WO2016031531A1 - Low-temperature heating powder slush molding machine and powder slush molding method - Google Patents

Low-temperature heating powder slush molding machine and powder slush molding method Download PDF

Info

Publication number
WO2016031531A1
WO2016031531A1 PCT/JP2015/072519 JP2015072519W WO2016031531A1 WO 2016031531 A1 WO2016031531 A1 WO 2016031531A1 JP 2015072519 W JP2015072519 W JP 2015072519W WO 2016031531 A1 WO2016031531 A1 WO 2016031531A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
heating
temperature
sheet
powder slush
Prior art date
Application number
PCT/JP2015/072519
Other languages
French (fr)
Japanese (ja)
Inventor
竹己 松野
Original Assignee
株式会社仲田コーティング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社仲田コーティング filed Critical 株式会社仲田コーティング
Priority to JP2015558287A priority Critical patent/JP5905653B1/en
Publication of WO2016031531A1 publication Critical patent/WO2016031531A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling

Definitions

  • the present invention relates to a low-temperature heating type powder slush molding machine and a powder slush molding method, and in particular, heats a molding resin at a low temperature to reduce a thermal fatigue of a mold and stably form a sheet material having a uniform thickness.
  • the present invention relates to a low-temperature heating type powder slush molding machine and a powder slush molding method that can be manufactured.
  • the applicant of the present invention is a powder slush molding machine and a powder slush molding method for molding a two-color molded sheet using a heat-resistant vinyl chloride resin (coating layer) and a normal vinyl chloride resin (slush layer).
  • a powder slush molding machine or the like that can quickly and stably obtain a two-color molded sheet having excellent durability has already been proposed. More specifically, the coating layer is applied to a predetermined portion of a mold using a resin coating device, and then, by slush molding a normal vinyl chloride resin on or adjacent to the coating layer.
  • the mold temperature is as high as over 250 ° C.
  • a part of the molding resin is seized in the die, so-called gloss phenomenon occurs, and the obtained sheet-like material
  • the mold cleaning process for removing the burned molding resin in a short period of time, for example, 40 times or less. It was.
  • the inventors of the present invention have determined that the mold temperature (mold inner surface temperature) measured by a non-contact infrared thermometer, a contact thermocouple, or the like is relatively low, for example, 220 ° C. or less. Even when it is, the combination of a predetermined post-heating treatment and a cooling treatment effectively suppresses the occurrence of metal fatigue of the mold and the baking phenomenon of the molded resin, while a sheet-like material having a predetermined thickness is obtained. It was found that it can be obtained stably and economically.
  • the present invention is a low-temperature heating type powder slush molding that can stably and economically manufacture a sheet-like material having a predetermined thickness in addition to the occurrence of thermal fatigue of the mold and baking phenomenon of the molding resin. It aims to provide a machine and a powder slush molding method.
  • a powder slash that molds a sheet-like material having a predetermined thickness by powdering a mold heating section that heats the mold temperature to 220 ° C. or less and a molding resin having a melting point of 160 ° C. or less for a predetermined time.
  • a post-heat treatment part for post-heating the sheet-like material formed on the mold
  • a mold cooling part for cooling the mold temperature to 60 ° C. or less
  • a mold for removing the cooled sheet-like material A low-temperature heating type powder slush molding machine (hereinafter sometimes simply referred to as a powder slush molding machine).
  • the powder slush molding machine characterized by the above-mentioned can be provided to solve the above-mentioned problems.
  • the powder slush molding machine by configuring the powder slush molding machine in this way, it is possible to avoid rapid heating and rapid cooling, suppress the occurrence of molding resin baking phenomenon and cracking due to thermal fatigue of the mold, and consequently A sheet-like material having a predetermined thickness can be obtained stably and economically.
  • the molding resin having a melting point of 160 ° C. or less is the first resin and the molding resin having the melting point of 180 ° C. or more is the second resin
  • the amount of heat per unit time (10,000 kcal / hr) applied to the post-heating unit is 1 of the amount of heat per unit time applied to the mold heating unit.
  • a value in the range of / 4 to 2/3 is preferable.
  • the predetermined time of powdering is set to a value within the range of 32 to 40 seconds, and the predetermined thickness of the sheet-like material is 1.1 to 1.4 mm. It is preferable to set the value within the range.
  • the post-heating treatment unit is provided above the mold heating unit, and the heat storage of the mold heating unit is introduced, and the surface of the sheet-like material It is preferable to spray hot air of 200 ° C. or lower.
  • the mold includes a mold heating unit, a powder slush unit, a post-heating treatment unit, a mold cooling unit, and a mold processing unit. It is preferable that a transport device that moves between them is provided, and a preheating device for heating at least the outer surface of the mold is provided in a part of the transport device.
  • a mold heating part that heats the mold temperature to 220 ° C. or less and a molding resin having a melting point of 160 ° C. or less are powdered for a predetermined time to obtain a sheet-like material having a predetermined thickness
  • molding method characterized by spraying a hot air of 200 degrees C or less on the back surface of the shape
  • the back surface of the sheet-like material can be flattened in a short time, and even if the molded resin does not melt sufficiently in the powder slush portion, It can be sufficiently supplemented by post-heating treatment from the back side.
  • the low-temperature heating type powder slush molding machine includes a mold, a mold heating unit, a powder slush unit, a post-heating treatment unit, and a mold cooling.
  • a transfer device that moves between the mold and the mold processing unit. When the transfer device transfers the mold, the transfer device grips a mold that is different from the mold below the transfer device. Thus, it is preferable to carry them simultaneously.
  • the mold transfer time can be used to preheat the outer surface of the mold, so the temperature difference is reduced and metal fatigue and the baking phenomenon on the inner surface of the molded resin
  • the entire mold can be heated uniformly and in a short time regardless of the inner surface shape of the mold while effectively suppressing the occurrence of the above.
  • FIG. 1 is a side view for explaining the low temperature heating type powder slush molding machine of the present invention.
  • FIG. 2 is a plan view for explaining the low temperature heating type powder slush molding machine of the present invention.
  • FIGS. 3A to 3B are views for explaining the mold heating unit.
  • FIG. 4 is a diagram provided to explain the relationship between the mold temperature and the number of productions (line A) in which cracks occur in the mold and the number of productions (line B) in which gloss phenomenon occurs in the mold.
  • FIG. 5 is a diagram provided for illustrating the relationship between the mold temperature, the powdering time, the post-heating treatment, and the thickness of the sheet-like material.
  • FIGS. 1 is a side view for explaining the low temperature heating type powder slush molding machine of the present invention.
  • FIG. 2 is a plan view for explaining the low temperature heating type powder slush molding machine of the present invention.
  • FIGS. 3A to 3B are views for explaining the mold heating unit.
  • FIG. 6 (a) to 6 (b) are a side view and a plan view for explaining a powder slush molding machine having a conveying device equipped with the preheating device of the present invention.
  • 7 (a) to 7 (c) are views used to explain the powder slush molding method of the present invention (part 1).
  • 8 (a) to 8 (c) are views for explaining the powder slush molding method of the present invention (part 2).
  • FIG. 9 is a diagram provided for explaining the post-heating furnace.
  • FIG. 10 is a diagram for explaining a temperature change profile at the time of powder slush molding in accordance with the first embodiment.
  • FIG. 11 is a diagram for explaining a temperature change profile during powder slush molding in accordance with Comparative Example 1.
  • a mold heating part (B part) for heating the mold temperature to 220 ° C. or lower and a molding resin having a melting point of 160 ° C. or lower for a predetermined time.
  • Powdering a powder slash part (A part) for forming a sheet of a predetermined thickness, a post-heat treatment part (B 'part) for post-heating the sheet-like material formed on the mold,
  • Low temperature heating type powder slush molding machine 10 provided with a mold cooling part (C part) for cooling the mold temperature to 60 ° C. or less and a mold processing part (E part) for removing the cooled sheet-like material. It is.
  • a low-temperature heating type powder slush molding machine 10 in which a post-heating treatment is performed by blowing hot air of 200 ° C. or less on the back surface of the molded sheet-like material in the post-heating processing section (B ′ section).
  • FIG. 1 shows a side view of the low-temperature heating type powder slush molding machine 10
  • FIG. 2 shows a plan view of the low-temperature heating type powder slush molding machine 10 as viewed from above.
  • the low temperature heating type powder slush molding machine 10 for producing a two-color molded sheet will be described in detail.
  • Mold processing section (1) Basic configuration
  • the mold processing section (E section) is a two-color molded sheet-like shape, although it is a demolding operation to take out the powder-shaped slush molded sheet 94 from the mold 60 and an optional step.
  • the object 94 is a target, it is a part for performing the coating operation on the mold 60 by the resin coating device 22.
  • the mold 60 is attached to the frame member 60a to facilitate movement and quick processing, and, for example, two machines are conveyed together with the frame member 60a.
  • a mold processing part E part
  • a mold exchanging part D part
  • a cooling part C part
  • a heating part B part
  • a powder slash part A part
  • a post-heating It is comprised so that it can move arbitrarily between parts (B 'part).
  • the mold 60 typically includes a mold processing part (E part), a heating part (B part), a powder slash part (A part), a post-heating part (B 'part), and a cooling part (C part). ) And the mold processing part (E part) in order, a series of predetermined processes are performed, and the two-color molded sheet 94 or the like can be obtained quickly and stably. In carrying out this series of predetermined processes, a plurality of molds are prepared and performed in parallel, so that the manufacturing cycle time per one of the two-color molded sheet 94 or the like is reduced. Apparently, it can be very short. As shown in FIGS.
  • the low-temperature heating type powder slush molding machine 10 is, as shown in FIGS. 1 and 2, from the left side, a mold processing section (E section), a mold exchanging section (D section), and a cooling section (C section).
  • the heating part (B part), the powder slash part (A part), and the post-heating part (B 'part) are arranged in this order, and the post-heating part (B' part) is arranged at the end. .
  • This is because, in this arrangement order, it can be easily retrofitted to a powder slush molding machine that does not have a post-heating unit (B ′ portion).
  • the die processing section (E part) As the final point, after the cooled two-color molded sheet-like material is demolded, then at the start point (P1) It specifically shows that a coating operation for producing a two-color molded sheet is performed.
  • the resin coating device 22 is connected to the mold processing section (E Part) to the side part (P2), a predetermined work space is formed.
  • the die processing section (E section) is configured such that the molded two-color molded sheet 94 can be demolded and the coating operation by the resin coating apparatus 22 can be performed mutually.
  • the mold 60 is transferred from the mold processing section (E section) to the mold heating section (B section) by the transfer device 62, and the hot air of the heating furnace until the mold temperature reaches, for example, 210 ° C. After being heat-treated for 2 minutes using the circulation, it is moved to the powder slash part (A part).
  • the temperature of the mold heating section (part B) that is, the temperature of the heating furnace is a value within the range of 380 to 450 ° C. The temperature is preferably adjusted to about 430 ° C.
  • powdering of the molding resin for a predetermined time that is, powder slush molding is performed.
  • the transfer device 62 is moved again from the powder slash part (A part) to the post-heating part (B 'part) in a suspended state. Then, the process which sprays a hot air below 200 degreeC with respect to the inner surface of the formed two-color molding sheet-like material, and planarizes the surface is performed. More specifically, when the hot air temperature becomes excessively low, the thickness of the two-color molded sheet may vary, or the thickness may become a predetermined value or less. Accordingly, it is more preferable to blow hot air at 165 to 195 ° C., and further preferably hot air at 170 to 190 ° C. is applied to the inner surface of the formed two-color molded sheet.
  • the time for blowing hot air at 200 ° C. or less in the post-heating section (B ′ section) is preferably a value in the range of 8 to 30 seconds, and a value in the range of 10 to 25 seconds. More preferred.
  • the mold 60 is again transferred to the cooling part (C part) by the conveying device 62 while being suspended, and is lowered to a predetermined temperature by the first air, the mist / shower, and the second air. Until the mold temperature reaches about 50 ° C. in three stages of air cooling / water cooling / air cooling. Finally, the mold 60 is transferred again to the mold processing section (E section) shown in FIG. 1 in a suspended state by the conveying device 62, and the obtained two-color molded sheet 94 is transferred there. The mold is removed from the mold 60, and the series of operations is completed.
  • the form of the resin application device 22 provided in the die processing part (E part) is not particularly limited as long as it can form an application layer having a predetermined thickness.
  • the second resin constituting the coating layer includes epoxy resin, phenol resin, silicone resin, polyacrylic resin, polyester resin, polyimide resin, polyolefin resin, polyurethane resin, polyvinyl chloride resin, fluorine.
  • the heat-resistant plastic is more preferably a heat-resistant vinyl chloride sol composed of a vinyl chloride resin, a curing agent and a plasticizer, or a heat-resistant acrylic sol composed of an acrylic resin, a curing agent and a plasticizer.
  • a vinyl chloride resin obtained by graft copolymerization with an N-substituted maleimide is more preferable. That is, with such a heat-resistant plastic sol, good coating properties as a paint can be obtained, and there is no problem of thermal decomposition under a predetermined temperature condition (for example, 300 to 500 ° C. for 1 to 30 minutes). At the same time, it can be firmly fixed to the resin for powder slush molding.
  • a crosslinking agent such as an epoxy resin
  • a crosslinking agent such as an amine compound
  • a phenol resin it accelerates a crosslinking agent such as an acid compound or an alkali compound
  • a silicone resin if it is a silicone resin
  • a crosslinking agent accelerator such as an acid compound
  • it is a polyacrylic resin it is a crosslinking agent such as a radical generator or an isocyanate compound
  • it is a polyester resin it is a crosslinking agent such as an isocyanate compound
  • it is a polyimide resin it accelerates a crosslinking agent such as an acid compound
  • crosslinking agents such as a phenol resin
  • Such a crosslinking agent or crosslinking accelerator is usually preferably added in the range of 0.1 to 10 parts by weight, preferably in the range of 0.5 to 5 parts by weight, with respect to 100 parts by weight of the vinyl chloride resin or the like. It is more preferable to add.
  • the inorganic oxide it is preferable to add titanium oxide, alumina oxide, zirconium oxide, silica, calcium carbonate, talc, zeolite, hydrotalcite and the like.
  • Such an inorganic oxide is usually added preferably in the range of 0.1 to 30 parts by weight and more preferably in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the vinyl chloride resin or the like.
  • examples of the heat stabilizer include a lead salt stabilizer, a liquid stabilizer, an organic tin stabilizer, an epoxy stabilizer, an organic phosphorous acid compound, a polyhydric alcohol, and an amine compound.
  • a heat stabilizer is usually preferably added in the range of 0.1 to 20 parts by weight and more preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl chloride resin or the like.
  • the thickness of the coating layer made of the second resin is preferably set to a value in the range of 1 to 200 ⁇ m. The reason for this is that when the thickness of the coating layer is less than 1 ⁇ m, the mechanical strength of the coating layer may be reduced or the color developability may be poor. On the other hand, when the thickness of the coating layer exceeds 200 ⁇ m, the temperature difference (thermal conductivity difference) from the non-heated part in the mold increases, and the interlayer has a uniform thickness and is made of a plurality of resins. This is because it may be difficult to obtain a two-color molded sheet having excellent adhesion.
  • the thickness of the coating layer made of the second resin is more preferably set to a value in the range of 5 to 100 ⁇ m, further preferably set to a value in the range of 10 to 50 ⁇ m, and in the range of 15 to 30 ⁇ m. Most preferably, the value is within the range.
  • Hot air generator 40 for directly heating the mold 60 in the mold heating part (B part) is not particularly limited. 3 (a) to 3 (b), hot air obtained by a propane gas-derived flame device or the like is passed through a main pipe 43 by an air supply fan 46 provided below or below the hot air outlet 16. It is preferable that it is the structure supplied from the hot air blower outlet 16. FIG. That is, after the hot air obtained by the hot air generator 40 and the hot air recovered from the furnace through the energy recovery unit 54 described later and sent to the mixing chamber 44 by the air circulation fan 42 are appropriately mixed in the mixing chamber 44.
  • the air supply fan 46 preferably supplies a large amount of hot air having a predetermined wind speed to the hot air outlet 16 through the main pipe 43.
  • the hot air 14 circulates in such a manner that the hot air 14 flows along the inner surface of the mold 60 with respect to the heating mode of the mold 60 in the heating furnace 58. This is because heat is efficiently transferred to the mold 60. That is, since heat is transmitted mainly in the heat transfer mode, the heat supplied to the inside of the heating furnace 58 is less likely to be dissipated out of the heating furnace 58. Therefore, even if the heating furnace 58 and the hot air outlet 16 are relatively small, the productivity is equal to or higher than that of a conventional large heating furnace.
  • the energy recovery unit 54 by mixing the hot air recovered from the furnace through the energy recovery unit 54 with the hot air supplied from the hot air generator 40 supplied through the hot air outlet 16, the air volume increases, and the inside of the heating furnace 58 and the like. Since the pressure is increased, the heating effect on the mold 60 is increased. Further, the energy recovery unit 54 is provided around or below the heating furnace 58 and is in a reduced pressure state in comparison with the heating furnace 58 because of the air volume. Can be recovered more effectively.
  • a hot air storage chamber 39 is provided in the middle of the main pipe 43, and in the hot air storage chamber 39 at the outlet of the main pipe 43. It is preferable to provide a baffle plate 49. The reason for this is that, by configuring in this way, the hot air sent by the air supply fan 46 can be dispersed by the baffle plate 49, and even when a plurality of hot air outlets 16 are provided, This is because hot air can be blown out uniformly and at high speed from the hot air outlet.
  • the shape of the opening in the hot air outlet is circular, elliptical, quadrangular (including squares, rectangles, strips, etc.), polygons, so that hot air having a predetermined wind speed can be blown out in a controlled state. It is preferable to have an irregular structure.
  • thermo recovery unit 54 for recovery. That is, it is preferable to dispose the energy recovery unit 54 using the inner bottom surface 19 of the heating furnace 58 or the periphery of the heating furnace 58.
  • the structure itself of the energy recovery part 54 is not particularly limited.
  • the energy recovery part 54 has an opening leading to the bottom surface 19 in the furnace 58 and generates hot air.
  • a duct structure provided with a branch pipe 47 connected to the device 40. As described above, it is preferable to dispose the damper 47a in the middle of the branch pipe 47 connected to the energy recovery unit 54.
  • the heating furnace 58 in the mold heating part (B part) is arranged above the hot air generator 40 as shown in FIGS. 3 (a) to 3 (b). It is preferably configured as a compact heating device. Such a configuration not only facilitates the supply of thermal energy to the heating furnace 58, but also facilitates efficient recovery of thermal energy from the heating furnace 58 using the energy recovery unit 54 described above. Can be implemented.
  • 3A is an example of a heating furnace 58 for a mold 60 for forming one two-color molded sheet, and FIG. 3B shows two two-color molded sheets simultaneously. It is an example of the heating furnace 58 for the metal mold
  • the furnace main body of the heating furnace 58 is formed in a flat rectangular box-like body having an openable and closable opening on the upper surface as shown in FIGS. 3 (a) to 3 (b). After the mold 60 and its frame member 60a are carried into the furnace with the part opened, the opening is closed and hot air 14 is blown by the hot air generator 40 so that the mold 60 is heated. It is configured. Note that the form of the furnace body included in the heating furnace 58 can be changed as appropriate. For example, it is also preferable that the furnace body has a cylindrical shape, a cubic shape, or an irregular shape corresponding to the shape of the mold.
  • the heating furnace 58 is configured to be branched at the outlet portion of the main pipe 43 as shown in FIGS. 3A to 3B, and has a predetermined height. It is preferable to provide a duct structure extending in the vertical direction, that is, the side hot air outlet 50 so that the mold 60 can be heated from the side. Further, the side hot air outlet 50 is preferably arranged along the inside of the heating furnace 58, and further connected to the branch pipe 41 connected to the hot air generator 40 and the main pipe 43, The air volume is preferably adjusted by the damper 48 or the like. This is because the mold 60 can be heated not only in the downward direction but also in the horizontal direction by blowing hot air, and the mold 60 can be heated more effectively. Because.
  • the shape of the side hot air blower outlet (duct) 50 according to the shape of a metal mold
  • a mold for example, a coating layer made of the second resin is formed using the heating furnace 58 shown in FIGS. 3 (a) to 3 (b) (for example, (Made of nickel cast alloy with a thickness of 3.5 mm) 60, the inner surface temperature of the mold 60, that is, the mold temperature is set to a value of 220 ° C. or less.
  • the reason for this is that when the mold temperature exceeds 220 ° C., a gloss phenomenon due to the baking phenomenon of the molding resin frequently occurs, or cracks may occur in the mold during cooling due to metal fatigue of the mold. Because there is.
  • the horizontal axis of FIG. 4 indicates the mold temperature (° C.)
  • the vertical axis indicates the number of times of manufacture (number of times) until a crack occurs in the mold and the manufacture until a gloss phenomenon occurs in the mold. The number of times (number of times) is shown. Then, it is understood from line A and line B that the number of productions until cracks occur and the number of productions until a gloss phenomenon occurs in the molds are remarkably increased by setting the mold temperature to 220 ° C. or lower.
  • the mold temperature (° C) is about 18 times when the mold temperature (° C) is 320 ° C, and the mold temperature (° C) is about 20 times when the mold temperature (° C) is 280 ° C. It is understood that at 250 ° C., about 40 times, when the mold temperature (° C.) is 230 ° C., about 60 times, and when the mold temperature (° C.) is 210 ° C., about 100 times.
  • the mold temperature (° C.) is about 12 times when the mold temperature (° C.) is 320 ° C., and about 15 times when the mold temperature (° C.) is 280 ° C. ) Is about 28 times at 250 ° C., about 43 times at a mold temperature (° C.) of 230 ° C., and about 120 times at a mold temperature (° C.) of 210 ° C.
  • Line A corresponds to a powdering time of 30 seconds / no post-heating treatment
  • Line B corresponds to a powdering time of 36 seconds / no post-heating treatment
  • Line C corresponds to a powdering time of It corresponds to 36 seconds / after-heating treatment (200 ° C., 15 seconds heating).
  • manufacture of a sheet-like object is implemented, and not only the average value (10 places) of the thickness of a sheet-like object but the value of the maximum value and the minimum value is shown similarly. That is, the horizontal axis of FIG. 5 shows the mold temperature (° C.), and the vertical axis shows the thickness (mm) of the sheet-like material.
  • the mold temperature As is apparent from the above description, it can be said that by setting the mold temperature to a predetermined temperature (220 ° C. or lower), the number of productions until a crack occurs and the number of productions until a gloss phenomenon occurs can be significantly increased.
  • the mold temperature By setting the mold temperature to a predetermined temperature (220 ° C. or lower), when the powdering time is relatively short (for example, 30 seconds), the resulting sheet-like material is relatively thin. Only by slightly increasing the ring time (for example, 36 seconds), the thickness of the obtained sheet-like material was considerably increased, and the variation tended to decrease. Furthermore, when the mold temperature is set to 220 ° C.
  • the powdering time is slightly increased (for example, 36 seconds), and the predetermined post-heating treatment (200 ° C. hot air, 15 seconds) is performed.
  • the predetermined post-heating treatment 200 ° C. hot air, 15 seconds
  • the thickness of the sheet-like material was considerably increased and the variation was reduced. Therefore, when the mold temperature is lowered to 220 ° C. or less, by blowing hot air of 200 ° C. or less on the surface of the molded sheet-like material in the post-heat treatment section described later, the molding resin is sufficiently dissolved, It can be understood that it is effective for obtaining uniform and predetermined surface smoothness.
  • the inner surface temperature of the mold becomes excessively low, it may be difficult to stably form a sheet having a uniform thickness and a predetermined thickness even if a post-heat treatment unit is provided. Therefore, in order to make the thickness of the sheet-like material a more practical and stable value, it is more preferable to set the mold temperature to a value within the range of 200 to 215 ° C, and within the range of 205 to 210 ° C. More preferably, it is a value.
  • the mold heating rate that is, the temperature gradient during heating is preferably set to a value within the range of 80 to 130 ° C./min.
  • the reason for this is that when the heating rate of the mold is less than 80 ° C./min, the time for heating the mold to a predetermined temperature, and thus the cycle time becomes excessively long, which is economically disadvantageous. is there.
  • the heating rate of the mold exceeds 130 ° C./min, the mold is rapidly heated, and thermal fatigue may be remarkably increased.
  • the heating rate of the mold is more preferably set to a value within the range of 90 to 120 ° C./min, and a value within the range of 100 to 115 ° C./min. Is more preferable.
  • the above-described mold heating unit is preferably configured.
  • the amount of heat supplied per unit time in the heating furnace is a value within the range of 250 to 600,000 kcal / hr.
  • the value is within the range of 300 to 550,000 kcal / hr, and more preferably within the range of 3500 to 500,000 kcal / hr.
  • the powder slash part (A part) includes a mold 60 including a heated frame member 60a, The reservoir tank 88 containing the molded resin 92 in a fluid state as the first resin, with the inner surface 60b of the mold (molding die) 60 facing downward and the opening surface of the reservoir tank 88 facing upward
  • FIGS. 7A to 7C and FIG. 8A show a powder slush molding method in the powder slush portion. That is, as shown in FIG.
  • the mold 60 having the coating layer (not shown) formed on the inner surface 60b opposite to the outer surface 60c is heated to a predetermined temperature by the hot air 14 in the heating furnace. Heating, in particular, hot air 14 is blown against the inner surface of the mold to heat to a predetermined temperature.
  • the mold 60 is placed after being positioned above the reservoir tank 88.
  • the mold 60 is rotated together with the reservoir tank 88. And when rotating these, in order to improve the dispersibility of the molding resin 92 accommodated in the reservoir tank 88 and form a sheet-like material (resin film) 94 having a uniform thickness, the reservoir tank 88 It is preferable that air is introduced into the stirring chamber 88a provided below to make the powdered molding resin 92 fluid. That is, it is preferable that the upper part of the stirring chamber 88a is composed of a perforated member (mesh member) and has a structure in which the molded resin 92 is wound up by the introduced air.
  • the stirring chamber 88a is composed of a perforated member (mesh member) and has a structure in which the molded resin 92 is wound up by the introduced air.
  • the vibration member provided on the frame member 60a is attached to the hammer 100 so that the flow state of the molding resin 92 is activated and a uniform film can be formed as shown in FIG. It is preferable to repeatedly strike at the front end portion 108.
  • the molding resin 92 is allowed to settle for a predetermined time, and the molding resin 92 is allowed to settle at a predetermined location. At that time, it is preferable to depressurize the air so that the molding resin 92 is in a non-flowing state at an early stage.
  • the sheet 94 can be formed only on the desired inner surface 60b of the mold 60.
  • the lower part of the mold 84b is made of, for example, aluminum
  • the upper part of one mold 84a is made of a combination of a silicone rubber / fluororesin film, so that the mold 60 and the reservoir tank 88 are It can also serve to fill the gaps between them.
  • 1st resin Although it does not restrict
  • it is a vinyl chloride resin or a thermoplastic urethane resin, it has a good affinity with the second resin, provides strong adhesiveness, and is excellent in low-temperature brittleness. is there.
  • thermosetting resin When a thermosetting resin is used as the first resin, a semi-cured thermosetting resin powder, that is, thermosetting in a B-stage state, can be cured in a shorter time to form a predetermined film. It is preferable to use a conductive resin powder.
  • a first resin used in the powder slash part (A part) when a vinyl chloride resin is used as the second resin used at the beginning of the two-color molding, better adhesion is obtained. More preferably, at least one of an epoxy resin, a urethane resin, an acrylic resin, or a vinyl chloride resin is used.
  • the powdering time is preferably set to a value within the range of 32 to 42 seconds. This is because when the powdering time is less than 32 seconds, the molding resin as the first resin is easily melted by heat and it becomes difficult to form a sheet-like material having a predetermined thickness. Because there is. On the other hand, when the powdering time exceeds 42 seconds, the time for heating the mold to a predetermined temperature, and thus the cycle time, becomes excessively long, which may be economically disadvantageous. Therefore, in the powder slash part (part A), the powdering time is more preferably set to a value within the range of 33 to 40 seconds, and further preferably set to a value within the range of 34 to 38 seconds.
  • Post-heat treatment part (1) configuration The post-heat treatment part (B 'part) sufficiently blows out the molding resin by blowing hot air of 200 ° C or lower onto the back surface of the sheet-like material molded in the powder slush part (A part). It is a part for obtaining uniform surface smoothness by dissolving it in the solution.
  • the heating device in the post-heating processing section (B ′ section) is similar to the mold heating section (B section), the hot air generator 40, the energy recovery section 54, and the post-heating. Although it is basically composed of the furnace 58 ', it differs from that in the mold heating section (B section) in that a side hot air outlet is not provided.
  • the furnace main body of the post-heating furnace 58 ′ is formed in a flat rectangular box-like body having an openable / closable opening on the upper surface, and the upper opening is opened. After the mold 60 and its frame member 60a are carried into the furnace, the opening is closed and the hot air 14 is blown by the hot air generator 40 so that the mold 60 is heated.
  • the form of the furnace main body included in the post-heating furnace 58 ′ can be changed as appropriate.
  • the furnace body has a cylindrical shape, a cubic shape, or an irregular shape corresponding to the shape of the mold.
  • the above-described mold heating section is preferably configured, and further, the amount of heat supplied per unit time in the heating furnace is 1
  • the value is preferably in the range of ⁇ 200,000 kcal / hr, more preferably in the range of 50,000 to 150,000 kcal / hr, and the value in the range of 80 to 120,000 kcal / hr. More preferably.
  • hot air of 200 ° C. or less It is characterized by spraying. This is because if the hot air temperature exceeds 200 ° C., cracks may occur in the mold due to metal fatigue of the mold during cooling. However, if the spraying temperature of the hot air is set too low, the molding resin may not be sufficiently melted, or the surface unevenness may be increased conversely. Accordingly, it is more preferable to blow hot air having a temperature of 150 to 190 ° C. on the back surface of the formed sheet-like material in the post-heating treatment section, and it is more preferable to blow hot air having a temperature of 160 to 180 ° C.
  • the mold cooling unit (C part) cools the mold 60 including the frame member 60a by a cooling device 55 such as water cooling or air cooling.
  • a cooling device 55 such as water cooling or air cooling.
  • This is a part for solidifying the coating layer and the sheet-like material 94 to a predetermined degree. More specifically, mold cooling by at least three-stage steps by a combination of a first air blow, a mist / shower, and a second air blow is preferred. That is, first, air is blown as the first air on the inside and outside of the mold of about 150 ° C. on which the sheet-like material 94 is formed, which is subjected to post-heating treatment, and the mold temperature is set to about 100.
  • the temperature is lowered to about ° C.
  • air is blown as the second air to the outside and inside of the mold that has been formed and cooled to about 50 ° C., and heat is stored at the mold temperature. It is preferable to blow off remaining water droplets and the like to effectively prevent the occurrence of rust in the mold. Therefore, it is preferable that the mold cooling section (C section) is provided with a shower nozzle / mist nozzle 98 and an air nozzle (not shown) as the cooling device 55 in combination.
  • the shower device / mist device is preferably connected to one water supply tank, and the spray amount and the shower amount are preferably determined by a switching device such as a control valve provided at the outlet.
  • the mold including the sheet-like material is cooled in at least three steps to set the mold temperature to a value of 60 ° C. or lower.
  • the reason for this is that when the mold temperature exceeds 60 ° C., it may be difficult to remove the mold in the next step or apply the second resin in the next cycle.
  • the mold temperature after cooling is preferably set to a value of 30 ° C. or higher. Accordingly, in the mold cooling section, the mold temperature including the sheet-like material is more preferably set to a value within the range of 30 to 50 ° C., and further preferably set to a value within the range of 40 to 45 ° C.
  • the mold cooling rate that is, the temperature gradient during cooling is preferably set to a value within the range of 100 to 220 ° C./min.
  • the reason for this is that when the mold cooling rate is less than 100 ° C./min, the time for cooling the mold to a predetermined temperature, and thus the cycle time for obtaining one sheet-like product is excessively long. This is because it may be economically disadvantageous.
  • the cooling rate of the mold exceeds 220 ° C./min, the mold is rapidly cooled, and thermal fatigue is remarkably increased and cracks are likely to occur.
  • the mold cooling rate is more preferably set to a value within a range of 120 to 210 ° C./min, and a value within a range of 140 to 200 ° C./min. Is more preferable.
  • the powder slush molding machine of this invention is further equipped with a metal mold
  • the exchanging mold 60 ′ and the exchanging mold frame member 60 a ′ are just waiting on the support base 66.
  • another replacement mold 60 ′′ and a frame member 60a ′′ are in a standby state on the support base 66 extending upward.
  • Preheating unit In the case of the powder slush molding machine 10a shown in FIGS. 6 (a) to 6 (b), it is assumed that at least three molds 60 (60A, 60B, 60C) are used.
  • the process for completing a series of powder slush molding is performed in parallel, and finally the resin molded product
  • the sheet-like material 94 can be obtained quickly and stably. More specifically, a plurality of molds and at least three molds (mold A, mold B, mold C) are used at the same time, and a predetermined process is performed in parallel on each of the sheets, thereby providing a sheet.
  • the takt time per one piece 94 can be made extremely short compared with the takt time (for example, 240 seconds) in the case of a conventional apparatus, 150 seconds or less, more preferably 120 seconds or less.
  • tact time can be obtained by simultaneously using three molds (mold A, mold B, and mold C). An example of an operation that shortens will be described.
  • the conveying device 62 provided with the preheating device 62a clamps the mold A, moves up to a predetermined location, and starts preheating the mold A over a predetermined time by the preheating device 62a.
  • the transfer device 62 moves down and moves from the mold processing section (E section) to the powder slash section (B section).
  • the conveying device 62 conveys the mold B for which the powder slush molding / cooling process has been completed from the powder slush / cooling part (B / C part) to the mold processing part (E part), and performs the demolding process. Do.
  • the transport device 62 transports the mold A from the mold processing section (E section) to the mold heating section (A section), and performs the heat treatment for a predetermined time. Further, during the heat treatment for the mold A, the transfer device 62 clamps the mold C and starts preheating.
  • the transfer device 62 takes out the mold A from the mold heating part (A part) and transports it to the integrated part (B / C part) of the powder slush / cooling part
  • the powder slush molding / cooling process is sequentially performed. Done.
  • the powder box after completion of the powder slash is moved from the powder slash part to the box replacement position, and the cooling booth provided in the mold cooling part is attached to the powder slash part.
  • a shower or cooling mist is sprayed on the outer surface of the mold.
  • the conveying device 62 clamps the mold C to perform preheating, moves it to the mold heating section (A section), and starts the heating process. That is, the transfer device 62 moves from an integrated part (B / C part) including the powder slash part and the cooling part to the mold heating part (A part), transports the mold C, and performs heat treatment for a predetermined time. It is preferable to carry out.
  • the conveying device 62 conveys the mold A for which the powder slush molding / cooling processing has been completed from the integrated portion (B / C portion) including the powder slash portion and the cooling portion to the die processing portion (E portion). And demolding. Therefore, as described above, in the powder slush molding machine 10 shown in FIGS. 6A to 6B, when the mold A, the mold B, and the mold C are used, according to the predetermined operation example, Independent processes, including a preheating process, can be performed in parallel.
  • a preheating device 62a and a small power source 62b are provided above the conveying device 62, and the die 60 is conveyed.
  • the outer surface of the mold 60 (the non-formation surface of the sheet-like material) is also configured to be adjusted to a predetermined temperature. Therefore, the temperature difference between the inner surface and the outer surface of the mold 60 is reduced, and the metal fatigue of the mold 60 and the occurrence of seizure phenomenon on the inner surface of the molding resin are effectively suppressed, and the shape of the mold is reduced. Regardless, the entire mold can be heated uniformly and at high speed.
  • a normal hook 62c is provided below the transfer device 62 provided with the preheating device 62a, and a die (first die) that is preheated using the hook 62c.
  • Different molds (second molds) 60B and 60C, which are different from 60A, can be gripped and simultaneously conveyed. Therefore, by simultaneously transporting a plurality of molds (first mold and second mold), the waiting time until the predetermined process is performed on the mold is reduced, and one sheet-like product is obtained.
  • the molding time per contact (tact time) can be further shortened.
  • a far-infrared heating type heater as the preheating device 62a.
  • the reason for this is that by using such a far-infrared heater, the heat rays penetrate from at least an arbitrary location on the outer surface of the mold to the inside of the mold. This is because the entire mold can be heated more uniformly and at high speed.
  • such a far infrared heating type heater can achieve a relatively light weight and space saving. Therefore, even if a far-infrared heating type heater is attached to a part of the transport device, there is an advantage that the transport device can be transported smoothly and at high speed while preliminarily heating the mold.
  • the preheating device 62a has an opening that opens downward, and includes a covering member 62d that accommodates a mold through the opening.
  • a covering member 62d that accommodates a mold through the opening.
  • the heat insulating gripping member exhibits a predetermined heat insulating property and effectively suppresses heat dissipation even if heat is dissipated upward from the preheated mold. Can do.
  • Sheet-like material Regarding the form of the sheet-like material, the constituent material is not particularly limited, and for example, at least one of epoxy resin, vinyl chloride resin, acrylic resin, olefin resin, urethane resin, polycarbonate resin, or polyester resin It is preferable to be comprised from resin. The reason for this is that a sheet-like material that is highly versatile, inexpensive, and excellent in decorativeness can be used with this configuration.
  • the thickness of the sheet-like material is preferably set to a value within the range of 1.1 to 1.4 mm.
  • the reason for this is that when the thickness of the sheet-like material is less than 1.1 mm, the mechanical strength and durability may be significantly reduced, the use is excessively limited, and the practicality is remarkable. This is because it may decrease.
  • the thickness of the sheet-like material exceeds 1.4 mm, the mold temperature must be set too high, the powdering time during formation becomes excessively long, This is because the handling of objects may become difficult.
  • the thickness of the sheet-like material is more preferably set to a value within the range of 1.15 to 1.35 m, and further preferably set to a value within the range of 1.2 to 1.3 mm.
  • the form of the sheet-like material is preferably a flat film because it is easy to adhere and handle, but since it is more decorative, the surface It is also preferable that an embossing treatment and an opening (including a slit) are provided on the surface. Furthermore, it is also preferable that predetermined printing or coloring is performed on the surface or inside of the sheet-like material. In addition, it is preferable that the sheet-like material has an outer shape suitable for automobile interior parts and bumpers.
  • the second embodiment includes a mold heating unit for heating the mold temperature to 220 ° C. or less, and a melting point of 160.
  • a powder slash part that forms a sheet material having a predetermined thickness by powdering a molding resin at a temperature of °C or less for a predetermined time, a post-heat treatment part that post-heats the sheet material formed on the mold, and a mold
  • molding method characterized by spraying a hot air of 200 degrees C or less on the back surface of the shape
  • the powder slush molding method of the second embodiment will be specifically described with reference to an example of manufacturing a two-color molded sheet.
  • a predetermined second resin is applied to a part of the mold 60 in the mold processing part (E part) to form an application layer having a thickness of 1 to 200 ⁇ m (hereinafter referred to as a resin application process).
  • a painting process Sometimes referred to as a painting process). That is, in the painting process, the mold 60 is disposed at a predetermined location, and the coating device, for example, a spray resin coating device equipped with a spray nozzle having an L-shaped tip is used to place the mold 60 at a predetermined location.
  • the coating device for example, a spray resin coating device equipped with a spray nozzle having an L-shaped tip is used to place the mold 60 at a predetermined location.
  • a masking member in advance to a predetermined location so that the paint does not adhere to a location other than the desired location.
  • the coating conditions are not particularly limited.
  • a coating speed of 1 to 60 seconds / m 2 is preferable. More preferably, the coating speed is 2 sec / m 2 .
  • Heating step In the heating step, the mold 60 on which the coating layer is formed in the mold heating part (B part) remains in that state, and a relatively low temperature, that is, a mold temperature of 220 ° C. or lower, This is a heating step (hereinafter sometimes referred to as a heating step). Therefore, the mold 60 on which the predetermined coating layer is formed is moved from the mold processing section (E section) to the mold heating section (B section) and carried into the heating furnace 58, where the predetermined coating layer is formed. And heating so that the inner surface temperature of the mold 60 is 220 ° C. or lower. As described above, in the powder slush process, the inner surface temperature of the mold (including the coating layer surface) is 220 ° C. or lower so that a two-color molded sheet having a uniform thickness can be formed. It is preferable to perform convection heating with hot air.
  • the powder slush process is a process of forming a predetermined sheet-like material in the state of the mold 60 in which the coating layer is formed in the powder slash part (A part) (hereinafter referred to as a slush process). There is.) That is, a coating layer (not shown) is formed, and the heated mold 60 is moved from the mold heating part (B part) to the powder slash part (A part), and as shown in FIG. As described above, the two-color molded sheet 94 made of the first resin molding resin 92 is formed on or adjacent to the coating layer.
  • the mold 60 including the frame member 60a and the reservoir tank are rotated in a connected state, and a two-color molded sheet having a predetermined thickness is formed on the inner surface 60b of the mold 60.
  • the object 94 is formed. That is, it is preferable that the mold 60 including the frame member 60a and the reservoir tank 88 are combined and inverted in the vertical direction. This is because, if implemented in this way, the molding resin (powder) 92 in the reservoir tank 88 falls under its own weight and falls onto the inner surface 60 b of the mold 60, so that the molding resin 92 that contacts the inner surface 60 b of the mold 60 is used.
  • the mold temperature is heated to a value of 220 ° C. or lower, the powdering time is adjusted, and hot heat of 200 ° C. or lower is blown against the back surface of the sheet-like material, followed by heat treatment. It is understood that it is effective.
  • the molding resin 92 is not scattered except in a predetermined place, and the two-color molded sheet 94 can be formed only on the desired inner surface 60b of the mold 60.
  • Is preferably provided with a pressure adjusting device (not shown) for blowing a predetermined amount of air.
  • Post-heat treatment process In the post-heat treatment process, hot air of 200 ° C. or less is blown onto the back surface of the two-color molded sheet-like product formed by powder slush, and the molded resin is not sufficiently melted. In this case, it is a step of flattening it. In other words, by providing a post-heat treatment step, the temperature can be lowered relatively slowly, and the problems of powder slush molding (insufficient heating) due to low-temperature heating can be solved, and the resin baking phenomenon and metal fatigue of the mold It is possible to stably and economically obtain a two-color molded sheet having a predetermined thickness.
  • the spraying temperature is excessively low, the molding resin may not be sufficiently melted and the thickness variation may increase. Accordingly, it is more preferable to blow hot air at 165 to 195 ° C., and further preferably hot air at 170 to 190 ° C. is applied to the inner surface of the formed two-color molded sheet.
  • the post-heat treatment section is provided above the mold heating section, introducing heat storage of the mold heating section, on the surface of the two-color molded sheet-like product, It is also preferable to blow hot air of 200 ° C. or less. This reason can contribute to space saving as a whole powder slush molding machine by carrying out in this way, and as a result, a two-color molded sheet can be obtained quickly and stably and economically. Because it can.
  • the mold cooling process is a process of cooling the mold 60 on which the two-color molded sheet 94 is formed in the mold cooling part (C part) (hereinafter sometimes referred to as a mold cooling process). It is. That is, the mold 60 in a state where the two-color molded sheet 94 is molded is moved from the powder slash part (A part) to the mold cooling part (C part), where there is at least a first air blow, mist / shower. And a step of cooling in a three-step step by a combination of the second air blow.
  • air is blown as the first air on the inside and outside of the mold 60 at about 150 ° C. on which the two-color molded sheet 94 is formed, which is subjected to post-heating treatment.
  • the mold temperature is lowered to about 100 ° C. That is, it is preferable to set the cooling rate of the mold during the blowing of the first air to a value within the range of 120 to 160 ° C./min.
  • water mist and water shower are sprayed from the outside of the mold from the mist nozzle and shower nozzle or any one of the nozzles, and the mold temperature is increased from about 100 ° C. to about 60 ° C. using evaporation enthalpy. Reduce.
  • the mold cooling rate during mist / shower cooling is preferably set to a value in the range of 165 to 190 ° C./min.
  • air is blown as second air to the outside and inside of the mold at about 60 ° C. on which the two-color molded sheet is formed, and further, the mold temperature and the internal heat contained in the resin sheet are lowered.
  • water droplets remaining on the mold surface are blown off to effectively prevent the rust from being generated in the mold. That is, it is preferable that the cooling rate of the mold during the blowing of the second air is set to a value within the range of 40 to 100 ° C./min.
  • the demolding process is a process of demolding the two-color molded sheet-like material from the mold in the mold processing section (hereinafter sometimes referred to as a demolding process). That is, the two-color molded sheet 94 lowered to about 60 ° C. is removed from the mold 60 by moving from the mold cooling section (C section) to the mold processing section (E section). It is a process to do.
  • the demolding step can be automatically performed using a robot, or the two-color molded sheet can be demolded as a human work.
  • preheating is performed by providing a mold 60 in which a coating layer is formed in a mold processing section (E section) in a part of a transport apparatus (a crane or the like).
  • a step of heating the outer surface of the mold 60 (hereinafter sometimes referred to as a preheating step) is provided so that the mold temperature (outer surface temperature) is 100 to 200 ° C. It is preferable. That is, in the preheating step, the predetermined coating layer is dried while the mold 60 on which the predetermined coating layer is formed is moved from the mold processing section (E section) to the mold heating section (A section). At the same time, it is a step of heating so that the outer surface temperature of the mold 60 becomes a predetermined temperature.
  • the preheating device 62a is operated on the gripped outer surface (B surface) of the mold 60 so that the entire or part of the outer surface of the mold 60 is heated to a temperature of 100 to 200 ° C.
  • the temperature is preferably 165 to 195 ° C., more preferably 170 to 190 ° C. This is because the temperature difference from the inner surface temperature of the mold is reduced in the heating furnace 58 by preheating the outer surface of the mold 60 so as to achieve such a temperature, and a predetermined temperature (for example, 250 This is because high-speed and uniform heating is further facilitated when the main heating is performed so that the temperature becomes ⁇ 300 ° C.
  • the transport device 62 grips the mold 60 and at the same time the preheating device 62a is switched on to preheat the mold 60.
  • the reason for this is that the mold transfer time can be fully utilized by preheating the mold in synchronism with the gripping operation of the mold.
  • the preheating device is switched on at the same time that the mold is gripped, it does not necessarily have to be 0 seconds later, depending on the conditions of powder slush molding, etc., after 0.1 seconds or 1 second It may be.
  • a preheating process in order to prevent a temperature drop during the transfer of the mold, a preheating process is performed while another mold is clamped to the transfer device during the heating process for another mold. Is also preferable.
  • the reason for this is that the sheet-like material can be more quickly and stably formed on the heat-treated mold at the integrated part (B part / C part) including the powder slash part by a predetermined preheating treatment. This is because the forming time (tact time) per sheet can be shortened.
  • the mold 60 is moved to the powder slash part (B part). Will be.
  • the temperature of the outer surface of the mold is set to a value within a desired temperature range as the heating for maintaining the temperature by the preheating device until the mold is transferred to the powder slash part (B part).
  • the preheating device can heat the outer surface of the mold at a predetermined temperature even at a temperature at which it is maintained (sometimes referred to as maintenance heating, as distinguished from preheating).
  • the sheet-like material can be more stably formed.
  • Example 1 Preparation of sheet-like material (1) Mold preparation step In the mold processing section (E section) shown in FIG. 1, a predetermined mold (nickel electromold, thickness 3.5 mm) was prepared.
  • FIG. 10 shows a temperature change profile related to the entire mold temperature when performing powder slush molding. In FIG. 10, the position indicated by point A is the mold during the mold preparation process. The temperature is indicated and is about 48 ° C.
  • a resin coating apparatus is used to apply heat resistant vinyl chloride as a second resin to a predetermined location.
  • a resin 100 parts by weight of an N-maleimide graft-polymerized vinyl chloride resin, 10 parts by weight of a curing agent, 5 parts by weight of a plasticizer, 2 parts by weight of tribasic lead sulfate, 2 parts by weight of lead stearate
  • a coating layer was formed.
  • thermometer 10 was measured with the general thermometer, for example, a non-contact infrared thermometer, a thermography thermometer, or a contact-type thermocouple (hereinafter the same).
  • the inner surface temperature of the mold during the coating process is shown, and was about 48 ° C. as in the mold preparation process.
  • the mold on which the predetermined coating layer is formed is moved from the mold processing section (E section) shown in FIG. 1 to the mold heating section (B section). After removing the masking member, it is housed in a heating furnace (supplied heat amount per unit time: 400,000 kcal / hr) maintained at a temperature of about 430 ° C. so that the inner surface temperature of the mold becomes 210 ° C. And heated for about 88 seconds.
  • a heating furnace supplied heat amount per unit time: 400,000 kcal / hr
  • point B indicates the mold temperature at the start of heating, and the mold temperature at the moment when it is put into the heating furnace is about 48 ° C.
  • point C indicates the inner surface temperature of the mold at the end of heating, which is about 210 ° C.
  • the mold was efficiently heated so that the inner surface temperature of the mold became a predetermined value at a heating rate of about 110 ° C./min.
  • the inner surface temperature of the mold as the mold temperature can be directly measured by the above-described non-contact infrared thermometer, thermography thermometer, or contact thermocouple, or these non-contact infrared thermometers
  • the outer surface temperature of the mold can be measured by a thermometer or the like, and then the inner surface temperature can be estimated in consideration of the material and thickness of the mold, that is, indirectly measured.
  • the temperature change from the C point to the D point occurs corresponding to the time when the mold is moved from the mold heating part (B part) to the powder slash part (A part), It will be appreciated that the mold temperature has decreased by about 10 ° C. in about 20 seconds.
  • the point D indicates the mold temperature at the start of slush molding, which is about 195 ° C.
  • point E indicates the mold temperature at the end of slush molding, and it is understood that the temperature has dropped to about 160 ° C.
  • the point E ′ indicates the mold temperature at the start of the post-heating treatment, which is about 170 ° C.
  • point F indicates the mold temperature at the end of the post-heating treatment, and after the post-heating for about 15 seconds, the mold temperature is maintained at about 170 ° C., and the heating during the post-heating treatment is performed. The rate was about 0 ° C./min. This is because the post-heating treatment is performed so that only the back surface of the molded two-color molded sheet is substantially melted and flattened, so that the mold temperature itself was adjusted to be a substantially constant temperature. Is.
  • the mold including the two-color molded sheet-like material is moved from the post-heat treatment section (B ′ section) to the mold cooling section (C section) using a crane. Then, it was confirmed that the surface temperature of the two-color molded sheet was lowered to about 100 ° C. by spraying the first air (dry air) for about 20 seconds against the mold at about 150 ° C. That is, it is understood that the cooling rate during the blowing of the first air was about 150 ° C./min. Next, mist / shower cooling was performed for about 15 seconds, and it was confirmed that the surface temperature of the two-color molded sheet was lowered from about 100 ° C. to about 55 ° C.
  • the cooling rate during the mist / shower cooling was about 180 ° C./min.
  • the second air dry air
  • the mold temperature is lowered from about 55 ° C. to about 50 ° C. It was confirmed. That is, it is understood that the cooling rate during the blowing of the second air was about 60 ° C./min.
  • the temperature change from the point F to the point F ′ occurs corresponding to the time for moving the mold from the post-heating processing part (B ′ part) to the mold cooling part (C part). ing.
  • the point F ′ indicates the mold temperature at the start of cooling, which is about 150 ° C.
  • the G1 point indicates the mold temperature after the first air blowing and is about 100 ° C.
  • the G2 point indicates the mold temperature after the mist / shower blowing and is about 55 ° C. .
  • point G3 indicates the mold temperature after the second air is blown, and is about 50 ° C.
  • the mold including the two-color molded sheet is moved from the mold cooling section (C section) to the mold processing section (E section) using a crane.
  • the two-color molded sheet that had been cooled to a temperature of about 50 ° C. after the cooling step was removed by human work to obtain the two-color molded sheet of Example 1.
  • the temperature change from the point G3 to the point H occurs corresponding to the time when the die is moved from the die cooling part (C part) to the die processing part (E part). Although it takes about 5 seconds, it is understood that the two-color molded sheet is removed with the mold temperature of about 50 ° C.
  • Example 2 to 3 In Examples 2 to 3, a two-color molded sheet was prepared and evaluated in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 220 ° C. and 200 ° C., respectively. .
  • Example 4 to 5 a two-color molded sheet was prepared and evaluated in the same manner as in Example 1 except that the spraying temperature in the post-heating step was changed to 180 ° C. and 190 ° C., respectively.
  • Comparative Example 1 In Comparative Example 1, a two-color molded sheet was prepared in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 260 ° C. and no post-heating treatment was performed. ,evaluated.
  • FIG. 11 the temperature change profile of the metal mold
  • the inner surface temperature of the mold rises at a heating rate of about 110 ° C./min in the heating process of about 2 minutes.
  • point F in FIG. 11 indicates the mold temperature at the start of cooling, and the temperature is about 205 ° C.
  • point G indicates the mold temperature at the end of cooling, which is about 50 ° C. Therefore, it is understood that the mold temperature decreases at a cooling rate of about 260 ° C./min in the cooling process of about 36 seconds.
  • Comparative Example 2 In Comparative Example 2, a two-color molded sheet was prepared in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 280 ° C. and no post-heating treatment was performed. ,evaluated. In the mold cooling process, the mold temperature decreased to about 50 ° C. at a cooling rate of about 280 ° C./min, and cracks and the like tended to occur.
  • Comparative Example 3 In Comparative Example 3, a two-color molded sheet was prepared in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 320 ° C. and no post-heating treatment was performed. ,evaluated. In the mold cooling process, the mold temperature decreased to about 50 ° C. at a cooling rate of about 320 ° C./min, and cracks and the like tended to occur.
  • Comparative Example 4 In Comparative Example 4, the surface temperature of the mold in the heating step was changed to 200 ° C., and the post-heating treatment was not performed. did. However, since a two-color molded sheet having a practical thickness and strength could not be obtained, the subsequent evaluation was stopped.
  • Evaluation 1 Average thickness evaluation 2: Thickness variation evaluation 3: Gloss resistance evaluation 4: Crack resistance
  • the low-temperature heating type powder slush molding machine and the powder slush molding method of the present invention in the production of a normal one-color molded sheet material or a two-color molded sheet material rich in decoration, etc.
  • a sheet of uniform thickness while preventing the occurrence of mold resin baking (gross generation) and mold metal fatigue (crack generation) by combining low-temperature heating and predetermined post-heating and cooling processes.
  • the product can be obtained stably and economically.
  • the outer surface of the mold which is a non-formed surface, can be adjusted to a predetermined temperature during the transfer of the mold or during other processing times, so that the inner surface shape of the mold (curvature, dent, offset, etc. ), The temperature difference between the inner surface and the outer surface of the mold is reduced, effectively suppressing the metal fatigue of the mold and the occurrence of seizure phenomenon on the inner surface of the molded resin, and the entire mold Can be heated uniformly and at high speed.
  • the obtained sheet-like material two-color molded sheet material, etc.
  • it is expected to be suitably used as an interior material and a bumper for automobiles, etc. It is expected to be implemented easily and economically.

