predetermined wind speed.
  • the shape of the opening in the portion is preferably circular, elliptical, square (including square, rectangular, and band-like), polygonal, and irregular.
  • the openings having such a shape are arranged in one or more rows or in a circle in the length direction or the lateral direction of the bottom surface of the furnace.
  • hot air outlets 6 each having a relatively short strip-shaped opening are provided in parallel in the length direction, and a total of two hot air outlets are used to form a furnace inner bottom surface 26.
  • the hot-air blowout section 16 is constituted.
  • the hot-air blowout section is not particularly limited as long as the hot-air blowout section is arranged so as to be blown from below the mold. It is preferred that
  • a frame member 13 is disposed above a furnace bottom surface 18 of a heating furnace 28 with a predetermined distance therebetween. It is preferable that the arrangement is such that the inner surface of the bridged mold 12 can be heated effectively by the hot air 14 blown up from the hot air outlet 16 on the furnace bottom 18. No.
  • the flow rate (wind speed) of hot air measured using an anemometer or the like at the hot air outlet is set to a value of 15 m / sec . Or more.
  • the flow rate of the hot air is more preferably set to a value in the range of 18 to 100 mZ sec., And even more preferably to a value in the range of 20 to 50 mZ sec.
  • Table 1 shows the measured values of the thickness of the resin film obtained using the mold for making automotive interior materials when the flow velocity of the hot air was changed in the range of 1 to 100 mZ sec. 20) (the maximum value (%) of the variation from the average value).
  • a post-heating step is provided to change the flow rate of hot air and blow hot air to the mold after powder slush molding. The number of cycles up to the occurrence was measured. As is evident from the results, by setting the flow velocity of the hot air to 15 m / sec or more, variation in the thickness of the resin film is reduced, and heat damage to the mold is caused during reheating in the post-heating process. The number of cycles to occur can be significantly increased. table "!
  • FIGS. 4 (a) to 4 (c) it is preferable to provide a hot-air control plate 30 at the hot-air outlet 16 as shown in FIGS. 4 (a) to 4 (c).
  • these hot air control plates 30 can easily control the directionality, spreadability, blown amount, etc. of the hot air 14 blown up from below the inner surface of the mold 12.
  • the hot air control plate 30 faces the left side, so that the hot air 14 can also intensively heat the left inner surface of the mold 12.
  • FIG. 4 (b) since the hot air control plate 30 is directed straight upward, the hot air 14 can also intensively heat the inner surface near the center of the mold 12.
  • FIG. 4C since the hot air control plate 30 faces the side, the hot air 14 can intensively heat the right inner surface of the mold 12.
  • the length of the hot air control plate 30 be substantially equal to the length of the hot air outlet 16 in the longitudinal direction. The reason for this is that even when heating a large mold or a complicated mold, this configuration allows the hot air outlet 16 to be controlled while controlling the direction of a large amount of hot air. This is because it can be blown up from the entire longitudinal direction.
  • the hot air control plate 30 is connected to a fulcrum 31 by a driving device (not shown). It is preferable to have a configuration that can be rotated to the center and can be controlled to an original predetermined opening angle. The reason for this is that with such a configuration, a large amount of hot air can be uniformly blown in consideration of the heating temperature, the heating time, the size and shape of the mold, and the like.
  • the hot air control plate 30 is preferably formed of a heat-resistant material, and examples thereof include, for example, metals, ceramics (including porcelain and ceramics), and glass. It is more preferable that the plate is a long-sized animal plate because of its excellent lightness (operability), workability and durability. .
  • the hot air generating and circulating device 40 supplies hot air having a predetermined wind speed obtained by a hot air generating device (not shown) to the hot air circulating fan 42 through the main piping 43. It is preferable to supply the hot air to the hot air outlet 16.
  • the hot air obtained by the hot air generator is It is preferable that the hot air circulating fan 42 supplies the hot air to the hot air outlet 16 through the main pipe 43 by mixing as a large amount of hot air having a predetermined wind speed.
  • the reason for this is that, with this configuration, when the hot air 14 flows along the inner surface of the mold 12 with respect to the heating mode of the mold 12 in the heating furnace 28, the heat generated by the hot air 14 This is because the heat is transferred to the mold 12. That is, the heat is mainly transmitted in the heat transfer mode, so that the heat supplied to the inside of the heating furnace 28 is less likely to be radiated to the outside of the heating furnace 28. Therefore, even if the heating furnace 28 and the hot-air generating and circulating device 40 are small, the productivity is equal to or higher than that of a conventional large heating furnace. In addition, since the entire heating furnace 28 including the hot-air generating and circulating device 40 can be significantly reduced in size, as shown in FIG. Part), a bowling device, The compact powder slush molding machine 10 can be configured even when the mold cooling device (C section) and are arranged in a line on the ground surface.
  • a damper 47a is provided in the middle of the branch pipe 47 connected to the energy recovery section 24.
  • the reason for this is that with this configuration, the hot air outlet 16 on the furnace bottom 18 and the side hot air outlet 5 provided on the branch pipe 47 on the furnace side 28 a as shown in FIG. This is because the quantitative ratio of the hot air blown from 0 can be easily controlled by the damper 47a.
  • the structure of the energy recovery unit 24 provided on the bottom 18 of the furnace inside the heating furnace 28 is not particularly limited.
  • the energy recovery unit 24 provided on the bottom surface 18 of the heating furnace 28 extends along the corners or sides of the bottom surface 18 of the furnace, as shown in FIGS. It is characterized by being provided.
  • the hot air 14 blown out from the hot air outlet 16 heats the mold 12 and then flows along the inner surface of the mold 12 and along the corners or sides of the furnace bottom 18. It moves toward the formed energy recovery section 24, during which it can stay in the mold 12 for a predetermined time. That is, in the mold 12, the flow of the hot air 14 moving from the hot air outlet 16 toward the energy recovery section 24 along the inner surface of the mold 12 is easily generated. Therefore, the residence time becomes longer, and as a result, hot air 1 4 Thereby, it is possible to effectively heat in the heat transfer mode. In addition, since the wind velocity of the hot air 14 is high, it is possible to effectively prevent the heat transfer mode from becoming diffusion-limited.
  • the thermal energy recovery section 24 is in a space formed by the furnace bottom 18, the frame member 13, and the mold 12, The heat energy introduced into the heating furnace 28 can be easily and effectively recovered because it is disposed along the corners or sides of the furnace bottom 18.
  • the shape of the opening of the energy recovery unit is substantially V-shaped or U-shaped as shown in FIG.
  • the reason is that the hot air 14 blown out from the hot air outlet 16 moves easily and quickly toward the energy collecting section 24 having such a predetermined shape, and during this time, a moderate flow of hot air flows. This causes the mold 12 to be effectively heated.
  • the shape of the opening of the energy recovery section 24 is substantially V-shaped or U-shaped as shown in FIG. 3, an appropriate hot air flow can be more easily generated. It is preferable to configure. That is, the energy recovery section is composed of a main recovery section and a sub-recovery section that communicate with each other.
  • the hot air after heating the mold is recovered, and then through the sub-recovery section. It is preferable to circulate the collected hot air through a hot air generating and circulating device.
  • a hot air generating and circulating device For example, the upper part of the small energy recovery section (sub-recovery section) 24 as shown in Fig. 2 is blocked, and recovered only through the V-shaped or U-shaped energy recovery section (main recovery section). Then, it is preferable to introduce it from the side of the sub-recovery section 24 to the opening of the sub-recovery section 24 to circulate hot air.
  • FIG. 4 and the like the fact that hot air is introduced from the side into the opening of the energy recovery section 24 specifically illustrates this method.
  • the heating furnace 28 is located above the hot air generating and circulating device 40 as shown in FIG. It is preferable that the heating device is configured as a single compact heating device as a whole. This configuration facilitates the supply of heat energy to the heating furnace 2 & recovers heat energy from the heating furnace 28 using the energy recovery unit 24. Can be easily implemented.
  • the furnace body of the heating furnace 28 is formed, for example, as a flat rectangular box having an openable and closable opening on the upper surface. After bringing the frame 2 and its frame member 13 into the furnace, the opening is closed, and the mold 12 is heated by blowing hot air 14 with the hot air generating and circulating device 40. Is preferred.
  • the form of the furnace body included in the heating furnace 28 can be appropriately changed. For example, it is also preferable that the furnace main body be cylindrical, cubic, or irregular, corresponding to the shape of the mold.
  • a heat reflecting plate 26 on the bottom surface 18 inside the furnace of the heating furnace 28. That is, the hot air 14 blown out from the hot air generating and circulating device 40 is blown directly to the mold 12 through the hot air outlet 16, but the heat reflecting plate 26 is It is preferable to provide a structure in which the hot air 14 reflected by the mold 12 can be further reflected by the heat reflecting plate 26 by being provided entirely or partially on the bottom surface 18.
  • the heat reflecting plate 26 is a plate made of a heat-resistant inorganic material, for example, a metal plate made of stainless steel, platinum, gold, silver, or the like, a ceramic plate made of aluminum oxide, titanium oxide, zirconium oxide, or the like, or a soda.
  • a glass plate made of glass, quartz, or the like can be laminated on the bottom surface 18 in the furnace, or these heat-resistant inorganic materials can be used as a plate-like material forming the bottom surface 18 in the furnace. It can be used as it is, and can be configured as a furnace bottom surface 18 composed of the heat reflection plate 26.
