WO2004059570A1 - Tableau blanc electronique interactif a infrarouges - Google Patents

Tableau blanc electronique interactif a infrarouges Download PDF

Info

Publication number
WO2004059570A1
WO2004059570A1 PCT/CN2003/000973 CN0300973W WO2004059570A1 WO 2004059570 A1 WO2004059570 A1 WO 2004059570A1 CN 0300973 W CN0300973 W CN 0300973W WO 2004059570 A1 WO2004059570 A1 WO 2004059570A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
receiving
infrared
coordinates
microprocessor
Prior art date
Application number
PCT/CN2003/000973
Other languages
English (en)
French (fr)
Inventor
Wai Ho
Original Assignee
Wai Ho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wai Ho filed Critical Wai Ho
Priority to US10/540,899 priority Critical patent/US7429706B2/en
Priority to AU2003303400A priority patent/AU2003303400A1/en
Publication of WO2004059570A1 publication Critical patent/WO2004059570A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen

Definitions

  • the invention relates to an interactive infrared electronic whiteboard.
  • the electronic whiteboard can be divided into interactive and non-interactive: Interactive is to cooperate with a digital projector to directly project the computer's display output on the whiteboard, so that the whiteboard becomes a large computer interactive touch screen. Users can use their hands on the whiteboard Directly click on it to operate the computer system. At the same time, you can write and modify on the whiteboard; non-interactive means that you cannot connect to the computer, but just copy the content written on the whiteboard to the paper and save it on the paper.
  • the interactive electronic whiteboard can be divided into many types: one is the use of electromagnetic conversion technology, which generates a magnetic field when the metal pen is energized.
  • the position of the handwriting movement is calculated by the principle of magnetic-electric conversion and converted into coordinates at the same time. Recorded, it can provide very accurate coordinates, but the material cost is high and it is inconvenient to use with a special electronic pen; one is composed of two plastic films with a resistance network on the upper and lower layers, under no pressure The plastic film guarantees that no short circuit occurs through the isolation device.
  • the upper and lower resistance networks are short-circuited under pressure to generate voltage.
  • the pressure-resistance network at different positions will generate different voltages, so that the movement of the pen can be determined by the voltage change. Location, it does not require a special pen, but requires a special plastic film to capture the moving target.
  • the surface of the plastic film is easy to be scratched, resulting in a large face phenomenon, and easily affected by external influences, such as temperature and humidity, which can cause the system to change.
  • a special ultrasonic transmitting device is located on the left and right upper corners of the whiteboard. The distance between the target and the receiver is calculated based on the time difference between the ultrasonic transmitting and receiving, and the trajectory of the writing pen is obtained using geometric principles.
  • the present invention proposes an electronic whiteboard that uses infrared capture input.
  • the traditional infrared touch system or touch screen technology transmitting and receiving
  • the physical dimensions of optoelectronic devices such as tubes have certain limitations.
  • non-coaxial infrared light interception is also judged by the transmitting tube and the receiving tube around the pair of tubes.
  • this technology can improve the resolution to a certain extent, the dead angle caused by the distance of the physical distribution density of the infrared tube and the complexity of the calculation method can bring some errors, and this error can cause the resolution of the invention And the smoothness of target capture.
  • Domestic patent 00121462. 4 discloses a "structure and method for improving the performance of an infrared touch screen" on February 13, 2002, which uses the lowest point of the hyperbolic model to determine the coordinates of the interceptor.
  • the invention considers that the target is at the time of interception.
  • the output voltage of the intercepted receiver tubes will form a hyperbola, and this hyperbola is based on an interceptor whose size is similar to the size of a finger, and the output voltage of the receiver tube on each interception channel.
  • the change must conform to the change trend of the hyperbola in order to be judged as an effective touch behavior or an accurate coordinate. If the interceptor is a writing pen of 2-5 dishes, or an entity cannot be like a finger, muscle When part of it can be penetrated by infrared rays, or the infrared rays from the transmitting tube cannot reach the blocked receiving tube again through the secondary reflection, the method of judging the hyperbola is no longer valid. It can be seen that it is not enough to copy the existing infrared touch screen capture technology to the electronic whiteboard to capture the track (or text) of the moving target on the whiteboard.
  • the purpose of the present invention is to provide a capture device that does not require the use of a special writing pen or erasing device and a special writing plane, is not affected by the use environment, has low cost, good surface durability, and can reduce the complexity of the electronic whiteboard electronic circuit. Improved interactive infrared whiteboard.
  • the main technical scheme of the present invention is: An interactive infrared electronic whiteboard, in which infrared emitting arrays arranged horizontally and vertically on the edge of the whiteboard and infrared receiving arrays corresponding to the emitting array that are also horizontally and vertically arranged on the edge of the whiteboard pass through row drivers, respectively.
  • the column driver is connected to the microprocessor; the output port of the column driver of the infrared emitting array is connected to the high frequency modulation signal generator; the output port of the column driver of the infrared receiving array is connected to the signal receiving circuit, the A / D converter and The processors are connected, and the infrared transmitting array is connected to the transmitting row driver and the column driver respectively through the transmitting row driving line and the column driving line; the infrared receiving array is connected to the receiving row driver and the column driver respectively through the receiving row driving line and the column driving line; The transmitting row driver and the receiving row driver are connected to the microprocessor through the row address bus. The transmitting column driver and the receiving column driver are connected to the microprocessor through the column address bus.
  • the storage device is connected to the computer through a chip controlling an RS232 serial port or a USB interface.
  • the invention adopts two complete and unified transmitting and receiving arrays, which are driven by respective array driving circuits, which is beneficial to the wiring of the circuit board and saves the driving circuits.
  • the use of a module array can simplify and standardize production, and can use different numbers of modules to produce electronic whiteboards of different sizes, and the invention does not require a special writing pen and erasing device, and does not need to rely on a special writing plane. Affected by the use environment, low cost, good surface durability, can reduce the complexity of the electronic whiteboard electronic circuit.
  • the present invention also uses the inverse of the particle density of light and the square of the distance near the center of the optical axis.
  • the law of squares establishes the relationship between the output voltage change of the infrared receiving tube and the moving distance of the moving target when the optical axis channel is blocked by the interceptor, so as to obtain the precise moving target trajectory coordinates, greatly improve the resolution of infrared capture, and realize the use of infrared Technology for capturing handwriting, infrared whiteboard with high-resolution capture capability.
  • FIG. 1 is a position distribution diagram of infrared transmitting and receiving tubes of the electronic whiteboard of the present invention
  • FIG. 2 is a schematic cross-sectional view of an infrared transmitting and receiving tube on an electronic whiteboard
  • FIG. 3 is a schematic circuit diagram of an infrared transmitting and receiving module
  • Figure 5 is a schematic diagram of the connection between the infrared transmitting and receiving tube modules
  • FIG. 6 is a block diagram of the control circuit of the electronic whiteboard system
  • Figure 7 is a block diagram of a moving target capture process
  • Figure 8 is a block diagram of a single moving target recognition and reproduction process
  • Figure 9 is a block diagram of the A / D conversion sub-flow of the analog-to-digital converter
  • Figure 10 is a block diagram of the interaction mode flow
  • FIG. 11 is a schematic diagram of an infrared optical axis channel
  • Figure 12 is the optical axis light particle distribution model and the A / D voltage change diagram of the analog-to-digital converter
  • FIG. 13 is a diagram of a moving target size and a coordinate model.
  • the present invention establishes a model that uses the optical axis channel light particle distribution density as a model, and uses the optical axis channel to be blocked by a blocking object, resulting in a decrease in the light particle density and the output of the receiving tube
  • the relationship between the voltage changes establishes a curve equation containing the tan (x) function or a curve equation with a function of quadratic or more, taking the shielding distance as the independent variable X and the output voltage of the receiver as a function.
  • the higher the degree of the equation the more accurate the result obtained.
  • a function to the fifth power can be obtained with sufficient accuracy.
  • the arrangement serial number of the transmitting and receiving tubes is used as a coordinate, and the output voltage value of the receiving tube is captured to determine the blocking distance of the interceptor in the optical axis channel of the transmitting and receiving tube, so that the coordinates of the transmitting and receiving tubes can be further Subdivision, while providing a very high and precise input resolution. As shown in FIG.
  • the density of light particles (beams) is inversely proportional to the square of the distance near the center of the optical axis, so the model of the emitted light cut plane as shown in Figure 12 is established
  • the optical particle density distribution map S, and the optical particle density distribution curve I in the optical channel In the figure, the Y-axis is the density of light particles in the optical axis channel or the output voltage value of the receiving tube, and the X-axis is the diameter dimension of the optical axis channel. In curve I, point D is the highest density point of the light particles, and is also the center of the channel.
  • the blocked part of the optical axis channel is arched, and the process of obscuration is the process of gradually increasing the arch shape and also the process of increasing the height of the arch shape.
  • the arched area of the occluded part is divided into countless sections, from large to small, and then based on the model S of the distribution of the light particle channel density, a standard, light in the optical axis channel is derived through calculus calculations.
  • the variation curve H of the particle (beam) quantity is derived through calculus calculations.
  • the standard curve is a standard curve equation containing a tan (x) function or a multi-function standard curve equation with the shielding distance as the independent variable x and the output voltage of the receiving tube as a function.
  • point A is the largest number of light particles, because the channel is not blocked;
  • point B is a watershed, that is, only half of the light particles pass;
  • point E is the lowest point, because the channel is completely blocked, no light particles pass.
  • the number of light particles (beams) in the optical axis channel the number of light particles (beams) received by the receiving tube, and the change in the number of light particles (beams) is linearly proportional to the output voltage of the receiving tube, that is: the above optical axis channel
  • the standard curve of the light particle change when blocked is also equal to the change curve of the output voltage of the infrared receiver when receiving infrared.
  • the full-scale voltage of the A / D converter can be adjusted to the voltage value of point A in the standard curve H. , The highest is 255, the lowest is 0, and then fit to the standard curve H. On the corresponding X axis, you can find the corresponding 256 X coordinates.
  • the specific length of the intercepting part in the target moving optical axis channel (that is, the height of the arched part of the shielding part) can be obtained, and then the height (length) and the sample
  • the standard data table established by experiments was compared, fitted, and obtained to obtain the final accurate length value.
  • the standard data table in the microprocessor or computer is obtained through experiments. It combines the diameters of different transmitting and receiving tubes to move the target in the optical axis channel.
  • the voltage value generated by the infrared receiving tube and the target interceptor The one-to-one correspondence of the channel width di blocking the infrared optical axis is arranged.