Abstract

Provided are a low-temperature heating powder slush molding machine and a powder slush molding method which are able to stably manufacture a sheet-shaped object with a predetermined thickness from a molding resin even if the inner surface of a die is heated at low temperature. A low-temperature heating powder slush molding machine or the like is provided with: a die heating section for heating a die to a temperature of 220°C or less; a powder slush section for powdering a molding resin for a predetermined time to mold a sheet-shaped object with a predetermined thickness; a post heat treatment section for performing post heat treatment on the sheet-shaped object formed in the die; a die cooling section for cooling the die to a temperature of 60°C or less; and a die machining section for removing the cooled sheet-shaped object from the die, and is characterized in that hot air with a temperature of 200°C or less is blown onto the back surface of the molded sheet-shaped objet in the post heat treatment section.

Description

低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法Low temperature heating type powder slush molding machine and powder slush molding method
 本発明は、低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法に関し、特に、成形樹脂を低温加熱させて、金型の熱疲労等が少ない上に、均一厚さのシート状物を安定的に製造可能な低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法に関する。 The present invention relates to a low-temperature heating type powder slush molding machine and a powder slush molding method, and in particular, heats a molding resin at a low temperature to reduce a thermal fatigue of a mold and stably form a sheet material having a uniform thickness. The present invention relates to a low-temperature heating type powder slush molding machine and a powder slush molding method that can be manufactured.
 従来、自動車の内装材等の大型で、複雑形状を有するシート状物を製造するにあたり、パウダースラッシュ部と、金型冷却部と、を備えたパウダースラッシュ成形機を用いて、パウダー(粉末樹脂)をスラッシュ成形するパウダースラッシュ成形方法が広く実施されている。
 そして、境界部が明瞭な異色表皮の製造方法を提供すべく、金型に対して、境界部として、ペースト状樹脂をノズル塗布した後、境界部の両側に、それぞれ異なる樹脂を用いて、パウダースラッシュ成形することを特徴とした異色表皮の製造方法が提案されている(例えば、特許文献1参照)。
Conventionally, when manufacturing large and complex sheet-like materials such as automobile interior materials, powder (powder resin) using a powder slush molding machine equipped with a powder slush part and a mold cooling part A powder slush molding method for slush molding is widely implemented.
Then, in order to provide a method for producing a different color skin having a clear boundary portion, a paste-like resin is applied as a boundary portion to the mold by using a different resin on both sides of the boundary portion. A method for producing a different color skin characterized by slush molding has been proposed (see, for example, Patent Document 1).
 また、本願発明の出願人は、耐熱塩化ビニル樹脂(塗布層)および通常の塩化ビニル樹脂(スラッシュ層)を用い、二色成形シート状物を成形するパウダースラッシュ成形機およびパウダースラッシュ成形方法であって、耐久性に優れた二色成形シート状物が、迅速かつ安定的に得られるパウダースラッシュ成形機等を既に提案している。
 より具体的には、塗布層については、樹脂塗布装置を用いて、金型の所定箇所に適用し、次いで、塗布層の上または隣接して、通常の塩化ビニル樹脂をパウダースラッシュ成形することによって、複数樹脂からなる層間における密着性に優れるとともに、膜厚のばらつきが少なくなり、ひいては耐久性に優れた二色成形シート状物を迅速かつ安定的に得られるパウダースラッシュ成形機等である(例えば、特許文献2参照)。
Further, the applicant of the present invention is a powder slush molding machine and a powder slush molding method for molding a two-color molded sheet using a heat-resistant vinyl chloride resin (coating layer) and a normal vinyl chloride resin (slush layer). In addition, a powder slush molding machine or the like that can quickly and stably obtain a two-color molded sheet having excellent durability has already been proposed.
More specifically, the coating layer is applied to a predetermined portion of a mold using a resin coating device, and then, by slush molding a normal vinyl chloride resin on or adjacent to the coating layer. And a powder slush molding machine that can quickly and stably obtain a two-color molded sheet having excellent adhesion between layers made of a plurality of resins and less variation in film thickness, and thus excellent durability (for example, , See Patent Document 2).
特開平2-130112号公報Japanese Patent Laid-Open No. 2-130112 WO2010-098198号公報WO2010-098198 Publication
 しかしながら、特許文献1に開示されたパウダースラッシュ成形方法においては、複数の成形樹脂を用いて、精度良く、かつ短時間に、二色成形シート状物を得ることはできなかった。
 すなわち、得られる二色成形シート状物において、複数のスラッシュ成形品同士の境界が、はっきりせず、また、時間の経過とともに、金型温度が大きく変化することから、二色成形シート状物を安定的に得ることは困難であった。
 また、得られる二色成形シート状物において、複数のスラッシュ成形品同士の境界における強度が低いために、破断しやすく、耐久性に乏しいという問題も見られた。
However, in the powder slush molding method disclosed in Patent Document 1, a two-color molded sheet-like product could not be obtained with high accuracy and in a short time using a plurality of molding resins.
That is, in the obtained two-color molded sheet material, the boundary between the slush molded products is not clear, and the mold temperature changes greatly with the passage of time. It was difficult to obtain stably.
Moreover, in the obtained two-color molded sheet-like material, since the strength at the boundary between the plurality of slush molded products is low, there is also a problem that the resulting two-color molded sheet easily breaks and lacks durability.
 一方、特許文献2に開示されたパウダースラッシュ成形機等の場合、加熱炉の温度を、500℃以上に加熱し、ひいては、金型温度(金型の内面温度)を250℃超に急速加熱する必要があることから、逆に、それ以下の金型温度では、均一厚さのシート状物を、所定時間内に安定的に得られにくいという問題が見られた。
 また、金型温度が250℃超と高いために、シート状物の製造を繰り返し行った場合に、成形樹脂の一部が、金型内に焼き付き、いわゆるグロス現象が生じ、得られるシート状物の厚さが不均一になったり、シボ模様が消えたり、あるいは、焼き付いた成形樹脂を除去するための金型クリーニング工程を短期間、例えば、40回以下の使用において繰り返したりする必要性があった。
 その上、シート状物を脱型する際には、例えば、200℃の金型を、約60℃以下の温度に、急速冷却する必要があるものの、水冷やミスト冷却を組み合わせたとしても、相当の冷却時間がかかり、あるいは、金型の温度を急速に低下させるため、金型の金属疲労を増長させやすいという問題が見られた。
On the other hand, in the case of the powder slush molding machine disclosed in Patent Document 2, the temperature of the heating furnace is heated to 500 ° C. or higher, and the mold temperature (the inner surface temperature of the mold) is rapidly heated to over 250 ° C. On the contrary, there is a problem that it is difficult to stably obtain a sheet having a uniform thickness within a predetermined time at a mold temperature lower than that.
Further, since the mold temperature is as high as over 250 ° C., when the production of the sheet-like material is repeated, a part of the molding resin is seized in the die, so-called gloss phenomenon occurs, and the obtained sheet-like material There is a need to repeat the mold cleaning process for removing the burned molding resin in a short period of time, for example, 40 times or less. It was.
In addition, when removing a sheet-like material, for example, although it is necessary to rapidly cool a mold at 200 ° C. to a temperature of about 60 ° C. or less, even if combined with water cooling or mist cooling, it is considerable. It took a long time to cool the mold, or the temperature of the mold was rapidly lowered, and there was a problem that the metal fatigue of the mold was easily increased.
 そこで、本発明の発明者は鋭意検討した結果、非接触赤外線温度計、あるいは、接触式熱電対等で測定される金型温度(金型の内面温度)を、例えば、220℃以下の比較的低温にしたときであっても、所定の後加熱処理や冷却処理を組み合わせることにより、金型の金属疲労や成形樹脂の焼き付け現象の発生を効果的に抑制しつつ、所定厚さのシート状物が安定的かつ、経済的に得られることを見出した。
 すなわち、本発明は、金型の熱疲労や成形樹脂の焼き付け現象等の発生が少ない上に、所定厚さのシート状物を安定的、かつ、経済的に製造可能な低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法を提供することを目的としている。
Therefore, as a result of intensive studies, the inventors of the present invention have determined that the mold temperature (mold inner surface temperature) measured by a non-contact infrared thermometer, a contact thermocouple, or the like is relatively low, for example, 220 ° C. or less. Even when it is, the combination of a predetermined post-heating treatment and a cooling treatment effectively suppresses the occurrence of metal fatigue of the mold and the baking phenomenon of the molded resin, while a sheet-like material having a predetermined thickness is obtained. It was found that it can be obtained stably and economically.
That is, the present invention is a low-temperature heating type powder slush molding that can stably and economically manufacture a sheet-like material having a predetermined thickness in addition to the occurrence of thermal fatigue of the mold and baking phenomenon of the molding resin. It aims to provide a machine and a powder slush molding method.
 本発明によれば、金型温度を220℃以下に加熱する金型加熱部と、融点が160℃以下の成形樹脂を所定時間パウダリングして、所定厚さのシート状物を成形するパウダースラッシュ部と、金型に形成されたシート状物を、後加熱処理する後加熱処理部と、金型温度を60℃以下に冷却する金型冷却部と、冷却したシート状物を脱型する金型加工部と、を備えた低温加熱型パウダースラッシュ成形機(以下、単に、パウダースラッシュ成形機と称する場合がある。)である。
 そして、後加熱処理部において、成形したシート状物の裏面(金型と接する表面とは反対面)に、200℃以下の熱風を吹き付けて、後加熱処理することを特徴とするパウダースラッシュ成形機が提供され、上述した問題点を解決することができる。
 すなわち、このようにパウダースラッシュ成形機を構成することにより、急加熱および急冷を避けて、成形樹脂の焼き付け現象の発生や、金型の熱疲労に起因したクラック発生を抑制することができ、ひいては、所定厚さのシート状物を安定的、かつ経済的に得ることができる。
 その上、後加熱処理部を設けた場合、所定の処理時間が単純に付加されると思われがちだが、逆に、金型の加熱時間や冷却時間等を短くすることもでき、さらには、金型の移動時に自然空冷されることから、全体としてみれば、シート状物の製造時間(サイクルタイム)につき、少なくとも増加させることは無いと言うことができる。
According to the present invention, a powder slash that molds a sheet-like material having a predetermined thickness by powdering a mold heating section that heats the mold temperature to 220 ° C. or less and a molding resin having a melting point of 160 ° C. or less for a predetermined time. Part, a post-heat treatment part for post-heating the sheet-like material formed on the mold, a mold cooling part for cooling the mold temperature to 60 ° C. or less, and a mold for removing the cooled sheet-like material A low-temperature heating type powder slush molding machine (hereinafter sometimes simply referred to as a powder slush molding machine).
And in a post-heat-treatment part, a hot air of 200 degrees C or less is sprayed on the back surface (surface opposite to the surface which contact | connects a metal mold | die) of the shape | molded sheet-like material, and the post-heat treatment is performed, The powder slush molding machine characterized by the above-mentioned Can be provided to solve the above-mentioned problems.
In other words, by configuring the powder slush molding machine in this way, it is possible to avoid rapid heating and rapid cooling, suppress the occurrence of molding resin baking phenomenon and cracking due to thermal fatigue of the mold, and consequently A sheet-like material having a predetermined thickness can be obtained stably and economically.
In addition, when a post-heat treatment unit is provided, it is likely that a predetermined treatment time is simply added, but conversely, the heating time or cooling time of the mold can be shortened, Since it is naturally air-cooled when the mold is moved, it can be said that, as a whole, at least the manufacturing time (cycle time) of the sheet-like material is not increased.
 また、本発明の低温加熱型パウダースラッシュ成形機によれば、融点が160℃以下の成形樹脂を第1の樹脂とし、融点が180℃以上の成形樹脂を第2の樹脂とした時に、金型加工部において、第2の樹脂を、金型の一部に塗布し、厚さ1~200μmの第2の樹脂層を形成するための樹脂塗布装置が設けてあることが好ましい。
 このように構成することにより、二色成形シート状物であっても、迅速かつ安定的に得ることができる。
 そして、二色成形シート状物の場合、金型内面に対する焼き付き現象(グロス現象)が生じやすいという問題があるが、本発明のパウダースラッシュ成形機であれば、それについても十分抑制することができる。
Further, according to the low-temperature heating type powder slush molding machine of the present invention, when the molding resin having a melting point of 160 ° C. or less is the first resin and the molding resin having the melting point of 180 ° C. or more is the second resin, In the processing portion, it is preferable to provide a resin coating apparatus for applying the second resin to a part of the mold and forming a second resin layer having a thickness of 1 to 200 μm.
By constituting in this way, even a two-color molded sheet can be obtained quickly and stably.
In the case of a two-color molded sheet-like product, there is a problem that a seizure phenomenon (gross phenomenon) easily occurs on the inner surface of the mold, but the powder slush molding machine of the present invention can sufficiently suppress this. .
 また、本発明の低温加熱型パウダースラッシュ成形機によれば、後加熱処理部に付与する単位時間当たりの熱量(万kcal/hr)を、金型加熱部に付与する単位時間当たりの熱量の1/4~2/3の範囲内の値とすることが好ましい。
 このように構成することにより、パウダースラッシュ成形機全体としてのエネルギ効率が高まり、その上、所定厚さを有するともに、均一厚さのシート状物を、安定的かつ経済的に得ることができる。
In addition, according to the low-temperature heating type powder slush molding machine of the present invention, the amount of heat per unit time (10,000 kcal / hr) applied to the post-heating unit is 1 of the amount of heat per unit time applied to the mold heating unit. A value in the range of / 4 to 2/3 is preferable.
By configuring in this way, the energy efficiency of the powder slush molding machine as a whole is increased, and in addition, a sheet having a predetermined thickness and a uniform thickness can be obtained stably and economically.
 また、本発明の低温加熱型パウダースラッシュ成形機によれば、パウダリングの所定時間を32~40秒の範囲内の値とし、かつ、シート状物の所定厚さを1.1~1.4mmの範囲内の値とすることが好ましい。
 このようにパウダリングの所定時間や、シート状物の所定厚さを制御することにより、さらに迅速かつ安定的に、実用的なシート状物を得ることができる。
Further, according to the low-temperature heating type powder slush molding machine of the present invention, the predetermined time of powdering is set to a value within the range of 32 to 40 seconds, and the predetermined thickness of the sheet-like material is 1.1 to 1.4 mm. It is preferable to set the value within the range.
Thus, by controlling the predetermined time of powdering and the predetermined thickness of the sheet-like material, a practical sheet-like material can be obtained more quickly and stably.
 また、本発明の低温加熱型パウダースラッシュ成形機によれば、後加熱処理部が、金型加熱部の上方に設けてあり、当該金型加熱部の蓄熱を導入して、シート状物の表面に、200℃以下の熱風を吹き付けることが好ましい。
 このように構成することにより、金型加熱部を、後加熱処理部と併用できるため、パウダースラッシュ成形機の全体としての省スペース化に寄与することができ、ひいては、所定のシート状物を、迅速かつ安定的に、しかも経済的に得ることができる。
In addition, according to the low-temperature heating type powder slush molding machine of the present invention, the post-heating treatment unit is provided above the mold heating unit, and the heat storage of the mold heating unit is introduced, and the surface of the sheet-like material It is preferable to spray hot air of 200 ° C. or lower.
By comprising in this way, since a mold heating part can be used together with a post-heating process part, it can contribute to space-saving as a whole of a powder slush molding machine, and eventually a predetermined sheet-like object, It can be obtained quickly, stably and economically.
 また、本発明の低温加熱型パウダースラッシュ成形機によれば、金型を、金型加熱部と、パウダースラッシュ部と、後加熱処理部と、金型冷却部と、金型加工部と、の間で移動させる搬送装置が備えてあり、当該搬送装置の一部に、金型の少なくとも外表面を加熱するための予備加熱装置が設けてあることが好ましい。
 このように構成することにより、金型の移送時間を利用して、金型の少なくとも外表面(シート状物の非形成面)についても予備加熱することができるため、内表面と、外表面との間の温度差が小さくなって、金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、金型全体を、均一かつ短時間に加熱することができる。
Moreover, according to the low-temperature heating type powder slush molding machine of the present invention, the mold includes a mold heating unit, a powder slush unit, a post-heating treatment unit, a mold cooling unit, and a mold processing unit. It is preferable that a transport device that moves between them is provided, and a preheating device for heating at least the outer surface of the mold is provided in a part of the transport device.
By configuring in this way, it is possible to preheat at least the outer surface of the mold (non-formation surface of the sheet-like material) using the transfer time of the mold, so that the inner surface, the outer surface, The entire temperature of the mold can be heated uniformly and in a short time while effectively suppressing the occurrence of metal fatigue and the phenomenon of baking on the inner surface of the molded resin.
 また、本発明の別の態様は、金型温度を220℃以下に加熱する金型加熱部と、融点が160℃以下の成形樹脂を所定時間パウダリングして、所定厚さのシート状物を成形するパウダースラッシュ部と、金型に形成されたシート状物を、後加熱処理する後加熱処理部と、金型温度を60℃以下に冷却する金型冷却部と、冷却したシート状物を脱型する金型加工部と、を備えた低温加熱型パウダースラッシュ成形機を用いてなるパウダースラッシュ成形方法である。
 そして、後加熱処理部において、成形したシート状物の裏面に、200℃以下の熱風を吹き付けて、後加熱処理することを特徴とするパウダースラッシュ成形方法である。
 すなわち、このようにパウダースラッシュ成形方法を実施することにより、成形樹脂の焼き付け現象や金型の金属疲労を防止しつつ、所定厚さのシート状物を安定的に得ることができる。
 また、後加熱処理の態様をこのように考慮することによって、短時間でシート状物の裏面を平坦化することができ、パウダースラッシュ部において、成形樹脂が十分に溶融しない場合であっても、裏面からの後加熱処理によって、それを十分補てんすることができる。
In another aspect of the present invention, a mold heating part that heats the mold temperature to 220 ° C. or less and a molding resin having a melting point of 160 ° C. or less are powdered for a predetermined time to obtain a sheet-like material having a predetermined thickness A powder slash part to be molded, a post-heat treatment part for post-heating the sheet-like material formed on the mold, a mold cooling part for cooling the mold temperature to 60 ° C. or less, and a cooled sheet-like substance A powder slush molding method using a low-temperature heating type powder slush molding machine provided with a mold processing part to be removed.
And in a post-heat-treatment part, it is a powder slush shaping | molding method characterized by spraying a hot air of 200 degrees C or less on the back surface of the shape | molded sheet-like material, and performing a post-heating process.
That is, by carrying out the powder slush molding method in this manner, a sheet-like material having a predetermined thickness can be stably obtained while preventing the molding resin baking phenomenon and metal fatigue of the mold.
In addition, by considering the mode of the post-heat treatment in this way, the back surface of the sheet-like material can be flattened in a short time, and even if the molded resin does not melt sufficiently in the powder slush portion, It can be sufficiently supplemented by post-heating treatment from the back side.
 また、本発明の低温加熱型パウダースラッシュ成形方法を実施するに際して、低温加熱型パウダースラッシュ成形機が、金型を、金型加熱部と、パウダースラッシュ部と、後加熱処理部と、金型冷却部と、金型加工部と、の間で移動させる搬送装置を備えてあり、当該搬送装置が、金型を移送する際に、当該金型とは異なる金型を、搬送装置の下方に把持して、同時に搬送することが好ましい。
 このように実施することにより、金型の移送時間を利用して、金型の外表面を予備加熱することができるため、温度差が小さくなって、金属疲労や成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、金型の内表面形状によらず、金型全体を、均一かつ短時間に加熱することができる。
In carrying out the low-temperature heating type powder slush molding method of the present invention, the low-temperature heating type powder slush molding machine includes a mold, a mold heating unit, a powder slush unit, a post-heating treatment unit, and a mold cooling. A transfer device that moves between the mold and the mold processing unit. When the transfer device transfers the mold, the transfer device grips a mold that is different from the mold below the transfer device. Thus, it is preferable to carry them simultaneously.
By carrying out in this way, the mold transfer time can be used to preheat the outer surface of the mold, so the temperature difference is reduced and metal fatigue and the baking phenomenon on the inner surface of the molded resin The entire mold can be heated uniformly and in a short time regardless of the inner surface shape of the mold while effectively suppressing the occurrence of the above.
図1は、本発明の低温加熱型パウダースラッシュ成形機を説明するために供する側面図である。FIG. 1 is a side view for explaining the low temperature heating type powder slush molding machine of the present invention. 図2は、本発明の低温加熱型パウダースラッシュ成形機を説明するために供する平面図である。FIG. 2 is a plan view for explaining the low temperature heating type powder slush molding machine of the present invention. 図3(a)~(b)は、金型加熱部を説明するために供する図である。FIGS. 3A to 3B are views for explaining the mold heating unit. 図4は、金型温度と、金型においてクラックが生じる製造回数(ラインA)および金型においてグロス現象が生じる製造回数(ラインB)との関係をそれぞれ説明するために供する図である。FIG. 4 is a diagram provided to explain the relationship between the mold temperature and the number of productions (line A) in which cracks occur in the mold and the number of productions (line B) in which gloss phenomenon occurs in the mold. 図5は、金型温度、パウダリング時間、および後加熱処理と、シート状物の厚さとの関係をそれぞれ説明するために供する図である。FIG. 5 is a diagram provided for illustrating the relationship between the mold temperature, the powdering time, the post-heating treatment, and the thickness of the sheet-like material. 図6(a)~(b)は、本発明の予備加熱装置を備えた搬送装置を有するパウダースラッシュ成形機を説明するために供する側面図及び平面図である。FIGS. 6 (a) to 6 (b) are a side view and a plan view for explaining a powder slush molding machine having a conveying device equipped with the preheating device of the present invention. 図7(a)~(c)は、本発明のパウダースラッシュ成形方法を説明するために供する図である(その1)。7 (a) to 7 (c) are views used to explain the powder slush molding method of the present invention (part 1). 図8(a)~(c)は、本発明のパウダースラッシュ成形方法を説明するために供する図である(その2)。8 (a) to 8 (c) are views for explaining the powder slush molding method of the present invention (part 2). 図9は、後加熱炉を説明するために供する図である。FIG. 9 is a diagram provided for explaining the post-heating furnace. 図10は、実施例1に準拠した、パウダースラッシュ成形時の温度変化プロフィールを説明するために供する図である。FIG. 10 is a diagram for explaining a temperature change profile at the time of powder slush molding in accordance with the first embodiment. 図11は、比較例1に準拠した、パウダースラッシュ成形時の温度変化プロフィールを説明するために供する図である。FIG. 11 is a diagram for explaining a temperature change profile during powder slush molding in accordance with Comparative Example 1.
[第1の実施形態]
 第1の実施形態は、図1および図2に例示されるように、金型温度を220℃以下に加熱する金型加熱部(B部)と、融点が160℃以下の成形樹脂を所定時間パウダリングして、所定厚さのシート状物を成形するパウダースラッシュ部(A部)と、金型に形成されたシート状物を、後加熱処理する後加熱処理部(B´部)と、金型温度を60℃以下に冷却する金型冷却部(C部)と、冷却したシート状物を脱型する金型加工部(E部)と、を備えた低温加熱型パウダースラッシュ成形機10である。
 そして、後加熱処理部(B´部)において、成形したシート状物の裏面に、200℃以下の熱風を吹き付けて、後加熱処理することを特徴とする低温加熱型パウダースラッシュ成形機10が提供され、上述した問題点を解決することができる。
 なお、図1は、低温加熱型パウダースラッシュ成形機10の側面図を、図2は、低温加熱型パウダースラッシュ成形機10を上面から見た平面図をそれぞれ示している。
 以下、二色成形シートを製造する低温加熱型パウダースラッシュ成形機10を例にとって、具体的に説明する。
[First embodiment]
In the first embodiment, as illustrated in FIGS. 1 and 2, a mold heating part (B part) for heating the mold temperature to 220 ° C. or lower and a molding resin having a melting point of 160 ° C. or lower for a predetermined time. Powdering, a powder slash part (A part) for forming a sheet of a predetermined thickness, a post-heat treatment part (B 'part) for post-heating the sheet-like material formed on the mold, Low temperature heating type powder slush molding machine 10 provided with a mold cooling part (C part) for cooling the mold temperature to 60 ° C. or less and a mold processing part (E part) for removing the cooled sheet-like material. It is.
Then, a low-temperature heating type powder slush molding machine 10 is provided, in which a post-heating treatment is performed by blowing hot air of 200 ° C. or less on the back surface of the molded sheet-like material in the post-heating processing section (B ′ section). Thus, the above-described problems can be solved.
1 shows a side view of the low-temperature heating type powder slush molding machine 10, and FIG. 2 shows a plan view of the low-temperature heating type powder slush molding machine 10 as viewed from above.
Hereinafter, the low temperature heating type powder slush molding machine 10 for producing a two-color molded sheet will be described in detail.
1.金型加工部
(1)基本構成
 金型加工部(E部)は、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業と、任意工程ではあるが、二色成形シート状物94を対象とする場合には、樹脂塗布装置22による金型60に対する塗布作業と、を行うための部位である。
 そして、図1および図2に例示されるように、金型60は、移動及び迅速処理を容易にするため、フレーム部材60aに取りつけられており、当該フレーム部材60aとともに、例えば、二機の搬送装置62としてのクレーンによって、金型加工部(E部)、金型交換部(D部)、冷却部(C部)、加熱部(B部)、パウダースラッシュ部(A部)、および後加熱部(B´部)の間を、任意に移動できるように構成されている。
1. Mold processing section (1) Basic configuration The mold processing section (E section) is a two-color molded sheet-like shape, although it is a demolding operation to take out the powder-shaped slush molded sheet 94 from the mold 60 and an optional step. When the object 94 is a target, it is a part for performing the coating operation on the mold 60 by the resin coating device 22.
As illustrated in FIGS. 1 and 2, the mold 60 is attached to the frame member 60a to facilitate movement and quick processing, and, for example, two machines are conveyed together with the frame member 60a. By means of a crane as the device 62, a mold processing part (E part), a mold exchanging part (D part), a cooling part (C part), a heating part (B part), a powder slash part (A part), and a post-heating It is comprised so that it can move arbitrarily between parts (B 'part).
 すなわち、典型的には、金型60は、金型加工部(E部)、加熱部(B部)、パウダースラッシュ部(A部)、後加熱部(B´部)、冷却部(C部)、および、金型加工部(E部)の順に、各部を移動し、一連の所定処理が行われ、二色成形シート状物94等を迅速かつ安定的に得ることができる。
 そして、この一連の所定処理を実施するにあたり、複数の金型が準備されており、同時並行して行われるため、二色成形シート状物94等の一つ当たりの、製造上のサイクルタイムを、見かけ上、極めて短くすることができる。
 なお、低温加熱型パウダースラッシュ成形機10としては、図1および図2に示すように、左側から、金型加工部(E部)、金型交換部(D部)、冷却部(C部)、加熱部(B部)、パウダースラッシュ部(A部)、および後加熱部(B´部)の順に、配置されており、後加熱部(B´部)が、最後尾に配置されている。
 この理由は、かかる配置順であれば、後加熱部(B´部)を有していないパウダースラッシュ成形機に対して、容易に後付けできるためである。
 また、このような配置であれば、複数の金型の同時処理がさらに容易に実施できたり、金型の移動時に、自然空冷することも容易となるためである。
 その上、仮に、金型60に対して、冷却部(C部)においてクラックが生じたり、あるいは、加熱部(B部)において、グロス現象が生じたりした場合には、金型交換部(D部)において、新たな金型60と交換することも容易になるためである。
Specifically, the mold 60 typically includes a mold processing part (E part), a heating part (B part), a powder slash part (A part), a post-heating part (B 'part), and a cooling part (C part). ) And the mold processing part (E part) in order, a series of predetermined processes are performed, and the two-color molded sheet 94 or the like can be obtained quickly and stably.
In carrying out this series of predetermined processes, a plurality of molds are prepared and performed in parallel, so that the manufacturing cycle time per one of the two-color molded sheet 94 or the like is reduced. Apparently, it can be very short.
As shown in FIGS. 1 and 2, the low-temperature heating type powder slush molding machine 10 is, as shown in FIGS. 1 and 2, from the left side, a mold processing section (E section), a mold exchanging section (D section), and a cooling section (C section). The heating part (B part), the powder slash part (A part), and the post-heating part (B 'part) are arranged in this order, and the post-heating part (B' part) is arranged at the end. .