  • any heat-resistant inorganic material that can easily achieve such a mirror structure can be laminated on the surface of the furnace bottom surface 18 or can be used as it is. Even with the construction of 18, it is possible to exhibit excellent heat reflectivity.
  • an inclined portion 19 on the bottom surface 18 inside the furnace of the heating furnace 28 it is preferable to provide an inclined portion 19 on the bottom surface 18 inside the furnace of the heating furnace 28.
  • the hot air outlet 16 can be provided at the deepest part of the inclined furnace bottom 18, which improves the rectification of the hot air 14 and the size of the residence space of the hot air 14 (dead space).
  • the reason for this is that the mold 12 can be heated more effectively by reducing the width of the mold.
  • the hot air 14 once reflected by the mold 12 is reflected more efficiently by the inclined portion 19, For example, a spiral is generated, and the mold 12 can be effectively heated again using the spiral.
  • the angle of the inclined portion 19 on the bottom surface 18 in the furnace can be determined in consideration of the size, shape, or heating efficiency of the mold 12, but, for example, in the range of 1 to 60 °. Is preferable.
  • the reason for this is that if the angle of the inclined portion 19 is less than 1 °, the amount of hot air that can be reflected back to the mold 12 may be significantly reduced, while the angle of the inclined portion 19 When the temperature exceeds 60 °, it is difficult to generate swirls by the hot air 14, and the heating efficiency of the mold 12 may decrease.
  • the angle of the inclined portion 19 on the furnace bottom surface 18 be a value in the range of 5 to 50 °, and it is more preferable that the angle be in the range of 10 to 45 °. .
  • the side hot air outlet 50 force is a predetermined height with respect to the heating furnace 28, so that the mold 12 can also be heated from the side. It is preferable that it is provided as follows.
  • the side hot air outlet 50 has a duct structure disposed along the inside of the heating furnace 28, and has a branch pipe 47 connected to the hot air generating and circulating device 40, It is preferably connected to the main pipe 43, and its air volume is preferably adjusted by a damper or the like.
  • the mold 12 can be heated more effectively by blowing hot air not only from below but also from the side, thereby heating the mold 12 more effectively. This is because we can do it.
  • the side hot air outlet 50 is preferably formed of a hole row having a diameter of 0.1 to 10 mm. The reason for this is that with such a configuration, the hot air can be widely spread after being blown out from the branch pipe 47 due to the pressure. Therefore, it is possible to heat a large-area mold without a rectifying plate.
  • the mold 12 is provided on the furnace bottom 18 in the heating furnace 28 with the frame member 13 for moving and operating the mold 12 attached. It is preferably mounted on a mold supporting member (not shown).
  • the mold 12 is moved while holding or suspending the frame member 13 on a robot arm (not shown).
  • the frame member 13 is moved to the upper surface by a rod arm.
  • the structure is such that it can be carried into the reheating furnace 28 through an opening provided in the upper surface.
  • the surface of the mold supporting member is covered with a heat insulating material (not shown) having a sealing effect, for example, a combination of a silicone rubber Z fluororesin film.
  • a heat insulating material not shown
  • the mold supporting member can fill the gap between the mold 12 and the furnace bottom 18 to effectively prevent hot air from escaping to the outside.
  • such a mold supporting member is used to position the mold 12 to be housed in the furnace for heating, and to generate hot air 14 from the hot air outlet 16 on the bottom 18 of the furnace by the inner surface of the mold 12. It is preferable that each of them has a function of adjusting the height from the hot air outlet 16 so as to hit the air efficiently.
  • the powder slash portion includes a mold 84 including a frame member 82 heated in FIG. 7 (a), and a reservoir tank 8 8 containing a fluid powder 92.
  • a mold 84 including a frame member 82 heated in FIG. 7 (a), and a reservoir tank 8 8 containing a fluid powder 92.
  • Fig. 9 (a) specifically shows the direction of air introduction.
  • the upper part of the stirring chamber 88a is composed of a perforated member (mesh member). It is preferable to use a winding structure.
  • the powder slash portion is rotated while the mold 84 including the frame member 82 and the reservoir tank 88 are connected, and the It is also a part for performing a step of forming a resin film 94 having a predetermined thickness on the molding surface 85.
  • the mold 84 including the frame member 82 and the reservoir tank 88 be combined and turned upside down.
  • the reason for this is that if the powder is carried out in this manner, the powder 92 in the reservoir tank 88 drops under its own weight onto the molding surface 85 of the mold 84, and the powder 9 in contact with the molding surface 85 of the mold 84 Only the powder 2 and the powder in the vicinity thereof are melted and adhered by the heat of the mold 84, and the resin film 94 is instantaneously formed on the molding surface 85 of the mold 84. This is because you can do it.
  • the mold 84 including the frame member 82 When the mold 84 including the frame member 82 is turned over, the mold 84 and the reservoir tank are formed so that the resin film 94 can be formed only on the desired molding surface 85 of the mold 84. It is preferable to provide frames 84a and 84b having a predetermined thickness (height) between them.
  • the lower part of the box 8 4b is made of, for example, aluminum
  • the upper portion of the frame 84a is made of a combination of silicone rubber and fluororesin film to fill the gap between the mold 84 and the reservoir tank 88. It can also play a role.
  • the resin film 94 is applied only to a desired molding surface 85 of the mold 84 so that the powder 9 2 does not scatter outside of a predetermined position.
  • suction is performed to reduce the internal pressure of the mold 84, and the powder in the reservoir tank 8 8 is formed before the powder slush molding.
  • a pressure adjusting device (not shown) for blowing air into 92 is provided.
  • the projections 82 a provided on the frame member 82 of the mold 84 are separated from both sides by one or a plurality of hammering devices as shown in FIG. It is preferable to beat alternately. The reason is that when the mold 84 is rotated, it is beaten by the hammering device 100 to apply a predetermined vibration, so that the powder 92 is uniformly applied to a predetermined portion of the mold 84. This is because it has spread.
  • the reservoir tank 88 is removed from the mold 84 with the resin film 94 having a predetermined thickness formed on the mold 84 as shown in FIG. This is a part for performing the process.
  • the mold cooling section cools the mold 84 including the frame member 82 by cooling means 98 such as water cooling or air cooling to harden the resin film 94. This is a part for performing. Also, as shown in FIG. 8 (c), the mold cooling section is a part for performing the step of peeling the resin film 94 from the mold 84, that is, removing the mold, as the final step of the mold cooling section. But also.
  • the mold cooling section in order to effectively prevent thermal damage to the mold, the mold cooling section must It is preferred to have a spray device as shown in FIG. 0 and a shower device as shown in FIG. That is, as the first cooling step, it is preferable to spray the water or hot water with a spray device to cool the mold relatively mildly to about 50 to 100 ° C.
  • a relatively large amount of water or hot water is sprayed by a shower device, and the temperature is reduced to a temperature at which the resin film 94 can be peeled off, for example, a temperature of less than 50 ° C. by using evaporation enthalpy. It is preferable to cool the mold efficiently.
  • the shower device and the spray device may be connected to one water supply tank, and may be configured to determine the spray amount and the shower amount by switching a control valve or the like provided at the outlet. preferable.
  • the powder slush molding device 10 is configured such that when the devices of each process including the heating furnace 28 are arranged in a line on the surface of the ground, the powder slash portion (part) and the mold are arranged from the left side as viewed. It is preferable to arrange the heating section (B section) and the mold cooling section (C section) in this order. It is also preferable to provide two mold heating sections and arrange the powder slash section, the first mold heating section, the second mold heating section, and the mold cooling section in this order. Further, it is also preferable to appropriately provide a mold standby section, a post-heating section, a mold changing section, a demolding section, etc., and to incorporate the mold into the powder slush molding machine of the present invention.
  • the powder slush molding machine 10 of the present invention simply arranges each part in a row adjacent to the surface of the ground, and moves the mold to each part by the moving robot and the robot arm. Therefore, powder slush molding can be performed efficiently.
  • the reason for this is that, by such post-heating, the resin film is re-heated and flows appropriately, so that the thickness can be made uniform. Also, by using the mold heating section as a heating section for performing the post-heating step, the powder slush molding machine can be designed to be compact as a whole. Industrial applicability
  • hot air at a specific flow rate is blown to the mold, and the arrangement of the energy recovery unit is devised, so that the mold is heated. For example, swirling by a large amount of hot air is likely to occur, which has made it possible to significantly improve thermal efficiency.
  • the powder can be uniformly applied in a short time.
  • an inclined portion is provided on a bottom surface in the furnace, a specific hot air control mechanism is provided in a mold heating portion, and powder slush molding is performed.
  • a specific hammering device was used to strike a specific location, and the mold heating section was used for the post-heating process, thereby causing the resin film thickness to vary (thickness). It is now possible to easily control the maximum value ( ⁇ 1 ⁇ 2) of the variation from the average of the actual measured values (20 locations) to, for example, a value within 50%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A powder slush molding machine and a powder slush molding method capable of applying powder uniformly to a powder slush molding die. The powder slush molding machine comprising a die heating section, a powder slush section, and a die cooling section, and the powder slush molding method employing that powder slush molding machine, characterized in that a section for blowing hot air, at a flous velocity of 15 m/sec or above, to the die heating section from below the die, and an energy collecting section disposed at the corner part of the bottom face, in the furnace, of the die heating section or along the side part thereof, for collecting hot air after heating the die are provided.