  • the microprocessor can directly obtain the value of the channel blocking width of the infrared light axis blocked by the target interceptor in the table according to the voltage value generated by the infrared receiving tube, so as to capture the coordinates of the moving target motion track on the infrared whiteboard. , Recognition, trajectory reconstruction and storage; or fitting the table to the value of the di-blocking infrared optical axis channel width di of the target interceptor obtained by the curve equation to obtain a more accurate value.
  • the size of the receiving tube is L; W is the diameter of the interceptor; d is the width of the intercepting part of the target in the optical axis channel, that is, the height of the bow of the intercepting part; J is on the X axis Sequence number of receiving tubes; A is the sequence number of receiving tubes on the Y axis.
  • the diameter of the moving target M1 (that is, the width of the blocked part of the receiving tube):
  • the purpose of establishing a standard data table is to use the experimental values as a reference, and compare the A / D conversion voltage value obtained during the scan with it, and then obtain the moving coordinates, or use the number The values are compared and fitted with the coordinate values obtained from the standard curve equation, and then the final precise coordinates are obtained.
  • the writing of the text includes broken pen and resume pen.
  • the invention uses application software to compare the coordinates captured in the previous cycle with the coordinates in the cycle.
  • the captured coordinates are distance calculated to obtain the D value, and then use this value to determine whether the coordinates are the start of a point or another line, or the continuation of a line trajectory. If the continuation of a line trajectory, the two adjacent The coordinates are connected together by lines. If not, a point is drawn and output on the coordinates and displayed on the computer screen at the same time, and the purpose of capturing and reproducing the trajectory of the moving target can be achieved.
  • This method can be used to reproduce the trajectories of multiple captured coordinates at the same time.
  • This method is different from the existing method Infrared touch screen and some handwriting computer writing board trace reproduction method.
  • Existing trajectory reconstruction methods simply rely on judging whether the target leaves the capture range (or plane) to determine whether the captured coordinates are the beginning of a line or the continuation of a line's trajectory. If multiple users are on the capture plane at the same time (Ie: whiteboard), it is very complicated and difficult to use this method to determine which target is out of the capture range and at what time. Therefore, it is also very difficult to use the existing trajectory reconstruction method to achieve multi-user writing on the whiteboard of.
  • the method of the present invention just overcomes the obstacle of simultaneous use by multiple users.
  • the object is captured by scanning.
  • the scanning starts from the first pair of transmitting and receiving tubes until the last pair is completed, and then a scanning cycle is completed.
  • the automatic identification of the erasing device is based on its size and size W value. After a period of scanning, as long as it can be determined that the size of the moving target is larger than the stroke (pen tip) size (defined by the user through software), Make sure that the object moving on the whiteboard is a eraser.
  • the identified device should be approximately circular.
  • the erasing device may be a eraser or a finger, because when the finger moves on a plane, its contact area is an ellipse close to a circle, and it can also be treated as a circle.
  • the basic principle of capturing the movement track of the erasing device and reproducing the screen erasing effect is the same as that of the capturing pen. From the foregoing, we know that the size of the moving target can be calculated by calculating the interception length of the receiver.
  • the diameter of the erasing device can be obtained by the following formula:
  • the application software uses the diameter w to draw a white solid circle on the coordinate (X, Y) of the target movement, and then repeatedly receives the target according to the target movement.
  • the goal of this judgment can only be a regular circle. If the target is a square or rectangle, the user must place the erasing device on the whiteboard vertically before use, and then the system performs a scan recognition first, the purpose is to capture the length and width of the rectangle or square by scanning, and then calculate the diagonal The length of the line, and the angle of rotation of the rectangle or square can be calculated by geometric principles, and the erasure area and trajectory of the eraser can be obtained.
  • FIG. 1 is a position distribution diagram of an infrared transmitting and receiving tube used in the present invention.
  • an infrared emission array which is divided into two parts.
  • One part 102 is located at the edge position on the left side of the whiteboard and is arranged according to the serial number for scanning on the axis.
  • the other part 101 is located on the edge position of the whiteboard and is arranged according to the serial number.
  • There is another infrared receiving array which is divided into two parts.
  • One part 103 is located on the opposite edge of 102 and arranged according to the serial number, which is used for receiving the scan on the axis.
  • the other part 104 is located on the opposite edge of 101 and arranged according to the serial number. It is used for X
  • the axis receives the scan.
  • 101, 102, 103, 104 are all in the form of modules, which are connected by connectors, and each module is composed of a transmitting and receiving tube unit.
  • each pair of transmitting and receiving tubes on the X-axis has a one-to-one correspondence and has the same X-axis serial number.
  • the receiving tube can normally receive the high-frequency pulse signal sent by the transmitting tube, but if an object starts to move in the X axis direction, one or some of the X axis The infrared signals emitted by these transmitting tubes will be intercepted by the object 105, causing the corresponding receiving tubes to be unavailable.
  • Receive a normal pulse signal and at the same time pass the application based on the serial number of the location of the receiving or transmitting tube
  • the A / D conversion program calculates the width of the blocking part of the interceptor in the optical axis channel, and then uses the following formula to know the coordinate X value of the object 105 moving on the X axis.
  • each pair of transmitting and receiving tubes also has a one-to-one correspondence, and also has the same Y-axis serial number.
  • Figure 2 is a cross-sectional view of the invention, where 203 is the writing plane referred to in the invention, and the material can be any plane material including a durable enamel metal whiteboard or an inexpensive plastic sprayed metal whiteboard.
  • 201 is an infrared emitting tube on the left or top of the whiteboard
  • 206 is a circuit board of the infrared emitting module.
  • 202 is a filter device located in front of the infrared transmitting and receiving tube. It is made of dark red transparent plastic material. It is mainly used to filter the light that interferes with infrared rays in sunlight. Using this device can improve the reception of infrared signals. Quality to avoid misoperation caused by disordered codes.
  • 205 is an infrared receiving tube located on the right or lower end of the whiteboard, 208 is a circuit board of the infrared receiving module, and 204 is a filtering device of the same infrared receiving tube as 202.
  • 207 and 209 are whiteboard frames made of aluminum alloy material, which surround the four sides of the whiteboard and are used to protect the infrared tube.
  • 201 and 205 have a one-to-one correspondence and have the same X and Y axis arrangement numbers, in which the circuit boards 206 and 208 of the infrared transmitting and receiving modules are installed vertically in the outer frames on both sides of the white board.
  • FIG. 3 is a schematic circuit diagram of the infrared transmitting and receiving module according to the present invention.
  • Each infrared tube on the transmitting module is connected in an array manner.
  • the specific arrangement method and size of the array can be determined according to the specific size of the whiteboard.
  • the following is one of the specific array connection methods included in the present invention, but the technology involved in the present invention is not limited to this type of connection.
  • Shown in the figure is a 32x2 array, which has a total of 32 row drive lines 305, one end of which is connected to two connectors 301, 302, and the other end is connected to the positive electrode of each infrared transmitting tube or infrared receiving tube 304 ⁇ ⁇ Phase connection.
  • FIG. 4 is a module circuit board (PCB) component distribution diagram of an infrared transmitting tube and a receiving tube according to the present invention.
  • PCB module circuit board
  • the drive line is connected.
  • the connectors 403 ie, 303 in FIG. 3) are a total of 2 connected to the column driving lines.
  • 402 is an infrared transmitting tube unit or a receiving tube unit, which are directly soldered to the circuit board, and there are 64 in total.
  • the positive pole of the transmitting or receiving tube is connected to the connectors 401 and 406, and the negative pole is connected to the column driving line to form a 32x2 array.
  • 404 is a screw hole for fixing the module.
  • FIG. 5 is a schematic diagram of the connection between each infrared transmitting tube and receiving tube module.
  • the white board 501 is surrounded by a plurality of infrared modules.
  • the number of infrared modules used depends on the size of the whiteboard.
  • the transmitting array has a total of 21 transmitting modules, of which 9 modules are used to scan the left side of the whiteboard 501 for Y-axis infrared emission scanning, and 12 modules are located at the upper edge of 501 and are used for X-axis emission scan. Also, there are the same number of receiving modules opposite the transmitting module.
  • the size of the infrared tube used in this invention is 2mm, and the effective size of the whiteboard writing area can be calculated according to the following method.
  • the Y-axis scanning range is 1152mm, and the effective area of the whiteboard is 1536x1152 square millimeters. If you want to increase or decrease the size of the whiteboard, you can adjust the number of modules or use infrared tubes of different sizes. If you use 5mm, the size of the whiteboard is: 3840mm x 2880mm.
  • the modules are connected by connectors.
  • the transmitting modules 502 are connected in series end to end to form a 32x42 infrared transmitting array.
  • a total of 32 row driving lines 504 of the transmitting tube module are connected between the modules, and then connected to the row driver interface 506 of the transmitting array.
  • There are 21 column driving lines 503 of the transmitting module, 2 of each, and a total of 42 are connected to the column driver interface 505 of the transmitting array of the control board.
  • the connection method of the receiving module is the same as above.
  • the receiving module 507 is connected end to end, and the row driving line 509 is connected to the row driver interface 511 of the receiving array, a total of 32.
  • the column driving lines 508 are connected to the interface 510 of the column driver of the receiving array, and a total of 42 are formed to form a 32x42 infrared receiving array.
  • Fig. 6 is a structural diagram of a control circuit structure of the core part of the invention, including four major parts:
  • the first part is a microprocessor control part: which includes a microprocessor 637, which is mainly used for output scanning, transmitting, and receiving tubes. Address signal to control the conduction of a pair of transmitting and receiving tubes and record the target Move the position, and upload the coordinate data to the computer, etc.
  • the LED indicator 634 is used to reflect the use status of the whiteboard, the power source 633 provides power to the microprocessor, and 632 is a crystal which is the oscillation frequency required by the microprocessor.
  • the second part is the infrared emission control circuit: Among them, one input terminal of the row driver 606 of the transmitting array is connected to the positive pole of the power source 638 through a current limiting resistor 608 to provide voltage to the transmitting tube. The positive pole of each transmitting tube on the array 611 is connected; meanwhile, the input port of the column driver 607 is 42 column driving lines 610 are connected to the negative pole of each transmitting tube on the transmitting array, and the output port is connected to an audio modulation signal generator , Can generate high-frequency pulse signals, can emit infrared signals with high-frequency modulation.
  • the row driver 606 is based on the "row" address code sent by the microprocessor, and its input port and its output end, that is, a row in the row driving line 609 pointed to by the address code is turned on;
  • the column driver 607 is based on The "column" address code sent by the microprocessor connects its output port with its input end, that is, a column in the column drive line 610 pointed to by the address code is turned on;
  • the circuit 611 is connected in series by 21 transmitting modules
  • the transmitting tube array shown in FIG. 5 is shown in unit 601. One of the transmitting tubes in 611 is turned on; the high-frequency modulation signal generator 640 can provide a turned-on transmitting tube 611 with a high-frequency modulation of about 300 kHz. .