This is because, in this arrangement order, it can be easily retrofitted to a powder slush molding machine that does not have a post-heating unit (B ′ portion).
Also, with such an arrangement, simultaneous processing of a plurality of molds can be more easily performed, and natural air cooling can be easily performed when the molds are moved.
In addition, if a crack occurs in the cooling part (C part) or a gloss phenomenon occurs in the heating part (B part) with respect to the mold 60, the die replacement part (D This is because it is also easy to replace the mold 60 with a new mold 60.
 したがって、図1に示す例では、まずは、最終地点としての金型加工部(E部)において、冷却済みの二色成形シート状物を脱型した後、次いで、スタート地点(P1)において、新たな二色成形シート状物を作成するための塗布作業が行われることを具体的に示している。
 一方、図2に示すように、金型加工部(E部)において、二色成形シート状物を金型から脱型している際には、樹脂塗布装置22は、金型加工部(E部)の側方箇所(P2)に移動するので、所定の作業空間を形成することになる。
 すなわち、金型加工部(E部)において、成形した二色成形シート状物94の脱型と、樹脂塗布装置22による塗布作業を、相互に行うことができるように構成されている。
Therefore, in the example shown in FIG. 1, first, in the die processing part (E part) as the final point, after the cooled two-color molded sheet-like material is demolded, then at the start point (P1) It specifically shows that a coating operation for producing a two-color molded sheet is performed.
On the other hand, as shown in FIG. 2, when the two-color molded sheet is removed from the mold in the mold processing section (E section), the resin coating device 22 is connected to the mold processing section (E Part) to the side part (P2), a predetermined work space is formed.
In other words, the die processing section (E section) is configured such that the molded two-color molded sheet 94 can be demolded and the coating operation by the resin coating apparatus 22 can be performed mutually.
 次いで、搬送装置62によって、金型60は、金型加工部(E部)から金型加熱部(B部)に移送され、金型温度が、例えば、210℃になるまで、加熱炉の熱風を循環利用して、2分間加熱処理された後、パウダースラッシュ部(A部)に移動されることになる。
 なお、金型温度を約210℃とするためには、金型加熱部(B部)の温度、すなわち、加熱炉の温度としては、380~450℃の範囲内の値であって、一例として、約430℃に調整することが好適である。
 次いで、パウダースラッシュ部(A部)では、成形樹脂の所定時間のパウダリング、すなわち、パウダースラッシュ成形が行われる。
Next, the mold 60 is transferred from the mold processing section (E section) to the mold heating section (B section) by the transfer device 62, and the hot air of the heating furnace until the mold temperature reaches, for example, 210 ° C. After being heat-treated for 2 minutes using the circulation, it is moved to the powder slash part (A part).
In order to set the mold temperature to about 210 ° C., the temperature of the mold heating section (part B), that is, the temperature of the heating furnace is a value within the range of 380 to 450 ° C. The temperature is preferably adjusted to about 430 ° C.
Next, in the powder slush part (A part), powdering of the molding resin for a predetermined time, that is, powder slush molding is performed.
 次いで、搬送装置62によって、再びパウダースラッシュ部(A部)から、後加熱部(B´部)に、吊り下げた状態で、移動される。
 そこで、形成された二色成形シート状物の内面に対して、200℃以下の熱風を吹き付け、表面を平坦化させる処理が行われる。
 より具体的には、熱風温度が過度に低くなると、二色成形シート状物の厚さがばらついたり、厚さが所定以下の値となったりする場合がある。
 したがって、形成された二色成形シート状物の内面に対して、165~195℃の熱風を吹き付けることがより好ましく、170~190℃の熱風を吹き付けることがさらに好ましい。
 なお、後加熱部(B´部)における200℃以下の熱風の吹付時間としては、8~30秒の範囲内の値とすることが好ましく、10~25秒の範囲内の値とすることがより好ましい。
Next, the transfer device 62 is moved again from the powder slash part (A part) to the post-heating part (B 'part) in a suspended state.
Then, the process which sprays a hot air below 200 degreeC with respect to the inner surface of the formed two-color molding sheet-like material, and planarizes the surface is performed.
More specifically, when the hot air temperature becomes excessively low, the thickness of the two-color molded sheet may vary, or the thickness may become a predetermined value or less.
Accordingly, it is more preferable to blow hot air at 165 to 195 ° C., and further preferably hot air at 170 to 190 ° C. is applied to the inner surface of the formed two-color molded sheet.
The time for blowing hot air at 200 ° C. or less in the post-heating section (B ′ section) is preferably a value in the range of 8 to 30 seconds, and a value in the range of 10 to 25 seconds. More preferred.
 次いで、搬送装置62によって、再び、金型60は、吊り下げられた状態で、冷却部(C部)に移送され、第1エアー、ミスト/シャワー、および第2エアーによって、所定温度に降下するまで、空冷/水冷/空冷の三段階で、金型温度が約50℃になるまで冷却される。
 最後に、搬送装置62によって、金型60は、吊り下げられた状態で、図1に示す金型加工部(E部)に再び移送され、そこで、得られた二色成形シート状物94を金型60から脱型し、一連の動作が終了することになる。
Next, the mold 60 is again transferred to the cooling part (C part) by the conveying device 62 while being suspended, and is lowered to a predetermined temperature by the first air, the mist / shower, and the second air. Until the mold temperature reaches about 50 ° C. in three stages of air cooling / water cooling / air cooling.
Finally, the mold 60 is transferred again to the mold processing section (E section) shown in FIG. 1 in a suspended state by the conveying device 62, and the obtained two-color molded sheet 94 is transferred there. The mold is removed from the mold 60, and the series of operations is completed.
(2)樹脂塗布装置
 また、金型加工部(E部)に設ける樹脂塗布装置22の形態は、所定厚さの塗布層を形成できるものであれば、特に制限されるものでないが、図2に示すように、第2の樹脂を吐出するためのノズル部(スプレーノズルと称する場合がある。)22aと、かかるノズル部22aの位置や回転方向を定める駆動装置24や、第2の樹脂を貯蔵するための塗料貯蔵部(図示せず)を、含んでいることが好ましい。
 すなわち、樹脂塗布装置22のノズル部22aおよびその駆動装置24によって、塗料貯蔵部に貯蔵してある第2の樹脂を、金型60における所定個所に対して、均一かつ迅速に塗布することができる。
(2) Resin Application Device The form of the resin application device 22 provided in the die processing part (E part) is not particularly limited as long as it can form an application layer having a predetermined thickness. As shown in FIG. 4, a nozzle portion (sometimes referred to as a spray nozzle) 22a for discharging the second resin, a driving device 24 for determining the position and rotation direction of the nozzle portion 22a, and the second resin It preferably includes a paint reservoir (not shown) for storage.
That is, the second resin stored in the paint storage unit can be uniformly and rapidly applied to a predetermined portion of the mold 60 by the nozzle portion 22a of the resin coating device 22 and the driving device 24 thereof. .
(3)塗布層
 また、塗布層を構成する第2の樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリアクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、フッ素樹脂等の一種単独または二種以上の組み合わせが挙げられる。
 そして、耐熱プラスチックとしての、塩化ビニル樹脂と、硬化剤と、可塑剤等からなる耐熱塩化ビニルゾルや、アクリル樹脂と、硬化剤と、可塑剤等からなる耐熱アクリルゾルや、であることがより好ましい。
 さらに、塩化ビニル樹脂等の耐熱性を向上させるためには、N-置換マレイミドをグラフト共重合した塩化ビニル樹脂であることがより好ましい。
 すなわち、このような耐熱プラスチックゾルであれば、塗料としての良好な塗布性が得られるとともに、所定温度条件(例えば、300~500℃で、1~30分)で、熱分解の問題が生じないとともに、パウダースラッシュ成形用の樹脂と、強固に固着することができるためである。
(3) Coating layer The second resin constituting the coating layer includes epoxy resin, phenol resin, silicone resin, polyacrylic resin, polyester resin, polyimide resin, polyolefin resin, polyurethane resin, polyvinyl chloride resin, fluorine. One kind alone or a combination of two or more kinds of resins and the like can be mentioned.
The heat-resistant plastic is more preferably a heat-resistant vinyl chloride sol composed of a vinyl chloride resin, a curing agent and a plasticizer, or a heat-resistant acrylic sol composed of an acrylic resin, a curing agent and a plasticizer. .
Furthermore, in order to improve the heat resistance of a vinyl chloride resin or the like, a vinyl chloride resin obtained by graft copolymerization with an N-substituted maleimide is more preferable.
That is, with such a heat-resistant plastic sol, good coating properties as a paint can be obtained, and there is no problem of thermal decomposition under a predetermined temperature condition (for example, 300 to 500 ° C. for 1 to 30 minutes). At the same time, it can be firmly fixed to the resin for powder slush molding.
 また、第2の樹脂の耐熱性を向上させるために、所定量の架橋剤や架橋促進剤、あるいは、無機酸化物や熱安定剤を添加することが好ましい。
 例えば、エポキシ樹脂であれば、アミン化合物等の架橋剤や、フェノール樹脂であれば、酸化合物やアルカリ化合物等の架橋剤促進や、シリコーン樹脂であれば、酸化合物等の架橋剤促進剤や、ポリアクリル樹脂であれば、ラジカル発生剤やイソシアネート化合物等の架橋剤や、ポリエステル樹脂であれば、イソシアネート化合物等の架橋剤や、ポリイミド樹脂であれば、酸化合物等の架橋剤促進や、ポリ塩化ビニル樹脂であれば、フェノール樹脂等の架橋剤が挙げられる。
 このような架橋剤や架橋促進剤は、塩化ビニル樹脂等100重量部に対して、通常、0.1~10重量部の範囲で添加することが好ましく、0.5~5重量部の範囲で添加することがより好ましい。
In order to improve the heat resistance of the second resin, it is preferable to add a predetermined amount of a crosslinking agent, a crosslinking accelerator, an inorganic oxide, or a heat stabilizer.
For example, if it is an epoxy resin, a crosslinking agent such as an amine compound, if it is a phenol resin, it accelerates a crosslinking agent such as an acid compound or an alkali compound, if it is a silicone resin, a crosslinking agent accelerator such as an acid compound, If it is a polyacrylic resin, it is a crosslinking agent such as a radical generator or an isocyanate compound; if it is a polyester resin, it is a crosslinking agent such as an isocyanate compound; if it is a polyimide resin, it accelerates a crosslinking agent such as an acid compound; If it is a vinyl resin, crosslinking agents, such as a phenol resin, are mentioned.
Such a crosslinking agent or crosslinking accelerator is usually preferably added in the range of 0.1 to 10 parts by weight, preferably in the range of 0.5 to 5 parts by weight, with respect to 100 parts by weight of the vinyl chloride resin or the like. It is more preferable to add.
 また、無機酸化物としては、酸化チタン、酸化アルミナ、酸化ジルコニウム、シリカ、炭酸カルシウム、タルク、ゼオライト、ハイドロタルサイト等を添加することが好ましい。
 かかる無機酸化物は、塩化ビニル樹脂等100重量部に対して、通常、0.1~30重量部の範囲で添加することが好ましく、1~20重量部の範囲で添加することがより好ましい。
 さらに、熱安定剤としては、鉛塩系安定剤、液状安定剤、有機錫系安定剤、エポキシ系安定剤、有機亜リン酸化合物、多価アルコール、アミン系化合物などが挙げられる。
 かかる熱安定剤は、塩化ビニル樹脂等100重量部に対して、通常、0.1~20重量部の範囲で添加することが好ましく、1~10重量部の範囲で添加することがより好ましい。
Further, as the inorganic oxide, it is preferable to add titanium oxide, alumina oxide, zirconium oxide, silica, calcium carbonate, talc, zeolite, hydrotalcite and the like.
Such an inorganic oxide is usually added preferably in the range of 0.1 to 30 parts by weight and more preferably in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the vinyl chloride resin or the like.
Furthermore, examples of the heat stabilizer include a lead salt stabilizer, a liquid stabilizer, an organic tin stabilizer, an epoxy stabilizer, an organic phosphorous acid compound, a polyhydric alcohol, and an amine compound.
Such a heat stabilizer is usually preferably added in the range of 0.1 to 20 parts by weight and more preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl chloride resin or the like.
 また、第2の樹脂からなる塗布層の厚さを、1~200μmの範囲内の値とすることが好ましい。
 この理由は、かかる塗布層の厚さが1μm未満では、塗布層の機械的強度が低下したり、発色性が乏しくなったりする場合があるためである。
 一方、塗布層の厚さが200μmを超えると、金型における非加熱部との間の温度差(熱伝導率差)が大きくなって、均一な厚さであって、かつ複数樹脂からなる層間において密着性に優れた二色成形シート状物を得ることが困難となる場合があるためである。
 したがって、第2の樹脂からなる塗布層の厚さを、5~100μmの範囲内の値とすることがより好ましく、10~50μmの範囲内の値とすることがさらに好ましく、15~30μmの範囲内の値とすることが最も好ましい。
Further, the thickness of the coating layer made of the second resin is preferably set to a value in the range of 1 to 200 μm.
The reason for this is that when the thickness of the coating layer is less than 1 μm, the mechanical strength of the coating layer may be reduced or the color developability may be poor.
On the other hand, when the thickness of the coating layer exceeds 200 μm, the temperature difference (thermal conductivity difference) from the non-heated part in the mold increases, and the interlayer has a uniform thickness and is made of a plurality of resins. This is because it may be difficult to obtain a two-color molded sheet having excellent adhesion.
Therefore, the thickness of the coating layer made of the second resin is more preferably set to a value in the range of 5 to 100 μm, further preferably set to a value in the range of 10 to 50 μm, and in the range of 15 to 30 μm. Most preferably, the value is within the range.
2.金型加熱部
(1)熱風発生装置
 金型加熱部(B部)における金型60を直接的に加熱するための熱風発生装置40の構造は、特に制限されるものではないが、例えば、図3(a)~(b)にそれぞれ示すように、プロパンガス由来の火炎装置等により得られた熱風を、熱風吹出口16の下方あるいは下側に設けた空気供給ファン46により、主配管43を通じて、熱風吹出口16から供給する構成であることが好ましい。
 すなわち、熱風発生装置40により得られた熱風と、後述するエネルギ回収部54を通じて炉内から回収され、空気循環ファン42により混合室44に送り込まれた熱風とを、混合室44において適宜混合した後、空気供給ファン46により、所定風速を有する大量の熱風として、主配管43を通じて、熱風吹出口16に供給する構成であることが好ましい。
 この理由は、このように熱風を循環させる構成とすることにより、加熱炉58における金型60の加熱モードに関して、熱風14が金型60の内面に沿って流れる際に、かかる熱風14が有する熱が、金型60へ効率よく伝熱されるためである。
 すなわち、主として伝熱モードで、熱が伝わるため、加熱炉58の内部に供給された熱が、加熱炉58の外へ放散することが少なくなるためである。
 したがって、加熱炉58及び熱風吹出口16が比較的小型であっても、従来の大型加熱炉と比較して、同等以上の生産性を有することになる。また、熱風吹出口16を介して供給される熱風発生装置40からの熱風に、エネルギ回収部54を通じて炉内から回収された熱風を混合することにより、風量が増加して、加熱炉58内等が加圧されるため、金型60に対する加熱効果が増大することになる。
 さらに、エネルギ回収部54は、加熱炉58の周囲または下方に設けてあり、風量の関係で、加熱炉58と比較して、減圧状態になっているため、金型60を加熱した後の熱風をさらに効果的に回収することができる。
2. Mold heating part (1) Hot air generator The structure of the hot air generator 40 for directly heating the mold 60 in the mold heating part (B part) is not particularly limited. 3 (a) to 3 (b), hot air obtained by a propane gas-derived flame device or the like is passed through a main pipe 43 by an air supply fan 46 provided below or below the hot air outlet 16. It is preferable that it is the structure supplied from the hot air blower outlet 16. FIG.
That is, after the hot air obtained by the hot air generator 40 and the hot air recovered from the furnace through the energy recovery unit 54 described later and sent to the mixing chamber 44 by the air circulation fan 42 are appropriately mixed in the mixing chamber 44. The air supply fan 46 preferably supplies a large amount of hot air having a predetermined wind speed to the hot air outlet 16 through the main pipe 43.
The reason for this is that the hot air 14 circulates in such a manner that the hot air 14 flows along the inner surface of the mold 60 with respect to the heating mode of the mold 60 in the heating furnace 58. This is because heat is efficiently transferred to the mold 60.
That is, since heat is transmitted mainly in the heat transfer mode, the heat supplied to the inside of the heating furnace 58 is less likely to be dissipated out of the heating furnace 58.
Therefore, even if the heating furnace 58 and the hot air outlet 16 are relatively small, the productivity is equal to or higher than that of a conventional large heating furnace. Moreover, by mixing the hot air recovered from the furnace through the energy recovery unit 54 with the hot air supplied from the hot air generator 40 supplied through the hot air outlet 16, the air volume increases, and the inside of the heating furnace 58 and the like. Since the pressure is increased, the heating effect on the mold 60 is increased.
Further, the energy recovery unit 54 is provided around or below the heating furnace 58 and is in a reduced pressure state in comparison with the heating furnace 58 because of the air volume. Can be recovered more effectively.
 また、図3(a)~(b)にそれぞれ示すように、主配管43の途中に、熱風貯留室39を設けるとともに、その熱風貯留室39の中であって、主配管43の出口部分に邪魔板49を設けることが好ましい。
 この理由は、このように構成することにより、空気供給ファン46により送り込まれてくる熱風を、邪魔板49により分散させることができ、複数の熱風吹出口16を設けた場合であっても、それぞれの熱風吹出口から、均一かつ高速で、熱風を吹き出させることができるためである。
 なお、所定の風速を有する熱風を制御された状態で吹き出せるように、かかる熱風吹出口における開口部の形状を、円形、楕円形、四角形(正方形や長方形、帯状等を含む)、多角形、異形とした構造とすることが好ましい。
3 (a) and 3 (b), a hot air storage chamber 39 is provided in the middle of the main pipe 43, and in the hot air storage chamber 39 at the outlet of the main pipe 43. It is preferable to provide a baffle plate 49.
The reason for this is that, by configuring in this way, the hot air sent by the air supply fan 46 can be dispersed by the baffle plate 49, and even when a plurality of hot air outlets 16 are provided, This is because hot air can be blown out uniformly and at high speed from the hot air outlet.
The shape of the opening in the hot air outlet is circular, elliptical, quadrangular (including squares, rectangles, strips, etc.), polygons, so that hot air having a predetermined wind speed can be blown out in a controlled state. It is preferable to have an irregular structure.
(2)エネルギ回収部
 また、図3(a)~(b)にそれぞれ示すように、金型60を加熱した後の、少なからず温度が高くて、多くのエネルギを有する熱風(熱エネルギ)を回収するためのエネルギ回収部54を設けることが好ましい。
 すなわち、加熱炉58の炉内底面19あるいは、加熱炉58の周囲を利用して、かかるエネルギ回収部54を配設することが好ましい。
 ここで、エネルギ回収部54の構造自体は特に制限されるものではないが、例えば、図3(a)に示すように、加熱炉58の炉内底面19に通じる開口部を有するとともに、熱風発生装置40に連なる分岐配管47を備えたダクト構造を有することが好ましい。そして、既に上述したように、エネルギ回収部54に連なる分岐配管47の途中に、ダンパ-47aを配設することが好ましい。
(2) Energy Recovery Unit Also, as shown in FIGS. 3A to 3B, hot air (heat energy) having a large amount of energy after heating the mold 60 is high. It is preferable to provide an energy recovery unit 54 for recovery.
That is, it is preferable to dispose the energy recovery unit 54 using the inner bottom surface 19 of the heating furnace 58 or the periphery of the heating furnace 58.
Here, the structure itself of the energy recovery part 54 is not particularly limited. For example, as shown in FIG. 3A, the energy recovery part 54 has an opening leading to the bottom surface 19 in the furnace 58 and generates hot air. It is preferable to have a duct structure provided with a branch pipe 47 connected to the device 40. As described above, it is preferable to dispose the damper 47a in the middle of the branch pipe 47 connected to the energy recovery unit 54.
(3)加熱炉
 金型加熱部(B部)における加熱炉58は、図3(a)~(b)にそれぞれ示すように、熱風発生装置40の上方に配置されており、全体として一つのコンパクトな加熱装置として構成されていることが好ましい。
 このように構成することにより、加熱炉58への熱エネルギの供給が容易になるばかりか、上述したエネルギ回収部54を利用して、加熱炉58からの熱エネルギの効率的回収についても容易に実施することができる。
 なお、図3(a)は、一つの二色成形シートを成形するための金型60のための加熱炉58の例であって、図3(b)は、同時に二つの二色成形シートを成形するための金型60のための加熱炉58の例である。
(3) Heating Furnace The heating furnace 58 in the mold heating part (B part) is arranged above the hot air generator 40 as shown in FIGS. 3 (a) to 3 (b). It is preferably configured as a compact heating device.
Such a configuration not only facilitates the supply of thermal energy to the heating furnace 58, but also facilitates efficient recovery of thermal energy from the heating furnace 58 using the energy recovery unit 54 described above. Can be implemented.
3A is an example of a heating furnace 58 for a mold 60 for forming one two-color molded sheet, and FIG. 3B shows two two-color molded sheets simultaneously. It is an example of the heating furnace 58 for the metal mold | die 60 for shape | molding.
 また、加熱炉58の炉本体は、図3(a)~(b)にそれぞれ示すように、上面に、開閉可能な開口部を有する平面長方形の箱状体に形成されており、上面の開口部を開口した状態で、金型60およびそのフレーム部材60aを炉内に搬入した後、開口部を閉じて、熱風発生装置40によって熱風14を吹き込むことにより、金型60に対する加熱が行われるように構成されている。
 なお、加熱炉58に含まれる炉本体の形態としては、適宜変更することが可能である。例えば、炉本体を、金型の形状に対応させて、円筒状や立方体、あるいは異形とすることも好ましい。
The furnace main body of the heating furnace 58 is formed in a flat rectangular box-like body having an openable and closable opening on the upper surface as shown in FIGS. 3 (a) to 3 (b). After the mold 60 and its frame member 60a are carried into the furnace with the part opened, the opening is closed and hot air 14 is blown by the hot air generator 40 so that the mold 60 is heated. It is configured.
Note that the form of the furnace body included in the heating furnace 58 can be changed as appropriate. For example, it is also preferable that the furnace body has a cylindrical shape, a cubic shape, or an irregular shape corresponding to the shape of the mold.
 また、加熱炉58においては、図3(a)~(b)にそれぞれ示すように、主配管43の出口部分に枝分かれさせて構成してあり、所定高さを有して、加熱炉58内の金型60を側方からも加熱できるように、垂直方向に延出させたダクト構造、すなわち、側方熱風吹出口50を設けることが好ましい。
 また、かかる側方熱風吹出口50は、加熱炉58の内側に沿って配置してあることが好ましく、さらには、熱風発生装置40に連なる分岐配管41や、主配管43に連結してあり、その風量をダンパ48等によって調節することが好ましい。
 この理由は、このように構成することにより、金型60を、下方向のみならず、横方向からも熱風を吹き付けて加熱することができ、金型60をさらに効果的に加熱することができるためである。
 そして、側方熱風吹出口(ダクト)50の形状は、金型の形状に応じて適宜変更することも好ましいが、例えば、シュノーケル型とすることにより、側方熱風吹出口50と金型60との距離を一定範囲に容易に制御することができるとともに、熱風吹出方向が一定化するため、金型60に対する加熱効率をさらに増加させることができることから好ましい構造である。
In addition, the heating furnace 58 is configured to be branched at the outlet portion of the main pipe 43 as shown in FIGS. 3A to 3B, and has a predetermined height. It is preferable to provide a duct structure extending in the vertical direction, that is, the side hot air outlet 50 so that the mold 60 can be heated from the side.
Further, the side hot air outlet 50 is preferably arranged along the inside of the heating furnace 58, and further connected to the branch pipe 41 connected to the hot air generator 40 and the main pipe 43, The air volume is preferably adjusted by the damper 48 or the like.
This is because the mold 60 can be heated not only in the downward direction but also in the horizontal direction by blowing hot air, and the mold 60 can be heated more effectively. Because.
And although it is also preferable to change suitably the shape of the side hot air blower outlet (duct) 50 according to the shape of a metal mold | die, for example, by making it a snorkel type, the side hot air blower outlet 50, the metal mold | die 60, This is a preferable structure because the heating efficiency with respect to the mold 60 can be further increased because the distance can be easily controlled within a certain range, and the hot air blowing direction is constant.
(4)温度
 また、金型加熱部(B部)において、図3(a)~(b)にそれぞれ示す加熱炉58を用いて、第2の樹脂からなる塗布層を形成した金型(例えば、厚さ3.5mmのニッケル鋳造合金製)60を加熱する際に、当該金型60の内面温度、すなわち、金型温度を220℃以下の値とすることを特徴とする。
 この理由は、かかる金型温度が220℃を超えると、成形樹脂の焼き付け現象に起因したグロス現象が頻繁に生じたり、金型の金属疲労により、冷却時に金型にクラックが生じたりする場合があるためである。
(4) Temperature In the mold heating section (B section), a mold (for example, a coating layer made of the second resin is formed using the heating furnace 58 shown in FIGS. 3 (a) to 3 (b) (for example, (Made of nickel cast alloy with a thickness of 3.5 mm) 60, the inner surface temperature of the mold 60, that is, the mold temperature is set to a value of 220 ° C. or less.
The reason for this is that when the mold temperature exceeds 220 ° C., a gloss phenomenon due to the baking phenomenon of the molding resin frequently occurs, or cracks may occur in the mold during cooling due to metal fatigue of the mold. Because there is.
 ここで、図4に言及して、金型温度(℃)と、金型にクラックが生じるまでの製造回数(ラインA)および金型にグロス現象が生じるまでの製造回数(ラインB)との関係を、それぞれ説明する。
 すなわち、図4の横軸に、金型温度(℃)が採って示してあり、縦軸に、金型にクラックが生じるまでの製造回数(回数)および金型にグロス現象が生じるまでの製造回数(回数)が、それぞれ採って示してある。
 そして、ラインAおよびラインBから、金型温度を220℃以下とすることにより、クラックが生じるまでの製造回数や金型にグロス現象が生じるまでの製造回数を著しく増加させることが理解される。
Here, referring to FIG. 4, the mold temperature (° C.), the number of productions until a crack occurs in the mold (line A), and the number of productions until a gloss phenomenon occurs in the mold (line B). Each relationship will be explained.
That is, the horizontal axis of FIG. 4 indicates the mold temperature (° C.), and the vertical axis indicates the number of times of manufacture (number of times) until a crack occurs in the mold and the manufacture until a gloss phenomenon occurs in the mold. The number of times (number of times) is shown.
Then, it is understood from line A and line B that the number of productions until cracks occur and the number of productions until a gloss phenomenon occurs in the molds are remarkably increased by setting the mold temperature to 220 ° C. or lower.
 例えば、クラックが生じるまでの製造回数について言えば、金型温度(℃)が320℃では、約18回、金型温度(℃)が280℃では、約20回、金型温度(℃)が250℃では、約40回、金型温度(℃)が230℃では、約60回、金型温度(℃)が210℃では、約100回であることが理解される。
 同様に、グロス現象が生じるまでの製造回数について言えば、金型温度(℃)が320℃では、約12回、金型温度(℃)が280℃では、約15回、金型温度(℃)が250℃では、約28回、金型温度(℃)が230℃では、約43回、金型温度(℃)が210℃では、約120回である。
For example, in terms of the number of productions until cracks occur, the mold temperature (° C) is about 18 times when the mold temperature (° C) is 320 ° C, and the mold temperature (° C) is about 20 times when the mold temperature (° C) is 280 ° C. It is understood that at 250 ° C., about 40 times, when the mold temperature (° C.) is 230 ° C., about 60 times, and when the mold temperature (° C.) is 210 ° C., about 100 times.
Similarly, in terms of the number of production until the gloss phenomenon occurs, the mold temperature (° C.) is about 12 times when the mold temperature (° C.) is 320 ° C., and about 15 times when the mold temperature (° C.) is 280 ° C. ) Is about 28 times at 250 ° C., about 43 times at a mold temperature (° C.) of 230 ° C., and about 120 times at a mold temperature (° C.) of 210 ° C.
 また、図5に言及して、金型温度(℃)、パウダリング時間、および後加熱処理と、得られるシート状物の厚さの関係を説明する。ラインAが、パウダリング時間が30秒/後加熱処理無しに対応しており、ラインBが、パウダリング時間が36秒/後加熱処理無しに対応しており、ラインCが、パウダリング時間が36秒/後加熱処理あり(200℃、15秒加熱)に対応している。
 そして、シート状物の製造を実施し、シート状物の厚さの平均値(10か所)のみならず、最大値と、最小値の値も同様に示してある。
 すなわち、図5の横軸に、金型温度(℃)が採って示してあり、縦軸に、シート状物の厚さ(mm)が採って示してある。
Further, with reference to FIG. 5, the relationship between the mold temperature (° C.), the powdering time, the post-heating treatment, and the thickness of the obtained sheet-like material will be described. Line A corresponds to a powdering time of 30 seconds / no post-heating treatment, Line B corresponds to a powdering time of 36 seconds / no post-heating treatment, and Line C corresponds to a powdering time of It corresponds to 36 seconds / after-heating treatment (200 ° C., 15 seconds heating).
And manufacture of a sheet-like object is implemented, and not only the average value (10 places) of the thickness of a sheet-like object but the value of the maximum value and the minimum value is shown similarly.
That is, the horizontal axis of FIG. 5 shows the mold temperature (° C.), and the vertical axis shows the thickness (mm) of the sheet-like material.
 そして、ラインA~Cから、金型温度が220℃以下の場合、均一で、所定厚さを得るために、パウダリング時間および後加熱処理の影響が大きいことが理解される。
 より具体的には、金型温度(℃)が比較的低い場合、例えば、210℃では、ラインAが示すように、パウダリング時間が30秒と短く、かつ、後加熱処理が無いため、約1mmの厚さであって、かつ、厚さのばらつきが大きいシート状物が得られている。
 また、ラインBが示すように、パウダリング時間が36秒と若干長く、かつ、後加熱処理が無い場合、約1.18mmの厚さであって、かつ、厚さのばらつきがそれなりに大きいシート状物が得られている。