Description

明 細 書  Specification
パウダースラッシュ成形機およびパウダースラッシュ成形方法 技術分野 Powder slush molding machine and powder slush molding method
本発明は、 パウダースラッシュ成形機およびパウダースラッシュ成形方 法に関し、 特に、 大型化および複雑化した金型に対して、 パウダー (粉末 樹脂) を均一に付着させることができるパウダースラッシュ成形機および パウダースラッシュ成形方法に関する。 背景技術  The present invention relates to a powder slush molding machine and a powder slush molding method, and more particularly, to a powder slush molding machine and a powder slush capable of uniformly adhering powder (powder resin) to a large-sized and complicated mold. It relates to a molding method. Background art
従来、 自動車の内装材等の大型で、 複雑形状のシート状物を製造するに あたり、 パウダー (粉末樹脂) を用いてスラッシュ成形するパウダースラ ッシュ成形方法が広ぐ実施されている。  2. Description of the Related Art Conventionally, powder slush molding methods for slush molding using powder (powder resin) have been widely practiced in manufacturing large, complex-shaped sheet materials such as interior materials of automobiles.
ここで、 パウダーからなる内装材の厚さを均一化するために、 金型を均 一温度に加熱することが望まれている。  Here, in order to make the thickness of the interior material made of powder uniform, it is desired to heat the mold to a uniform temperature.
例えば、 特開平 3— 2 0 2 3 2 9号公報には、 所定温度に制御された仮 加熱工程および予備加熱工程をそれぞれ備えて、 金型を均一温度に加熱す るとともに、 金型を使用した後、 所定温度の水中に浸潰して徐冷すること を特徴とした皮革の形成方法が開示されている。  For example, Japanese Patent Application Laid-Open No. 3-202239 discloses a method in which a tentative heating step and a preheating step each controlled at a predetermined temperature are provided to heat a mold to a uniform temperature and use a mold. After that, a method for forming leather is characterized in that the leather is immersed in water at a predetermined temperature and cooled slowly.
また、 特開平 4— 1 9 1 0 1 8号公報には、 スラッシュ成形金型を多孔 性金型として、 該金型の材料投入口に熱風供給用ダク 卜の開口部を当接さ せ、 該ダク 卜から熱風を金型内に圧送することを特徴とするスラッシュ成 形金型の加熱方法が開示されている。  Japanese Patent Application Laid-Open No. 4-191018 discloses that a slash molding die is a porous die, and an opening of a duct for supplying hot air is brought into contact with a material input port of the die. There is disclosed a method of heating a slush molding die, which comprises feeding hot air from the duct into the die.
さらに、 特開 2 0 0 2— 2 1 0 7 6 1号公報や、 特開 2 0 0 2— 2 1 0 7 6 2号公報には、 加熱炉に、 加熱室と、 熱風制御室とを設け、 熱風制御 室内には、 開閉可能な羽根を軸支した風量調整ダンバおよび、 筒状のノズ ル本体を有する風向調整ノズルを備えた樹脂粉末成形用金型の加熱装置や、 さらに、 一次主熱風口および複数の一次副熱風口とを備えた樹脂粉末成形 用金型の加熱装置が開示されている。 Further, Japanese Patent Application Laid-Open No. 2002-2107661 and Japanese Patent Application Laid-Open No. 2002-2107662 disclose a heating furnace, a heating chamber and a hot air control chamber. Installation, hot air control Inside the room, a heating device for a resin powder molding die equipped with an air volume adjustment damper that supports openable and closable blades and a wind direction adjustment nozzle having a cylindrical nozzle body, and a primary main hot air port and multiple A heating apparatus for a resin powder molding die having a primary secondary hot air port is disclosed.
しかしながら、 いずれの加熱装置も、 金型を加熱した後の熱風の出口が 設けられておらず、 エネルギー回収が不十分であって、 金型の高速加熱や 均一加熱が、 いまだ不十分であるという問題が見られた。  However, none of the heating devices is provided with an outlet for hot air after heating the mold, so energy recovery is insufficient, and high-speed heating and uniform heating of the mold are still insufficient. There was a problem.
そこで、 出願人は、 特開平 9一 2 4 8 8 3 2号公報において、 図 1 2に 示すように、 開閉可能な上部の開口部よリ樹脂粉末成形用の金型を炉内に 搬出入し、 上部の開口部を閉じた炉内で金型を加熱する炉構造のパウダー スラッシュ成形機において、 熱風を金型に下方向から吹き付けるための熱 風制御機構を有する熱風吹出部が炉内底面に配設されているとともに、 炉 内の熱エネルギーを回収するためのエネルギー回収部が炉内に配設されて いるパウダースラッシュ成形機を提案している。  In view of this, the applicant has disclosed in Japanese Patent Application Laid-Open No. Hei 9-2484882, as shown in FIG. 12, a mold for molding resin powder through an openable upper opening into and out of the furnace. Then, in a powder slush molding machine with a furnace structure that heats the mold in the furnace with the upper opening closed, the hot air blow-out part, which has a hot air control mechanism for blowing hot air from below into the mold, has a bottom surface inside the furnace. A powder slush molding machine that is installed in the furnace and has an energy recovery unit for recovering thermal energy in the furnace is proposed in the furnace.
しかしながら、 かかるパウダースラッシュ成形機にあっても、 より大型 化、 複雑化している金型に対応すべく、 さらなる金型の高速加熱や均一加 熱が望まれていた。 また、 熱風吹出部における熱風の風速制御が不十分で あつたため、 得られるシート状物の膜厚がばらついたり、 後加熱工程を設 けて、 金型を再加熱した場合に熱損傷が生じたりする場合が見られた。 そこで、 本発明の発明者は鋭意検討した結果、 特定の流速の熱風を金型 に対して吹き付けるとともに、 エネルギー回収部の配置を工夫することに より、 大型化、 複雑化している金型であっても、 パウダーを均一かつ迅速 に付着させることができるとともに、 金型を再加熱した場合における熱損 傷の発生が少ないパウダースラッシュ成形機およびパウダースラッシュ成 形方法を提供することを目的としている。 発明の開示  However, even with such a powder slush molding machine, further high-speed heating and uniform heating of the mold have been desired in order to cope with a mold that has become larger and more complex. In addition, due to insufficient control of the velocity of the hot air at the hot air blowing section, the thickness of the obtained sheet-like material varies, or heat damage occurs when the mold is reheated in a post-heating step. Was seen. Accordingly, the inventors of the present invention have conducted intensive studies, and as a result, the mold has become larger and more complicated by blowing hot air at a specific flow rate to the mold and devising the arrangement of the energy recovery unit. Even so, it is an object of the present invention to provide a powder slush molding machine and a powder slush molding method which can uniformly and quickly adhere powder and cause less heat damage when a mold is reheated. Disclosure of the invention
本発明によれば、 金型加熱部と、 パウダースラッシュ部と、 金型冷却部 と、 を備えたパウダースラッシュ成形機であって、 金型加熱部に、 金型の 下方から、流速 1 5 mZ秒以上の熱風を、吹き付けるための熱風吹出部と、 金型加熱部の炉内底面の角部または辺部に沿って設けられ、 金型を加熱し た後の熱風を回収するためのエネルギー回収部と、 を備えたパウダースラ ッシュ成形機が提供される。 According to the present invention, there is provided a powder slush molding machine including a mold heating section, a powder slash section, and a mold cooling section, wherein the mold heating section includes From below, a hot air blower for blowing hot air with a flow rate of 15 mZ seconds or more, and hot air after heating the mold, provided along the corners or sides of the bottom inside the furnace of the mold heating section An energy recovery unit for recovering the powder and a powder slush molding machine having the same are provided.
このように構成することにより、 金型加熱部において、 熱風による渦巻 きを生じ易くなリ、 そのために金型を加熱する際の熱効率を大幅に向上さ せることができ、 その結果、 金型が大型化、 複雑化しているような場合で あっても、 均一かつ迅速にパウダーを付着させることができる。 また、 金 型加熱部において、 金型を所定風速で加熱しているため、 金型の再加熱等 の条件が緩和され、 熱損傷の発生、 特に、 金型冷却部における冷却の際の 熱損傷の発生を少なくすることができる。  With this configuration, swirling due to hot air is likely to occur in the mold heating section, and therefore, the heat efficiency when heating the mold can be greatly improved. Powder can be uniformly and quickly applied even when the size is large and complicated. In addition, since the mold is heated at a predetermined wind speed in the mold heating section, conditions such as reheating of the mold are relaxed, and thermal damage occurs, especially heat damage during cooling in the mold cooling section. Can be reduced.
また、 本発明の別の態様によれば、 金型加熱部と、 パウダースラッシュ 部と、 金型冷却部と、 を備えたパウダースラッシュ成形機を用いて、 バウ ダ一からシート状物を成形するパウダースラッシュ成形方法であって、 熱 風吹出部と、 金型加熱部の炉内底面の角部または辺部に沿って設けられ、 金型を加熱した後の熱風を回収するためのエネルギー回収部と、 を備えた 金型加熱部において、 金型の下方から、 流速 1 5 mZ秒以上の熱風を吹き 付けることを特徴とする。  According to another aspect of the present invention, a sheet-like material is formed from a powder using a powder slush molding machine including a mold heating unit, a powder slash unit, and a mold cooling unit. A powder slush molding method, comprising: a hot air blowing portion; and an energy recovery portion provided along a corner or a side portion of a bottom surface of the furnace of the mold heating portion for recovering hot air after heating the mold. In the mold heating section provided with, hot air with a flow velocity of 15 mZ seconds or more is blown from below the mold.
そして、 パウダースラッシュ部において、 シ一卜状物をパウダースラッ シュ成形した後、 金型加熱部において、 得られたシート状物を再加熱する とともに、 金型冷却部において、 噴霧装置およびシャワー装置により、 逐 次的にシート状物が付着した金型を冷却することが好ましい。 図面の簡単な説明  Then, after the sheet-like material is powder-slush-molded in the powder slush portion, the obtained sheet-like material is reheated in the mold heating portion, and the spray device and the shower device in the mold cooling portion. It is preferable to sequentially cool the mold to which the sheet-like material has adhered. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明のパウダースラッシュ成形機の全体配置を説明するため に供する図である。  FIG. 1 is a view provided for explaining the overall arrangement of the powder slush molding machine of the present invention.
図 2は、 金型加熱部における炉内底面、 熱風吹出部およびエネルギー回 収部との関係を説明するために供する図である (その 1 )。  Figure 2 is a diagram provided to explain the relationship among the furnace bottom, hot air blow-out part and energy recovery part in the mold heating part (part 1).
図 3は、 金型加熱部における炉内底面、 熱風吹出部およびエネルギー回 収部との別な関係を説明するために供する図である (その 2 )。 Fig. 3 shows the bottom inside the furnace, the hot air outlet, and the energy It is a diagram provided to explain another relationship with the collection part (part 2).
図 4は、 金型加熱部における熱風制御機構の概略を説明するために供す - る図である。  FIG. 4 is a diagram provided to explain an outline of a hot air control mechanism in a mold heating unit.
図 5は、 金型加熱部の熱風吹出部および熱風発生循環装置の関係を説明 するために供する図である。  FIG. 5 is a diagram provided to explain the relationship between the hot air blowing section of the mold heating section and the hot air generating and circulating device.
図 6は、金型加熱部の側方熱風吹出部を説明するために供する図である。 図 7は、 パウダースラッシュ成形方法を説明するために供する図である (その 1 )。  FIG. 6 is a diagram provided to explain a side hot air blowing part of a mold heating part. FIG. 7 is a diagram provided to explain a powder slush molding method (part 1).
図 8は、 パウダースラッシュ成形方法を説明するために供する図である (その 2 )。  FIG. 8 is a diagram provided to explain a powder slush molding method (part 2).
図 9は、 パウダースラッシュ成形時の圧力調整装置の機能を説明するた めに供する図である。  FIG. 9 is a diagram provided to explain the function of the pressure adjusting device at the time of powder slush molding.
図 1 0は、 ハンマリング装置を説明するために供する図である。  FIG. 10 is a diagram provided to explain a hammering device.
図 1 1は、 金型冷却部を説明するために供する図である。  FIG. 11 is a diagram provided to explain a mold cooling unit.