  • the third part is the infrared receiving control circuit.
  • An input port of the row driver 616 of the receiving array is connected to the positive pole of the power supply and can provide voltage to the receiving tube.
  • the output end is 32 row driving lines 619 and each receiving on the receiving array 621.
  • the positive pole of the tube is connected, and the input port of the column driver 617 is 42 column drive lines connected to the negative pole of each receiving tube on the receiving array 621.
  • the output port is coupled to a band-pass filter 641, which can filter out unwanted interference signals.
  • the signal is then amplified by a multi-stage band-pass amplifier 642 to a useful high-frequency modulated signal, and then a modem 643 is used to demodulate the high-frequency signal.
  • / D 644 after the signal is converted by A / D, an 8-bit binary digital signal is output to the microprocessor.
  • the row driver 616 is based on the "row” address code sent by the microprocessor, and its input port and its output end, that is, a row in the row driving line 619 pointed to by the address code is turned on;
  • the column driver 617 is based on The "column" address code sent by the microprocessor connects its output port with its input end, that is, a column in the column drive line 620 pointed to by the address code is turned on; similarly, the circuit 621 is a series of 21 receiving modules connected in series An infrared receiving tube array together, see FIG.
  • unit 622 is an infrared receiving tube that is turned on among 621;
  • the row drivers 606 and 616 of the transmitting and receiving array are connected to the microprocessor through the row address bus 602, and the column drivers 607 and 617 of the transmitting and receiving array are connected to the microprocessor through the column address bus 604.
  • the microprocessor controls the drivers 606, 607 through the address bus 602, a total of 5 lines, which is a combination of 2 and 5 , which can provide different addressing of 32 row drive lines; the control of the drivers 616, 617 is through
  • the address bus 604 has a total of 5 lines and provides different addressing of 32 column driving lines.
  • the driver circuits 606, 607, 616, and 617 may be composed of one or more unit driver chips.
  • a driver chip needs to be added. 603, 605 can select different driver chips to scan the row and column drive lines. Each driver needs an option line. If the row driver circuit 606 can drive 32 drive lines, then only one driver is needed and one option is used. Line.
  • the column driver circuit 607 needs to have a driving capability of 42 lines, it is necessary to use 2 drivers, and at the same time, it is necessary to use 2 selection lines to select the driver chip to be used. In this way, without increasing the address lines, the driving capability of the driver circuit can be doubled as the output capability of the driver chip increases.
  • Two 32-line drivers can be used, and two optional lines can be used to transmit.
  • the row driver 606 and the receiving row driver 616 can also be connected to the microprocessor 637 through the row selection address bus 603, and the transmitting column driver 607 and the receiving column driver 617 can also be connected to the microprocessor 637 through the column selection address bus 605.
  • An array of 64 row or column drive lines without increasing the number of address buses. In this example, using two driver chips is sufficient to drive the device's 42 column drive lines.
  • the fourth part is the external device: it mainly includes a storage part Multi-Media Card (MMC) 631 or SmartMedia (SD) card, and the control RS232 serial communication IC 626. Because the access level of the RS232 serial port of the computer 628 and the output level of the microprocessor are different from each other, the communication between the invention and the computer is performed through the integrated circuit 626. 626 converts the level signal from the microprocessor 637 into a level signal recognized by the computer 628 serial port RS232 serial port, and then the signal can be read into the RS232 port by the application program.
  • MMC Multi-Media Card
  • SD SmartMedia
  • the microprocessor After processing, the microprocessor will capture the captured data, including: the coordinates of the moving target, the size of the target, and the serial number of the scan cycle, etc., uploaded to the computer via RS232, and stored in the memory 631 at the same time.
  • the invention directly uses the microprocessor 637. After reading the data in the storage device 631, the data is directly output to the parallel printing device 636 via the parallel line bus 635. Print on the access port.
  • FIG. 7 is shown below according to the implementation example process, and the main steps of capturing and storing the coordinates of the moving target according to the present invention will be described in detail:
  • n be the number of the scanning period, i is the constant range of 1 ... ⁇ ;
  • W is the diameter of the moving target;
  • L is the physical size of the receiving tube;
  • m is the number of the target identity;
  • X (m) is the X coordinate of the target m;
  • Y (m) is the Y coordinate of the target m. 1.
  • a microprocessor writes the "row” and “column” address codes into "00H” and outputs to the row and column driver address buses of the transmitting and receiving tube arrays through the address line interface;
  • the row and column drivers of the transmitting array are connected to the transmitting tubes located in the row and the column.
  • the tube starts to emit infrared high-frequency modulation pulses
  • the row and column drivers of the receiving array are also connected to the receiving tubes located in the row and the column. Because each transmitting and receiving tube is located on the same optical axis and has a one-to-one correspondence, the analog pulse signal that the receiving tube starts to output;
  • step 2 the received analog pulse signal is converted into an analog voltage amplitude change signal through a receiving conversion circuit, and then input into an A / D analog-to-digital converter to convert the analog voltage amplitude change signal into a discrete one.
  • the microprocessor reads the A / D voltage value of the A / D signal access terminal and makes a judgment. If the value is close to the highest point in the A / D voltage curve, that is, when the A / D value is full scale , It can be judged that no interception event has occurred, and it proceeds to the next step. If not, it is judged that an interception event has occurred, and then it enters a subroutine for converting the A / D voltage value and the moving coordinate, obtains the ⁇ or ⁇ coordinate value, and proceeds to the next step;
  • step 4 determine whether the microprocessor timer overflows, and if so, proceed to step 6, if not, return to step 2;
  • the scanning cycle of one unit has been completed, that is, the scanning of a pair of transmitting and receiving tubes.
  • the microprocessor determines whether all "row" drive line scans of the transmit and receive arrays have been completed. If yes, go to step 8; if no, go to next step;
  • the microprocessor adds the "row” address code to "01H”, and outputs the "row” address code to the address driver's address bus, and then starts the next line scan of the transmitting and receiving array, and returns to step 2;
  • the microprocessor adds "01H” to the "column” address code and clears "00H” to the "row” address code. Then the "column” address code is output to the column driver address bus, and the "row” address code is output to the row driver address bus. Scanning starts to enter the next column of the transmitting and receiving array, and then returns to step 2;
  • one scanning cycle has been completed, that is, the scanning of all transmitting and receiving tubes.
  • Determine whether there is a moving target capture if not, go to step 12, if yes, go to the next step; 11.
  • the coordinates (X ⁇ , ⁇ ) and W value of the moving target captured during the cycle are stored in the SAC memory card connected to the microprocessor according to the sequence number ⁇ of the scanning cycle, and Upload to the computer via RS232 port, then proceed to step 14.
  • the microprocessor clears the row address code to "00H", the column address code to "00H”, the "column” address code is output to the column drive address bus, and the "row” address code is output to the row drive address bus. Return to step 2. Continue scanning the next cycle.
  • the microprocessor will upload the captured coordinates of the moving target to the computer application program via RS232, and then the computer application program will connect the captured coordinates and display them on the computer screen again.
  • the purpose of screen reproduction
  • FIG. 9 The flow chart of the implementation example is shown in FIG. 9 below, which specifically explains how the present invention converts the A / D voltage value and the moving program's main steps:
  • the size of the receiving tube is L; W is the diameter of the interceptor; d is the width of the intercepting part of the target in the optical axis channel; j is the serial number of the receiving tube on the X axis; k is the receiving tube on the Y axis
  • the sequence number of m, m is the target identity number; X (m) is the X coordinate of the target m; Y (m) is the Y coordinate of the target m.
  • the microprocessor After the microprocessor reads the data output by the A / D converter, it then substitutes the data into the standard curve equation, and then finds the specific length or width of the interception target intercepted in the optical axis channel of the receiver tube, that is, The height of the arched part of the cover;
  • the computer scans the RS232 port through an application and reads the coordinates uploaded by the microprocessor
  • step 3 It can be determined that this is the beginning of another line or another point, and then continue to determine the type of target. If W ⁇ 2L (also the condition can be adjusted by the user through the application), then confirm that the moving target is a pen, and The application software starts to draw a diameter of W and a black dot at the corresponding (Xn, Yn) coordinate position on the screen. Continue to step 5; if JV> 2L, you can confirm the moving target To erase the device, at the same time, draw a point with a diameter W and a color of white at the corresponding (X n , ⁇ ) coordinate position, that is, erase the point, and continue to step 5.
  • the computer scans the RS232 port through the application and reads the coordinate values (X (m) n , Y (m) n ), (X (m + l) n, Y (m + l) n ), ... (X (m + i) n , Y (m + i) n ), W (m), W (m + 1), Wdn + i) value and after the scan cycle number, The data is then stored in the computer's memory.
  • the W value to determine the type of target, that is: whether: m) K7w + l) K / w + 0> 2L (this condition can be adjusted by the user, it can be W> 3L, or other values), if it is, it is judged as The goal is to erase the device, then exit the multi-target capture program and enter the single-target capture application. If not, it is determined that the target may be multiple mobile interceptors, and then it proceeds to the next step.
  • the application program first determines whether there were moving targets (m) n -i, (m + l) n -i, ... in the previous scan cycle.
  • the computer scans the RS232 port through the application and reads in the coordinates uploaded by the microprocessor
  • step 1 If you receive the coordinate "termination" mark, go to step 4. If you receive the coordinates (Xn, Yn) and W values, move the mouse to (X n , Yn). At the corresponding screen position, 'then proceed to the next step.
  • step 6 Determine if the target (Xm Yn-l) was captured in the previous scan cycle. If it is, then it is judged that the touch is in progress, then proceed to step 6; if not, it is judged that the touch starts to cut in, and then the timer is turned on. T, start timing at the same time, go to step 6. 4. The application program judges whether the timer is T ⁇ 100ms (this value can be adjusted by the user through the application software settings). If not, it is judged as an invalid touch behavior, and then proceeds to step 6, if it is, it is a valid touch and proceeds to the next step.