 さらに、ラインCが示すように、パウダリング時間が36秒と若干長く、かつ、所定の後加熱処理がある場合、約1.23mmの厚さであって、かつ、厚さのばらつきが小さいシート状物が得られている。
From the lines A to C, it is understood that when the mold temperature is 220 ° C. or less, the influence of the powdering time and the post-heating treatment is large in order to obtain a uniform and predetermined thickness.
More specifically, when the mold temperature (° C.) is relatively low, for example, at 210 ° C., as indicated by line A, the powdering time is as short as 30 seconds and there is no post-heating treatment. A sheet-like material having a thickness of 1 mm and a large variation in thickness is obtained.
Further, as indicated by line B, when the powdering time is slightly longer as 36 seconds and there is no post-heating treatment, the sheet has a thickness of about 1.18 mm and a large variation in thickness. A product is obtained.
Further, as shown by line C, when the powdering time is slightly longer as 36 seconds and there is a predetermined post-heating treatment, the sheet has a thickness of about 1.23 mm and a small variation in thickness. A product is obtained.
 以上の説明から明らかなように、金型温度を所定温度(220℃以下)とすることにより、クラックが生じるまでの製造回数やグロス現象が生じるまでの製造回数を著しく伸ばすことができると言える。
 一方、金型温度を所定温度(220℃以下)とすることにより、パウダリング時間が比較的短い場合には(例えば、30秒)、得られるシート状物の厚さが比較的薄いものの、パウダリング時間を若干長くするだけで(例えば、36秒)、得られるシート状物の厚さが相当厚くなり、ばらつきも小さくなる傾向が見られた。
 さらに言えば、金型温度を220℃以下とした場合、パウダリング時間を若干長くする(例えば、36秒)とともに、所定の後加熱処理(200℃熱風、15秒)を施すだけで、得られるシート状物の厚さが相当厚くなり、かつ、ばらつきも小さくなる傾向が見られた。
 よって、金型温度を220℃以下と低くした場合、後述する後加熱処理部において、成形したシート状物の表面に、200℃以下の熱風を吹き付けることにより、成形樹脂を十分に溶解させて、均一かつ所定厚さの表面平滑性を得るのに有効であると理解できる。
 但し、かかる金型の内面温度が過度に低くなると、後加熱処理部を設けても、最終的に均一で所定厚さのシート状物を安定的に形成することが困難になる場合がある。
 したがって、シート状物の厚さをより実用的かつ安定的な値とするために、金型温度を200~215℃の範囲内の値とすることがより好ましく、205~210℃の範囲内の値とすることがさらに好ましい。
As is apparent from the above description, it can be said that by setting the mold temperature to a predetermined temperature (220 ° C. or lower), the number of productions until a crack occurs and the number of productions until a gloss phenomenon occurs can be significantly increased.
On the other hand, by setting the mold temperature to a predetermined temperature (220 ° C. or lower), when the powdering time is relatively short (for example, 30 seconds), the resulting sheet-like material is relatively thin. Only by slightly increasing the ring time (for example, 36 seconds), the thickness of the obtained sheet-like material was considerably increased, and the variation tended to decrease.
Furthermore, when the mold temperature is set to 220 ° C. or less, the powdering time is slightly increased (for example, 36 seconds), and the predetermined post-heating treatment (200 ° C. hot air, 15 seconds) is performed. There was a tendency that the thickness of the sheet-like material was considerably increased and the variation was reduced.
Therefore, when the mold temperature is lowered to 220 ° C. or less, by blowing hot air of 200 ° C. or less on the surface of the molded sheet-like material in the post-heat treatment section described later, the molding resin is sufficiently dissolved, It can be understood that it is effective for obtaining uniform and predetermined surface smoothness.
However, if the inner surface temperature of the mold becomes excessively low, it may be difficult to stably form a sheet having a uniform thickness and a predetermined thickness even if a post-heat treatment unit is provided.
Therefore, in order to make the thickness of the sheet-like material a more practical and stable value, it is more preferable to set the mold temperature to a value within the range of 200 to 215 ° C, and within the range of 205 to 210 ° C. More preferably, it is a value.
(5)加熱速度(温度勾配)
 また、金型加熱部(B部)において、金型の加熱速度、すなわち、加熱時の温度勾配を80~130℃/分の範囲内の値とすることが好ましい。
 この理由は、かかる金型の加熱速度が80℃/分未満の値になると、金型を所定温度まで加熱する時間、ひいては、サイクルタイムが過度に長くなって、経済的に不利となるためである。
 一方、かかる金型の加熱速度が130℃/分を超えた値になると、金型を急加熱することになって、熱疲労が著しく大きくなる場合があるためである。
 したがって、金型加熱部(B部)において、金型の加熱速度を90~120℃/分の範囲内の値とすることがより好ましく、100~115℃/分の範囲内の値とすることがさらに好ましい。
 なお、かかる金型の加熱速度を得るため、上述した金型加熱部の構成することが好ましく、さらには、加熱炉における単位時間あたりの供給熱量を25~60万kcal/hrの範囲内の値とすることが好ましく、30~55万kcal/hrの範囲内の値とすることがより好ましく、35~50万kcal/hrの範囲内の値とすることがさらに好ましい。
(5) Heating rate (temperature gradient)
In the mold heating section (B section), the mold heating rate, that is, the temperature gradient during heating is preferably set to a value within the range of 80 to 130 ° C./min.
The reason for this is that when the heating rate of the mold is less than 80 ° C./min, the time for heating the mold to a predetermined temperature, and thus the cycle time becomes excessively long, which is economically disadvantageous. is there.
On the other hand, when the heating rate of the mold exceeds 130 ° C./min, the mold is rapidly heated, and thermal fatigue may be remarkably increased.
Therefore, in the mold heating part (part B), the heating rate of the mold is more preferably set to a value within the range of 90 to 120 ° C./min, and a value within the range of 100 to 115 ° C./min. Is more preferable.
In order to obtain the heating rate of the mold, the above-described mold heating unit is preferably configured. Further, the amount of heat supplied per unit time in the heating furnace is a value within the range of 250 to 600,000 kcal / hr. Preferably, the value is within the range of 300 to 550,000 kcal / hr, and more preferably within the range of 3500 to 500,000 kcal / hr.
3.パウダースラッシュ部
(1)基本的構成
 パウダースラッシュ部(A部)は、図7(a)~(c)および図8(a)に示すように、加熱されたフレーム部材60aを含む金型60と、第1の樹脂として、流動状態の成形樹脂92を収容したリザーバタンク88とを、金型(成形型)60の内表面60bを下向きにするとともに、リザーバタンク88の開口面を上向きにした状態で、上下に一体的に連結する工程を実施するための部位である。
 より具体的には、図7(a)~(c)および図8(a)に、パウダースラッシュ部におけるパウダースラッシュ成形方法を示す。
 すなわち、図7(a)に示すように、加熱炉における熱風14によって、外表面60cの反対面である内表面60bに、塗布層(図示せず)が形成された金型60を所定温度に加熱、特に、金型内面に対して熱風14を吹き付けて、所定温度に加熱する。
 次いで、図7(b)に示すように、金型60を、リザーバタンク88の上方に位置合わせした上で、載置する。
3. Powder Slash Part (1) Basic Configuration As shown in FIGS. 7A to 7C and FIG. 8A, the powder slash part (A part) includes a mold 60 including a heated frame member 60a, The reservoir tank 88 containing the molded resin 92 in a fluid state as the first resin, with the inner surface 60b of the mold (molding die) 60 facing downward and the opening surface of the reservoir tank 88 facing upward Thus, it is a part for carrying out the step of integrally connecting up and down.
More specifically, FIGS. 7A to 7C and FIG. 8A show a powder slush molding method in the powder slush portion.
That is, as shown in FIG. 7A, the mold 60 having the coating layer (not shown) formed on the inner surface 60b opposite to the outer surface 60c is heated to a predetermined temperature by the hot air 14 in the heating furnace. Heating, in particular, hot air 14 is blown against the inner surface of the mold to heat to a predetermined temperature.
Next, as shown in FIG. 7B, the mold 60 is placed after being positioned above the reservoir tank 88.
 次いで、図7(c)に示すように、金型60を、リザーバタンク88と一緒に、回転させる。
 そして、これらを回転させる際に、リザーバタンク88の内部に収容された成形樹脂92の分散性を向上させ、均一な厚さのシート状物(樹脂膜)94を形成するために、リザーバタンク88の下方に設けた攪拌室88aに空気を導入して、パウダー状の成形樹脂92を流動状態とすることが好ましい。
 すなわち、攪拌室88aの上方は、穴開き部材(メッシュ部材)から構成してあり、導入された空気によって、成形樹脂92を巻き上げる構造であることが好ましい。
 さらに、回転させる際に、成形樹脂92の流動状態を活性化させ、均一な製膜ができるように、図7(c)に示すように、フレーム部材60aに設けてある振動部材を、ハンマー100の先端部108で繰り返し叩くことが好ましい。
 次いで、図8(a)に示すように、所定時間静置して、成形樹脂92を所定個所に沈降させる。その際、成形樹脂92が早期に非流動状態となるように、空気を脱気して、減圧操作を行うことが好ましい。
 そして最後に、図8(b)に示すように、後加熱炉で後加熱処理した後、図8(c)に示すように、冷却装置55を用いて、二色成形シート状物94とともに、金型60を冷却することになる。
Next, as shown in FIG. 7C, the mold 60 is rotated together with the reservoir tank 88.
And when rotating these, in order to improve the dispersibility of the molding resin 92 accommodated in the reservoir tank 88 and form a sheet-like material (resin film) 94 having a uniform thickness, the reservoir tank 88 It is preferable that air is introduced into the stirring chamber 88a provided below to make the powdered molding resin 92 fluid.
That is, it is preferable that the upper part of the stirring chamber 88a is composed of a perforated member (mesh member) and has a structure in which the molded resin 92 is wound up by the introduced air.
Further, when rotating, the vibration member provided on the frame member 60a is attached to the hammer 100 so that the flow state of the molding resin 92 is activated and a uniform film can be formed as shown in FIG. It is preferable to repeatedly strike at the front end portion 108.
Next, as shown in FIG. 8A, the molding resin 92 is allowed to settle for a predetermined time, and the molding resin 92 is allowed to settle at a predetermined location. At that time, it is preferable to depressurize the air so that the molding resin 92 is in a non-flowing state at an early stage.
And finally, as shown in FIG.8 (b), after post-heat-processing in a post-heating furnace, as shown in FIG.8 (c), using the cooling device 55, with the two-color molded sheet-like article 94, The mold 60 is cooled.
(2)型枠
 また、パウダースラッシュ部(A部)において、フレーム部材60aを含む金型60を反転させる際、かかる金型60における所望の内表面60bのみに、シート状物94を形成できるように、金型60と、リザーバタンク88との間に、所定の厚さ(高さ)を有する型枠84a、84bを設けることが好ましい。
 ここで、かかる型枠84bの下部を、例えば、アルミニウムから構成し、一方の型枠84aの上部をシリコーンゴム/フッ素樹脂フィルムの組合せから構成することにより、金型60と、リザーバタンク88との間の隙間を充填する役目を果たすこともできる。
(2) Formwork Further, when the mold 60 including the frame member 60a is reversed in the powder slash part (A part), the sheet 94 can be formed only on the desired inner surface 60b of the mold 60. In addition, it is preferable to provide molds 84 a and 84 b having a predetermined thickness (height) between the mold 60 and the reservoir tank 88.
Here, the lower part of the mold 84b is made of, for example, aluminum, and the upper part of one mold 84a is made of a combination of a silicone rubber / fluororesin film, so that the mold 60 and the reservoir tank 88 are It can also serve to fill the gaps between them.
(3)第1の樹脂
 また、パウダースラッシュ部(A部)で使用する成形樹脂、すなわち、第1の樹脂としては、特に制限されるものではないが、例えば、エポキシ樹脂、ウレタン樹脂(熱可塑性ウレタン樹脂も含む。)、ポリエステル樹脂(熱可塑性ポリエステル樹脂も含む。)、アクリル樹脂、塩化ビニル樹脂、オレフィン樹脂(熱可塑性オレフィン樹脂も含む。)、シリコーン樹脂等の一種単独または二種以上の組み合わせが挙げられる。
 特に、塩化ビニル樹脂や熱可塑性ウレタン樹脂であれば、第2の樹脂との親和性が良好であって、強固な接着性が得られるとともに、低温脆性に優れていることから、好適な樹脂である。
 そして、第1の樹脂として、熱硬化性樹脂を用いる場合、より短時間で硬化して、所定の被膜を形成できるように、半硬化の熱硬化性樹脂パウダー、すなわち、Bステージ状態の熱硬化性樹脂パウダーを使用することが好ましい。
 なお、二色成形の最初に用いる第2の樹脂として、塩化ビニル樹脂を用いた場合、より良好な密着性が得られることから、パウダースラッシュ部(A部)で使用する第1の樹脂として、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、あるいは塩化ビニル樹脂の少なくとも一つを用いることがより好ましい。
(3) 1st resin Moreover, although it does not restrict | limit especially as molding resin used in a powder slash part (A part), ie, 1st resin, For example, epoxy resin, urethane resin (thermoplastic Urethane resin also included), polyester resin (including thermoplastic polyester resin), acrylic resin, vinyl chloride resin, olefin resin (including thermoplastic olefin resin), silicone resin, etc., alone or in combination of two or more Is mentioned.
In particular, if it is a vinyl chloride resin or a thermoplastic urethane resin, it has a good affinity with the second resin, provides strong adhesiveness, and is excellent in low-temperature brittleness. is there.
When a thermosetting resin is used as the first resin, a semi-cured thermosetting resin powder, that is, thermosetting in a B-stage state, can be cured in a shorter time to form a predetermined film. It is preferable to use a conductive resin powder.
As the first resin used in the powder slash part (A part), when a vinyl chloride resin is used as the second resin used at the beginning of the two-color molding, better adhesion is obtained. More preferably, at least one of an epoxy resin, a urethane resin, an acrylic resin, or a vinyl chloride resin is used.
(4)パウダリング時間
 また、パウダースラッシュ部(A部)において、パウダリング時間を32~42秒の範囲内の値とすることが好ましい。
 この理由は、かかるパウダリング時間が32秒未満の値になると、第1の樹脂としての成形樹脂が容易に熱溶解して、所定厚さを有するシート状物を形成することが困難となる場合があるためである。
 一方、かかるパウダリング時間が42秒を超えた値になると、金型を所定温度まで加熱する時間、ひいては、サイクルタイムが過度に長くなって、経済的に不利となる場合があるためである。
 したがって、パウダースラッシュ部(A部)において、パウダリング時間を33~40秒の範囲内の値とすることがより好ましく、34~38秒の範囲内の値とすることがさらに好ましい。
(4) Powdering time In the powder slush part (A part), the powdering time is preferably set to a value within the range of 32 to 42 seconds.
This is because when the powdering time is less than 32 seconds, the molding resin as the first resin is easily melted by heat and it becomes difficult to form a sheet-like material having a predetermined thickness. Because there is.
On the other hand, when the powdering time exceeds 42 seconds, the time for heating the mold to a predetermined temperature, and thus the cycle time, becomes excessively long, which may be economically disadvantageous.
Therefore, in the powder slash part (part A), the powdering time is more preferably set to a value within the range of 33 to 40 seconds, and further preferably set to a value within the range of 34 to 38 seconds.
4.後加熱処理部
(1)構成
 後加熱処理部(B´部)は、パウダースラッシュ部(A部)で成形したシート状物の裏面に、200℃以下の熱風を吹き付けることにより、成形樹脂を十分に溶解させて、均一な表面平滑性を得るための部位である。
 したがって、金型加熱部(B部)と同様に、図9に示されるように、後加熱処理部(B´部)における加熱装置は、熱風発生装置40と、エネルギ回収部54と、後加熱炉58´と、から基本的に構成されているものの、側方熱風吹出口が設けられていないという点で、金型加熱部(B部)におけるそれと異なっている。
4). Post-heat treatment part (1) configuration The post-heat treatment part (B 'part) sufficiently blows out the molding resin by blowing hot air of 200 ° C or lower onto the back surface of the sheet-like material molded in the powder slush part (A part). It is a part for obtaining uniform surface smoothness by dissolving it in the solution.
Accordingly, as shown in FIG. 9, the heating device in the post-heating processing section (B ′ section) is similar to the mold heating section (B section), the hot air generator 40, the energy recovery section 54, and the post-heating. Although it is basically composed of the furnace 58 ', it differs from that in the mold heating section (B section) in that a side hot air outlet is not provided.
 また、後加熱炉58´の炉本体は、図9に示すように、上面に、開閉可能な開口部を有する平面長方形の箱状体に形成されており、上面の開口部を開口した状態で、金型60およびそのフレーム部材60aを炉内に搬入した後、開口部を閉じて、熱風発生装置40によって熱風14を吹き込むことにより、金型60に対する加熱が行われるように構成されている。
 なお、後加熱炉58´に含まれる炉本体の形態としては、適宜変更することが可能である。例えば、炉本体を、金型の形状に対応させて、円筒状や立方体、あるいは異形とすることも好ましい。
Further, as shown in FIG. 9, the furnace main body of the post-heating furnace 58 ′ is formed in a flat rectangular box-like body having an openable / closable opening on the upper surface, and the upper opening is opened. After the mold 60 and its frame member 60a are carried into the furnace, the opening is closed and the hot air 14 is blown by the hot air generator 40 so that the mold 60 is heated.
The form of the furnace main body included in the post-heating furnace 58 ′ can be changed as appropriate. For example, it is also preferable that the furnace body has a cylindrical shape, a cubic shape, or an irregular shape corresponding to the shape of the mold.
(2)加熱温度/熱量
 また、後加熱処理部(B´部)に付与する単位時間当たりの熱量(万kcal/hr)を、金型加熱部(B部)に付与する単位時間当たりの熱量の1/4~2/3の範囲内の値とすることが好ましい。
 この理由は、このように構成することにより、エネルギ効率が高まり、シート状物を、迅速かつ安定的に、しかも経済的に得ることができるためである。
 したがって、後加熱処理部(B´部)における、かかる金型の加熱速度を得るため、上述した金型加熱部の構成することが好ましく、さらには、加熱炉における単位時間あたりの供給熱量を1~20万kcal/hrの範囲内の値とすることが好ましく、5~15万kcal/hrの範囲内の値とすることがより好ましく、8~12万kcal/hrの範囲内の値とすることがさらに好ましい。
(2) Heating temperature / amount of heat Further, the amount of heat per unit time applied to the mold heating unit (part B) with the amount of heat per unit time (10,000 kcal / hr) applied to the post-heating unit (B ′ part). It is preferable to set the value within a range of 1/4 to 2/3 of the above.
This is because the energy efficiency is increased and the sheet-like material can be obtained quickly and stably and economically by such a configuration.
Therefore, in order to obtain the heating rate of the mold in the post-heat treatment section (B ′ section), the above-described mold heating section is preferably configured, and further, the amount of heat supplied per unit time in the heating furnace is 1 The value is preferably in the range of ˜200,000 kcal / hr, more preferably in the range of 50,000 to 150,000 kcal / hr, and the value in the range of 80 to 120,000 kcal / hr. More preferably.
 そして、後加熱処理部(B´部)において、パウダースラッシュ部(A部)で形成したシート状物の裏面(金型と接する表面と反対面)を加熱する際に、200℃以下の熱風を吹き付けることを特徴とする。
 この理由は、かかる熱風温度が200℃を超えると、冷却時の金型の金属疲労により、金型にクラックが生じたりする場合があるためである。
 但し、熱風の吹き付け温度を過度に低く設定すると、成形樹脂が十分に溶融しない場合や、表面凹凸が逆に大きくなったりする場合がある。
 したがって、後加熱処理部において、成形したシート状物の裏面に、温度150~190℃の熱風を吹き付けることがより好ましく、温度160~180℃の熱風を吹き付けることがさらに好ましい。
And, in the post-heat treatment part (B ′ part), when heating the back surface (the surface opposite to the surface in contact with the mold) of the sheet-like material formed in the powder slash part (A part), hot air of 200 ° C. or less It is characterized by spraying.
This is because if the hot air temperature exceeds 200 ° C., cracks may occur in the mold due to metal fatigue of the mold during cooling.
However, if the spraying temperature of the hot air is set too low, the molding resin may not be sufficiently melted, or the surface unevenness may be increased conversely.
Accordingly, it is more preferable to blow hot air having a temperature of 150 to 190 ° C. on the back surface of the formed sheet-like material in the post-heating treatment section, and it is more preferable to blow hot air having a temperature of 160 to 180 ° C.
5.金型冷却部
(1)構成
 金型冷却部(C部)は、図8(c)に示すように、フレーム部材60aを含む金型60を、水冷あるいは空冷等の冷却装置55により冷却して、塗布層およびシート状物94を所定程度に固化させるための部位である。
 より具体的には、第1のエアブロー、ミスト/シャワー、および第2のエアブローの組み合わせによる、少なくとも三段階ステップによる金型冷却が好ましい。
 すなわち、最初に、後加熱処理を経てなる、シート状物94が形成された150℃程度の金型の内部および外部に対し、第1のエアーとして、空気を吹き付けて、金型温度を約100℃程度まで低下させることが好ましい。
 次いで、ミストノズルおよびシャワーノズル、あるいはいずれか一方のノズル98から水ミストおよび水シャワーを、金型外部から吹き付けて、金型温度を約50℃程度まで低下させることが好ましい。
 最後に、シート状物が形成され、50℃程度まで冷却された金型の外部および内部に対し、第2のエアーとして、空気を吹き付け、さらに金型温度の蓄熱をとるとともに、金型表面に残留している水滴等を吹き飛ばし、金型における錆の発生を有効に防止することが好ましい。
 したがって、金型冷却部(C部)に、冷却装置55として、シャワーノズル/ミストノズル98と、エアノズル(図示せず)を、併用して備えることが好ましい。
 なお、シャワー装置/ミスト装置は、一つの給水タンクに連結されてあって、吹き出し口に設けた制御弁等の切り替え装置によって、噴霧量やシャワー量を決定することも好ましい。
5. Mold Cooling Unit (1) Configuration As shown in FIG. 8C, the mold cooling unit (C part) cools the mold 60 including the frame member 60a by a cooling device 55 such as water cooling or air cooling. This is a part for solidifying the coating layer and the sheet-like material 94 to a predetermined degree.
More specifically, mold cooling by at least three-stage steps by a combination of a first air blow, a mist / shower, and a second air blow is preferred.
That is, first, air is blown as the first air on the inside and outside of the mold of about 150 ° C. on which the sheet-like material 94 is formed, which is subjected to post-heating treatment, and the mold temperature is set to about 100. It is preferable that the temperature is lowered to about ° C.
Next, it is preferable to spray the water mist and water shower from the mist nozzle and / or the shower nozzle from either one of the nozzles 98 from the outside of the mold to lower the mold temperature to about 50 ° C.
Finally, air is blown as the second air to the outside and inside of the mold that has been formed and cooled to about 50 ° C., and heat is stored at the mold temperature. It is preferable to blow off remaining water droplets and the like to effectively prevent the occurrence of rust in the mold.
Therefore, it is preferable that the mold cooling section (C section) is provided with a shower nozzle / mist nozzle 98 and an air nozzle (not shown) as the cooling device 55 in combination.
The shower device / mist device is preferably connected to one water supply tank, and the spray amount and the shower amount are preferably determined by a switching device such as a control valve provided at the outlet.
(2)温度
 金型冷却部(C部)において、シート状物を含む金型を、少なくとも三段階ステップによる金型冷却を実施し、金型温度を60℃以下の値とすることが好ましい。
 この理由は、かかる金型温度が60℃を超えると、次工程である脱型や、次サイクルの第2の樹脂の塗布が困難となる場合があるためである。
 但し、金型温度を過度に低くすると、冷却時間が過度に長くなるおそれがあることから、冷却後の金型温度を30℃以上の値とすることが好ましい。
 したがって、金型冷却部において、シート状物を含む金型温度を30~50℃の範囲内の値とすることがより好ましく、40~45℃の範囲内の値とすることがさらに好ましい。
(2) Temperature In the mold cooling section (C section), it is preferable that the mold including the sheet-like material is cooled in at least three steps to set the mold temperature to a value of 60 ° C. or lower.
The reason for this is that when the mold temperature exceeds 60 ° C., it may be difficult to remove the mold in the next step or apply the second resin in the next cycle.
However, if the mold temperature is excessively lowered, the cooling time may be excessively long. Therefore, the mold temperature after cooling is preferably set to a value of 30 ° C. or higher.
Accordingly, in the mold cooling section, the mold temperature including the sheet-like material is more preferably set to a value within the range of 30 to 50 ° C., and further preferably set to a value within the range of 40 to 45 ° C.
(3)冷却速度(温度勾配)
 また、金型冷却部(C部)において、金型の冷却速度、すなわち、冷却時の温度勾配を100~220℃/分の範囲内の値とすることが好ましい。
 この理由は、かかる金型の冷却速度が100℃/分未満の値になると、金型を所定温度まで冷却する時間、ひいては、シート状物の製品一つを得るまでのサイクルタイムが過度に長くなって、経済的に不利となる場合があるためである。
 一方、かかる金型の冷却速度が220℃/分を超えた値になると、金型を急冷することになって、熱疲労が著しく大きくなって、クラックが生じやすくなる場合があるためである。
 したがって、金型冷却部(C部)において、金型の冷却速度を120~210℃/分の範囲内の値とすることがより好ましく、140~200℃/分の範囲内の値とすることがさらに好ましい。
(3) Cooling rate (temperature gradient)
In the mold cooling section (C section), the mold cooling rate, that is, the temperature gradient during cooling is preferably set to a value within the range of 100 to 220 ° C./min.
The reason for this is that when the mold cooling rate is less than 100 ° C./min, the time for cooling the mold to a predetermined temperature, and thus the cycle time for obtaining one sheet-like product is excessively long. This is because it may be economically disadvantageous.
On the other hand, when the cooling rate of the mold exceeds 220 ° C./min, the mold is rapidly cooled, and thermal fatigue is remarkably increased and cracks are likely to occur.
Therefore, in the mold cooling section (C section), the mold cooling rate is more preferably set to a value within a range of 120 to 210 ° C./min, and a value within a range of 140 to 200 ° C./min. Is more preferable.
6.金型交換部
 また、本発明のパウダースラッシュ成形機は、金型交換部(D部)をさらに備えることが好ましい。
 すなわち、かかる金型交換部(D部)を利用して、パウダースラッシュ成形の途中で、種類の異なる二色成形されたシート状物を成形するための金型に変更したり、パウダースラッシュ成形中に、金型損傷が生じたりする場合があるが、そのような場合であっても、パウダースラッシュ成形機を動作させたまま、金型を交換することができるためである。
 したがって、図1および2に示すように、金型60を載置するための支持台66を備えるとともに、支持台66が外部制御により、移動可能であることが好ましい。
 なお、図2に示す金型交換部(D部)の例では、交換用の金型60´と、交換用の金型のフレーム部材60a´が、支持台66の上に待機しているばかりか、さらに、上方に伸びた支持台66の上には、さらに別の交換用の金型60´´と、フレーム部材60a´´とが、待機している状態である。
6). Mold exchange part Moreover, it is preferable that the powder slush molding machine of this invention is further equipped with a metal mold | die exchange part (D part).
That is, by using such a mold exchanging part (D part), in the middle of powder slush molding, it is changed to a mold for molding two-color molded sheet-like material, or during powder slush molding In some cases, the mold may be damaged. Even in such a case, the mold can be replaced while the powder slush molding machine is operated.
Therefore, as shown in FIGS. 1 and 2, it is preferable that a support base 66 for placing the mold 60 is provided, and the support base 66 is movable by external control.
In the example of the mold exchanging section (D section) shown in FIG. 2, the exchanging mold 60 ′ and the exchanging mold frame member 60 a ′ are just waiting on the support base 66. In addition, another replacement mold 60 ″ and a frame member 60a ″ are in a standby state on the support base 66 extending upward.
7.予備加熱部
 また、図6(a)~(b)に示すパウダースラッシュ成形機10aの場合には、少なくとも3つの金型60(60A、60B、60C)が用いられることを前提として、それぞれ所定時期に、金型加工部(E部)、予備加熱部(A´部)、金型加熱部(A部)、パウダースラッシュ部/冷却部を含む一体箇所(B部/C部)、金型交換部(D部)、再び金型加工部(E部)の順に、予備加熱装置62aを備えた搬送装置62によって、各部を、矢印A~Gに沿って移動する構成を備えていることが好ましい。
 そして、かかるパウダースラッシュ成形機10aにおいて、予備加熱部(A´部)が設けてあることにより、一連のパウダースラッシュ成形を完結するための処理が並行的に行われ、最終的に、樹脂成形品であるシート状物94を迅速かつ安定的に得ることができる。
 より具体的には、複数の金型、少なくとも3個の金型(金型A、金型B、金型C)を同時使用し、それぞれにつき、同時並行して所定処理が行うことによって、シート状物94の一つ当たりのタクトタイムを、150秒以下、より好ましくは、120秒以下と、従来装置の場合のタクトタイム(例えば、240秒)と比較して、極めて短くすることができる。
 この点、図6(a)~(b)に示すパウダースラッシュ成形機10aを参照しながら、3個の金型(金型A、金型B、金型C)を同時使用して、タクトタイムが短くなる動作例を説明する。
7). Preheating unit In the case of the powder slush molding machine 10a shown in FIGS. 6 (a) to 6 (b), it is assumed that at least three molds 60 (60A, 60B, 60C) are used. In addition, a die processing part (E part), a preheating part (A 'part), a die heating part (A part), an integrated part including a powder slash part / cooling part (B part / C part), and a mold exchange It is preferable that each part is moved along arrows A to G by the conveying device 62 provided with the preheating device 62a in the order of the part (D part) and the mold processing part (E part) again. .
And in this powder slush molding machine 10a, by providing the preheating part (A 'part), the process for completing a series of powder slush molding is performed in parallel, and finally the resin molded product The sheet-like material 94 can be obtained quickly and stably.
More specifically, a plurality of molds and at least three molds (mold A, mold B, mold C) are used at the same time, and a predetermined process is performed in parallel on each of the sheets, thereby providing a sheet. The takt time per one piece 94 can be made extremely short compared with the takt time (for example, 240 seconds) in the case of a conventional apparatus, 150 seconds or less, more preferably 120 seconds or less.