図 1 2は、 従来の熱風吹出部および熱風発生循環装置の関係を説明する ために供する図である。 発明を実施するための最良の形態  FIG. 12 is a diagram provided to explain the relationship between a conventional hot-air blowing unit and a hot-air generating and circulating device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して、 本発明のパウダースラッシュ成形機およびパゥ ダースラッシュ成形方法に関する好適な実施の形態について具体的に説明 する。  Hereinafter, preferred embodiments of a powder slush molding machine and a powder slush molding method of the present invention will be specifically described with reference to the drawings.
[第 1の実施形態] [First Embodiment]
第 1の実施形態は、図 1に例示されるように、パウダースラッシュ部( A 部) と、 金型加熱部 (B部) と、 金型冷却部 (C部) と、 を備えたパウダ 一スラッシュ成形機 1 0である。そして、図 3 ( a )に例示されるように、 金型加熱部 (B部) に、 金型 1 2の下方から、 流速 1 5 秒以上の熱風 1 4を、 吹き付けるための熱風吹出部 1 6と、 金型加熱部 (B部) の炉内 底面 1 8の角部または辺部に沿って設けられ、 金型 1 2を加熱した後の熱 風 1 4を回収するためのエネルギー回収部 2 4と、 を備えることを特徴と するパウダースラッシュ成形機 1 0である。 In the first embodiment, as illustrated in FIG. 1, a powder having a powder slash section (A section), a mold heating section (B section), and a mold cooling section (C section) is provided. Slash molding machine 10 Then, as exemplified in FIG. 3 (a), a hot air blowing section 1 for blowing hot air 14 having a flow velocity of 15 seconds or more from below the mold 12 to the mold heating section (section B). 6 and the inside of the furnace of the mold heating section (part B) are provided along the corners or sides of the bottom surface 18, and heat generated after heating the mold 12 An energy recovery unit 24 for recovering the wind 14 and a powder slush molding machine 10 characterized by comprising:
以下、 パウダースラッシュ成形機 1 0の好適例について具体的に説明す る。 また、 図 7および図 8に、 かかるパウダースラッシュ成形機 1 0を用 いたパウダースラッシュ成形方法を例示するが、 かかる図面を参照して、 パウダースラッシュ成形方法についても適宜説明する。  Hereinafter, preferred examples of the powder slush molding machine 10 will be specifically described. FIGS. 7 and 8 illustrate a powder slush molding method using the powder slush molding machine 10. The powder slush molding method will be described with reference to the drawings.
1 . 金型加熱部 1. Mold heating section
( 1 ) 熱風吹出部  (1) Hot air outlet
①基本的構造 ① Basic structure
熱風吹出部の構造は、 後述する熱風発生循環装置に連結されており、 所 定の風速を有する熱風を吹き出す機能を有していれば、 特に制限されるも のではないが、 例えば、 熱風吹出部における開口部の形状を、 円形、 楕円 形、 四角形 (正方形や長方形、 帯状等を含む)、 多角形、 異形とすることが 好ましい。  The structure of the hot air blowing section is not particularly limited as long as it is connected to a hot air generating and circulating device to be described later and has a function of blowing hot air having a predetermined wind speed. The shape of the opening in the portion is preferably circular, elliptical, square (including square, rectangular, and band-like), polygonal, and irregular.
また、 かかる形状を有する開口部を、 炉内底面の長さ方向や横方向に、 一列以上に配設したり、 円形に配設したりすることも好ましい。 例えば、 図 2および図 3においては、 比較的短い帯状の開口部を有する熱風吹出部 Π 6を、 長さ方向に並列して設け、 合計 2箇所の熱風吹出部から、 炉内底 面 2 6の熱風吹出部 1 6を構成してある。  It is also preferable that the openings having such a shape are arranged in one or more rows or in a circle in the length direction or the lateral direction of the bottom surface of the furnace. For example, in FIG. 2 and FIG. 3, hot air outlets 6 each having a relatively short strip-shaped opening are provided in parallel in the length direction, and a total of two hot air outlets are used to form a furnace inner bottom surface 26. The hot-air blowout section 16 is constituted.
②配置 ② Arrangement
熱風吹出部の配置に関して、 熱風吹出部は、 金型の下方から吹き付けら れるように配置されていれば特に制限されるものではないが、 例えば、 加 熱炉における炉内底面の中央部に配置されていることが好ましい。  Regarding the arrangement of the hot-air blowout section, the hot-air blowout section is not particularly limited as long as the hot-air blowout section is arranged so as to be blown from below the mold. It is preferred that
より具体的には、 図 4 ( a ) 〜 (c ) に示すように、 加熱炉 2 8の炉内 底面 1 8の上方に、 所定距離を保持して配設されたフレーム部材 1 3に懸 架された金型 1 2の内面を、 炉内底面 1 8の熱風吹出口 1 6から吹き上げ る熱風 1 4によって、 効果的に加熱できるような配置であることが好まし い。 More specifically, as shown in FIGS. 4 (a) to 4 (c), a frame member 13 is disposed above a furnace bottom surface 18 of a heating furnace 28 with a predetermined distance therebetween. It is preferable that the arrangement is such that the inner surface of the bridged mold 12 can be heated effectively by the hot air 14 blown up from the hot air outlet 16 on the furnace bottom 18. No.
また、 後述するように、 金型加熱部の炉内底面 1 8に、 傾斜部 1 9を設 けた場合には、 当該炉内底面 1 8の最深部およびその近傍に、 一つ以上の 熱風吹出部 1 6を設けることが好ましい。 この理由は、 炉内底面 1 8の最 深部に位置する熱風吹出部 1 6から吹き出された熱風 1 4が、 予想外に斜 め方向に広がったとしても、 炉内底面 1 8の傾斜部 1 8に沿って、 金型 1 2まで効率的に到達することができるためである。  In addition, as described later, when an inclined portion 19 is provided on the furnace bottom surface 18 of the mold heating section, one or more hot air blowouts are provided at the deepest portion of the furnace bottom surface 18 and its vicinity. It is preferable to provide the part 16. The reason is that even if the hot air blown out from the hot air outlet 16 located at the deepest part of the bottom 18 in the furnace, unexpectedly spreads in the oblique direction, the slope 1 This is because it is possible to efficiently reach the mold 12 along the line 8.
③流速 ③ Flow velocity
また、 熱風吹出部において風速計等を用いて測定される熱風の流速 (風 速) を 1 5 m/s e c. 以上の値とすることを特徴とする。 In addition, the flow rate (wind speed) of hot air measured using an anemometer or the like at the hot air outlet is set to a value of 15 m / sec . Or more.
この理由は、かかる熱風の流速が、 1 5 mZ s e c .未満の値になると、 大型化した金型や複雑形状の金型、例えば、内側面積が 1 〜 1 Om2程度の 大型の金型に対して、 迅速かつ均一に加熱することが困難となる場合があ るためである。 ただし、 熱風の流速が過度に速くなると、 金型の不均一加 熱を生じたり、 金型の熱疲労を生じさせたりする場合がある。 This is because the flow rate of such hot air, at a 1 5 mZ sec. Less than a value, large-sized molds and mold a complicated shape, for example, in a large mold about 1 ~ 1 Om 2 inner area On the other hand, it may be difficult to heat quickly and uniformly. However, if the flow velocity of the hot air is excessively high, uneven heating of the mold may occur or thermal fatigue of the mold may occur.
したがって、 熱風の流速を 1 8〜 1 0 0 mZ s e c . の範囲内の値とす ることがより好ましく、 20〜 5 0mZ s e c . の範囲内の値とすること がさらに好ましい。  Therefore, the flow rate of the hot air is more preferably set to a value in the range of 18 to 100 mZ sec., And even more preferably to a value in the range of 20 to 50 mZ sec.
ここで、 下表 1に、 熱風の流速を 1 〜 1 00 mZ s e c. の範囲で変え た場合において、 自動車用内装材作成用金型を用いて得られる樹脂膜の厚 さの実測値 (20箇所) におけるばらつき (平均値からのばらつきの最大 値 (%)) を示す。 また、 後加熱工程を設けて、 パウダースラッシュ成形後 の金型に対し、 熱風の流速を変えてさらに熱風を吹き付け、 それをシャヮ 一によつて室温まで冷却するサイクルにおいて、 金型に熱損傷が生じるま でのサイクル数を測定した。 結果から明らかなように、 熱風の流速を 1 5 m/ s e c 以上とすることにより、 樹脂膜の厚さのばらつきが少なくな リ、 また、 後加熱工程における再加熱において、 金型に熱損傷が生じるま でのサイクル数を著しく増加させることができる。 表 "! Here, Table 1 below shows the measured values of the thickness of the resin film obtained using the mold for making automotive interior materials when the flow velocity of the hot air was changed in the range of 1 to 100 mZ sec. 20) (the maximum value (%) of the variation from the average value). In addition, a post-heating step is provided to change the flow rate of hot air and blow hot air to the mold after powder slush molding. The number of cycles up to the occurrence was measured. As is evident from the results, by setting the flow velocity of the hot air to 15 m / sec or more, variation in the thickness of the resin film is reduced, and heat damage to the mold is caused during reheating in the post-heating process. The number of cycles to occur can be significantly increased. table "!
熱風の流速 厚さのばらつき サイクル数  Hot air flow velocity Thickness variation Number of cycles
( m Z s e c . ) ( % ) (回数)  (mZsec.) (%) (number of times)
1 5 0 0 5 0 0  1 5 0 0 5 0 0
1 0 3 0 0 2 0 0 0  1 0 3 0 0 2 0 0 0
1 5 5 0 1 0 0 0 0以上  1 5 5 0 1 0 0 0 0 or more
2 0 2 0 1 0 0 0 0以上  2 0 2 0 1 0 0 0 0 or more
5 0 1 0 1 0 0 0 0以上  5 0 1 0 1 0 0 0 0 or more
7 0 4 0 1 0 0 0 0以上  7 0 4 0 1 0 0 0 0 or more
1 0 0 6 0 7 0 0 0  1 0 0 6 0 7 0 0 0
④熱風制御板 ④Hot air control board
また、 熱風吹出口 1 6に、 図 4 ( a ) 〜 (c ) に示すように、 熱風制御 板 3 0を設けることが好ましい。 この理由は、 これらの熱風制御板 3 0に よって、 金型 1 2の内面の下方から吹き上げられる熱風 1 4の方向性、 広 がり性、 送風量等を容易に制御することができるためである。 例えば、 図 4 ( a ) では、 熱風制御板 3 0が、 向かって左側を向いているため、 熱風 1 4も、金型 1 2の左方向の内面を集中的に加熱することができる。また、 同様に、 図 4 ( b ) では、 熱風制御板 3 0が、 真っ直ぐ上方を向いている ため、 熱風 1 4も、 金型 1 2の中央付近の内面を集中的に加熱することが でき、 図 4 ( c ) では、 熱風制御板 3 0が、 向かってお側を向いているた め、 熱風 1 4により、 金型 1 2の右方向の内面を集中的に加熱することが できる。  Further, it is preferable to provide a hot-air control plate 30 at the hot-air outlet 16 as shown in FIGS. 4 (a) to 4 (c). The reason for this is that these hot air control plates 30 can easily control the directionality, spreadability, blown amount, etc. of the hot air 14 blown up from below the inner surface of the mold 12. . For example, in FIG. 4A, the hot air control plate 30 faces the left side, so that the hot air 14 can also intensively heat the left inner surface of the mold 12. Similarly, in FIG. 4 (b), since the hot air control plate 30 is directed straight upward, the hot air 14 can also intensively heat the inner surface near the center of the mold 12. In FIG. 4C, since the hot air control plate 30 faces the side, the hot air 14 can intensively heat the right inner surface of the mold 12.
ここで、熱風制御板 3 0の長さを、熱風吹出口 1 6の長手方向の長さと、 実質的に等し.くしてあることが好ましい。 この理由は、 このように構成す ることによリ、大型の金型や、複雑化した金型を加熱する場合であっても、 多量の熱風の方向を制御しながら、 熱風吹出口 1 6の長手方向の全般から 吹き上げることができるためである。  Here, it is preferable that the length of the hot air control plate 30 be substantially equal to the length of the hot air outlet 16 in the longitudinal direction. The reason for this is that even when heating a large mold or a complicated mold, this configuration allows the hot air outlet 16 to be controlled while controlling the direction of a large amount of hot air. This is because it can be blown up from the entire longitudinal direction.
また、 熱風制御板 3 0は、 駆動装置 (図示せず) によって、 支点 3 1を 中心に回動して、 独自の所定の開き角度に制御できる構成であることが好 ましい。 この理由は、 このように構成することにより、 加熱温度、 加熱時 間、 金型の大きさや形状等を考慮して、 多量の熱風を、 均一に吹き付ける ことができるためである。 The hot air control plate 30 is connected to a fulcrum 31 by a driving device (not shown). It is preferable to have a configuration that can be rotated to the center and can be controlled to an original predetermined opening angle. The reason for this is that with such a configuration, a large amount of hot air can be uniformly blown in consideration of the heating temperature, the heating time, the size and shape of the mold, and the like.