  • Computer applications can achieve the purpose of interactive operation of the invention as described above by continuously repeating steps 1-6.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

一种交互式红外线电子白板
技术领域
本发明涉及一种交互式红外线电子白板。
背景技术
目前电子白板可分为交互式和非交互式: 交互式是配合一台数字投影机将 计算机的显示输出直接投影到白板上, 使白板变成一个超大的电脑交互触摸屏, 用户可以用手在白板上直接点击,对计算机系统进行操作, 同时也可以在白板上 书写绘画及修改;非交互式就是不可以与计算机连接,只是将白板上书写的内容 通过打印机复制到纸件上保存。交互式电子白板又可以分为很多种:一种是利用 电磁转换技术, 其金属笔通电时产生磁场, 当它在白板上移动时, 通过磁电转换 原理算出笔迹移动的位置,同时转换成坐标记录下来,它能提供非常精确的坐标, 但是材料成本较高且要配合特制的电子笔,使用不方便;一种是由上下两层带有 电阻网络的塑料薄膜组成,在没有压力的情况下,塑料薄膜通过隔离装置保证不 发生短路, 当在板上书写时,上下电阻网络在压力下发生短路产生电压, 不同位 置受压电阻网络会产生不同的电压, 从而可以通过电压变化确定笔移动的位置, 它不用特殊的笔,但是需要特殊塑料薄膜用于捕捉移动目标,塑料薄膜在长期使 用后表面容易被刮伤, 产生大花脸现象, 而且容易受外界影响, 如温度、湿度等 会使系统变得不稳定;一种是采用超声波技术, 即在书写笔上加一个特殊的超声 波发射装置,接收装置位于白板的左右上角,通过超声波发射和接收的时间差计 算出目标和接收器之间的距离,再利用几何原理求得书写笔的轨迹,这种装置在 每次使用前都需要将系统重新定位及调较一次,而且是写时下笔必须是垂直于书 写平面, 否则就会产生误差, 特殊的电子笔既增加成本、使用也不方便; 为了解 决现有装置需要特殊的电子笔及擦除装置、及依赖特殊的书写平面等问题,于是 本发明提出了一种利用红外线捕捉输入的电子白板,但由于在传统的红外线触摸 系统或触摸屏技术中, 发射、 接收管等光电器件的物理尺寸都有一定的局限性, 如果只单纯依靠对同一光轴上的发射、接收管的光线是否被拦截作为判断移动目 标的位置,那么,应用到白板上会造成其输入分辩率最高也只能是发射管或接收 管的尺寸。 由于分辨率低, 该类技术只限于触摸的应用方式, 并不适合于手写输 入方式, 为了改善触摸屏的分辨率, 在国内外最新的具有代表性专利技术中, 有 2002年 8月 6的美国专利 6, 429, 857公开了一种利用非同轴 (off axis) 单发 多收, 多发单收的专利技术, 该技术除了判断位于发射、接收对管的同一光轴上 的光线是否被拦截之外,还利用该对管周围的发射管和接收管进行非同轴红外光 拦截的判断。该技术虽然能够将分辨率有一定程度的提高,但由红外线管物理分 布的密度的距离所导致的死角以及计算方法的复杂性可以带来一些误差,而这种 误差可以导致该发明出现分辨率的一致性,及目标捕捉的平滑性等问题。国内有 专利 00121462. 4于 2002年 2月 13日公开了一种 "提高红外触摸屏性能的结构 和方法", 它利用判断双曲线模型的最低点作为拦截物的坐标, 该发明认为目标 在拦截时,被拦截的若干个接收管的输出电压会形成一个双曲线,而这个双曲线 是建立在一个拦截物的大小与手指尺寸相仿的拦截物,而且在每个拦截通道上的 接收管输出电压的变化必需符合该双曲线的变化趋势,才能判断为一个有效的触 摸行为, 或是判断出一个准确的坐标, 若拦截物是 2- 5皿的书写笔头,或是一个 实体不能像手指一样,肌肉部分能被红外线穿透,或是来自发射管的红外线不能 通过二次反射再次到达被遮挡的接收管时, 该双曲线的判断方法也就不再成立 了。由此可见,若照搬这些现有的红外线触摸屏捕捉技术移植到电子白板上捕捉 白板上的移动目标的轨迹(或文字)是根本不够的。
发明内容
本发明的目的是为了提供一种无需使用特殊书写笔或擦除装置及特殊书写 平面作为捕获手段, 不受使用环境影响、成本较低、表面耐久性好、可以降低电 子白板电子线路复杂程度、 提高分辨率的交互式红外线电子白板。
本发明的主要技术方案是: 一种交互式红外线电子白板, 其中横向、 纵向 排列在白板边缘的红外线发射阵列及同样横向、纵向排列在白板边缘的与发射阵 列对应的红外线接收阵列分别通过行驱动器、列驱动器与微处理器相连; 红外线 发射阵列的列驱动器的输出端口与高频调制信号产生器相连;红外线接收阵列的 列驱动器的输出端口通过信号接收电路、 模数转换器 A/D与微处理器相连, 红 外线发射阵列分别通过发射行驱动线、列驱动线分别与发射行驱动器、列驱动器 相连; 红外线接收阵列分别通过接收行驱动线、 列驱动线分别与接收行驱动器、 列驱动器相连; 发射行驱动器、接收行驱动器通过行地址总线连接微处理器, 发 射列驱动器、接收列驱动器通过列地址总线连接微处理器,微处理器上有一外接 储存装置, 并通过控制 RS232串行口或 USB接口的芯片与电脑相连。
本发明采用两个完整统一的发射、 接收阵列, 它们由各自的阵列驱动电路 驱动, 有利于线路板布线, 也节省驱动电路。 采用模块阵列可以使生产简单化、 标准化,而且可以根据需要使用不同数量的模块就可以生产出大小不同的电子白 板, 而且本发明无需特殊书写笔及擦除装置、无需依赖特殊的书写平面, 不受使 用环境影响、 成本较低、 表面耐久性好、 可以降低电子白板电子线路复杂程度, 为了提高红外线捕捉的分辨率,本发明还利用光粒子密度与靠近光轴中心的距离 平方成反比的反平方定律,建立光轴通道受拦截物遮挡时红外线接收管输出电压 变化与移动目标移动距离间的关系,从而得出精确的移动目标轨迹坐标,极大地 提高红外线捕捉的分辨率, 实现了利用红外线捕捉手写笔迹的技术,具有高分辨 率捕捉能力的红外线线电子白板。
附图说明
下面结合附图和具体实施例对本发明作进一步详细说明。
图 1是本发明电子白板红外线发射、 接收管位置分布图;
图 2是红外线发射、 接收管位于电子白板上的截面示意图;
图 3是红外线发射、 接收模块电路原理图;
图 4是红外线发射、 接收管的模块线路板图;
图 5是红外线发射、 接收管模块之间连接原理图;
图 6是电子白板系统控制电路框架图;
图 7是移动目标捕捉流程框图;
图 8是单一移动目标识别与重现流程框图;
图 9是模数转换器 A/D转换子流程框图;
图 10是交互模式流程框图;
图 11是红外线光轴通道示意图;
图 12是光轴光粒子分布模型与模数转换器 A/D电压变化图;
图 13是移动目标尺寸、 坐标模型图。
具体实施方式
为了提高红外线扫描捕捉的分辨率,本发明建立一个以光轴通道光粒子分布 密度为模型,以及利用光轴通道受拦截物遮挡导致光粒子密度减少与接收管输出 电压变化的关系, 建立了一个以遮挡距离为自变量 X, 接收管输出电压变化为函 数的含有 tan(x)函数的曲线方程或是一个二次或者二次以上的函数的曲线方程, 所述方程的次数越高, 取得的结果越精确, 通常到了五次方的函数, 取得就可以 作到足够精确; 当然, 在一些精度要求不高的情况下, 如果采用一次线性方程也 是可以的。并通过利用该标准方程式计算出拦截物在光轴通道中的具体拦截位置 或长度的方法, 于是提出了一种提高捕捉分辨率的新方法。本发明在以发射、接 收管的排列序号为坐标的同时, 以捕获接收管输出电压值判断拦截物在发射、接 收对管光轴通道中的遮挡距离, 这样可以将发射、接收管的坐标进一步细分, 同 时可以提供一个非常高而精确的输入分辨率。 如图 11所示, 它的原理是, 当一 一对应发射管 1100、 接收管 1102位于同一个光轴上, 并形成一个呈圆柱型的光 轴通道 1103, 通道横切面直径等于发射管凸镜的直径(设接收管、 发射管凸镜 直径相同)。当有物体 1101移动并经过该光轴通道时,来自发射管的光束有一部 分或全部被遮挡, 于是光轴通道随着目标 1101的移动逐渐消失, 通过该通道的 光粒子 (光束) 也随着目标移动逐渐减少。 1104是被遮挡弓形部分, 1105是通 道被遮挡后的剩余部分。我们知道光线是以直线传播的,经衍射到达接收管的光 粒子是非常少的, 可以忽略不计。根据光学理论, 越靠近光轴中心部分的光粒子 (光束)密度越高, 所以, 在光轴通道切面上的光粒子(光束)的分布应是不均 匀的, 而到达接收管的光粒子密度也不是平均分布的。为此, 计算光通道受遮挡 后剩余部分的密度, 就要利用到反平方定律。 根据光学理论的反平方定律(Inverse Square Law); gp :光粒子 (光束) 的 密度与靠近光轴中心的距离的平方成反比, 于是建立了如图 12所示的以发射光 照切面为模型的光粒子密度分布图 S, 和以光通道中光粒子密度分布曲线图 I。 图中 Y轴是光轴通道中光粒子密度或接收管输出电压值, X轴为光轴通道直径尺 寸。 曲线 I中, D点是光粒子密度最髙点, 也是通道的中心, (、 E点的光粒子密 度最低, 也是通道的边缘。
光轴通道被遮挡的部分呈弓形,而被遮挡的过程,是该弓形慢慢变大的过程, 也是该弓形的高度变大的过程。将目标沿 X轴移动时光通道切面有效面积的变化 (即,光通道的有效面积(无遮挡部分弓形的面积) =光通道切面总面积一受 遮挡部分弓形面积)分成无数个段, 由大到小, 再根据, 光粒子通道密度分布的 模型 S, 通过微积分计算, 推导出一个标准的、 目标沿 X轴方向移动时光轴通道 中的光粒子 (光束)量的变化曲线 H, 该标准曲线是以遮挡距离为自变量 x, 接 收管输出电压变化为函数的含有 tan (x)函数的标准曲线方程或是一个多次函数 的标准曲线方程, 其中 A点是光粒子数量最多, 因为通道没有被遮挡; B点是分 水岭, 即只有一半光粒子通过; E点是最低点, 因为通道被全部遮挡, 没有光粒 子通过。 由于光轴通道中光粒子 (光束)数量 = 接收管接收到的光粒子 (光束) 数 量, 而光粒子(光束)数量的变化与接收管输出电压呈线性正比的关系, 即: 上 述光轴通道受遮挡时光粒子变化的标准曲线亦等于红外线接收管在接收红外线 时输出电压的变化曲线。
本发明使用了一个 A/D数模转换器来将接收管输出电压变化曲线转换成移动 距离,它可以将红外线接收管输出的模拟电压幅值分成若干分,再量化为离散的 数值表现, 若使用的是 8位 A/D转换器, 即可输出量化为 28=256个不同的电压 数值,在此可将 A/D转换器的满格电压调为标准曲线 H中 A点的电压值,最高为 255, 最低为 0, 再拟合于标准曲线 H上, 在相对应的 X轴上, 即可找到与其相 应的 256个 X坐标。 因此, 将 A/D输出的电压值代入到该标准曲线方程式, 即可 求得目标移动光轴通道中拦截部分的具体长度 (即遮挡部分弓形的高度), 再将 该高度 (长度) 与样品实验采集建立的标准 数据表进行比较、 拟合、 取值后 取得最后的精确长度 值 。 该存在于微处理器或电脑中的标准数据表是经过实 验所得, 它结合不同发射、接收管的直径尺寸, 将目标在光轴通道中移动时, 红 外线接收管所产生的电压值与目标拦截物遮挡红外线光轴通道宽度 di的一一对 应关系排列而成。微处理器可以根据获得的红外线接收管所产生的电压值直接在 该表中对应取得目标拦截物遮挡红外线光轴通道宽度 di的值, 从而进行对红外 线电子白板上的移动目标运动轨迹的坐标捕捉、识别、轨迹重现及储存; 或者将 通过曲线方程获得的目标拦截物遮挡红外线光轴通道宽度 di值与该表进行拟合, 以获得更加精确的数值。 根据图 13所示, 设:接收管(发射管)尺寸为 L; W为拦截物的直径; d为目 标在光轴通道中拦截部分的宽度, 即拦截部分弓形的高度; J为 X轴上接收管的 排列序号; A为 Y轴上接收管的排列序号。
根据图 13所示, 移动目标 Ml的直径(即接收管受遮挡部分的宽度):
W = d + + d
可推倒出移动目标的直径数学表达式为:
N
W - dj = d j + d - d j + i ' N = j + n X、 Y坐标为的数学表达式为:
_.