In this regard, while referring to the powder slush molding machine 10a shown in FIGS. 6 (a) to 6 (b), tact time can be obtained by simultaneously using three molds (mold A, mold B, and mold C). An example of an operation that shortens will be described.
 まずは、予備加熱装置62aを備えた搬送装置62が、金型Aをクランプして、所定場所まで上昇し、予備加熱装置62aによって、所定時間にわたる金型Aの予備加熱を開始する。
 次いで、金型Aの予備加熱をしながら搬送装置62が、下降し、金型加工部(E部)から、パウダースラッシュ部(B部)に移動する。
 次いで、搬送装置62が、パウダースラッシュ成形/冷却処理が終了した金型Bを、パウダースラッシュ/冷却部(B/C部)から、金型加工部(E部)に搬送し、脱型処理を行う。
 この脱型処理の間に、搬送装置62が、金型加工部(E部)から、金型加熱部(A部)に、金型Aを搬送して、所定時間の加熱処理を行う。
 また、この金型Aに対する加熱処理の間に、搬送装置62が、金型Cをクランプして、予備加熱を開始する。
First, the conveying device 62 provided with the preheating device 62a clamps the mold A, moves up to a predetermined location, and starts preheating the mold A over a predetermined time by the preheating device 62a.
Next, while the mold A is pre-heated, the transfer device 62 moves down and moves from the mold processing section (E section) to the powder slash section (B section).
Next, the conveying device 62 conveys the mold B for which the powder slush molding / cooling process has been completed from the powder slush / cooling part (B / C part) to the mold processing part (E part), and performs the demolding process. Do.
During this demolding process, the transport device 62 transports the mold A from the mold processing section (E section) to the mold heating section (A section), and performs the heat treatment for a predetermined time.
Further, during the heat treatment for the mold A, the transfer device 62 clamps the mold C and starts preheating.
 次いで、搬送装置62が、金型Aを、金型加熱部(A部)から取り出し、パウダースラッシュ/冷却部の一体箇所(B/C部)に搬送した後、パウダースラッシュ成形/冷却処理が順次行われる。
 その際、金型を冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却ブースが、パウダースラッシュ部の回転装置の直下に移動する。そして、金型を把持するフレーム部材と係合し、金型の内表面を外部に解放した状態で、金型の外表面に対して、冷却水をシャワーまたは冷却ミストを吹き付けることになる。
 そして、このパウダースラッシュ成形/冷却処理の間に、搬送装置62が、金型Cをクランプして予備加熱を行うとともに、金型加熱部(A部)に移動させ、加熱処理を開始する。
 すなわち、搬送装置62が、パウダースラッシュ部および冷却部を含む一体箇所(B/C部)から、金型加熱部(A部)に移動し、金型Cを搬送して、所定時間の加熱処理を行うことが好ましい。
Next, after the transfer device 62 takes out the mold A from the mold heating part (A part) and transports it to the integrated part (B / C part) of the powder slush / cooling part, the powder slush molding / cooling process is sequentially performed. Done.
At that time, when the mold is cooled, the powder box after completion of the powder slash is moved from the powder slash part to the box replacement position, and the cooling booth provided in the mold cooling part is attached to the powder slash part. Move directly under the rotating device. Then, in a state where the mold member is engaged with the frame member that holds the mold and the inner surface of the mold is released to the outside, a shower or cooling mist is sprayed on the outer surface of the mold.
Then, during the powder slush molding / cooling process, the conveying device 62 clamps the mold C to perform preheating, moves it to the mold heating section (A section), and starts the heating process.
That is, the transfer device 62 moves from an integrated part (B / C part) including the powder slash part and the cooling part to the mold heating part (A part), transports the mold C, and performs heat treatment for a predetermined time. It is preferable to carry out.
 最後に、搬送装置62が、パウダースラッシュ成形/冷却処理が終了した金型Aを、パウダースラッシュ部および冷却部を含む一体箇所(B/C部)から、金型加工部(E部)に搬送し、脱型処理を行う。
 よって、以上の説明の通り、図6(a)~(b)に示すパウダースラッシュ成形機10において、金型A、金型B、及び金型Cを用いた場合、所定動作例によれば、予備加熱処理を含めて、それぞれ独立した処理を同時並行で行うことができる。
Finally, the conveying device 62 conveys the mold A for which the powder slush molding / cooling processing has been completed from the integrated portion (B / C portion) including the powder slash portion and the cooling portion to the die processing portion (E portion). And demolding.
Therefore, as described above, in the powder slush molding machine 10 shown in FIGS. 6A to 6B, when the mold A, the mold B, and the mold C are used, according to the predetermined operation example, Independent processes, including a preheating process, can be performed in parallel.
 また、予備加熱部(A´部)に関して、図6(a)に示されるように、搬送装置62の上方には、予備加熱装置62aおよび小型電源62bが備えられており、金型60の搬送中に、金型60の外表面(シート状物の非形成面)についても、所定温度に調整できるように構成されていることが好ましい。
 そのため、金型60の内表面と外表面との温度差が小さくなって、金型60の金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、金型の形状にかかわらず、金型全体を、均一かつ高速に加熱することができる。
 そして、予備加熱装置62aが備えられている搬送装置62の下方には、通常の、フック62cが設けてあり、当該フック62cを利用して、予備加熱される金型(第1の金型)60Aとは異なる、別の金型(第2の金型)60B、60Cのいずれかについても把持して、同時搬送できるように構成してある。
 したがって、複数の金型(第1の金型および第2の金型)を同時搬送することによって、金型に対して、所定処理を施すまでの待ち時間が少なくなって、シート状物の一つ当たりの成形時間(タクトタイム)をさらに短くすることができる。
Further, as shown in FIG. 6A, with respect to the preheating unit (A ′ portion), a preheating device 62a and a small power source 62b are provided above the conveying device 62, and the die 60 is conveyed. It is preferable that the outer surface of the mold 60 (the non-formation surface of the sheet-like material) is also configured to be adjusted to a predetermined temperature.
Therefore, the temperature difference between the inner surface and the outer surface of the mold 60 is reduced, and the metal fatigue of the mold 60 and the occurrence of seizure phenomenon on the inner surface of the molding resin are effectively suppressed, and the shape of the mold is reduced. Regardless, the entire mold can be heated uniformly and at high speed.
A normal hook 62c is provided below the transfer device 62 provided with the preheating device 62a, and a die (first die) that is preheated using the hook 62c. Different molds (second molds) 60B and 60C, which are different from 60A, can be gripped and simultaneously conveyed.
Therefore, by simultaneously transporting a plurality of molds (first mold and second mold), the waiting time until the predetermined process is performed on the mold is reduced, and one sheet-like product is obtained. The molding time per contact (tact time) can be further shortened.
 ここで、かかる予備加熱装置62aとしては、遠赤外線加熱方式のヒーターを備えることが好ましい。
 この理由は、このような遠赤外線加熱方式のヒーターとすることによって、金型の少なくとも外表面の任意場所から、熱線が金型内部まで浸透するので、金型の内表面形状によらず、金型全体を、より均一かつ高速に加熱できるためである。
 また、このような遠赤外線加熱方式のヒーターであれば、比較的軽量化,省スペース化が図られるためである。
 したがって、遠赤外線加熱方式のヒーターを搬送装置の一部に取り付けたとしても、金型を予備加熱しながら、当該搬送装置を、円滑かつ高速に移送できるという利点が得られる。
Here, it is preferable to provide a far-infrared heating type heater as the preheating device 62a.
The reason for this is that by using such a far-infrared heater, the heat rays penetrate from at least an arbitrary location on the outer surface of the mold to the inside of the mold. This is because the entire mold can be heated more uniformly and at high speed.
In addition, such a far infrared heating type heater can achieve a relatively light weight and space saving.
Therefore, even if a far-infrared heating type heater is attached to a part of the transport device, there is an advantage that the transport device can be transported smoothly and at high speed while preliminarily heating the mold.
 また、図6(a)に示すように、予備加熱装置62aが、下方に開口した開口部を有しており、当該開口部を介して、金型を収容する被覆部材62dを備えていることが好ましい。
 この理由は、このように下方に開口した、概ね御椀型の被覆部材を備えることにより、金型の周囲を、上方から覆いつつ、物理的に確実に把持できるためである。
 また、かかる被覆部材であれば、断熱把持部材として、所定の断熱性を発揮し、予備加熱した金型からの上方等への熱の放散があるとしても、かかる熱放散を有効に抑制することができる。
Further, as shown in FIG. 6A, the preheating device 62a has an opening that opens downward, and includes a covering member 62d that accommodates a mold through the opening. Is preferred.
The reason for this is that by providing a generally treat-shaped covering member that opens downward in this way, the periphery of the mold can be gripped physically and securely from above.
Further, with such a covering member, the heat insulating gripping member exhibits a predetermined heat insulating property and effectively suppresses heat dissipation even if heat is dissipated upward from the preheated mold. Can do.
8.シート状物
 シート状物の形態に関し、その構成材料は特に制限されるものでなく、例えば、エポキシ樹脂、塩化ビニル樹脂、アクリル樹脂、オレフィン樹脂、ウレタン樹脂、ポリカーボネート樹脂、またはポリエステル樹脂の少なくとも一つの樹脂から構成してあることが好ましい。
 この理由は、このように構成することにより、汎用性が高く、安価であり、しかも装飾性に優れたシート状物を使用することができるためである。
8). Sheet-like material Regarding the form of the sheet-like material, the constituent material is not particularly limited, and for example, at least one of epoxy resin, vinyl chloride resin, acrylic resin, olefin resin, urethane resin, polycarbonate resin, or polyester resin It is preferable to be comprised from resin.
The reason for this is that a sheet-like material that is highly versatile, inexpensive, and excellent in decorativeness can be used with this configuration.
 また、シート状物の厚さを1.1~1.4mmの範囲内の値とすることが好ましい。
 この理由は、かかるシート状物の厚さが1.1mm未満の値になると、機械的強度や耐久性が著しく低下したりする場合があって、用途が過度に制限されたり、実用性が著しく低下する場合があるためである。
 一方、かかるシート状物の厚さが1.4mmを超えると、金型温度を過度に高く設定しなければならなかったり、形成時のパウダリング時間が過度に長くなったり、さらには、シート状物の取扱いが困難になったりする場合があるためである。
 したがって、シート状物の厚さを1.15~1.35mの範囲内の値とすることがより好ましく、1.2~1.3mmの範囲内の値とすることがさらに好ましい。
Further, the thickness of the sheet-like material is preferably set to a value within the range of 1.1 to 1.4 mm.
The reason for this is that when the thickness of the sheet-like material is less than 1.1 mm, the mechanical strength and durability may be significantly reduced, the use is excessively limited, and the practicality is remarkable. This is because it may decrease.
On the other hand, if the thickness of the sheet-like material exceeds 1.4 mm, the mold temperature must be set too high, the powdering time during formation becomes excessively long, This is because the handling of objects may become difficult.
Accordingly, the thickness of the sheet-like material is more preferably set to a value within the range of 1.15 to 1.35 m, and further preferably set to a value within the range of 1.2 to 1.3 mm.
 また、シート状物、特に、二色成形されたシート状物の形態は、接着性や取扱いが容易なことから平坦なフィルムであることも好ましいが、より装飾性に優れていることから、表面にエンボス処理や開口部(スリットを含む)が設けてあることも好ましい。
 さらに、シート状物の表面や内部に、所定の印刷や着色が施してあることも好ましい。
 その上で、シート状物が、自動車の内装部品やバンパーに適した外形を有することが好ましい。
In addition, the form of the sheet-like material, particularly the two-color molded sheet-like material, is preferably a flat film because it is easy to adhere and handle, but since it is more decorative, the surface It is also preferable that an embossing treatment and an opening (including a slit) are provided on the surface.
Furthermore, it is also preferable that predetermined printing or coloring is performed on the surface or inside of the sheet-like material.
In addition, it is preferable that the sheet-like material has an outer shape suitable for automobile interior parts and bumpers.
[第2の実施形態]
 第2の実施形態は、図7(a)~(c)および図8(a)~(c)に示すように、金型温度を220℃以下に加熱する金型加熱部と、融点が160℃以下の成形樹脂を所定時間パウダリングして、所定厚さのシート状物を成形するパウダースラッシュ部と、金型に形成されたシート状物を、後加熱処理する後加熱処理部と、金型温度を60℃以下に冷却する金型冷却部と、冷却したシート状物を脱型する金型加工部と、を備えた低温加熱型パウダースラッシュ成形機を用いてなるパウダースラッシュ成形方法である。
 そして、後加熱処理部において、成形したシート状物の裏面に、200℃以下の熱風を吹き付けて、後加熱処理することを特徴とするパウダースラッシュ成形方法である。
 以下、二色成形シートを製造することを例にとって、第2の実施形態のパウダースラッシュ成形方法について具体的に説明する。
[Second Embodiment]
As shown in FIGS. 7 (a) to (c) and FIGS. 8 (a) to (c), the second embodiment includes a mold heating unit for heating the mold temperature to 220 ° C. or less, and a melting point of 160. A powder slash part that forms a sheet material having a predetermined thickness by powdering a molding resin at a temperature of ℃ or less for a predetermined time, a post-heat treatment part that post-heats the sheet material formed on the mold, and a mold A powder slush molding method using a low temperature heating type powder slush molding machine provided with a mold cooling section that cools a mold temperature to 60 ° C. or less and a mold processing section that demolds the cooled sheet-like material. .
And in a post-heat-treatment part, it is a powder slush shaping | molding method characterized by spraying a hot air of 200 degrees C or less on the back surface of the shape | molded sheet-like material, and performing a post-heating process.
Hereinafter, the powder slush molding method of the second embodiment will be specifically described with reference to an example of manufacturing a two-color molded sheet.
1.塗布工程
 塗布工程は、金型加工部(E部)において、所定の第2の樹脂を、金型60の一部に塗布し、厚さ1~200μmの塗布層を形成する樹脂塗布工程(以下、塗装工程と称する場合がある。)である。
 すなわち、塗装工程は、金型60を所定箇所に配置するとともに、塗装装置、例えば、先端部がL字状であるスプレーノズルを装着したスプレー樹脂塗布装置を用いて、金型60の所定場所に対して、所定厚さの塗布層を形成する工程である。
 その場合、所望の箇所以外の箇所に、塗料が付着しないように、マスキング部材を所定場所に予め装着しておくことが好ましい。
 そして、塗布条件については特に制限されるものではないが、例えば、厚さ1~200μmの塗布層を形成するのに、1~60秒/m2の塗布速度とすることが好ましく、10~30秒/m2の塗布速度とすることがより好ましい。
1. Application Step In the application step, a predetermined second resin is applied to a part of the mold 60 in the mold processing part (E part) to form an application layer having a thickness of 1 to 200 μm (hereinafter referred to as a resin application process). , Sometimes referred to as a painting process).
That is, in the painting process, the mold 60 is disposed at a predetermined location, and the coating device, for example, a spray resin coating device equipped with a spray nozzle having an L-shaped tip is used to place the mold 60 at a predetermined location. On the other hand, it is a step of forming a coating layer having a predetermined thickness.
In that case, it is preferable to attach a masking member in advance to a predetermined location so that the paint does not adhere to a location other than the desired location.
The coating conditions are not particularly limited. For example, in order to form a coating layer having a thickness of 1 to 200 μm, a coating speed of 1 to 60 seconds / m 2 is preferable. More preferably, the coating speed is 2 sec / m 2 .
2.加熱工程
 加熱工程は、金型加熱部(B部)において塗布層を形成した金型60を、その状態のままで、比較的低い温度、すなわち、220℃以下の金型温度となるように、加熱する工程(以下、加熱工程と称する場合がある。)である。
 したがって、所定の塗布層を形成した金型60を、金型加工部(E部)から金型加熱部(B部)に移動させて、加熱炉58内に搬入し、そこで、所定の塗布層を乾燥するとともに、金型60の内面温度が220℃以下となるように、加熱する工程である。
 なお、上述したように、パウダースラッシュ工程において、均一な厚さの二色成形シート状物を成形できるように、金型(塗布層表面を含む)の内面温度が220℃以下になるように、熱風による対流加熱を行うことが好ましい。
2. Heating step In the heating step, the mold 60 on which the coating layer is formed in the mold heating part (B part) remains in that state, and a relatively low temperature, that is, a mold temperature of 220 ° C. or lower, This is a heating step (hereinafter sometimes referred to as a heating step).
Therefore, the mold 60 on which the predetermined coating layer is formed is moved from the mold processing section (E section) to the mold heating section (B section) and carried into the heating furnace 58, where the predetermined coating layer is formed. And heating so that the inner surface temperature of the mold 60 is 220 ° C. or lower.
As described above, in the powder slush process, the inner surface temperature of the mold (including the coating layer surface) is 220 ° C. or lower so that a two-color molded sheet having a uniform thickness can be formed. It is preferable to perform convection heating with hot air.
3.パウダースラッシュ工程
 パウダースラッシュ工程は、パウダースラッシュ部(A部)において、塗布層を形成した金型60に対して、その状態で、所定のシート状物を成形する工程(以下、スラッシュ工程と称する場合がある。)である。
 すなわち、塗布層(図示せず)が形成され、加熱状態の金型60を、金型加熱部(B部)からパウダースラッシュ部(A部)に移動させ、そこで、図7(c)に示すように、塗布層の上、あるいは塗布層に隣接して、第1樹脂の成形樹脂92からなる二色成形シート状物94を形成する工程である。
3. Powder slush process The powder slush process is a process of forming a predetermined sheet-like material in the state of the mold 60 in which the coating layer is formed in the powder slash part (A part) (hereinafter referred to as a slush process). There is.)
That is, a coating layer (not shown) is formed, and the heated mold 60 is moved from the mold heating part (B part) to the powder slash part (A part), and as shown in FIG. As described above, the two-color molded sheet 94 made of the first resin molding resin 92 is formed on or adjacent to the coating layer.
 ここで、スラッシュ工程を実施するにあたり、フレーム部材60aを含む金型60と、リザーバタンクとを連結した状態で回転させて、金型60の内表面60bに所定の厚さの二色成形シート状物94を形成することが好ましい。
 すなわち、フレーム部材60aを含む金型60と、リザーバタンク88とを組み合わせた状態で、上下方向に反転させることが好ましい。
 この理由は、このように実施すると、リザーバタンク88内の成形樹脂(パウダー)92は自重で、金型60の内表面60bに落下するので、かかる金型60の内表面60bに接する成形樹脂92およびその近傍の成形樹脂92のみが、金型60の熱によって溶融状態となって付着し、二色成形シート状物94を短時間にして形成することができるためである。
 より具体的には、図4に示すように、金型温度が過度に低いと、クラックが生じる製造回数や、グロス現象が生じる製造回数が著しく増加するものの、図5に示すように、得られるシート状物の厚さが薄くなったり、厚さのばらつきが大きくなったりする傾向がある。
 したがって、金型温度を220℃以下の値に加熱するとともに、パウダリング時間を調整し、かつ、200℃以下の熱風を、シート状物の裏面に対して、吹き付ける後加熱処理を実施することが有効であると理解される。
Here, in carrying out the slash process, the mold 60 including the frame member 60a and the reservoir tank are rotated in a connected state, and a two-color molded sheet having a predetermined thickness is formed on the inner surface 60b of the mold 60. Preferably, the object 94 is formed.
That is, it is preferable that the mold 60 including the frame member 60a and the reservoir tank 88 are combined and inverted in the vertical direction.
This is because, if implemented in this way, the molding resin (powder) 92 in the reservoir tank 88 falls under its own weight and falls onto the inner surface 60 b of the mold 60, so that the molding resin 92 that contacts the inner surface 60 b of the mold 60 is used. This is because only the molding resin 92 in the vicinity thereof adheres in a molten state due to the heat of the mold 60 and the two-color molded sheet 94 can be formed in a short time.
More specifically, as shown in FIG. 4, when the mold temperature is excessively low, the number of productions in which cracks occur and the number of productions in which gloss phenomenon occurs are remarkably increased, but as shown in FIG. There exists a tendency for the thickness of a sheet-like thing to become thin, or the dispersion | variation in thickness becomes large.
Therefore, the mold temperature is heated to a value of 220 ° C. or lower, the powdering time is adjusted, and hot heat of 200 ° C. or lower is blown against the back surface of the sheet-like material, followed by heat treatment. It is understood that it is effective.
 また、フレーム部材60aを含む金型60を反転させる際、成形樹脂92が所定箇所以外に飛散せず、かかる金型60における所望の内表面60bのみに、二色成形シート状物94を形成できるように、攪拌室88aを介して吸引し、金型60内の圧力を低下させることが好ましい。
 すなわち、金型60を回転させてパウダースラッシュ成形している最中には、金型60の内圧を低下させるために吸引し、パウダースラッシュ成形前には、リザーバタンク88に収容された成形樹脂92の内部に、所定量の空気を吹き込むための圧力調整装置(図示せず)が設けてあることが好ましい。
Further, when the mold 60 including the frame member 60a is reversed, the molding resin 92 is not scattered except in a predetermined place, and the two-color molded sheet 94 can be formed only on the desired inner surface 60b of the mold 60. Thus, it is preferable to suck through the stirring chamber 88a to reduce the pressure in the mold 60.
That is, during the powder slush molding by rotating the mold 60, suction is performed to reduce the internal pressure of the mold 60, and before the powder slush molding, the molding resin 92 contained in the reservoir tank 88 is sucked. Is preferably provided with a pressure adjusting device (not shown) for blowing a predetermined amount of air.
4.後加熱処理工程
 後加熱処理工程は、パウダースラッシュ成形した二色成形シート状物の裏面に、所定の加熱炉を用いて、200℃以下の熱風を吹き付けて、成形樹脂が十分に溶融していない場合に、それを平坦化させる工程である。
 すなわち、後加熱処理工程を設けることによって、比較的緩やかに降温できるとともに、低温加熱によるパウダースラッシュ成形の問題点(不十分加熱)を解決でき、かつ、成形樹脂の焼き付け現象や金型の金属疲労を防止しつつ、所定厚さの二色成形シート状物を安定的かつ経済的に得ることができる。
 但し、吹き付け温度が過度に低くなると、成形樹脂が十分に溶融できずに、厚さのばらつき大きくなる場合がある。
 したがって、形成された二色成形シート状物の内面に対して、165~195℃の熱風を吹き付けることがより好ましく、170~190℃の熱風を吹き付けることがさらに好ましい。
4). Post-heat treatment process In the post-heat treatment process, hot air of 200 ° C. or less is blown onto the back surface of the two-color molded sheet-like product formed by powder slush, and the molded resin is not sufficiently melted. In this case, it is a step of flattening it.
In other words, by providing a post-heat treatment step, the temperature can be lowered relatively slowly, and the problems of powder slush molding (insufficient heating) due to low-temperature heating can be solved, and the resin baking phenomenon and metal fatigue of the mold It is possible to stably and economically obtain a two-color molded sheet having a predetermined thickness.
However, if the spraying temperature is excessively low, the molding resin may not be sufficiently melted and the thickness variation may increase.
Accordingly, it is more preferable to blow hot air at 165 to 195 ° C., and further preferably hot air at 170 to 190 ° C. is applied to the inner surface of the formed two-color molded sheet.
 そして、後加熱処理工程を実施するにあたり、後加熱処理部が、金型加熱部の上方に設けてあり、当該金型加熱部の蓄熱を導入して、二色成形シート状物の表面に、200℃以下の熱風を吹き付けることも好ましい。
 この理由は、このように実施することにより、パウダースラッシュ成形機全体としての省スペース化に寄与することができ、ひいては、二色成形シート状物を、迅速かつ安定的に、しかも経済的に得ることができるためである。
And, in performing the post-heat treatment step, the post-heat treatment section is provided above the mold heating section, introducing heat storage of the mold heating section, on the surface of the two-color molded sheet-like product, It is also preferable to blow hot air of 200 ° C. or less.
This reason can contribute to space saving as a whole powder slush molding machine by carrying out in this way, and as a result, a two-color molded sheet can be obtained quickly and stably and economically. Because it can.
5.金型冷却工程
 金型冷却工程は、金型冷却部(C部)において二色成形シート状物94を形成した金型60を冷却する工程(以下、金型冷却工程と称する場合がある。)である。
 すなわち、二色成形シート状物94を成形した状態の金型60を、パウダースラッシュ部(A部)から金型冷却部(C部)に移動させ、そこで、少なくとも第1のエアブロー、ミスト/シャワー、および第2のエアブローの組み合わせによる三段階ステップで冷却する工程である。
5. Mold Cooling Process The mold cooling process is a process of cooling the mold 60 on which the two-color molded sheet 94 is formed in the mold cooling part (C part) (hereinafter sometimes referred to as a mold cooling process). It is.
That is, the mold 60 in a state where the two-color molded sheet 94 is molded is moved from the powder slash part (A part) to the mold cooling part (C part), where there is at least a first air blow, mist / shower. And a step of cooling in a three-step step by a combination of the second air blow.
 より具体的には、最初に、後加熱処理を経てなる、二色成形シート状物94が形成された150℃程度の金型60の内部および外部に対し、第1のエアーとして、空気を吹き付けて、金型温度を約100℃程度まで低下させる。すなわち、第1エアーの吹き付け中の金型の冷却速度を120~160℃/分の範囲内の値とすることが好ましい。
 次いで、ミストノズルおよびシャワーノズル、あるいはいずれか一方のノズルから水ミストおよび水シャワーを、金型外部から吹き付けて、蒸発エンタルピーを利用して、金型温度を約100℃から、約60℃程度まで低下させる。すなわち、ミスト/シャワー冷却中の金型の冷却速度を165~190℃/分の範囲内の値とすることが好ましい。
 最後に、二色成形シート状物が形成された60℃程度の金型外部および内部に対し、第2のエアーとして、空気を吹き付け、さらに金型温度や樹脂シートに含まれる内部熱を低下させるとともに、金型表面に残留している水滴等を吹き飛ばし、金型における錆の発生を有効に防止する。すなわち、第2エアーの吹き付け中の金型の冷却速度を、40~100℃/分の範囲内の値とすることが好ましい。
More specifically, first, air is blown as the first air on the inside and outside of the mold 60 at about 150 ° C. on which the two-color molded sheet 94 is formed, which is subjected to post-heating treatment. Then, the mold temperature is lowered to about 100 ° C. That is, it is preferable to set the cooling rate of the mold during the blowing of the first air to a value within the range of 120 to 160 ° C./min.
Next, water mist and water shower are sprayed from the outside of the mold from the mist nozzle and shower nozzle or any one of the nozzles, and the mold temperature is increased from about 100 ° C. to about 60 ° C. using evaporation enthalpy. Reduce. That is, the mold cooling rate during mist / shower cooling is preferably set to a value in the range of 165 to 190 ° C./min.
Finally, air is blown as second air to the outside and inside of the mold at about 60 ° C. on which the two-color molded sheet is formed, and further, the mold temperature and the internal heat contained in the resin sheet are lowered. At the same time, water droplets remaining on the mold surface are blown off to effectively prevent the rust from being generated in the mold. That is, it is preferable that the cooling rate of the mold during the blowing of the second air is set to a value within the range of 40 to 100 ° C./min.
6.脱型工程
 脱型工程は、金型加工部において、二色成形シート状物を、金型から脱型する工程(以下、脱型工程と称する場合がある。)である。
 すなわち、金型冷却部(C部)から金型加工部(E部)に移動させ、冷却工程を経て、約60℃程度に低下した二色成形シート状物94を、金型60から脱型する工程である。
 なお、かかる脱型工程は、ロボットを用いて自動的に行うこともできるし、あるいは人的作業として、二色成形シート状物を脱型することもできる。
6). Demolding process The demolding process is a process of demolding the two-color molded sheet-like material from the mold in the mold processing section (hereinafter sometimes referred to as a demolding process).
That is, the two-color molded sheet 94 lowered to about 60 ° C. is removed from the mold 60 by moving from the mold cooling section (C section) to the mold processing section (E section). It is a process to do.
The demolding step can be automatically performed using a robot, or the two-color molded sheet can be demolded as a human work.
7.その他
 図6(b)に示すように、予備加熱工程として、金型加工部(E部)において塗布層を形成した金型60を、搬送装置(クレーン等)の一部に備えてなる予備加熱装置を用いて、例えば、100~200℃の金型温度(外表面温度)となるように、金型60の外表面を加熱する工程(以下、予備加熱工程と称する場合がある。)を設けることが好ましい。
 すなわち、かかる予備加熱工程は、所定の塗布層を形成した金型60を、金型加工部(E部)から金型加熱部(A部)に移動させる途中に、所定の塗布層を乾燥するとともに、金型60の外表面温度が所定温度となるように、加熱する工程である。
7). Others As shown in FIG. 6 (b), as a preheating step, preheating is performed by providing a mold 60 in which a coating layer is formed in a mold processing section (E section) in a part of a transport apparatus (a crane or the like). Using the apparatus, for example, a step of heating the outer surface of the mold 60 (hereinafter sometimes referred to as a preheating step) is provided so that the mold temperature (outer surface temperature) is 100 to 200 ° C. It is preferable.
That is, in the preheating step, the predetermined coating layer is dried while the mold 60 on which the predetermined coating layer is formed is moved from the mold processing section (E section) to the mold heating section (A section). At the same time, it is a step of heating so that the outer surface temperature of the mold 60 becomes a predetermined temperature.