さらに、 熱風制御板 3 0は、 耐熱性材料から形成してあることが好まし いが、 例えば、 金属、 セラミックス (錶物、 焼物を含む。)、 ガラス等が好 適例として挙げられ、 特に、 軽量性 (動作性)、 加工性および耐久性に優れ ていることから、 長尺状の錶物製プレートであることがより好ましい。 .  Further, the hot air control plate 30 is preferably formed of a heat-resistant material, and examples thereof include, for example, metals, ceramics (including porcelain and ceramics), and glass. It is more preferable that the plate is a long-sized animal plate because of its excellent lightness (operability), workability and durability. .
⑤熱風発生循環装置 ⑤Hot air circulation device
また、 熱風発生循環装置 4 0は、 図 5に示すように、 熱風発生装置 (図 示せず) により得られた所定風速を有する熱風を、 熱風循環ファン 4 2に より、 主配管 4 3を通じて、 熱風吹出口 1 6に供給する構成であることが 好ましい。  As shown in FIG. 5, the hot air generating and circulating device 40 supplies hot air having a predetermined wind speed obtained by a hot air generating device (not shown) to the hot air circulating fan 42 through the main piping 43. It is preferable to supply the hot air to the hot air outlet 16.
また、 空気供給ファン 4 6から供給された空気と、 エネルギー回収部 2 4を通じて炉内から回収された熱風とを、 混合室 4 4において適宜混合し た後、 熱風発生装置により得られた熱風をさらに混合して、 所定風速を有 する大量の熱風として、熱風循環ファン 4 2によリ、主配管 4 3を通じて、 熱風吹出口 1 6に供給する構成であることが好ましい。  Also, after appropriately mixing the air supplied from the air supply fan 46 with the hot air recovered from the furnace through the energy recovery unit 24 in the mixing chamber 44, the hot air obtained by the hot air generator is It is preferable that the hot air circulating fan 42 supplies the hot air to the hot air outlet 16 through the main pipe 43 by mixing as a large amount of hot air having a predetermined wind speed.
この理由は、 このように構成することにより、 加熱炉 2 8における金型 1 2の加熱モードに関して、 熱風 1 4が金型 1 2の内面に沿って流れる際 に、 かかる熱風 1 4が有する熱が、 金型 1 2へ伝熱されることによって行 われるためである。 すなわち、 主として伝熱モードで、 熱が伝わるため、 加熱炉 2 8の内部に供給された熱が、 加熱炉 2 8の外へ放散することが少 なくなるためである。 したがって、 加熱炉 2 8及び熱風発生循環装置 4 0 が小型であっても、 従来の大型加熱炉と比較して、 同等以上の生産性を有 することになる。 また、 加熱炉 2 8において、 熱風発生循環装置 4 0を含 めた全体を著しく小型化することができるので、 図 1 に示すように、 特定 の熱風発生循環装置を備えた金型加熱部( 部)と、バウダリング装置と、 金型冷却装置 (C部) と、 を地表に一列に並べた場合であっても、 コンパ クトなパウダースラッシュ成形機 1 0を構成することが可能となる。 The reason for this is that, with this configuration, when the hot air 14 flows along the inner surface of the mold 12 with respect to the heating mode of the mold 12 in the heating furnace 28, the heat generated by the hot air 14 This is because the heat is transferred to the mold 12. That is, the heat is mainly transmitted in the heat transfer mode, so that the heat supplied to the inside of the heating furnace 28 is less likely to be radiated to the outside of the heating furnace 28. Therefore, even if the heating furnace 28 and the hot-air generating and circulating device 40 are small, the productivity is equal to or higher than that of a conventional large heating furnace. In addition, since the entire heating furnace 28 including the hot-air generating and circulating device 40 can be significantly reduced in size, as shown in FIG. Part), a bowling device, The compact powder slush molding machine 10 can be configured even when the mold cooling device (C section) and are arranged in a line on the ground surface.
なお、 エネルギー回収部 2 4に連なる分岐配管 4 7の途中に、 ダンパー 4 7 aを配設することが好ましい。 この理由は、 このように構成すること により、 炉内底面 1 8の熱風吹出口 1 6と、 図 6に示すような炉側面 2 8 aの分岐配管 4 7に設けられた側面熱風吹出口 5 0とから吹き出す熱風の 量的比率を、 かかるダンバ一4 7 aによって、 容易に制御することができ るためである。  Preferably, a damper 47a is provided in the middle of the branch pipe 47 connected to the energy recovery section 24. The reason for this is that with this configuration, the hot air outlet 16 on the furnace bottom 18 and the side hot air outlet 5 provided on the branch pipe 47 on the furnace side 28 a as shown in FIG. This is because the quantitative ratio of the hot air blown from 0 can be easily controlled by the damper 47a.
( 2 ) エネルギー回収部 (2) Energy recovery unit
①基本的構造  ① Basic structure
加熱炉 2 8の炉内底面 1 8に配設されたエネルギー回収部 2 4の構造は、 特に制限されるものではないが、 例えば、 図 5に示すように、 加熱炉 2 8 の炉内底面 1 8に通じる開口部を有するとともに、 熱風発生循環装置 4 0 に連なる分岐配管 4 7を備えたダク 卜構造を有することが好ましい。 そし て、 既に上述したように、 エネルギー回収部 2 4に連なる分岐配管 4 7の 途中に、 ダンパー 4 7 aを配設することが好ましい。  The structure of the energy recovery unit 24 provided on the bottom 18 of the furnace inside the heating furnace 28 is not particularly limited. For example, as shown in FIG. It is preferable to have a duct structure that has an opening communicating with 18 and a branch pipe 47 connected to the hot-air generating and circulating device 40. Then, as already described above, it is preferable to dispose a damper 47 a in the middle of the branch pipe 47 connected to the energy recovery section 24.
②配置 ② Arrangement
また、 加熱炉 2 8の炉内底面 1 8に配設するエネルギー回収部 2 4は、 図 2および図 3にその開口部を示すように、 炉内底面 1 8の角部または辺 部に沿って設けられていることを特徴とする。  The energy recovery unit 24 provided on the bottom surface 18 of the heating furnace 28 extends along the corners or sides of the bottom surface 18 of the furnace, as shown in FIGS. It is characterized by being provided.
したがって、 熱風吹出口 1 6から吹き出された熱風 1 4は、 金型 1 2を 加熱した後、 かかる金型 1 2の内面に沿って、 炉内底面 1 8の角部または 辺部に沿って形成してあるエネルギー回収部 2 4に向かって移動し、 その 間に、 金型 1 2内に所定時間滞留することができる。 すなわち、 金型 1 2 内で、 かかる金型 1 2の内面に沿って、 熱風吹出口 1 6からエネルギー回 収部 2 4に向かって移動する熱風 1 4の流れができやすくなる。 よって、 滞留時間がさらに長くなリ、 その結果、 金型 1 2内の隅々まで、 熱風 1 4 によって効果的に伝熱モ一ドで加熱することができるようになる。 また、 熱風 1 4の風速が速いために、 伝熱モードが拡散律束になることを有効に- 防止することができる。 Therefore, the hot air 14 blown out from the hot air outlet 16 heats the mold 12 and then flows along the inner surface of the mold 12 and along the corners or sides of the furnace bottom 18. It moves toward the formed energy recovery section 24, during which it can stay in the mold 12 for a predetermined time. That is, in the mold 12, the flow of the hot air 14 moving from the hot air outlet 16 toward the energy recovery section 24 along the inner surface of the mold 12 is easily generated. Therefore, the residence time becomes longer, and as a result, hot air 1 4 Thereby, it is possible to effectively heat in the heat transfer mode. In addition, since the wind velocity of the hot air 14 is high, it is possible to effectively prevent the heat transfer mode from becoming diffusion-limited.
なお、上述した熱風吹出口 1 6のみならず、熱エネルギー回収部 2 4が、 炉内底面 1 8と、 フレーム部材 1 3と、 金型 1 2と、 によって形成される 空間内であって、 炉内底面 1 8の角部または辺部に沿って配設されている ことから、 加熱炉 2 8内に導入された熱エネルギーを容易かつ有効に回収 することができる。  In addition, not only the hot air outlet 16 described above, but also the thermal energy recovery section 24 is in a space formed by the furnace bottom 18, the frame member 13, and the mold 12, The heat energy introduced into the heating furnace 28 can be easily and effectively recovered because it is disposed along the corners or sides of the furnace bottom 18.
また、 また、 かかるエネルギー回収部の開口部の形状を、 図 3に示すよ うに、実質的に V字状またはコの字状にすることが好ましい。この理由は、 熱風吹出口 1 6から吹き出された熱風 1 4が、 このような所定形状のエネ ルギ一回収部 2 4に向かって容易かつ迅速に移動し、 その間に、 適度な熱 風の流れが生じて、金型 1 2を効果的に加熱することができるためである。 また、 エネルギー回収部 2 4の開口部の形状を、 図 3に示すように、 実 質的に V字状またはコの字状にした場合、 適度な熱風の流れがさらに容易 に生成しやすいように構成することが好ましい。 すなわち、 かかるェネル ギー回収部が、 連通する主回収部および副回収部から構成されており、 当 該主回収部において、 金型を加熱した後の熱風を回収し、 次いで、 副回収 部を介して、 回収した熱風を、 熱風発生循環装置に循環させることが好ま しい。 例えば、 図 2に示すような小さいエネルギー回収部 (副回収部) 2 4の上方については塞いでしまい、 V字状またはコの字状のエネルギー回 収部 (主回収部) のみを介して回収し、 それを副回収部 2 4の側方から、 当該副回収部 2 4の開口部に導入して、 熱風を循環させることがよリ好ま しい。 なお、 図 4等において、 熱風が側方からエネルギー回収部 2 4の開 口部に導入されているのは、 この方式を具体的に示すものである。  Further, it is preferable that the shape of the opening of the energy recovery unit is substantially V-shaped or U-shaped as shown in FIG. The reason is that the hot air 14 blown out from the hot air outlet 16 moves easily and quickly toward the energy collecting section 24 having such a predetermined shape, and during this time, a moderate flow of hot air flows. This causes the mold 12 to be effectively heated. Also, if the shape of the opening of the energy recovery section 24 is substantially V-shaped or U-shaped as shown in FIG. 3, an appropriate hot air flow can be more easily generated. It is preferable to configure. That is, the energy recovery section is composed of a main recovery section and a sub-recovery section that communicate with each other. In the main recovery section, the hot air after heating the mold is recovered, and then through the sub-recovery section. It is preferable to circulate the collected hot air through a hot air generating and circulating device. For example, the upper part of the small energy recovery section (sub-recovery section) 24 as shown in Fig. 2 is blocked, and recovered only through the V-shaped or U-shaped energy recovery section (main recovery section). Then, it is preferable to introduce it from the side of the sub-recovery section 24 to the opening of the sub-recovery section 24 to circulate hot air. In FIG. 4 and the like, the fact that hot air is introduced from the side into the opening of the energy recovery section 24 specifically illustrates this method.
( 3 ) 加熱炉 (3) Heating furnace
①基本的構造 ① Basic structure
加熱炉 2 8は、 図 5に示すように、 熱風発生循環装置 4 0の上方に配置 されており、 全体として一つのコンパク 卜な加熱装置として構成されてい ることが好ましい。 このように構成することによリ、 加熱炉 2 &への熱ェ ネルギ一の供給が容易になるばかリカ、、エネルギー回収部 2 4を利用して、 加熱炉 2 8からの熱エネルギーの回収についても容易に実施することがで きる。 The heating furnace 28 is located above the hot air generating and circulating device 40 as shown in FIG. It is preferable that the heating device is configured as a single compact heating device as a whole. This configuration facilitates the supply of heat energy to the heating furnace 2 & recovers heat energy from the heating furnace 28 using the energy recovery unit 24. Can be easily implemented.
また、 加熱炉 2 8の炉本体は、 例えば、 上面に、 開閉可能な開口部を有 する平面長方形の箱状体に形成されておリ、 上面の開口部を開口した状態 で、 金型 1 2およびそのフレーム部材 1 3を炉内に搬入した後、 開口部を 閉じて、 熱風発生循環装置 4 0によって熱風 1 4を吹き込むことにより、 金型 1 2に対する加熱が行われるように構成されていることが好ましい。 なお、 加熱炉 2 8に含まれる炉本体の形態としては、 適宜変更すること が可能である。 例えば、 炉本体を、 金型の形状に対応させて、 円筒状や立 方体、 あるいは異形とすることも好ましい。  The furnace body of the heating furnace 28 is formed, for example, as a flat rectangular box having an openable and closable opening on the upper surface. After bringing the frame 2 and its frame member 13 into the furnace, the opening is closed, and the mold 12 is heated by blowing hot air 14 with the hot air generating and circulating device 40. Is preferred. The form of the furnace body included in the heating furnace 28 can be appropriately changed. For example, it is also preferable that the furnace main body be cylindrical, cubic, or irregular, corresponding to the shape of the mold.
②熱反射板 ②Heat reflection plate