X = j x L - dj +
Figure imgf000008_0001
将已知数_]'、 k、 L、 d代入上公式, 便可获得任何拦截目标的大小尺寸, 及其精 确坐标。
根据图 13中移动目标 Ml (XI, YD 与 M2 (X2,Y2)的距离为:
Figure imgf000008_0002
可推导出, 同一个目标,在周期 n与周期 n-1捕获的坐标之间的距离的数学表达 式如下:
Dn = j(xn -xn_i + (Yn - Yn_i
在同一周期 n内有多个目标捕获时, 两个不同移动目标 m、 m- 1之间距离的数学 表达式如下:
D(m) = i{X(m)n - X{m -
Figure imgf000008_0003
若在相邻的两个周期 n、 n-1内有捕获目标 m时, 该目标 m在不同周期内的捕获 的坐标距离的数学表达式如下:
D{m)n = (X{m)n - X(m)n_ + (Y(m)n - Y{m)nJ 为了进一步提高精确度, 在微处理机中或电脑中, 还需要建立一个经过实验 所得标准化的接收管输出电压变化标准数据表,该电压变化值 表现了光轴通道 受移动目标遮挡逐步由大变小的变化过程,表中有不同的电压值和与其相对应的 移动坐标或距离。建立标准数据表的目的是利用实验所得的数值作为参考,并将 扫描过程中得到的 A/D转换电压值与其比较, 随即取得移动坐标,或者利用该数 值与由标准曲线方程式所取得的坐标值进行比较、拟合,再得出最后的精确坐标。 在目标捕捉时, 要得到目标在白板上移动的轨迹, 就必须快速的由第一对发 射、接收管开始, 重复不断地进行每对发射、接收单元的扫描直至完成最后一个 单元为止, 随即完成一个扫描周期。然后持续不断的快速重复以上扫描周期捕捉 移动目标的坐标, 随即将每周期内所捕获的坐标上传到电脑。文字的书写包含断 笔和续笔, 要准确的实现轨迹重现, 就必需能够对断笔或续笔进行准确的判断, 本发明是通过应用软件将上个周期捕获的坐标,与该周期内捕获的坐标,进行距 离运算求得 D值,然后利用该值判断坐标是一个点或是另一条线的开端,还是一 条线轨迹的延续,若是一条线轨迹的延续,则将相邻的两个坐标利用线条连接在 一起, 若否, 则在坐标上画输出一个点, 同时显示在电脑屏幕上, 即可实现对移 动目标轨迹的捕捉、 重现等目的。
这种利用目标距离差值来判断和连接相邻的两个坐标的方法的好处是, 利用 这种方法可以同时将多个捕获的坐标的轨迹再次重现,这种方法是有别于现有红 外线触摸屏和一些手写电脑书写板的轨迹重现的方法。现有轨迹重现方法只是单 一的依靠判断目标是否离开捕捉范围 (或平面), 来确定所捕获的坐标是一条线 的开端还是一条线的轨迹的延续, 如有多个用户同时在捕捉平面上 (即: 白板) 上书写的话,若利用这种方法判断哪一个目标在什么时间离开捕捉范围是非常复 杂和困难的,因此利用现有轨迹重现方法实现多用户同时在白板上书写也是非常 困难的。 而本发明的方法正好克服了这一多用户同时使用的障碍。
捕捉物体是通过扫描进行的, 扫描是由第一对发射、接收管开始直至完成最 后一对为止,随即完成一个扫描周期。对擦除装置进行自动识别是根据其大小尺 寸 W值来判断的,在经过一个周期的扫描后,只要能判断出移动目标尺寸大于笔 划 (笔头)尺寸 (可由用户通过软件所定义), 便可以确认在白板上移动的物体 是板擦。一般情况下,被识别的装置应该是接近圆形的。该擦除装置可以是板擦, 也可能是手指, 因为手指于平面上移动时, 其接触面积是一个接近圆的椭圆型, 亦可视为圆型来进行处理。在此, 只说明一下圆型擦除装置是如何被捕捉、处理 及实现的。
实现捕获擦除装置的移动轨迹, 及屏幕擦除效果重现的基本原理与捕获笔是 一样的。由前文中知道,移动目标大小是可以通过,接收管拦截长度计算出来的,
N
W = ^ di = dj + d j+ i · · · dj + n , N = j + n 同样, 通过如下公式可得出擦除装置的直径大小:
当电脑接收到这个坐标, 和物体的直径 w后, 应用软件利用直径 w, 在目标 移动的坐标(X, Y)上画出一个白色实体圆, 随后根据的目标移动, 重复不断地 在接收到的(Xn, Y„)坐标上画出以直径为 W的实体圆, 即可实现擦除装置的应用 了。
当然, 这种判断的目标只能是规则圆形。 如果目标是正方形、 长方形, 用户 在使用前, 就必需将擦除装置垂直放在白板上, 然后系统先进行一次扫描识别, 目的是通过扫描捕捉长方形或正方形的长和宽度,然后计算出对角线的长度,再 通过几何原理计算出长方形或方形的旋转角度,便可以得出板擦的擦除面积和轨 迹。
在解释过本发明工作原理之后, 下面结合附图说明本发明的结构及应用程 序:
图 1是是该发明所使用的红外线发射、 接收管的位置分布图。 其中, 有一红 外线发射阵列, 分为两部分, 一部分 102位于白板左侧的边沿位置上, 按序号排 列, 是用于 Υ轴发射扫描的; 另一部分 101位于白板上边沿位置, 按序号排列, 是用于 X轴发射扫描的。另有一红外线接收阵列, 分为两部分, 一部分 103位于 102对面边沿上,按序号排列,是用于 Υ轴接收扫描的;另一部分 104位于在 101 对面边沿上, 按序号排列, 是用于 X轴接收扫描的。 101, 102, 103, 104都是 以模块形式, 通过连接器连接形成, 而每个模块是由发射、 接收管单元构成。
其中, 在 X轴上的, 每对发射、 接收管都是一一对应的, 且具有相同的 X 轴序号。当没有物体在发射管和接收管之间移动时,接收管是可以正常接收到发 射管所发出的高频脉冲信号, 但如有物体开始在 X轴方向移动时, X轴的某个或 某些发射管所发出的红外线信号会被物体 105截断,导致相对应的接收管无法接
Figure imgf000010_0001
收到正常的脉冲信号, 同时根据这个接收管或发射管所在位置的序号,通过应用
A/D转换程序, 计算出拦截物在光轴通道中遮挡部分的宽度, 再利用如下公式, 便可以知道物体 105在 X轴上移动的坐标 X值了。 同样, 在 Y轴上, 每对发射、 接收管也都是一一对应的,而且也具有相同的 Y轴序号。当物体在发射管和接收 管之间移动时, 有某个 Y轴上的接收管无法接收到发射管所发出的脉冲信号时, 根据当时接收或发射管的 Y轴序号,通过如上方法,便可以得到物体 105在 Y轴 上移动的坐标 Y值了。 通过周而复始的对 X, Y轴上的每个红外发射管轮流输出 脉冲信号, 进行扫描, 同时也对位于其对面相应的每个接收管进行信号读取, 物 体 105在 X轴和 Y轴的移动坐标轨迹便随即可得。
图 2是该发明的横向切面图, 其中 203是该发明所说的书写平面, 其材料可 以是任何平面材料包括坚固耐用的搪瓷金属白板, 或是价格廉宜的喷塑金属白 板。 其中 201是位于白板左侧或顶端的红外线发射管, 206是红外线发射模块的 线路板。 202是一个位于红外线发射、 接收管之前的过滤装置, 是由深红色透明 塑料材料制作而成,主要用于过滤在日照光中对红外线产生干扰的光线,利用该 装置可提髙红外信号的接收质量, 避免错乱误码造成的误动作。 205是位于白板 右侧或下端的红外线接收管, 208是红外线接收模块的线路板, 204是与 202相 同的红外线接收管的过滤装置。 207, 209是由铝合金材料制作而成的白板外框 包围白板四边, 用于保护红外管。 201与 205是一一对应, 且具有相同 X、 Y轴 排列序号, 其中红外线发射、 接收模块的线路板 206、 208与白板平面垂直安装 在白板两侧的外框内。
图 3是本发明的红外线发射、接收模块电路原理图, 在发射模块上的每个红 外管是以阵列方式连接。而阵列的具体排列方法和大小可根据白板的具体尺寸大 小情况而定,如下是本发明所包含的其中一种具体的阵列连接方式,但本发明所 涉及的技术并不只限于这种方式的连接。 在图中所示是一个 32x2的阵列, 其中 有行驱动线 305共 32条, 其一端分别与两个连接器 301, 302相连接, 另一端与 每个红外线发射管或红外线接收管 304的正极相连接。 有列驱动线 306共 2条, 其一端与连接器 303相连接,另一端与每个红外线发射管或接收管 304的负极相 连接。
图 4是本发明上的红外线发射管、 接收管的模块线路板 (PCB)零件分布图。 其中位于线路板 407的两端有两个行驱动线连接器 401和 406 (即:图 3中的 301 和 302) 与 32条行驱动线相连接, 其目的是用于模块与模块之间行驱动线连接 的。 连接器 403 (即: 图 3中的 303 )是与列驱动线连接的共 2条。 402是红外 线发射管单元或接收管单元, 是直接焊接在线路板上的, 共有 64个。 其中每个 发射或接收管的正极与连接器 401和 406相连接, 负极与列驱动线连接, 形成一 个 32x2的阵列。 404是一个螺丝孔, 用于固定该模块。
图 5是每个红外线发射管、 接收管模块之间连接原理图。 根据图中所示, 白 板 501是由多个红外线模块围绕在中间的。其中,红外线模块的使用数量是根据 白板的大小而定的。 如图中所示, 发射阵列, 共有 21个发射模块, 其中有 9个 模块是用于对白板 501左侧, 用于 Y轴红外线发射扫描的, 12个模块位于 501 的上边缘, 是用于 X轴发射扫描的。 同样, 在发射模块的对面有着相同数目的接 收模块。 如该发明所使用的红外管的大小尺寸为 2mm, 根据如下方法可以计算出 白板书写面积的有效尺寸。模块尺寸为 64 X 2mm = 128mm, X轴扫描范围是 128x12 (发射模块) =1536mm, 以同样方法可计算出 Y轴扫描范围是 1152mm, 即可得出 白板的有效面积为 1536x1152平方毫米。如想增加或缩小白板的大小尺寸,可相 应的调整模块使用的数量, 或使用不同大小的红外管即可, 若使用 5mm, 即白板 的大小为: 3840mm x 2880mm。