 また、予備加熱工程において、把持した金型60の外表面(B面)に対して、かかる予備加熱装置62aを動作させ、金型60の外表面の全体または一部を100~200℃の温度とすることが好ましく、165~195℃の温度とすることがより好ましく、170~190℃の温度とすることがさらに好ましい。
 この理由は、このような温度となるように金型60の外表面を予備加熱することにより、加熱炉58において、金型の内表面温度との温度差を少なくし、所定温度(例えば、250~300℃)となるように本加熱する際に、高速かつ均一加熱がさらに容易になるためである。
Further, in the preheating step, the preheating device 62a is operated on the gripped outer surface (B surface) of the mold 60 so that the entire or part of the outer surface of the mold 60 is heated to a temperature of 100 to 200 ° C. The temperature is preferably 165 to 195 ° C., more preferably 170 to 190 ° C.
This is because the temperature difference from the inner surface temperature of the mold is reduced in the heating furnace 58 by preheating the outer surface of the mold 60 so as to achieve such a temperature, and a predetermined temperature (for example, 250 This is because high-speed and uniform heating is further facilitated when the main heating is performed so that the temperature becomes ~ 300 ° C.
 また、予備加熱工程において、搬送装置62が、金型60を把持すると同時に、予備加熱装置62aにスイッチが入って、金型60を予備加熱することが好ましい。
 この理由は、このように金型の把持動作と同期して、金型を予備加熱することにより、金型の移送時間を十分に利用できるためである。
 但し、金型を把持すると同時に、予備加熱装置にスイッチが入ると言っても、必ずしも0秒後である必要はなく、パウダースラッシュ成形の状況等に応じて、0.1秒後や1秒後であっても良い。
In the preheating step, it is preferable that the transport device 62 grips the mold 60 and at the same time the preheating device 62a is switched on to preheat the mold 60.
The reason for this is that the mold transfer time can be fully utilized by preheating the mold in synchronism with the gripping operation of the mold.
However, even if it is said that the preheating device is switched on at the same time that the mold is gripped, it does not necessarily have to be 0 seconds later, depending on the conditions of powder slush molding, etc., after 0.1 seconds or 1 second It may be.
 その他、予備加熱工程において、金型の搬送時の温度低下を防止すべく、別の金型に対する加熱処理の間に、さらに別の金型を搬送装置にクランプしながら、予備加熱処理を施すことも好ましい。
 この理由は、所定の予備加熱処理によって、パウダースラッシュ部を含む一体箇所(B部/C部)での、加熱処理された金型に対するシート状物の形成を、より迅速かつ安定的に行うことができ、ひいては、シート状物一つ当たりの成形時間(タクトタイム)をより短期化できるためである。
In addition, in the preheating process, in order to prevent a temperature drop during the transfer of the mold, a preheating process is performed while another mold is clamped to the transfer device during the heating process for another mold. Is also preferable.
The reason for this is that the sheet-like material can be more quickly and stably formed on the heat-treated mold at the integrated part (B part / C part) including the powder slash part by a predetermined preheating treatment. This is because the forming time (tact time) per sheet can be shortened.
 なお、前述したように、金型60の温度が、所定温度になるまで、加熱炉58の熱風を循環利用して、金型60が加熱処理された後、パウダースラッシュ部(B部)に移動されることになる。
 その際、かかる金型をパウダースラッシュ部(B部)に移送するまでの間も、予備加熱装置によって、温度維持のための加熱として、金型の外表面の温度を、所望温度範囲の値に維持することができる。
 すなわち、予備加熱装置によって、金型の外表面を所定温度についても、それが維持されるような温度で加熱(予備加熱と区別して、維持加熱と称する場合がある。)することもできるので、パウダースラッシュ部において、シート状物をさらに安定的に成形することができる。
As described above, after the mold 60 is heat-treated using the hot air of the heating furnace 58 until the temperature of the mold 60 reaches a predetermined temperature, the mold 60 is moved to the powder slash part (B part). Will be.
At that time, the temperature of the outer surface of the mold is set to a value within a desired temperature range as the heating for maintaining the temperature by the preheating device until the mold is transferred to the powder slash part (B part). Can be maintained.
That is, the preheating device can heat the outer surface of the mold at a predetermined temperature even at a temperature at which it is maintained (sometimes referred to as maintenance heating, as distinguished from preheating). In the powder slush portion, the sheet-like material can be more stably formed.
[実施例1]
1.シート状物の作成
(1)金型の準備工程
 図1に示す金型加工部(E部)において、所定の金型(ニッケル電鋳型、厚さ3.5mm)を準備した。
 なお、図10に、パウダースラッシュ成形を実施する際の、全体の金型温度に関する温度変化プロフィールを示すが、図10中、A点で示される位置が、金型の準備工程の際の金型温度を示しており、約48℃である。
[Example 1]
1. Preparation of sheet-like material (1) Mold preparation step In the mold processing section (E section) shown in FIG. 1, a predetermined mold (nickel electromold, thickness 3.5 mm) was prepared.
FIG. 10 shows a temperature change profile related to the entire mold temperature when performing powder slush molding. In FIG. 10, the position indicated by point A is the mold during the mold preparation process. The temperature is indicated and is about 48 ° C.
(2)塗布工程
 次いで、金型加工部(E部)において、金型にマスキング部材を装着した後、樹脂塗布装置を用いて、所定箇所に対して、第2の樹脂として、耐熱性塩化ビニル樹脂(N-マレイミドグラフト重合塩化ビニル樹脂100重量部、硬化剤10重量部、可塑剤5重量部、三塩基性硫酸鉛2重量部、ステアリン酸鉛2重量部)を用いて、厚さ20μmの塗布層を成形した。
 なお、図10中、A´点で示される位置が、一般的温度計、例えば、非接触赤外線温度計、サーモグラフィ温度計、あるいは、接触式熱電対(以下、同様である。)によって測定した、塗布工程の際の金型の内面温度を示しており、金型の準備工程と同様に、約48℃であった。
(2) Coating step Next, in the mold processing section (E section), after mounting a masking member on the mold, a resin coating apparatus is used to apply heat resistant vinyl chloride as a second resin to a predetermined location. Using a resin (100 parts by weight of an N-maleimide graft-polymerized vinyl chloride resin, 10 parts by weight of a curing agent, 5 parts by weight of a plasticizer, 2 parts by weight of tribasic lead sulfate, 2 parts by weight of lead stearate) A coating layer was formed.
In addition, the position shown by A 'point in FIG. 10 was measured with the general thermometer, for example, a non-contact infrared thermometer, a thermography thermometer, or a contact-type thermocouple (hereinafter the same). The inner surface temperature of the mold during the coating process is shown, and was about 48 ° C. as in the mold preparation process.
(3)加熱工程
 次いで、図1に示す金型加工部(E部)から、金型加熱部(B部)に、クレーンを用いて、所定の塗布層が形成された金型を移動させ、マスキング部材を脱着した後、温度が約430℃に維持された加熱炉(単位時間あたりの供給熱量:40万kcal/hr)の内部に収容して、金型の内面温度が210℃になるように、約88秒間加熱した。
 そして、図10中、B点が、加熱開始時の金型温度を示しており、加熱炉に投入した瞬間の金型温度は約48℃である。
 さらに、図10中、C点が、加熱終了時の金型の内面温度を示しており、約210℃である。したがって、加熱工程において、約110℃/分の加熱速度で、金型の内面温度が所定値となるように、効率的に加熱したことが理解される。
 なお、金型温度としての金型の内面温度は、上述した非接触赤外線温度計、サーモグラフィ温度計、あるいは、接触式熱電対によって、直接的に測定することもできるし、あるいは、これら非接触赤外線温度計等によって、金型の外面温度を測定し、それから、金型の素材や厚さ等を考慮して、内面温度を推定する、すなわち、間接的に測定することができる。
(3) Heating process Next, using a crane, the mold on which the predetermined coating layer is formed is moved from the mold processing section (E section) shown in FIG. 1 to the mold heating section (B section). After removing the masking member, it is housed in a heating furnace (supplied heat amount per unit time: 400,000 kcal / hr) maintained at a temperature of about 430 ° C. so that the inner surface temperature of the mold becomes 210 ° C. And heated for about 88 seconds.
In FIG. 10, point B indicates the mold temperature at the start of heating, and the mold temperature at the moment when it is put into the heating furnace is about 48 ° C.
Further, in FIG. 10, point C indicates the inner surface temperature of the mold at the end of heating, which is about 210 ° C. Therefore, it can be understood that in the heating step, the mold was efficiently heated so that the inner surface temperature of the mold became a predetermined value at a heating rate of about 110 ° C./min.
The inner surface temperature of the mold as the mold temperature can be directly measured by the above-described non-contact infrared thermometer, thermography thermometer, or contact thermocouple, or these non-contact infrared thermometers The outer surface temperature of the mold can be measured by a thermometer or the like, and then the inner surface temperature can be estimated in consideration of the material and thickness of the mold, that is, indirectly measured.
(4)パウダースラッシュ工程
 次いで、図1に示すように、金型加熱部(B部)からパウダースラッシュ部(A部)に、クレーンを用いて金型を移動させ、パウダースラッシュ成形機を用いて、所定の塗布層が形成された金型に対して、耐熱塩化ビニル樹脂からなる成形樹脂(平均粒径:30μmパウダー)を、36秒間パウダースラッシュ成形し、厚さ約1.2mmの二色成形シート物を得た。
 なお、図10中、C点からD点の温度変化が、金型加熱部(B部)からパウダースラッシュ部(A部)に、金型を移動させた時間に対応して、生じており、約20秒間の間に、金型温度が約10℃低下していることが理解される。
 次いで、図10中、D点が、スラッシュ成形開始時の金型温度を示しており、約195℃である。
 また、図10中、E点が、スラッシュ成形終了時の金型温度を示しており、約160℃まで、下降していることが理解される。
(4) Powder Slash Step Next, as shown in FIG. 1, the mold is moved from the mold heating part (B part) to the powder slash part (A part) using a crane, and the powder slush molding machine is used. Then, a molding resin (average particle size: 30 μm powder) made of heat-resistant vinyl chloride resin is powder-slush-molded for 36 seconds on a mold on which a predetermined coating layer is formed, and a two-color molding having a thickness of about 1.2 mm A sheet was obtained.
In addition, in FIG. 10, the temperature change from the C point to the D point occurs corresponding to the time when the mold is moved from the mold heating part (B part) to the powder slash part (A part), It will be appreciated that the mold temperature has decreased by about 10 ° C. in about 20 seconds.
Next, in FIG. 10, the point D indicates the mold temperature at the start of slush molding, which is about 195 ° C.
In FIG. 10, point E indicates the mold temperature at the end of slush molding, and it is understood that the temperature has dropped to about 160 ° C.
(5)後加熱処理工程
 次いで、図1に示すように、パウダースラッシュ部(A部)から後加熱処理部(B´部)に、クレーンを用いて金型を移動させ、後加熱炉(20万kcal/hr)を用いて、パウダースラッシュ成形した二色成形シート物の裏面に、200℃の熱風を、15秒間吹き付けて、成形樹脂を十分に溶融させるとともに、平坦化させた。
 なお、図10中、E点からE´点の温度変化が、パウダースラッシュ部(A部)から、後加熱部(B´部)に、金型を移動させた時間に対応して、生じており、約10秒間で、約10℃低下していることが理解される。
 次いで、図10中、E´点が、後加熱処理開始時の金型温度を示しており、約170℃である。
 また、図10中、F点が、後加熱処理終了時の金型温度を示しており、約15秒間、後加熱したものの、金型温度は約170℃に維持され、後加熱処理中の加熱速度は、約0℃/分であった。
 これは、後加熱処理によって、成形された二色成形シート状物の、実質的に裏面のみが溶解し、平坦化すれば良いことから、金型温度自体は、ほぼ一定温度なるように調整したものである。
(5) Post Heat Treatment Step Next, as shown in FIG. 1, the mold is moved from the powder slash part (A part) to the post heat treatment part (B ′ part) using a crane, and the post heating furnace (20 200 kcal / hr), hot air at 200 ° C. was blown on the back surface of the two-color molded sheet formed by powder slush for 15 seconds to sufficiently melt the molding resin and flatten it.
In addition, in FIG. 10, the temperature change from E point to E 'point occurs corresponding to the time when the mold was moved from the powder slash part (A part) to the post-heating part (B' part). It is understood that the temperature is lowered by about 10 ° C. in about 10 seconds.
Next, in FIG. 10, the point E ′ indicates the mold temperature at the start of the post-heating treatment, which is about 170 ° C.
In FIG. 10, point F indicates the mold temperature at the end of the post-heating treatment, and after the post-heating for about 15 seconds, the mold temperature is maintained at about 170 ° C., and the heating during the post-heating treatment is performed. The rate was about 0 ° C./min.
This is because the post-heating treatment is performed so that only the back surface of the molded two-color molded sheet is substantially melted and flattened, so that the mold temperature itself was adjusted to be a substantially constant temperature. Is.
(6)冷却工程
 次いで、図1に示すように、後加熱処理部(B´部)から金型冷却部(C部)に、クレーンを用いて二色成形シート状物を含む金型を移動させ、約150℃の金型に対して、第1のエアー(乾燥空気)を約20秒間吹き付けることにより、二色成形シート状物の表面温度が約100℃に低下することを確認した。すなわち、第1エアーの吹き付け中の冷却速度は、約150℃/分であったことが理解される。
 次いで、ミスト/シャワー冷却を約15秒間実施し、二色成形シート状物の表面温度が、約100℃から、約55℃に低下することを確認した。すなわち、ミスト/シャワー冷却中の冷却速度は、約180℃/分であったことが理解される。
 さらに、第2のエアー(乾燥空気)を約5秒間吹き付け、二色成形シート状物の表面に付着した水滴を飛散させるとともに、金型温度が、約55℃から、約50℃まで低下することを確認した。すなわち、第2エアーの吹き付け中の冷却速度は、約60℃/分であったことが理解される。
 なお、図10中、F点からF´点の温度変化が、後加熱処理部(B´部)から、金型冷却部(C部)に、金型を移動させる時間に対応して、生じている。
 また、F´点が、冷却開始時の金型温度を示しており、約150℃である。
 また、G1点が、第1エアー吹き付け後の金型温度を示しており、約100℃である
 また、G2点が、ミスト/シャワー吹き付け後の金型温度を示しており、約55℃である。
 さらに、G3点が、第2エアーを吹き付けた後の金型温度を示しており、約50℃である。
(6) Cooling Step Next, as shown in FIG. 1, the mold including the two-color molded sheet-like material is moved from the post-heat treatment section (B ′ section) to the mold cooling section (C section) using a crane. Then, it was confirmed that the surface temperature of the two-color molded sheet was lowered to about 100 ° C. by spraying the first air (dry air) for about 20 seconds against the mold at about 150 ° C. That is, it is understood that the cooling rate during the blowing of the first air was about 150 ° C./min.
Next, mist / shower cooling was performed for about 15 seconds, and it was confirmed that the surface temperature of the two-color molded sheet was lowered from about 100 ° C. to about 55 ° C. That is, it is understood that the cooling rate during the mist / shower cooling was about 180 ° C./min.
Furthermore, the second air (dry air) is blown for about 5 seconds to scatter water droplets adhering to the surface of the two-color molded sheet, and the mold temperature is lowered from about 55 ° C. to about 50 ° C. It was confirmed. That is, it is understood that the cooling rate during the blowing of the second air was about 60 ° C./min.
In FIG. 10, the temperature change from the point F to the point F ′ occurs corresponding to the time for moving the mold from the post-heating processing part (B ′ part) to the mold cooling part (C part). ing.
The point F ′ indicates the mold temperature at the start of cooling, which is about 150 ° C.
The G1 point indicates the mold temperature after the first air blowing and is about 100 ° C. The G2 point indicates the mold temperature after the mist / shower blowing and is about 55 ° C. .
Furthermore, point G3 indicates the mold temperature after the second air is blown, and is about 50 ° C.
(7)脱型工程
 次いで、図1に示すように、金型冷却部(C部)から金型加工部(E部)に、クレーンを用いて二色成形シート状物を含む金型を移動させ、冷却工程を経て、約50℃の温度に低下した二色成形シート状物を、人的作業により脱型し、実施例1の二色成形シート状物とした。
 なお、図10中、G3点からH点の温度変化が、金型冷却部(C部)から、金型加工部(E部)に、金型を移動させた時間に対応して、生じており、約5秒かかっているものの、約50℃の金型温度のまま、二色成形シート状物を脱型することが理解される。
(7) Demolding Step Next, as shown in FIG. 1, the mold including the two-color molded sheet is moved from the mold cooling section (C section) to the mold processing section (E section) using a crane. The two-color molded sheet that had been cooled to a temperature of about 50 ° C. after the cooling step was removed by human work to obtain the two-color molded sheet of Example 1.
In FIG. 10, the temperature change from the point G3 to the point H occurs corresponding to the time when the die is moved from the die cooling part (C part) to the die processing part (E part). Although it takes about 5 seconds, it is understood that the two-color molded sheet is removed with the mold temperature of about 50 ° C.
2.二色成形シート状物の評価
(1)二色成形シート状物の形成性(評価1)
 得られた二色成形シート状物の任意の10か所の厚さをノギスで測定し、その平均厚さから、以下の基準に準じて、膜厚形成性を評価した。
◎:平均厚さが1.3mm以上である。
○:平均厚さが1.2mm以上である。
△:平均厚さが1.0mm以上である。
×:平均厚さが1.0mm未満である。
2. Evaluation of two-color molded sheet (1) Formability of two-color molded sheet (Evaluation 1)
The thickness of arbitrary 10 places of the obtained two-color molded sheet was measured with a caliper, and the film thickness formability was evaluated from the average thickness according to the following criteria.
A: The average thickness is 1.3 mm or more.
○: The average thickness is 1.2 mm or more.
Δ: Average thickness is 1.0 mm or more.
X: Average thickness is less than 1.0 mm.
(2)二色成形シート状物の厚さのばらつき(評価2)
 得られた二色成形シート状物の任意の10か所の厚さをノギスで測定し、最大値と、最小値の差から、以下の基準に準じて、膜厚のばらつきとして評価した。
◎:最大値と、最小値の差が50μm未満である。
○:最大値と、最小値の差が50μm~200μm未満である。
△:最大値と、最小値の差が200μm~500μm未満である。
×:最大値と、最小値の差が500μm以上である。
(2) Variation in thickness of two-color molded sheet (Evaluation 2)
Thicknesses at 10 arbitrary positions of the obtained two-color molded sheet were measured with calipers, and evaluated as variations in film thickness according to the following criteria from the difference between the maximum value and the minimum value.
A: The difference between the maximum value and the minimum value is less than 50 μm.
○: The difference between the maximum value and the minimum value is 50 μm to less than 200 μm.
Δ: The difference between the maximum value and the minimum value is 200 μm to less than 500 μm.
X: The difference between the maximum value and the minimum value is 500 μm or more.
(3)耐グロス性(評価3)
 図1に示すパウダースラッシュ成形機を用いて、同一条件で二色成形シート状物の製造を繰り返し、グロス現象(焼き付け現象)が生じるまでの製造回数を測定し、それを以下の基準に照らして、金型の耐グロス性として評価した。
◎:100回以上である。
○:80回以上である。
△:50回以上である。
×:50回未満である。
(3) Gloss resistance (Evaluation 3)
Using the powder slush molding machine shown in Fig. 1, the production of a two-color molded sheet is repeated under the same conditions, and the number of times of production until the gloss phenomenon (baking phenomenon) occurs is measured. The gloss resistance of the mold was evaluated.
(Double-circle): It is 100 times or more.
○: 80 times or more.
(Triangle | delta): It is 50 times or more.
X: Less than 50 times.
(4)耐クラック性(評価4)
 図1に示すパウダースラッシュ成形機を用いて、同一条件で二色成形シート状物の製造を繰り返し、金型にクラックが生じるまでの製造回数を測定し、それを以下の基準に照らして、金型の耐クラック性として評価した。
◎:100回以上である。
○:80回以上である。
△:50回以上である。
×:50回未満である。
(4) Crack resistance (Evaluation 4)
Using the powder slush molding machine shown in FIG. 1, the production of a two-color molded sheet is repeated under the same conditions, the number of times of production until cracks occur in the mold is measured, The mold was evaluated for crack resistance.
(Double-circle): It is 100 times or more.
○: 80 times or more.
(Triangle | delta): It is 50 times or more.
X: Less than 50 times.
[実施例2~3]
 実施例2~3においては、加熱工程における金型の表面温度を、220℃および200℃にそれぞれ変えたほかは、実施例1と同様に、二色成形シート状物を作成して、評価した。
[Examples 2 to 3]
In Examples 2 to 3, a two-color molded sheet was prepared and evaluated in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 220 ° C. and 200 ° C., respectively. .
[実施例4~5]
 実施例4~5においては、後加熱工程における吹き付け温度を、180℃および190℃にそれぞれ変えたほかは、実施例1と同様に、二色成形シート状物を作成して、評価した。
[Examples 4 to 5]
In Examples 4 to 5, a two-color molded sheet was prepared and evaluated in the same manner as in Example 1 except that the spraying temperature in the post-heating step was changed to 180 ° C. and 190 ° C., respectively.
[比較例1]
 比較例1においては、加熱工程における金型の表面温度を、260℃に変えるとともに、後加熱処理を実施しなかったほかは、実施例1と同様に、二色成形シート状物を作成して、評価した。
 なお、図11に、比較例1に準拠した金型の温度変化プロフィールを示す。
 すなわち、図11中、B点が、加熱開始時の金型温度を示しており、加熱炉に投入した瞬間の金型温度は約48℃である。さらに、図11中、C点が、加熱終了時の金型温度を示しており、約260℃である。したがって、約2分の加熱工程において、約110℃/分の加熱速度で、金型の内面温度が上昇することが理解される。
 一方、図11中、F点が、冷却開始時の金型温度を示しており、その温度は約205℃である。さらに、図11中、G点が、冷却終了時の金型温度を示しており、約50℃である。したがって、約36秒間の冷却工程において、約260℃/分の冷却速度で、金型温度が低下することが理解される。
[Comparative Example 1]
In Comparative Example 1, a two-color molded sheet was prepared in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 260 ° C. and no post-heating treatment was performed. ,evaluated.
In addition, in FIG. 11, the temperature change profile of the metal mold | die based on the comparative example 1 is shown.
That is, in FIG. 11, the point B indicates the mold temperature at the start of heating, and the mold temperature at the moment when it is put into the heating furnace is about 48 ° C. Furthermore, in FIG. 11, the point C indicates the mold temperature at the end of heating, which is about 260 ° C. Therefore, it is understood that the inner surface temperature of the mold rises at a heating rate of about 110 ° C./min in the heating process of about 2 minutes.
On the other hand, point F in FIG. 11 indicates the mold temperature at the start of cooling, and the temperature is about 205 ° C. Further, in FIG. 11, point G indicates the mold temperature at the end of cooling, which is about 50 ° C. Therefore, it is understood that the mold temperature decreases at a cooling rate of about 260 ° C./min in the cooling process of about 36 seconds.
[比較例2]
 比較例2においては、加熱工程における金型の表面温度を、280℃に変えるとともに、後加熱処理を実施しなかったほかは、実施例1と同様に、二色成形シート状物を作成して、評価した。
 なお、金型の冷却工程において、約280℃/分の冷却速度で、金型温度が約50℃まで低下しており、クラック等が生じやすい傾向が見られた。
[Comparative Example 2]
In Comparative Example 2, a two-color molded sheet was prepared in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 280 ° C. and no post-heating treatment was performed. ,evaluated.
In the mold cooling process, the mold temperature decreased to about 50 ° C. at a cooling rate of about 280 ° C./min, and cracks and the like tended to occur.
[比較例3]
 比較例3においては、加熱工程における金型の表面温度を、320℃に変えるとともに、後加熱処理を実施しなかったほかは、実施例1と同様に、二色成形シート状物を作成して、評価した。
 なお、金型の冷却工程において、約320℃/分の冷却速度で、金型温度が約50℃まで低下しており、クラック等が生じやすい傾向が見られた。
[Comparative Example 3]
In Comparative Example 3, a two-color molded sheet was prepared in the same manner as in Example 1 except that the surface temperature of the mold in the heating process was changed to 320 ° C. and no post-heating treatment was performed. ,evaluated.
In the mold cooling process, the mold temperature decreased to about 50 ° C. at a cooling rate of about 320 ° C./min, and cracks and the like tended to occur.
[比較例4]
 比較例4においては、加熱工程における金型の表面温度を、200℃に変えるとともに、後加熱処理を実施しなかったほかは、実施例1と同様に、二色成形シート状物を作成しようとした。
 しかしながら、実用的な厚さや強度を有する二色成形シート状物が得られなかったため、その後の評価を中止した。
[Comparative Example 4]
In Comparative Example 4, the surface temperature of the mold in the heating step was changed to 200 ° C., and the post-heating treatment was not performed. did.
However, since a two-color molded sheet having a practical thickness and strength could not be obtained, the subsequent evaluation was stopped.
Figure JPOXMLDOC01-appb-T000001
評価1:平均厚さ
評価2:厚さのばらつき
評価3:耐グロス性
評価4:耐クラック性
Figure JPOXMLDOC01-appb-T000001
Evaluation 1: Average thickness evaluation 2: Thickness variation evaluation 3: Gloss resistance evaluation 4: Crack resistance
 本発明の低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法によれば、通常の一色成形シート状物や、装飾性等に富んだ二色成形シート物の製造において、所定温度以下となるように低温加熱させるとともに、所定の後加熱処理および冷却処理等を組み合わせることにより、成形樹脂の焼き付け現象(グロス発生)や金型の金属疲労(クラック発生)の発生を防止しつつ、均一厚さのシート状物が安定的かつ経済的に得られるようになった。 According to the low-temperature heating type powder slush molding machine and the powder slush molding method of the present invention, in the production of a normal one-color molded sheet material or a two-color molded sheet material rich in decoration, etc. A sheet of uniform thickness while preventing the occurrence of mold resin baking (gross generation) and mold metal fatigue (crack generation) by combining low-temperature heating and predetermined post-heating and cooling processes. The product can be obtained stably and economically.
 また、後加熱処理部を設けた場合やパウダリング時間を長くした場合、所定の処理時間が単純に付加されると思われがちだが、逆に、金型の加熱時間や冷却時間等が短くなり、さらには、金型の移動時に自然空冷されることから、全体としてみれば、シート状物の製造時間(サイクルタイム)は、全く増化しないことも判明した。 In addition, when a post-heat treatment unit is provided or when the powdering time is lengthened, it is likely that the predetermined treatment time is simply added, but conversely, the heating time and cooling time of the mold are shortened. Furthermore, since it is naturally air-cooled when the mold is moved, it has been found that the manufacturing time (cycle time) of the sheet-like material does not increase at all.
 その上、予備加熱部として、予備加熱装置を備えた搬送装置を有することにより、一連のパウダースラッシュ成形を完結するための処理が並行的に行われ、最終的に、樹脂成形品であるシート状物を迅速かつ安定的に得ることができるようになった。
 すなわち、金型の搬送中や、他の処理時間の間に、非形成面である金型の外表面についても、所定温度に調整できることから、金型の内表面形状(湾曲、窪み、オフセット等)によらず、金型の内表面と外表面との温度差が小さくなって、金型の金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、金型全体を、均一かつ高速に加熱することができる。
In addition, by having a conveying device equipped with a preheating device as a preheating unit, processing for completing a series of powder slush molding is performed in parallel, and finally, a sheet-shaped resin molded product Things can be obtained quickly and stably.
That is, the outer surface of the mold, which is a non-formed surface, can be adjusted to a predetermined temperature during the transfer of the mold or during other processing times, so that the inner surface shape of the mold (curvature, dent, offset, etc. ), The temperature difference between the inner surface and the outer surface of the mold is reduced, effectively suppressing the metal fatigue of the mold and the occurrence of seizure phenomenon on the inner surface of the molded resin, and the entire mold Can be heated uniformly and at high speed.
 よって、得られたシート状物(二色成形シート物等)によれば、自動車等の内装材やバンパーとして、好適に使用されることが期待される一方、パウダースラッシュ成形機の管理自体も極めて容易、かつ経済的に実施することが期待される。 Therefore, according to the obtained sheet-like material (two-color molded sheet material, etc.), it is expected to be suitably used as an interior material and a bumper for automobiles, etc. It is expected to be implemented easily and economically.
10:低温加熱型パウダースラッシュ成形機、14:熱風、16:熱風吹出口、21、21´:第1の樹脂、22:樹脂塗布装置、22a:ノズル部、24:駆動装置、25:シャッター、40:熱風発生装置、41:分岐配管、43:主配管、48:ダンパ、49:邪魔板、54:エネルギ回収部、55:冷却装置、58:加熱炉、58´:後加熱炉、60:金型、60a: フレーム部材、60b:内表面、60´、60´´:交換用の金型、60a´、60a´´:交換用の金型のフレーム部材、62:搬送装置(クレーン)、64:パウダースラッシュ装置、84a、84b:型枠、88:リザーバタンク、88a:攪拌室、92:第2の樹脂(成形樹脂)、94:シート状物(二色成形シート状物)、100:ハンマー 10: Low temperature heating type powder slush molding machine, 14: Hot air, 16: Hot air outlet, 21, 21 ': First resin, 22: Resin coating device, 22a: Nozzle section, 24: Drive device, 25: Shutter, 40: Hot air generator, 41: Branch pipe, 43: Main pipe, 48: Damper, 49: Baffle plate, 54: Energy recovery unit, 55: Cooling device, 58: Heating furnace, 58 ': Post-heating furnace, 60: 60a, 60 '': exchange mold, 60a ', 60a' ': exchange mold frame member, 62: transport device (crane), 60a: heel frame member, 60b: inner surface, 60', 60 ": exchange mold 64: Powder slush device, 84a, 84b: Formwork, 88: Reservoir tank, 88a: Stirring chamber, 92: Second resin (molded resin), 94: Sheet material (two-color molded sheet material), 100: hammer