また、 図 4に示すように、 加熱炉 2 8の炉内底面 1 8に、 熱反射板 2 6 を設けることが好ましい。 すなわち、 熱風発生循環装置 4 0から吹き出さ れた熱風 1 4は、 熱風吹出口 1 6を介して、 金型 1 2に対して、 直接的に 吹き付けられるが、 熱反射板 2 6が炉内底面 1 8に、 全面的または部分的 に設けてあることにより、 金型 1 2で反射された熱風 1 4を、 かかる熱反 射板 2 6によって、 さらに反射できる構造とすることが好ましい。  Further, as shown in FIG. 4, it is preferable to provide a heat reflecting plate 26 on the bottom surface 18 inside the furnace of the heating furnace 28. That is, the hot air 14 blown out from the hot air generating and circulating device 40 is blown directly to the mold 12 through the hot air outlet 16, but the heat reflecting plate 26 is It is preferable to provide a structure in which the hot air 14 reflected by the mold 12 can be further reflected by the heat reflecting plate 26 by being provided entirely or partially on the bottom surface 18.
ここで、 熱反射板 2 6は、 耐熱無機材料からなる板状物、 例えば、 ステ ンレス、 白金、金、 銀等からなる金属板、酸化アルミニウム、酸化チタン、 酸化ジルコニウム等からなるセラミック板、 ソーダガラス、 石英等からな るガラス板等を、 炉内底面 1 8に積層して構成することもできるし、 ある いは、 これらの耐熱無機材料を、 炉内底面 1 8を構成する板状物としてそ のまま利用し、 熱反射板 2 6からなる炉内底面 1 8として構成することも できる。 すなわち、 このような鏡面構造を容易に達成できる耐熱無機材料 であれば、 炉内底面 1 8の表面に積層しても、 あるいはそのまま炉内底面 1 8を構成しても、 優れた熱反射性を示すことができる。 Here, the heat reflecting plate 26 is a plate made of a heat-resistant inorganic material, for example, a metal plate made of stainless steel, platinum, gold, silver, or the like, a ceramic plate made of aluminum oxide, titanium oxide, zirconium oxide, or the like, or a soda. A glass plate made of glass, quartz, or the like can be laminated on the bottom surface 18 in the furnace, or these heat-resistant inorganic materials can be used as a plate-like material forming the bottom surface 18 in the furnace. It can be used as it is, and can be configured as a furnace bottom surface 18 composed of the heat reflection plate 26. In other words, any heat-resistant inorganic material that can easily achieve such a mirror structure can be laminated on the surface of the furnace bottom surface 18 or can be used as it is. Even with the construction of 18, it is possible to exhibit excellent heat reflectivity.
③傾斜 ③ Incline
また、 図 4および図 5に示すように、 加熱炉 2 8の炉内底面 1 8に、 傾 斜部 1 9を設けることが好ましい。 この理由は、 傾斜した炉内底面 1 8の 最深部に熱風吹出部 1 6を設けることができ、 熱風 1 4の整流性が良好に なるとともに、 熱風 1 4の滞留空間の大きさ (デッドスペース) が狭まつ て、 より効果的に、 金型 1 2を加熱することができるためである。 また、 炉内底面 1 8に、 このような傾斜部 1 9を設けることにより、 かかる傾斜 部 1 9によって、 金型 1 2で一旦反射された熱風 1 4をさらに効率的に反 射して、 例えば、 渦巻きを生成させ、 それを用いて、 再び金型 1 2を効果 的に加熱することができるためである。  Further, as shown in FIGS. 4 and 5, it is preferable to provide an inclined portion 19 on the bottom surface 18 inside the furnace of the heating furnace 28. The reason for this is that the hot air outlet 16 can be provided at the deepest part of the inclined furnace bottom 18, which improves the rectification of the hot air 14 and the size of the residence space of the hot air 14 (dead space). The reason for this is that the mold 12 can be heated more effectively by reducing the width of the mold. In addition, by providing such an inclined portion 19 on the furnace bottom 18, the hot air 14 once reflected by the mold 12 is reflected more efficiently by the inclined portion 19, For example, a spiral is generated, and the mold 12 can be effectively heated again using the spiral.
ここで、炉内底面 1 8における傾斜部 1 9の角度は、金型 1 2の大きさ、 形状、 あるいは加熱効率を考慮して定めることができるが、 例えば、 1 〜 6 0 ° の範囲内の値とすることが好ましい。  Here, the angle of the inclined portion 19 on the bottom surface 18 in the furnace can be determined in consideration of the size, shape, or heating efficiency of the mold 12, but, for example, in the range of 1 to 60 °. Is preferable.
この理由は、 かかる傾斜部 1 9の角度が 1 ° 未満となると、 金型 1 2へ 再反射できる熱風量が著しく低下する場合があるためであり、 一方、 かか る傾斜部 1 9の角度が 6 0 ° を超えると、 熱風 1 4による渦巻きの生成が 困難になって、 金型 1 2の加熱効率が低下する場合があるためである。  The reason for this is that if the angle of the inclined portion 19 is less than 1 °, the amount of hot air that can be reflected back to the mold 12 may be significantly reduced, while the angle of the inclined portion 19 When the temperature exceeds 60 °, it is difficult to generate swirls by the hot air 14, and the heating efficiency of the mold 12 may decrease.
したがって、 炉内底面 1 8における傾斜部 1 9の角度を 5〜 5 0 ° の範 囲内の値とすることがより好ましく、 1 0〜 4 5 ° の範囲内の値とするこ とがさらに好ましい。  Therefore, it is more preferable that the angle of the inclined portion 19 on the furnace bottom surface 18 be a value in the range of 5 to 50 °, and it is more preferable that the angle be in the range of 10 to 45 °. .
④側方熱風吹出部 ④ Side hot air outlet
また、 加熱炉 2 8においては、 図 6に示すように、 側方熱風吹出口 5 0 力 加熱炉 2 8に対して所定高さであって、 金型 1 2を側方からも加熱で きるように設けられていることが好ましい。  Further, in the heating furnace 28, as shown in FIG. 6, the side hot air outlet 50 force is a predetermined height with respect to the heating furnace 28, so that the mold 12 can also be heated from the side. It is preferable that it is provided as follows.
例えば、 かかる側方熱風吹出口 5 0は、 加熱炉 2 8の内側に沿って配置 したダク ト構造であって、熱風発生循環装置 4 0に連なる分岐配管 4 7や、 主配管 4 3に連結してあり、 その風量をダンバ等によって調節することが 好ましい。 For example, the side hot air outlet 50 has a duct structure disposed along the inside of the heating furnace 28, and has a branch pipe 47 connected to the hot air generating and circulating device 40, It is preferably connected to the main pipe 43, and its air volume is preferably adjusted by a damper or the like.
この理由は、 このように構成することにより、 金型 1 2を、 下方向のみ ならず、 横方向からも熱風を吹き付けて加熱することにより、 金型 1 2を さらに効果的に加熱することができるためである。  The reason for this is that, with this configuration, the mold 12 can be heated more effectively by blowing hot air not only from below but also from the side, thereby heating the mold 12 more effectively. This is because we can do it.
また、 かかる側方熱風吹出口 5 0は、 図 6に示すように、 直径 0 . 1 〜 1 0 m mの穴列から構成してあることが好ましい。 この理由は、 このよう に構成することにより、 圧力の関係で、 分岐配管 4 7から吹き出された後 に、 熱風が広範に広がることができるためである。 したがって、 整流板が なくとも、 大面積の金型を加熱することが可能となる。  Further, as shown in FIG. 6, the side hot air outlet 50 is preferably formed of a hole row having a diameter of 0.1 to 10 mm. The reason for this is that with such a configuration, the hot air can be widely spread after being blown out from the branch pipe 47 due to the pressure. Therefore, it is possible to heat a large-area mold without a rectifying plate.
( 4 ) 金型 (4) Mold
金型 1 2は、 図 5に示すように、 かかる金型 1 2の移動及び操作のため のフレーム部材 1 3が取りつけられた状態で、 加熱炉 2 8内の炉内底面 1 8に配設された金型支持部材 (図示せず) 上に、 載置されていることが好 ましい。  As shown in FIG. 5, the mold 12 is provided on the furnace bottom 18 in the heating furnace 28 with the frame member 13 for moving and operating the mold 12 attached. It is preferably mounted on a mold supporting member (not shown).
また、 かかる金型 1 2は、 ロボットアーム (図示せず) にフレーム部材 1 3を把持または懸架した状態で動かし、例えば、金型加熱部においては、 ロポッ卜アームによりフレーム部材 1 3を上面部まで移動させ、 そこで上 面部に設けられた開口部よリ加熱炉 2 8内に搬入できる構造であることが 好ましい。  In addition, the mold 12 is moved while holding or suspending the frame member 13 on a robot arm (not shown). For example, in the mold heating section, the frame member 13 is moved to the upper surface by a rod arm. Preferably, the structure is such that it can be carried into the reheating furnace 28 through an opening provided in the upper surface.
なお、金型支持部材は、その表面を、シーリング効果を有する断熱材(図 示せず)、例えば、シリコーンゴム Zフッ素樹脂フィルムの組合せによって、 覆うことが好ましい。 この理由は、 金型支持部材によって、 金型 1 2と、 炉内底面 1 8との間の隙間を埋めて、 熱風が外部に逃げることを有効に防 止することができるためである。 さらに、 かかる金型支持部材は、 加熱の ために炉内に収容する金型 1 2の位置決めと、 炉内底面 1 8の熱風吹出口 1 6からの熱風 1 4が、 金型 1 2の内面に効率良くあたるように、 熱風吹 出口 1 6からの高さを調節する機能をそれぞれ有していることが好ましい。 2 . パウダースラッシュ部 It is preferable that the surface of the mold supporting member is covered with a heat insulating material (not shown) having a sealing effect, for example, a combination of a silicone rubber Z fluororesin film. The reason for this is that the mold supporting member can fill the gap between the mold 12 and the furnace bottom 18 to effectively prevent hot air from escaping to the outside. Further, such a mold supporting member is used to position the mold 12 to be housed in the furnace for heating, and to generate hot air 14 from the hot air outlet 16 on the bottom 18 of the furnace by the inner surface of the mold 12. It is preferable that each of them has a function of adjusting the height from the hot air outlet 16 so as to hit the air efficiently. 2. Powder slash section
パウダースラッシュ部は、 図 7 ( b ) に示すように、 図 7 ( a ) で加熱 されたフレーム部材 8 2を含む金型 8 4と、 流動状を有するパウダー 9 2 を収容したリザーバタンク 8 8とを、 金型 (成形型) 8 4の成形面 8 5を 下向きにするとともに、 リザーバタンク 8 8の開口面を上向きにした状態 で、 上下に一体的に連結する工程を実施するための部位である。  As shown in FIG. 7 (b), the powder slash portion includes a mold 84 including a frame member 82 heated in FIG. 7 (a), and a reservoir tank 8 8 containing a fluid powder 92. A part for carrying out a process of integrally connecting the upper and lower sides with the molding surface 85 of the mold (mold) 84 facing downward and the opening surface of the reservoir tank 88 facing upward It is.
その際、 リザーバタンク 8 8内のパウダー 9 2の分散性を向上させ、 均 一な厚さの樹脂膜 (シート状物) 9 4を形成するために、 リザ一バタンク 8 8の下方に設けた攪拌室 8 8 aに空気を導入して、 パウダー 9 2を流動 状態とすることが好ましい。 図 9 ( a ) に空気の導入方向を具体的に示す が、 攪拌室 8 8 aの上方は、 穴開き部材 (メッシュ部材) から構成してあ リ、 導入された空気によって、 パウダー 9 2を巻き上げる構造であること が好ましい。  In order to improve the dispersibility of the powder 92 in the reservoir tank 88 and to form a resin film (sheet-like material) 94 of uniform thickness, it was provided below the reservoir tank 88. It is preferable to introduce air into the stirring chamber 88a to bring the powder 92 into a fluid state. Fig. 9 (a) specifically shows the direction of air introduction. The upper part of the stirring chamber 88a is composed of a perforated member (mesh member). It is preferable to use a winding structure.
また、 パウダースラッシュ部は、 図 7 ( c ) に示すように、 フレーム部 材 8 2を含む金型 8 4と、 リザーバタンク 8 8とを連結した状態で回転さ せて、 金型 8 4の成形面 8 5に所定の厚さの樹脂膜 9 4を形成する工程を 実施するための部位でもある。  Further, as shown in FIG. 7 (c), the powder slash portion is rotated while the mold 84 including the frame member 82 and the reservoir tank 88 are connected, and the It is also a part for performing a step of forming a resin film 94 having a predetermined thickness on the molding surface 85.
すなわち、 フレーム部材 8 2を含む金型 8 4と、 リザーバタンク 8 8と を組み合わせた状態で、 上下方向に反転させることが好ましい。 この理由 は、 このように実施すると、 リザーパタンク 8 8内のパウダー 9 2は自重 で成形型 8 4の成形面 8 5に落下し、 かかる金型 8 4の成形面 8 5に接す るパウダー 9 2およびその近傍のパウダー 9 2のみが、 金型 8 4の熱によ つて溶融状態となって付着し、 金型 8 4の成形面 8 5に対して、 樹脂膜 9 4を一瞬にして形成することができるためである。  That is, it is preferable that the mold 84 including the frame member 82 and the reservoir tank 88 be combined and turned upside down. The reason for this is that if the powder is carried out in this manner, the powder 92 in the reservoir tank 88 drops under its own weight onto the molding surface 85 of the mold 84, and the powder 9 in contact with the molding surface 85 of the mold 84 Only the powder 2 and the powder in the vicinity thereof are melted and adhered by the heat of the mold 84, and the resin film 94 is instantaneously formed on the molding surface 85 of the mold 84. This is because you can do it.