在前文中所述, 模块与模块之间是靠连接器连接的。 在图 5所示, 发射模块 502头尾相接串连在一起构成一个 32x42的红外发射阵列。其中发射管模块的行 驱动线 504共 32条连接于模块之间, 再连接至发射阵列的行驱动器接口 506。 发射模块的列驱动线 503有 21个, 每个 2条,共 42条与控制板的发射阵列的列 驱动器接口 505连接。同样接收模块的连接方式如同上述。接收模块 507头尾相 接,行驱动线 509与接收阵列的行驱动器接口 511连接,共 32条。列驱动线 508 与接收阵列的列驱动器的接口 510连接, 共 42条, 构成一个 32x42的红外接收 阵列。
有红外管发射阵列 32x42共 1344个发射管, 有接收阵列 32x42共 1344个 接收管用于捕捉白板上移动物体。扫描是由第一对发射、接收管开始, 按排列序 号, 直至将 1344对发射、 接收管全部轮流扫描一次, 即完成一个扫描周期。 如 要捕捉一个平滑连续的移动坐标,扫描的周期应越快越好,每秒内扫描的次数应 越多越好。
图 6是该发明的核心部分的控制电路结构框架图, 其中包括四大部分: 第一部份是微处理器控制部分: 其中包括有微处理器 637, 主要是用于输 出扫描发射、接收管的地址信号, 控制某一对发射、接收管导通, 及记录目标的 移动位置, 和上传坐标数据给电脑等。 LED指示灯 634是用于反映白板的使用状 态,电源 633提供电源给微处理器, 632是一个晶体是微处理器所需的振荡频率。
第二部分是红外线发射控制电路: 其中, 发射阵列的行驱动器 606的一输 入端经过一个限流电阻 608与电源 638正极相连,提供电压给发射管,输出端是 32个行驱动线 609与发射阵列 611上的每个发射管正极相连; 同时, 列驱动器 607的输入端口是 42个列驱动线 610与发射阵列上的每个发射管的负极相连, 输出端口与一个髙频调制信号产生器相连,可产生高频脉冲信号,可发射出带高 频调制的红外线信号。
其中, 行驱动器 606是根据微处理器发出的 "行"地址码, 将其输入端口 与其输出端, 即: 该地址码所指向的行驱动线 609 中的某一行导通; 列驱动器 607是根据微处理器发出的 "列"地址码, 将其输出端口与其输入端, 即: 该地 址码所指向的列驱动线 610中的某一列导通; 电路 611是由 21个发射模块串连 在一起的发射管阵列, 见图 5; 单元 601所示的是 611中的其中一个被导通的发 射管; 高频调制信号产生器 640可给导通的发射管 611提供一个 300kHz左右的 高频调制。
第三部分是红外线接收控制电路, 接收列阵的行驱动器 616的一输入端口与 电源正极相连, 可提供电压给接收管, 输出端是 32个行驱动线 619与接收阵列 621上的每个接收管的正极相连, 而列驱动器 617的输入端口是 42个列驱动线 与接收阵列 621上每个接收管的负极相连,输出端口与一带通滤波器 641偶合连 接,可将无用干扰信号过滤掉,而后信号通过一个多级带通放大器 642将有用的 高频调制信号放大,再经过一个调制解调 643将高频信号解调出来,然后将检波 后的光电模拟信号输入到一个模数转换器 A/D 644中, 信号通过 A/D转换后输出 8位二进制的数字信号给微处理器。
其中, 行驱动器 616是根据微处理器发出的 "行"地址码, 将其输入端口与 其输出端, 即: 该地址码所指向的行驱动线 619中的某一行导通; 列驱动器 617 是根据微处理器发出的 "列"地址码, 将其输出端口与其输入端, 即: 该地址码 所指向的列驱动线 620中的某一列导通; 同样, 电路 621是 21个接收模块串连 在一起的红外线接收管阵列, 见图 5; 单元 622是 621之中的一个被导通的红外 线接收管; 以上发射、接收阵列的行驱动器 606、 616是通过行地址总线 602与微处理 器相连, 而发射、 接收阵列的列驱动器 607、 617是通过列地址总线 604与微处 理器相连。其中微处理器对驱动器 606, 607的控制是通过地址总线 602, 共 5条 线, 即为 25组合选择, 能提供 32个行驱动线的不同选址; 对驱动器 616, 617 的控制是通过地址总线 604, 共 5条线, 提供 32个列驱动线的不同选址。
上述电路中, 驱动器电路 606, 607, 616, 和 617可以由一个单元或多个单 元的驱动器芯片组成, 当驱动器的行驱动线或列驱动线不够用时,就需要增加驱 动芯片, 通过使用选用线 603, 605便可选择不同的驱动芯片进行对行、 列驱动 线的扫描每个驱动器需要一个选用线,若行驱动器电路 606可驱动 32个驱动线, 那么, 只需要一个驱动器和使用 1条选用线即可。 当列驱动器电路 607需要有 42条线的驱动能力时, 就需要使用 2个驱动器, 同时需要利用 2个选用线对需 要使用的驱动器芯片进行选择。这样一来, 在不增加地址线的情况下, 可将驱动 器电路的驱动能力按驱动片的输出能力增加而倍增, 利用 2个 32线驱动能 力的驱动器, 再通过利用 2条选用线, 即发射行驱动器 606、 接收行驱动器 616 还可以通过行选择地址总线 603连接微处理器 637, 发射列驱动器 607、 接收列 驱动器 617还可以通过列选择地址总线 605连接微处理器 637, 这样就可以驱动 具有 64个行或列驱动线的阵列, 而无需增加地址总线的数量。 在该实例中, 使 用两个驱动器芯片就足够了驱动该装置的 42条列驱动线了。
第四部分是外接设备: 主要包括一个储存部分 Multi-Media卡 (MMC) 631 或 SmartMedia (SD)卡, 与控制 RS232串口通信集成电路 626。 由于电脑 628的 RS232串行口的接入电平与微处理器的输出电平互不相同,所以该发明与电脑之 间沟通是通过集成电路 626进行的。 626将来自微处理器 637的电平信号转换成 电脑 628串连口 RS232串行口可识别的电平信号, 然后由应用程序读入 RS232 端口中的信号即可。经过处理后, 微处理器将捕获的数据, 包括: 移动目标的坐 标, 目标的大小及扫描周期序号等通过 RS232上传给电脑, 同时储存到记忆体 631中。 当需要装置能独立使用时, 该发明直接由微处理器 637, 通过读取在储 存装置 631 中的数据后, 在将该数据通过并行线总线 635将捕获的画面直接输 出到打印设备 636的并行接入口上打印。
以下根据实施实例流程示图 7, 将具体说明一下该发明对移动目标坐标的捕 捉、 及储存的主要步骤: 设: n为扫描周期序号, i为常数范围是 1… ∞; W为移动目标的直径; L 为接收管的物理尺寸; m为目标身份序号; X (m)为目标 m的 X坐标; Y (m)为目标 m的 Y坐标。 1. 有微处理器将"行"、 "列"地址码写入" 00H",通过地址线接口输出到发射、 接收管阵列的行、 列驱动器地址总线;
2. 发射阵列的行、列驱动器,接通位于该行该列的发射管, 该管开始发出红外 线高频调制脉冲, 同时接收阵列的行、列驱动器也接通位于该行该列的接收 管, 由于每个发射、 接收管是位于同一光轴上, 且是一一对应, 接收管开始 输出的模拟脉冲信号;
3. 继续步骤 2, 随后通过接收转换电路将接收到的模拟脉冲信号转换成模拟电 压幅值变化信号,然后输入到 A/D模数转换器中,将模拟电压幅值变化信号 转换为离散的数值表现;
4. 继续步骤 3, 微处理器读取 A/D信号接入端的 A/D电压数值, 并进行判断, 若数值接近 A/D电压曲线中的最高点, 即 A/D值为满格时,则可判断为无拦 截事件发生, 进入下一步。 若否, 则判断为有拦截事件发生, 随即进入 A/D 电压值与移动坐标的转换子程序, 取得 ^或^坐标值, 进入下一步;
5. 继续步骤 4, 判断微处理器定时器是否溢出, 若是, 则进入步骤 6, 若否, 则返回步骤 2;
6. 扫描到此时, 已完成了一个单元的扫描循环, 即: 一对发射、 接收管的扫描 工作。 随即, 微处理器判断是否完成所有发射、接收阵列的 "行"驱动线扫 描。 若是, 则进入步骤 8, 若否, 则进入下一步;
7. 微处理器将 "行"地址码加 " 01H", 并将该 "行"地址码输出到行驱动器地 址总线上, 随即开始发射、 接收阵列的下一行扫描工作, 返回步骤 2;
8. 判断是否完成所有发射、接收阵列的 "列"驱动线扫描, 若是, 则进入步骤
10, 若否, 则进入下一步;
9. 微处理器将 "列"地址码加 "01H",将 "行"地址码清 "00H"。随即将该 "列" 地址码输出到列驱动地址总线, "行"地址码输出到行驱动器地址总线, 扫 描开始进入发射、 接收阵列的下一列, 随即返回步骤 2;
10. 扫描到此时, 已完毕一个扫描周期, 即: 全部发射、接收管的扫描工作。判 断是否有移动目标捕获, 若否, 则进入步骤 12, 若是, 则进入下一步; 11. 若捕获单一目标,则将该周期的内捕捉到的移动目标的坐标(Χη, Υη)及 W值, 按扫描周期的序号 η储存到与微处理器相连的薩 C记忆卡中, 并通过 RS232 端口上传给电脑, 随即进入步骤 14。 若捕获多个目标, 则将该周期的内捕 捉到的移动目标的坐标 (X(m) n, Y(m)n)、 (X(m+l)n, Y(m+l)n)、…(X(m+i)n