Claims (8)

  1.  金型温度を220℃以下に加熱する金型加熱部と、
     融点が160℃以下の成形樹脂を所定時間パウダリングして、所定厚さのシート状物を成形するパウダースラッシュ部と、
     前記金型に形成されたシート状物を、後加熱処理する後加熱処理部と、
     前記金型温度を60℃以下に冷却する金型冷却部と、
     冷却したシート状物を脱型する金型加工部と、
     を備えた低温加熱型パウダースラッシュ成形機であって、
     前記後加熱処理部において、成形したシート状物の表面に、200℃以下の熱風を吹き付けて、後加熱処理することを特徴とする低温加熱型パウダースラッシュ成形機。
    A mold heating section for heating the mold temperature to 220 ° C. or lower;
    Powdering a molding resin having a melting point of 160 ° C. or less for a predetermined time to form a sheet-like material having a predetermined thickness;
    A post-heat treatment section for post-heating the sheet-like material formed on the mold; and
    A mold cooling section for cooling the mold temperature to 60 ° C. or less;
    A mold processing section for demolding the cooled sheet-like material;
    A low temperature heating type powder slush molding machine equipped with
    A low-temperature heating type powder slush molding machine, wherein the post-heating treatment unit performs post-heating treatment by blowing hot air of 200 ° C. or less onto the surface of the formed sheet-like material.
  2.  前記融点が160℃以下の成形樹脂を第1の樹脂とし、融点が180℃以上の成形樹脂を第2の樹脂とした時に、
     前記金型加工部において、前記第2の樹脂を、前記金型の一部に塗布し、厚さ1~200μmの第2の樹脂層を形成するための樹脂塗布装置が設けてあることを特徴とする請求項1に記載の低温加熱型パウダースラッシュ成形機。
    When the molding resin having a melting point of 160 ° C. or lower is the first resin, and the molding resin having a melting point of 180 ° C. or higher is the second resin,
    The mold processing unit is provided with a resin coating device for applying the second resin to a part of the mold to form a second resin layer having a thickness of 1 to 200 μm. The low-temperature heating type powder slush molding machine according to claim 1.
  3.  前記後加熱処理部に付与する単位時間当たりの熱量(万kcal/hr)を、前記金型加熱部に付与する単位時間当たりの熱量の1/4~2/3の範囲内の値とすることを特徴とする請求項1または2に記載の低温加熱型パウダースラッシュ成形機。 The amount of heat per unit time (10,000 kcal / hr) applied to the post-heating unit is set to a value within a range of ¼ to 2/3 of the amount of heat per unit time applied to the mold heating unit. The low-temperature heating type powder slush molding machine according to claim 1 or 2.
  4.  前記パウダリングの所定時間を32~40秒の範囲内の値とし、前記シート状物の所定厚さを1.1~1.4mmの範囲内の値とすることを特徴とする請求項1~3のいずれか一項に記載の低温加熱型パウダースラッシュ成形機。 The predetermined time of the powdering is set to a value within a range of 32 to 40 seconds, and the predetermined thickness of the sheet-like material is set to a value within a range of 1.1 to 1.4 mm. 4. The low-temperature heating type powder slush molding machine according to any one of 3 above.
  5.  前記後加熱処理部が、前記金型加熱部の上方に設けてあり、当該金型加熱部の蓄熱を導入して、前記シート状物の表面に、200℃以下の熱風を吹き付けることを特徴とする請求項1~4のいずれか一項に記載の低温加熱型パウダースラッシュ成形機。 The post-heat treatment unit is provided above the mold heating unit, introduces heat storage of the mold heating unit, and blows hot air of 200 ° C. or less on the surface of the sheet-like material. The low-temperature heating type powder slush molding machine according to any one of claims 1 to 4.
  6.  前記金型を、前記金型加熱部と、前記パウダースラッシュ部と、前記後加熱処理部と、前記金型冷却部と、前記金型加工部と、の間で移動させる搬送装置が備えてあり、当該搬送装置の一部に、前記金型の少なくとも外表面を加熱するための予備加熱装置が設けてあることを特徴とする請求項1~5のいずれか一項に記載の低温加熱型パウダースラッシュ成形機。 There is provided a transfer device for moving the mold between the mold heating unit, the powder slush unit, the post-heat treatment unit, the mold cooling unit, and the mold processing unit. The low-temperature heating type powder according to any one of claims 1 to 5, wherein a preheating device for heating at least an outer surface of the mold is provided in a part of the conveying device. Slush molding machine.
  7.  金型温度を220℃以下に加熱する金型加熱部と、
     融点が160℃以下の成形樹脂を所定時間パウダリングして、所定厚さのシート状物を成形するパウダースラッシュ部と、
     前記金型に形成されたシート状物を、後加熱処理する後加熱処理部と、
     前記金型温度を60℃以下に冷却する金型冷却部と、
     冷却したシート状物を脱型する金型加工部と、
     を備えた低温加熱型パウダースラッシュ成形機を用いてなるパウダースラッシュ成形方法であって、
     前記後加熱処理部において、成形したシート状物の表面に、200℃以下の熱風を吹き付けて、後加熱処理することを特徴とするパウダースラッシュ成形方法。
    A mold heating section for heating the mold temperature to 220 ° C. or lower;
    Powdering a molding resin having a melting point of 160 ° C. or less for a predetermined time to form a sheet-like material having a predetermined thickness;
    A post-heat treatment section for post-heating the sheet-like material formed on the mold; and
    A mold cooling section for cooling the mold temperature to 60 ° C. or less;
    A mold processing section for demolding the cooled sheet-like material;
    A powder slush molding method using a low temperature heating type powder slush molding machine equipped with
    A powder slush molding method, wherein the post-heat treatment section performs post-heat treatment by blowing hot air of 200 ° C. or less onto the surface of the molded sheet-like material.
  8.  前記低温加熱型パウダースラッシュ成形機が、前記金型を、前記金型加熱部と、前記パウダースラッシュ部と、前記後加熱処理部と、前記金型冷却部と、前記金型加工部と、の間で移動させる搬送装置が備えており、当該搬送装置が、前記金型を移送する際に、前記金型とは異なる金型を、前記搬送装置の下方に把持して、同時に搬送することを特徴とする請求項7に記載のパウダースラッシュ成形方法。 The low-temperature heating type powder slush molding machine includes the mold, the mold heating unit, the powder slush unit, the post-heating unit, the mold cooling unit, and the mold processing unit. A transfer device that moves between the molds, and when the transfer device transfers the mold, hold the mold different from the mold below the transfer device and simultaneously transfer the mold. The powder slush molding method according to claim 7, wherein the powder slush molding method is used.
PCT/JP2015/072519 2014-08-25 2015-08-07 Low-temperature heating powder slush molding machine and powder slush molding method WO2016031531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558287A JP5905653B1 (en) 2014-08-25 2015-08-07 Low temperature heating type powder slush molding machine and powder slush molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-170467 2014-08-25
JP2014170467 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031531A1 true WO2016031531A1 (en) 2016-03-03