また、 フレーム部材 8 2を含む金型 8 4を反転させる際、 かかる金型 8 4における所望の成形面 8 5のみに、 樹脂膜 9 4を形成できるように、 金 型 8 4と、 リザーバタンク 8 8との間に、 所定の厚さ (高さ) を有する方 枠 8 4 a、 8 4 bを設けることが好ましい。 ここで、 かかる方枠の下部 8 4 bを、 例えば、 アルミニウムから構成し、 方枠の上部 8 4 aをシリコー ンゴム/フッ素樹脂フィルムの組合せから構成することにより、 金型 8 4 と、 リザーバタンク 8 8との間の隙間を充填する役目を果たすこともでき る。 When the mold 84 including the frame member 82 is turned over, the mold 84 and the reservoir tank are formed so that the resin film 94 can be formed only on the desired molding surface 85 of the mold 84. It is preferable to provide frames 84a and 84b having a predetermined thickness (height) between them. Here, the lower part of the box 8 4b is made of, for example, aluminum, and the upper portion of the frame 84a is made of a combination of silicone rubber and fluororesin film to fill the gap between the mold 84 and the reservoir tank 88. It can also play a role.
また、 フレーム部材 8 2を含む金型 8 4を反転させる際、 パウダー 9 2 が所定箇所以外に飛散しないように、 かかる金型 8 4における所望の成形 面 8 5のみに、樹脂膜 9 4を形成できるように、図 9 ( b )に示すように、 攪拌室 8 8 aを介して吸引し、 金型 8 4内の圧力を低下させることが好ま しい。 すなわち、 金型 8 4を回転させてパウダースラッシュ成形している 最中には、 金型 8 4の内圧を低下させるために吸引し、 パウダースラッシ ュ成形前には、 リザーバタンク 8 8のパウダー 9 2内に空気を吹き込むた めの圧力調整装置 (図示せず) が設けてあることが好ましい。  Further, when the mold 84 including the frame member 82 is turned over, the resin film 94 is applied only to a desired molding surface 85 of the mold 84 so that the powder 9 2 does not scatter outside of a predetermined position. In order to form, as shown in FIG. 9 (b), it is preferable to reduce the pressure in the mold 84 by suction through the stirring chamber 88a. In other words, during the powder slush molding by rotating the mold 84, suction is performed to reduce the internal pressure of the mold 84, and the powder in the reservoir tank 8 8 is formed before the powder slush molding. It is preferable that a pressure adjusting device (not shown) for blowing air into 92 is provided.
また、 金型 8 4を反転させる際、 かかる金型 8 4のフレーム部材 8 2に 設けた突起部 8 2 aを、 図 1 0に示すような一つまたは複数のハンマリン グ装置によって、 両側から交互に殴打することが好ましい。 この理由は、 金型 8 4を回転する際に、 ハンマリング装置 1 0 0によって殴打して、 所 定の振動を付与することにより、 金型 8 4の所定箇所に、 パウダー 9 2が 均一に行きわたるためである。  Further, when the mold 84 is turned over, the projections 82 a provided on the frame member 82 of the mold 84 are separated from both sides by one or a plurality of hammering devices as shown in FIG. It is preferable to beat alternately. The reason is that when the mold 84 is rotated, it is beaten by the hammering device 100 to apply a predetermined vibration, so that the powder 92 is uniformly applied to a predetermined portion of the mold 84. This is because it has spread.
また、パウダースラッシュ部は、図 8 ( a ) に示すように、金型 8 4に、 所定厚さの樹脂膜 9 4が形成された状態で、 リザーバタンク 8 8を、 金型 8 4から取り外す工程を実施するための部位である。  Also, as shown in FIG. 8 (a), the reservoir tank 88 is removed from the mold 84 with the resin film 94 having a predetermined thickness formed on the mold 84 as shown in FIG. This is a part for performing the process.
3 . 金型冷却部 3. Mold cooling section
金型冷却部は、 図 8 ( b ) に示すように、 フレーム部材 8 2を含む金型 8 4を、 水冷あるいは空冷等の冷却手段 9 8により冷却して、 樹脂膜 9 4 を硬化させる工程を実施するための部位である。 また、 金型冷却部は、 図 8 ( c ) に示すように、 金型冷却部の最終工程として、 金型 8 4から樹脂 膜 9 4を剥離、 すなわち脱型する工程を実施するための部位でもある。  As shown in FIG. 8 (b), the mold cooling section cools the mold 84 including the frame member 82 by cooling means 98 such as water cooling or air cooling to harden the resin film 94. This is a part for performing. Also, as shown in FIG. 8 (c), the mold cooling section is a part for performing the step of peeling the resin film 94 from the mold 84, that is, removing the mold, as the final step of the mold cooling section. But also.
ここで、 金型の熱損傷を有効に防止するためには、 金型冷却部に、 図 1 0に示すように噴霧装置と、 図 8 ( b ) に示すようにシャワー装置とを備 えることが好ましし、。すなわち、第一冷却段階として、噴霧装置によって、 水または温水を噴霧して、 5 0〜 1 0 0 °C程度まで、 比較的マイルドに金 型を冷却することが好ましい。 次いで、 第二冷却段階として、 シャワー装 置によって、 水または温水を比較的多量に吹き付け、 蒸発ェンタルピーを 利用して、 樹脂膜 9 4が剥離できる程度、 例えば、 5 0 °C未満の温度にま で、 金型を効率的に冷却することが好ましい。 この理由は、 このように実 施することにより、 大型化かつ複雑化した金型が不均一に加熱されている 場合であっても、 金型の熱損傷や割れ等の発生を有効に防止することがで きるためである。 なお、 シャワー装置および噴霧装置は、 一つの給水タン クに連結されてあつて、 吹き出し口に設けた制御弁等の切替によって、 噴 霧量やシャワー量を決定するように構成してあることも好ましい。 Here, in order to effectively prevent thermal damage to the mold, the mold cooling section must It is preferred to have a spray device as shown in FIG. 0 and a shower device as shown in FIG. That is, as the first cooling step, it is preferable to spray the water or hot water with a spray device to cool the mold relatively mildly to about 50 to 100 ° C. Next, as a second cooling stage, a relatively large amount of water or hot water is sprayed by a shower device, and the temperature is reduced to a temperature at which the resin film 94 can be peeled off, for example, a temperature of less than 50 ° C. by using evaporation enthalpy. It is preferable to cool the mold efficiently. The reason for this is that, by performing the method in this way, even if the large and complicated mold is heated unevenly, it is possible to effectively prevent the mold from being thermally damaged or cracked. This is because we can do it. Note that the shower device and the spray device may be connected to one water supply tank, and may be configured to determine the spray amount and the shower amount by switching a control valve or the like provided at the outlet. preferable.
4 . 全体配置および後加熱工程 4. Overall arrangement and post-heating process
( 1 ) 全体配置  (1) Overall layout
図 1 に例示するように、 パウダースラッシュ成形装置 1 0は、 加熱炉 2 8を含む各工程の装置を地表に一列に並べて配置した場合、 向かって左側 から、 パウダースラッシュ部 ( 部)、金型加熱部 (B部)、金型冷却部 (C 部) の順に配置することが好ましい。 また、 金型加熱部を二つ設けて、 パ ウダ一スラッシュ部、 第 1の金型加熱部、 第 2の金型加熱部、 および金型 冷却部の順に配置することも好ましい。 さらに、 金型待機部、 後加熱部、 金型交換部、 脱型部等を、 適宜設けて、 本発明のパウダースラッシュ成形 機に組み込むことも好ましい。  As exemplified in FIG. 1, the powder slush molding device 10 is configured such that when the devices of each process including the heating furnace 28 are arranged in a line on the surface of the ground, the powder slash portion (part) and the mold are arranged from the left side as viewed. It is preferable to arrange the heating section (B section) and the mold cooling section (C section) in this order. It is also preferable to provide two mold heating sections and arrange the powder slash section, the first mold heating section, the second mold heating section, and the mold cooling section in this order. Further, it is also preferable to appropriately provide a mold standby section, a post-heating section, a mold changing section, a demolding section, etc., and to incorporate the mold into the powder slush molding machine of the present invention.
いずれにしても、 本発明のパウダースラッシュ成形機 1 0は、 各部を、 地表に隣接して列状に並べて配置するとともに、 移動ロポッ 卜およびロボ ッ卜アームにより金型を各部に移動させるだけで、 パウダースラッシュ成 形を効率的に実施することができる。  In any case, the powder slush molding machine 10 of the present invention simply arranges each part in a row adjacent to the surface of the ground, and moves the mold to each part by the moving robot and the robot arm. Therefore, powder slush molding can be performed efficiently.
( 2 ) 後加熱工程 また、 後加熱工程を設け、 前述した金型加熱部を、 その後加熱工程にお ける加熱部として使用することも好ましい。 すなわち、 パウダースラッシ ュ成形部において得られる樹脂膜 (樹脂溶融物層) が付着した金型を、 口 ポッ トアームにより加熱炉の真上に位置に搬送し、 そのまま下方に向けた 状態で、 静止させることが好ましい。 その間、 加熱炉 2 8の開口部 (スラ イ ドドア) は、 開いた状態になっていて、 炉内底面 1 8の熱風吹出口 1 6 から吹き上がる熱風によって、 後加熱することが好ましい。 この理由は、 このように後加熱することにより、 樹脂膜が再加熱されて、 適度にフロー することによリ、かかる厚さを均質なものとすることができるためである。 また、 金型加熱部を、 後加熱工程を実施するための加熱部として併用する ことにより、 パウダースラッシュ成形機を、 全体として、 コンパク トに設 計することができるためである。 産業上の利用可能性 (2) Post-heating process It is also preferable to provide a post-heating step and use the above-described mold heating section as a heating section in the subsequent heating step. That is, the mold to which the resin film (resin melt layer) obtained in the powder slush molding section has adhered is conveyed to a position directly above the heating furnace by a port pot arm, and is directly directed downward, and is stopped. Preferably. During that time, the opening (slide door) of the heating furnace 28 is in an open state, and it is preferable that the heating furnace 28 be post-heated by hot air blown up from the hot air outlet 16 on the bottom 18 in the furnace. The reason for this is that, by such post-heating, the resin film is re-heated and flows appropriately, so that the thickness can be made uniform. Also, by using the mold heating section as a heating section for performing the post-heating step, the powder slush molding machine can be designed to be compact as a whole. Industrial applicability
本発明のパウダースラッシュ成形機およびパウダースラッシュ成形方法 によれば、 特定の流速の熱風を金型に対して吹き付けるとともに、 ェネル ギー回収部の配置を工夫することにより、 金型を加熱する際に、 例えば、 大量の熱風による渦巻きを生じ易くなリ、 そのために熱効率を大幅に向上 させることができるようになった。  According to the powder slush molding machine and the powder slush molding method of the present invention, hot air at a specific flow rate is blown to the mold, and the arrangement of the energy recovery unit is devised, so that the mold is heated. For example, swirling by a large amount of hot air is likely to occur, which has made it possible to significantly improve thermal efficiency.
したがって、 金型が大型化、 複雑化しているような場合であっても、 短 時間かつ均一にパウダーを付着させることができるようになった。  Therefore, even when the mold is large and complicated, the powder can be uniformly applied in a short time.
また、 本発明のパウダースラッシュ成形機およびパウダースラッシュ成 形方法において、 炉内底面に、 傾斜部を設けたり、 金型加熱部に、 特定の 熱風制御機構を設けたり、 パウダースラッシュ成形している最中に、 特定 のハンマリング装置を用いて、 特定箇所を殴打したり、 さらには、 金型加 熱部を後加熱工程のために用いたりすることにより、 樹脂膜の厚さのバラ ツキ (厚さの実測値 (2 0箇所) の平均値からのばらつきの最大値 (<½ ) ) を、例えば、 5 0 %以内の値に容易に制御することができるようになった。  In the powder slush molding machine and the powder slush molding method of the present invention, an inclined portion is provided on a bottom surface in the furnace, a specific hot air control mechanism is provided in a mold heating portion, and powder slush molding is performed. During the process, a specific hammering device was used to strike a specific location, and the mold heating section was used for the post-heating process, thereby causing the resin film thickness to vary (thickness). It is now possible to easily control the maximum value (<½) of the variation from the average of the actual measured values (20 locations) to, for example, a value within 50%.