Y(m+i)n), 及 W(m)、 W(m+1) 〜W(m+i)值按扫描周期的序号 n储存到 MMC 记忆卡中, 并通过 RS232端口上传给电脑, 随即进入步骤 14;
12. 判断电脑交互模式是否已打开, 若否, 则进入步骤 14, 若是, 则进入下一 步;
13. 判断在上一个扫描周期里是否有坐标 (X(n- 、 Y(n-D ) 被捕获, 若是, 则 通过 RS232上传一个 "终止"标记给电脑,通知电脑应用程序移动目标已经 离开捕捉范围, 随即进入下一步; 若否, 则进入下一步;
14. 微处理器将行地址码清 "00H", 列地址码清 " 00H", "列"地址码输出到列 驱动地址总线, "行"地址码输出到行驱动器地址总线, 返回步骤 2, 继续 扫描下一个周期。
通过周而复始地重复步骤 1-14, 微处理器将捕获的移动目标的坐标, 通过 RS232上传电脑应用程序, 再由电脑应用程序将捕获的坐标相连, 再重新显示在 电脑屏幕上, 即可达到实现屏幕重现的目的。
以下根据实施实例流程示图 9, 具体说明该发明如何将 A/D电压值与移动 坐标的转换程序主要步骤:
设: 接收管(发射管)尺寸为 L; W为拦截物的直径; d为目标在光轴通道中 拦截部分的宽度; j为 X轴上接收管的排列序号; k为 Y轴上接收管的排列序号, m为目标身份序号; X(m)为目标 m的 X坐标; Y(m)为目标 m的 Y坐标。
1 微处理器读入 A/D转换器输出的数据后, 随即将该数据代入到标准曲线方程 式,然后,求得拦截目标在该接收管的光轴通道中拦截的具体长度或宽度 , 即被遮挡部分弓型的高度;
2 再将该值 与实验中采集建立的接收管输出电压变化曲线标准数据表进行 比较、 拟合、 取值后取得最后的精确位置 ; 利用以下公式, 通过代入已知数」、 k, 接收管尺寸 L, 光轴通道受遮挡部分 弓形高度 ^, 进行坐标计算, 便可求得在扫描周期 n 内, 所捕获的目标, 在 X、 Y轴上移动的最终的位置, 即:
Figure imgf000017_0001
4 将该转化目标移动 ^或^坐标值存储到微处理器寄存器内。若有多用户同时 使用白板时, BP,在轴 X或 Y上应有多过一个坐标时, 则将若干个 (X(m)n
X(m+l)n "^!!!+;^或若干个 (Y(m)n、 Y(m+l)n… Y(m+i)n)存入微处理器寄 存器内。
5 返回主程序。
以下根据实施实例流程示图 8, 将具体说明一下该发明如何对单一目标移动 的识别、 轨迹重现及储存的主要步骤:
设: n为扫描周期序号, i为常数范围是 1 … ∞; W为移动目标的直径; L 为接收管的物理尺寸。
1. 电脑通过应用程序对 RS232端口进行扫描, 并读取由微处理器上传的坐标
(Xn, Yn), W值和扫描周期序号后, 应用程序开始判断在上一个扫描周期 里是否有(X(n- 1), Y(n-l))坐标被捕获。 若否, 则进入步骤 3, 若是, 则进 入下一步。
2. 将上一个扫描周期有捕获(X(n- 1), Y(n-l))与目前的坐标值(¾, Yn), 根 据公式 D =
Figure imgf000017_0002
进行坐标距离运算, 求得 值, 并将 D与 标准值比较,判断 值大小(该条件可由用户自己通过应用软件调整, 但最 小不得小于 2W), 若 D<2 , 则进入步骤 4, 若 £»≥2 , 则进入下一步。
3. 可确定这是另一条线的开端或是另一个点, 随即继续判断目标的种类, 若 W≤2L (同样该条件可以通过应用程序有用户自己调整), 则确认移动目标 为笔, 同时, 应用软件开始在屏幕上相对应的 (Xn, Yn) 坐标位置画一个 直径为 W, 颜色为黑色点, 继续进入步骤 5; 若 JV>2L, 则可确认移动目标 为擦除装置, 同时, 在相对应的(Xn, Υη)坐标位置画一个直径为 W, 颜色 为白色的点, 即擦除该点, 继续进入步骤 5。
4. 继续判断目标的种类,若 ≤2i (同样该条件可以通过应用程序有用户自己 调整), 则确认移动目标为笔, 并将坐标(X(n- 1), Y(n-D)与坐标(Xn, Yn) 用一条直径为 W, 颜色为黑色的线连接, 然后进入下一步; 若 W>2L, 则可 确认移动目标为擦除装置, 并将坐标 (X(n-1), Y(n-l)) 与坐标 (Xn, Yn) 用一条直径为 W, 颜色为白色的线连接, 即擦除该线, 然后进入下一步。
5. 继续扫描 RS232端口, 然后返回步骤 1。 通过周而复始重复步骤 1至 5, 连续不断的将坐标 (XnH, Yn+i)与(Xn+(i-l), Υη+α-ι))相连。这样一来, 在白板上目标移动的轨迹或者说字迹, 随即实时地在 电脑屏幕上重现, 并根据需要, 用户可随时储存、 读取该画面。
以下是该发明如何实现多用户同时书写, 即多目标识别、 轨迹重现及储存 的主要步骤- 设: η为扫描周期序号; i为常数范围是 1 … ∞; m为目标身份序号; X(m) 为目标 m的 X坐标; Y(m)为目标 m的 Y坐标; D为不同目标之间分隔距离; L发 射、 接收管尺寸; W为移动目标的直径。
1. 电脑通过应用程序对 RS232端口进行扫描,并读取由微处理器上传的坐标数 值(X(m)n, Y(m)n)、 (X(m+l)n, Y(m+l)n)、 ··· (X(m+i)n, Y(m+i)n), W(m)、 W(m+1)、 Wdn+i)值后及扫描周期序号后, 随即将该数据存入电脑记忆。并 利用 W值判断目标的类别, 即: 是否 : m)K7w+l)K/w+0 > 2L (该条件可以 由用户调整, 可以是 W>3L,或其它数值), 若是, 则判断为目标是擦除装置, 随即退出多目标捕捉程序, 并进入单一目标捕捉应用程序。若否, 则判断为 目标可能是多个移动拦截物, 随即进入下一步。
2. 禾用公式 D(m + =
Figure imgf000018_0001
, 将 (X(m)n,
Y(m)n)、 (X(m+l)n, Y(m+l)n)s ··· (X(m+i)n, Y(ra+i)n)坐标值代入, 并对同 一周期, 不同目标之间的距离进行运算, 求得 ΰθπ+ϋ傲后, 判断是否这些 坐标具有连续性特征, g|]: 是否 (W + 0<2^,若是, 则判断为目标是擦除装 置, 进入单一目标捕捉应用程序, 若否, 则判断为目标是多个移动拦截物, 随即进入下一步。
应用程序幵始判断在上一个扫描周期里是否有移动目标 (m)n-i、 (m+l)n-i、 …
(m+i)^坐标被捕获。 若目标 m是, 则进入步骤 4, 若目标 m否, 则在坐标
(X(m)n> Y(m)n) 画出一宽度为 W(m)的点, 随后进入步骤 7。 若目标 (m+1) 是, 则进入步骤 5, 若 (m+1)否, 则在坐标 (X(m+l)n, Y(m+l)n)画出一宽度 为 W(m+1)的点, 随后进入步骤 7。 若 (m+i)是, 则进入步骤 6, 若 (m+i)否, 则在坐标(X(m+i)n, Y(m+i)n)画出一宽度为 W(m+i)的点, 随后进入步骤 7。 利用公式。(m)n = ^X(m)n― X(m)n )2 + {Y{m)n - Υ{ηι)η )2, 将上一个扫描周期捕获 的目标 m的坐标(XO^-i, Y(m)n-i)与目前该目标的坐标值(X(m)n, Y(m)n) 进行距离运算。 若结果 Z)( )„≥2 , 则判断是目标 m画的一条线的开端, 或是一个点,并开始在屏幕上坐标(X(m)n, Y(m)n)画出一宽度为 W(m)的点, 随后进入步骤 7。若 D(m)n < 2W,则将坐标(X (m) n-i, Y (m) η-ι )与坐标(X (m) n, Y(m)n) 以宽为 W(m)的线相连接, 随后进入步骤 7。
利用公式 D(m + 1)„ = ^(X{m + \)n - X{m + 1)„_ι)2 + Y(m + 1)„ - Y(m + 1)„_ι)2, 将上一个扫 描周期捕获的目标 m+1的坐标(X(m+l)n- L Y(m+l)n-i)与目前该目标的坐标 值 (X(m+l)n, Y(m+l)n)进行距离运算。 若结果 + 1)„≥ 2f , 则判断是 目标 m+1 画的一条线的开端, 或是一个点, 并在屏幕上坐标 (X(m+l)n,
Y(m+l)n) 画一宽度为 W(m+1)的点, 随后进入步骤 7。 若 D(m + 1)„ <2W, 则将坐标(X(m+l)n- 1, Y(m+l)n-i)与坐标(X(m+l)n, Y(m+l)n)以宽为 W(m+1) 的线相连接, 随后进入步骤 7。 6. 利用公式 D(m + i)n = + i)n - ^('« + «-l)2 + ( {m + )„ - Y(m + i)n_x)2, 将上一个扫 描周期捕获的目标 m+i的坐标(X(m+i)n-i, Y(m+i)n-i)与目前该目标的坐标 值(X(m+i)n, Y(m+i)n)进行距离差值运算。 若结果 D(m + ^≥2ff, 则判 断是目标 m+i画的一条线的开端, 或是一个点, 并在屏幕上坐标(X(m+i)n, Y(m+i)n)画一宽度为 W(m+i)的点, 随后进入下一步。 若 D(m + i)„ <21V, 则将坐标(X(m+i)n-i, Y(m+i)n-i)与坐标 (X(m+i)n> Y(m+i)n)以宽为 W(m+i) 的线相连接。 随后, 进入下一步。