Family

ID=55399429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072519 WO2016031531A1 (en) 2014-08-25 2015-08-07 Low-temperature heating powder slush molding machine and powder slush molding method

Country Status (2)

Country Link
JP (1) JP5905653B1 (en)
WO (1) WO2016031531A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025442A1 (en) * 2016-08-02 2018-02-08 株式会社仲田コーティング Powder slush molding machine and powder slush molding method
EP3284569A4 (en) * 2015-07-29 2018-12-26 Nakata Coating Co., Ltd. Powder slush molding machine and powder slush molding method
CN110193903A (en) * 2018-02-27 2019-09-03 丰田自动车株式会社 Powder slush molding system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241216A (en) * 1988-08-02 1990-02-09 Nakata Kooteingu:Kk Slush molding apparatus
JPH02235612A (en) * 1989-03-09 1990-09-18 Inoue Mtp Co Ltd Skin material made of plastic and manufacture thereof
JPH0948034A (en) * 1995-08-08 1997-02-18 Sanyo Electric Co Ltd Resin molding method
WO2004060630A1 (en) * 2002-12-26 2004-07-22 Nakata Coating Co.,Ltd. Powder slush molding machine and powder slush molding method
WO2010098198A1 (en) * 2009-02-25 2010-09-02 株式会社仲田コーティング Powder slush molding machine and powder slush molding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241216A (en) * 1988-08-02 1990-02-09 Nakata Kooteingu:Kk Slush molding apparatus
JPH02235612A (en) * 1989-03-09 1990-09-18 Inoue Mtp Co Ltd Skin material made of plastic and manufacture thereof
JPH0948034A (en) * 1995-08-08 1997-02-18 Sanyo Electric Co Ltd Resin molding method
WO2004060630A1 (en) * 2002-12-26 2004-07-22 Nakata Coating Co.,Ltd. Powder slush molding machine and powder slush molding method
WO2010098198A1 (en) * 2009-02-25 2010-09-02 株式会社仲田コーティング Powder slush molding machine and powder slush molding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3284569A4 (en) * 2015-07-29 2018-12-26 Nakata Coating Co., Ltd. Powder slush molding machine and powder slush molding method
US10994452B2 (en) 2015-07-29 2021-05-04 Nakata Coating Co., Ltd. Powder slush molding machine and powder slush molding method
WO2018025442A1 (en) * 2016-08-02 2018-02-08 株式会社仲田コーティング Powder slush molding machine and powder slush molding method
JPWO2018025442A1 (en) * 2016-08-02 2019-03-14 株式会社仲田コーティング Powder slush molding machine and powder slush molding method
CN110193903A (en) * 2018-02-27 2019-09-03 丰田自动车株式会社 Powder slush molding system
CN110193903B (en) * 2018-02-27 2021-06-11 丰田自动车株式会社 Powder slush molding system

Also Published As

Publication number Publication date
JPWO2016031531A1 (en) 2017-04-27
JP5905653B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
KR101215587B1 (en) Powder slush molding machine and powder slush molding method
JP5905653B1 (en) Low temperature heating type powder slush molding machine and powder slush molding method
EP3326790A1 (en) Device and method for manufacturing three-dimensonal shaped object and material supply unit used in device for manufacturing three-dimentional shaped object
WO2017018240A1 (en) Powder slush molding machine and powder slush molding method
CN112959659B (en) 3D printer
WO2004060630A1 (en) Powder slush molding machine and powder slush molding method
JP6034544B1 (en) Powder slush molding machine and powder slush molding method
WO2018025442A1 (en) Powder slush molding machine and powder slush molding method
JP2020029018A (en) Powder slush molding machine and powder slush molding method
CN108273711A (en) A kind of Dipping plastic machine
CN210415525U (en) 3D's printing shower nozzle
CN105599326A (en) Processing method of decorative plate with three-dimensional patterns and the prepared decorative plate
KR101451619B1 (en) Continuous coating on both sides to the material as a non-contact device
JP2001276946A (en) Oven apparatus for metallic container
JP4245565B2 (en) Powder slush molding machine and powder slush molding method
KR102177122B1 (en) Process for concurrent coating and molding coated metal pipe
JP6952589B2 (en) Powder slash molding machine
JP2018099845A (en) Method for forming molding
JPS63264167A (en) Method and apparatus for coating resin particle
JP2004155646A (en) Method and apparatus for manufacturing glass container
TWM540702U (en) Printing device for forming liquid metal
JPH11348494A (en) Curved surface transferring method
JP2016034990A (en) Method for producing coated molding
JPH11170792A (en) Method for transferring
JPH06134780A (en) Vinylchloride powder slash method in vehicle body manufacturing process

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015558287

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836153

Country of ref document: EP

Kind code of ref document: A1