Claims

請求の範囲 The scope of the claims
1 . 金型加熱部と、 パウダースラッシュ部と、 金型冷却部と、 を備えたパ ウダ一スラッシュ成形機であって、 1. A powder slush molding machine comprising: a mold heating section, a powder slush section, and a mold cooling section,
前記金型加熱部に、 金型の下方から、 流速 1 5 mZ秒以上の熱風を吹き 付けるための熱風吹出部と、 金型加熱部の炉内底面の角部または辺部に沿 つて設けられ、 金型を加熱した後の熱風を回収するためのエネルギー回収 部と、 を備えることを特徴とするパウダースラッシュ成形機。  A hot-air blowing unit for blowing hot air at a flow rate of 15 mZ seconds or more from below the mold to the mold heating unit, and a corner or a side of the bottom surface of the furnace inside the mold heating unit are provided. A powder slush molding machine comprising: an energy recovery unit for recovering hot air after heating a mold.
2 . 前記エネルギー回収部の開口部の形状を実質的に V字状またはコの字 状にすることを特徴とする請求の範囲 1に記載のパウダースラッシュ成形 機。  2. The powder slush molding machine according to claim 1, wherein the shape of the opening of the energy recovery unit is substantially V-shaped or U-shaped.
3 . 前記エネルギー回収部が、 連通する主回収部および副回収部から構成 されており、 当該主回収部において、 前記金型を加熱した後の熱風を回収 し、 次いで、 副回収部を介して、 熱風発生循環装置に循環させることを特 徴とする請求の範囲 1または 2に記載のパウダースラッシュ成形機。  3. The energy recovery section is composed of a communicating main recovery section and a sub-recovery section, and in the main recovery section, recovers the hot air after heating the mold, and then through the sub-recovery section. 3. The powder slush molding machine according to claim 1, wherein the powder slush molding machine is circulated through a hot-air generating and circulating device.
4 . 前記金型加熱部の炉内底面に、 傾斜部を設けるとともに、 当該炉内底 面の最深部に、 前記熱風吹出部を設けることを特徴とする請求の範囲 1 ~ 3のいずれか一項に記載のバウダースラッシュ成形機。  4. The method according to any one of claims 1 to 3, wherein an inclined portion is provided on a bottom surface in the furnace of the mold heating section, and the hot air blowing portion is provided in a deepest portion of the bottom surface in the furnace. The powder slush molding machine according to the above item.
5 . 前記金型加熱部に、 熱風を整流しながら吹き付けるための熱風制御機 構が設けてあり、 当該熱風制御機構が、 長尺状の錶物製プレートおよびそ の駆動装置であることを特徴とする請求の範囲 1 〜 4のいずれか一項に記 載のパウダースラッシュ成形機。  5. A hot-air control mechanism for rectifying and blowing hot air is provided on the mold heating section, and the hot-air control mechanism is a long-sized animal plate and its driving device. The powder slush molding machine according to any one of claims 1 to 4.
6 . 前記パウダースラッシュ部に、 前記金型を回転させてパウダースラッ シュ成形している最中に、 前記金型のフレーム部材に設けた突起部を、 両 側から交互に殴打するための複数のハンマリング装置が設けてあることを 特徴とする請求の範囲 1 〜 5のいずれか一項に記載のパウダースラッシュ 成形機。  6. During the powder slush molding by rotating the mold on the powder slash portion, a plurality of protrusions provided on the frame member of the mold are alternately beaten from both sides. The powder slush molding machine according to any one of claims 1 to 5, further comprising a hammering device.
7 . 前記パウダースラッシュ部に、 前記金型を回転させてパウダースラッ シュ成形している最中には、 金型の内圧を低下させるために吸引し、 バウ ダースラッシュ成形前には、 パヴダ一内に空気を吹き込むための圧力調整 装置が設けてあることを特徴とする請求の範囲 1〜 6のいずれか一項に記 載のパウダースラッシュ成形機。 7. Turn the mold to the powder slash During shaping, suction is applied to reduce the internal pressure of the mold, and before the powder slush forming, a pressure adjusting device is installed to blow air into Pavda. The powder slush molding machine according to any one of claims 1 to 6.
8 . 前記金型冷却部に、 噴霧装置と、 シャワー装置とを備えることを特徴 とする請求の範囲 1〜 7のいずれか一項に記載のパウダースラッシュ成形 機。  8. The powder slush molding machine according to any one of claims 1 to 7, wherein the mold cooling unit includes a spray device and a shower device.
9 . 金型加熱部と、 パウダースラッシュ部と、 金型冷却部と、 を備えたパ ウダ一スラッシュ成形機を用いて、 パウダーからシート状物を成形するパ ウダ一スラッシュ成形方法であって、  9. A powder-slush molding method for molding a sheet-like material from powder using a powder-slush molding machine including a mold heating section, a powder slash section, and a mold cooling section,
熱風吹出部と、 金型加熱部の炉内底面の角部または辺部に沿って設けら れ、 金型を加熱した後の熱風を回収するためのエネルギー回収部と、 を備 えた金型加熱部において、 前記金型の下方から、 流速 1 5 m /秒以上の熱 風を吹き付けることを特徴とするパウダースラッシュ成形方法。  Heating mold provided with a hot air blowing section and an energy recovery section provided along the corner or side of the furnace bottom of the mold heating section to recover hot air after heating the mold A hot blast with a flow velocity of 15 m / sec or more from below the mold in the part.
1 0 . 前記パウダースラッシュ部において、 シート状物をパウダースラッ シュ成形した後、 前記金型加熱部において、 得られたシート状物を再加熱 するとともに、 前記金型冷却部において、 噴霧装置およびシャワー装置に より、 逐次的にシート状物が付着した金型を冷却することを特徴とする請 求の範囲 9に記載のパウダースラッシュ成形方法。  10. In the powder slash section, after the sheet material is subjected to powder slush molding, in the mold heating section, the obtained sheet material is reheated, and in the mold cooling section, a spray device and a shower are provided. The powder slush molding method according to claim 9, wherein the mold to which the sheet-like material is adhered is sequentially cooled by an apparatus.
PCT/JP2002/013629 2002-12-26 2002-12-26 Powder slush molding machine and powder slush molding method WO2004060630A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2002/013629 WO2004060630A1 (en) 2002-12-26 2002-12-26 Powder slush molding machine and powder slush molding method
AU2002361099A AU2002361099A1 (en) 2002-12-26 2002-12-26 Powder slush molding machine and powder slush molding method
CNB028047842A CN1318200C (en) 2002-12-26 2002-12-26 Powder thread rolling shaper and forming method
JP2004564421A JP3696875B2 (en) 2002-12-26 2002-12-26 Powder slush molding machine and powder slush molding method
KR1020037010372A KR100551141B1 (en) 2002-12-26 2003-02-17 Powder slush molding device and powder slush molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/013629 WO2004060630A1 (en) 2002-12-26 2002-12-26 Powder slush molding machine and powder slush molding method

Publications (1)

Publication Number Publication Date
WO2004060630A1 true WO2004060630A1 (en) 2004-07-22

Family

ID=32697304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013629 WO2004060630A1 (en) 2002-12-26 2002-12-26 Powder slush molding machine and powder slush molding method

Country Status (5)

Country Link
JP (1) JP3696875B2 (en)
KR (1) KR100551141B1 (en)
CN (1) CN1318200C (en)
AU (1) AU2002361099A1 (en)
WO (1) WO2004060630A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015186A (en) * 2005-07-06 2007-01-25 Nakata Coating Co Ltd Powder slush molding machine and powder slush molding method
JP2007098670A (en) * 2005-09-30 2007-04-19 Inoac Corp Molding method and molding apparatus for sheet-shaped molding
KR100963686B1 (en) 2008-07-16 2010-06-15 정일엔지니어링(주) Powder slush molding device
WO2016031531A1 (en) * 2014-08-25 2016-03-03 株式会社仲田コーティング Low-temperature heating powder slush molding machine and powder slush molding method
JPWO2018025442A1 (en) * 2016-08-02 2019-03-14 株式会社仲田コーティング Powder slush molding machine and powder slush molding method
CN110193903A (en) * 2018-02-27 2019-09-03 丰田自动车株式会社 Powder slush molding system
KR20200005166A (en) * 2018-07-06 2020-01-15 김민섭 surface treatment apparatus for injection mold product using hot air
JP2021196321A (en) * 2020-06-18 2021-12-27 エア・ウォーター・マッハ株式会社 Mold for test piece molding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859548B1 (en) * 2007-09-17 2008-09-22 스코트라 주식회사 A centrifugal casting apparatus
KR100950777B1 (en) * 2008-05-08 2010-04-02 정일엔지니어링(주) Powder slush molding device which is a kind of heating mold backside
CN106273148B (en) * 2016-11-04 2018-07-27 南通超达装备股份有限公司 A kind of opposite opened automotive upholstery heating furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237111A (en) * 1985-08-10 1987-02-18 Tokai Kasei Kogyo Kk Slush molding tool
JPH04164610A (en) * 1990-10-29 1992-06-10 Honda Motor Co Ltd Heating method of slush mold
JPH06182789A (en) * 1992-12-21 1994-07-05 Nakata Kooteingu:Kk Slush molding method and powdering apparatus
JPH06335933A (en) * 1993-05-28 1994-12-06 Hitachi Chem Co Ltd Powder slush molding apparatus
JPH09239754A (en) * 1996-03-11 1997-09-16 Inoac Corp Vibration device of powder slush molding machine
JPH09248832A (en) * 1996-03-18 1997-09-22 Nakata Coating:Kk Heating furnace
JP2002210762A (en) * 2001-02-16 2002-07-30 Honda Motor Co Ltd Heating device of mold for molding resin powder
JP2002210761A (en) * 2001-02-16 2002-07-30 Honda Motor Co Ltd Heating device of mold for molding resin powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152918C (en) * 2002-02-06 2004-06-09 华东理工大学 Powder for forming enamelled plastics and its preparing process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237111A (en) * 1985-08-10 1987-02-18 Tokai Kasei Kogyo Kk Slush molding tool
JPH04164610A (en) * 1990-10-29 1992-06-10 Honda Motor Co Ltd Heating method of slush mold
JPH06182789A (en) * 1992-12-21 1994-07-05 Nakata Kooteingu:Kk Slush molding method and powdering apparatus
JPH06335933A (en) * 1993-05-28 1994-12-06 Hitachi Chem Co Ltd Powder slush molding apparatus
JPH09239754A (en) * 1996-03-11 1997-09-16 Inoac Corp Vibration device of powder slush molding machine
JPH09248832A (en) * 1996-03-18 1997-09-22 Nakata Coating:Kk Heating furnace
JP2002210762A (en) * 2001-02-16 2002-07-30 Honda Motor Co Ltd Heating device of mold for molding resin powder
JP2002210761A (en) * 2001-02-16 2002-07-30 Honda Motor Co Ltd Heating device of mold for molding resin powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015186A (en) * 2005-07-06 2007-01-25 Nakata Coating Co Ltd Powder slush molding machine and powder slush molding method
JP4590318B2 (en) * 2005-07-06 2010-12-01 株式会社仲田コーティング Powder slush molding machine and powder slush molding method
JP2007098670A (en) * 2005-09-30 2007-04-19 Inoac Corp Molding method and molding apparatus for sheet-shaped molding
KR100963686B1 (en) 2008-07-16 2010-06-15 정일엔지니어링(주) Powder slush molding device
WO2016031531A1 (en) * 2014-08-25 2016-03-03 株式会社仲田コーティング Low-temperature heating powder slush molding machine and powder slush molding method
JP5905653B1 (en) * 2014-08-25 2016-04-20 株式会社仲田コーティング Low temperature heating type powder slush molding machine and powder slush molding method
JPWO2018025442A1 (en) * 2016-08-02 2019-03-14 株式会社仲田コーティング Powder slush molding machine and powder slush molding method
CN110193903A (en) * 2018-02-27 2019-09-03 丰田自动车株式会社 Powder slush molding system
CN110193903B (en) * 2018-02-27 2021-06-11 丰田自动车株式会社 Powder slush molding system
KR20200005166A (en) * 2018-07-06 2020-01-15 김민섭 surface treatment apparatus for injection mold product using hot air
KR102129170B1 (en) 2018-07-06 2020-07-01 김민섭 surface treatment apparatus for injection mold product using hot air
JP2021196321A (en) * 2020-06-18 2021-12-27 エア・ウォーター・マッハ株式会社 Mold for test piece molding
JP7470311B2 (en) 2020-06-18 2024-04-18 エア・ウォーター・マッハ株式会社 Formwork for forming specimens

Also Published As

Publication number Publication date
CN1318200C (en) 2007-05-30
KR100551141B1 (en) 2006-02-10
AU2002361099A1 (en) 2004-07-29
JPWO2004060630A1 (en) 2006-05-11
JP3696875B2 (en) 2005-09-21
CN1556745A (en) 2004-12-22
KR20040073959A (en) 2004-08-21

Similar Documents

Publication Publication Date Title
WO2004060630A1 (en) Powder slush molding machine and powder slush molding method
JP4326335B2 (en) Multi-area autoclave
KR101947541B1 (en) Powder Slush Molding Machine and Powder Slush Molding Method
JP5391210B2 (en) Anode casting method and apparatus
JP5905653B1 (en) Low temperature heating type powder slush molding machine and powder slush molding method
JP3625819B2 (en) Powder slush molding machine and powder slush molding method
JP6644893B2 (en) Powder slush molding machine and powder slush molding method
JPWO2017018240A1 (en) Powder slush molding machine and powder slush molding method
KR100988639B1 (en) Coating apparatus for teflon a frypan
JP2003188077A5 (en)
JP4245565B2 (en) Powder slush molding machine and powder slush molding method
JP3578371B2 (en) heating furnace
JP4760575B2 (en) Heating control method in slush molding
JP4590318B2 (en) Powder slush molding machine and powder slush molding method
JP6952589B2 (en) Powder slash molding machine
JPH0615215A (en) Coat drying unit
JP2016176661A (en) Firing furnace and coating method
JPS61159251A (en) Water spray cooling method of lining refractories of tundish
JP2972234B2 (en) SHADOW MASK CLEANING APPARATUS AND CLEANING METHOD
CN1829882A (en) Steam cooker
JP2002210761A (en) Heating device of mold for molding resin powder
JPH11267571A (en) Heating apparatus
CN107120952A (en) Plate object dryer
TWM354468U (en) Shaping device for cleaning soft article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 02804784.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037010372

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004564421

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020037010372

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWG Wipo information: grant in national office

Ref document number: 1020037010372

Country of ref document: KR

122 Ep: pct application non-entry in european phase