7. 继续扫描 RS232端口, 然后返回步骤 1。 通过周而复始重复步骤 1至 6, 可连续不断的将坐标 (X(m)n+i, Y(m)n+i) 与 (X(m)n+(i-i), Y(m)n+(i-i))相连、将 (X(m+l)n+i, Y(m+l)n+i)与 (X(m+l)n+(i-i),
Y (m+1 ) η+ (m-i) )相连、…将( X (m+i) n+i, Y (m+i) n+i )与(X (m+i ) n+ (i-i) ,Y(m+i)n+ (i-i) ) 相连。这样一来, 在白板上多个目标移动的轨迹或字迹, 随即实时地在电脑屏幕 上重显.并根据需要, 用户可随时储存、 读取该画面。
以下根据实施实例流程示图 10, 将具体说明该发明在进入电脑交互操作模 式后的主要步骤:
设: n为扫描周期序号, i为常数范围是 1 … ∞; W为移动目标的直径; L 为接收管的物理尺寸。
1. 电脑通过应用程序对 RS232端口进行扫描, 并读入由微处理器上传的坐标
(Xn, Yn) 或 "终止"标记。
2. 继续步骤 1, 判断若收到的是坐标 "终止 "标记时, 则进入步骤 4; 若收到 的是坐标(Xn, Yn)和 W值, 则将鼠标移动到 (Xn, Yn)对应的屏幕位置上,' 随即进入下一步。
3. 判断在上一个扫描周期里是否有目标(Xm Yn-l)被捕获, 若是, 则判断为 触摸正在进行中, 随即进入步骤 6; 若否, 则判断为触摸开始切入, 随即打 开计时器 T, 同时开计时, 进入步骤 6。 4. 应用程序判断计时器是否 T < 100ms (该值可由用户通过应用软件设置调整), 若否, 则判断为一个无效触摸行为, 随即进入步骤 6,若是, 则为有效触摸, 进入下一步。
5. 判断该触摸 (点击)位置 (Χπ, Υη)是否在指令有效范围内, 若是, 则执行 微软视窗系统的点击命令或其它应用软件指令, 同时将计时器 Τ清" 0", 进 入下一步。 若否, 则将计时器 Τ清 " 0", 进入下一步。
6. 继续扫描 RS232端口, 返回步骤 1, 读取由微处理器上传的下一个周期捕获 的坐标值。
电脑应用程序, 通过不断重复步骤 1-6, 即可实现如上所述的该发明的交 互式操作的目的。

Claims

权利要求书
、 一种交互式红外线电子白板,其中横向、纵向排列在白板边缘的红外线发 射阵列 (611 )及同样横向、 纵向排列在白板边缘的与发射阵列对应的红 外线接收阵列(621 )分别通过行驱动器、 列驱动器与微处理器(637)相 连; 红外线发射阵列(611 )的列驱动器(607)的输出端口与高频调制信 号产生器(640)相连; 红外线接收阵列 (621 ) 的列驱动器(617) 的输 出端口通过信号接收电路、模数转换器 A/D (644)与微处理器(637)相 连, 其特征在于: 红外线发射阵列(611 )分别通过发射行驱动线(609)、 列驱动线(610)分别与发射行驱动器(606)、 列驱动器(607)相连; 红 外线接收阵列(621 )分别通过接收行驱动线(619)、 列驱动线(620)分 别与接收行驱动器(616)、 列驱动器(617)相连; 发射行驱动器(606)、 接收行驱动器(616)通过行地址总线(602)连接微处理器(637), 发射 列驱动器(607)、 接收列驱动器(617)通过列地址总线(604)连接微处 理器(637), 微处理器(637)上有一外接储存装置 (631 ), 并通过控制 RS232串行口或 USB接口的芯片 (626)与电脑(628)相连。
、 根据权利要求 1所述的一种交互式红外线电子白板,其特征在于:所述红 外线发射、接收阵列由模块通过连接器连接而成,模块上每个发射或接收 管的正极与行驱动线接口相连、 负极与列驱动线接口相连。
、 根据权利要求 1或者 2所述的一种交互式红外线电子白板, 其特征在于: 信号接收电路包括依次连接的带通滤波器(641 )、多级带通放大器(642)、 调制解调器(643)。
、 根据权利要求 1或者 2所述的一种交互式红外线电子白板, 其特征在于: 发射行驱动器(606)、 接收行驱动器(616)、 发射列驱动器(607)、 接收 列驱动器(617) 根据驱动阵列大小的需要, 可以由一个或一个以上的驱 动芯片组成, 行驱动器(606)、 (616) 的芯片及列驱动器(607)、 (617) 的芯片可以分别通过选用线 (603)、 (605 )连接微处理器(637)。
、 根据权利要求 1或者所述的一种交互式红外线电子白板,其特征在于:有 外框 (207、 209)包围白板 (203 ) 四边, 红外线发射管 (201 )、 接收管
(205)位于外框(207、 209) 内, 过滤装置 (204、 202) 安装在红外线 发射管(201 )、接收管(205)之前,红外线发射、接收模块的线路板(206)、 (208) 与白板平面垂直并安装在白板两侧的外框内。
、 一种交互式红外线电子白板,其中横向、纵向排列在白板边缘的红外线发 射阵列 (611 )及同样横向、 纵向排列在白板边缘的与发射阵列对应的红 外线接收阵列(621 )分别通过行驱动器、 列驱动器与微处理器(637)相 连; 红外线发射阵列(611 )的列驱动器(607)的输出端口与髙频调制信 号产生器(640) 相连∑; 红外线接收阵列 (621 ) 的列驱动器(617) 的输 出端口通过信号接收电路、模数转换器 A/D (644)与微处理器(637)相 连, 其特征在于: 通过一个包含有 tan(x)函数的曲线方程或是一个 2次或 者 2次方以上的曲线方程,建立红外线接收管所产生的电压值与目标拦截 物遮挡红外线光轴通道宽度 di的关系, 然后得出所述的计算目标大小 W 的公式是:
N
W = ^ di = d j + d j+ι - - d j+„, N = j + n
''=
其中, j: 接收管的排列序号
d: 光轴通道中遮挡部分的宽度
n: 常数自变量
以及所述的计算移动目标坐标(X, Y) 的方程式是:
X - j x L - dj + Y = k L - + | 其中, j : x轴接收管排列序号
k: Y轴接收管排列序号
d: 光轴通道中遮挡部分的长度
N: N=j+n, n为常数自变量
在确定 W以及 X、 Y的取值后, 就可以实现对红外线电子白板上的移动目 标运动轨迹的坐标捕捉、 识别、 轨迹重现及储存。
7、 根据权利要求 6所述的一种交互式红外线电子白板,其特征在于:微处理 器或电脑中有一个标准数据表, 该表是经过实验所得, 它结合不同发射、 接收管的直径尺寸,将目标在光轴通道中移动时,红外线接收管所产生的 电压值与目标拦截物遮挡红外线光轴通道宽度 di的一一对应关系排列而 成,微处理器可以根据获得的红外线接收管所产生的电压值直接在该表中 对应取得目标拦截物遮挡红外线光轴通道宽度 di的值, 从而进行对红外 线电子白板上的移动目标运动轨迹的坐标捕捉、 识别、 轨迹重现及储存; 或者将通过曲线方程获得的目标拦截物遮挡红外线光轴通道宽度 di值与 该表进行拟合, 以获得更加精确的数值。
、 根据权利要求 6或 7所述的一种交互式红外线电子白板,其特征在于:其 移动目标坐标捕捉、识别、轨迹重现及储存方法如下, 设 n为扫描周期序 号; i为常数范围 1〜∞; W为移动目标的直径; L为红外线发射、 接收 管的物理尺寸; m为目标身份序号; X (m)为目标 m的 X坐标; Y (m) 为目标 m的 Y坐标; 移动目标坐标捕捉及储存的步骤是:
1 ) 由微处理器将 "行"、 "列"地址码写入 "00H", 通过地址线接口输出 到发射、 接收管阵列的行、 列驱动器地址总线;
2) 发射阵列的行、 列驱动器接通位于该行该列的发射管, 该管开始发出 红外线高频调制脉冲, 同时接收阵列的行、 列驱动器也接通位于相应 行列的接收管, 由于每个发射、 接收管是位于同一光轴上, 且是一一
' 对应, 接收管开始输出模拟脉冲信号;
3) 继续步骤 2),随后通过接收转换电路将接收到的模拟脉冲信号转换成 模拟电压幅值变化信号,然后输入到模数转换器 A/D中,将模拟电压 幅值变化信号转换为离散的数值表现;
4) 继续步骤 3 ), 微处理器读取 A/D信号接入端的 A/D电压数值, 并进 行判断, 若数值接近 A/D电压曲线中的最高点, 即 A/D值为满格时, 可判断为无拦截事件发生, 进入下一步; 若否, 则判断为有拦截事件 发生, 随即进入 A/D电压与移动坐标的转换子程序, 取得 Xn或 Yn 坐标值, 进入下一步;
5) 继续步骤 4), 判断微处理器定时器是否溢出, 若是, 则进入步骤 6); 若否, 则返回步骤 2);
6) 扫描到此时, 已完成了一个单元的扫描循环, 即一对发射、 接收管的 扫描工作; 随即, 微处理器判断是否完成所有发射、 接收阵列的行驱 动线扫描; 若是, 则进入步骤 8), 若否, 则进入下一步;
7) 微处理器将行地址码加 "01H",将该行地址码输出到行驱动器地址总 线上, 随即开始发射、 接收阵列的下一行扫描工作, 返回步骤 2);
8) 判断是否完成所有发射、 接收阵列的列驱动线扫描, 若是, 则进入步 骤 10); 若否, 则进入下一步;
9) 微处理器将列地址码加 "01H", 将行地址码清 "00H"; 隨即将该列 地址码输出到列驱动地址总线, 行地址码输出到行驱动地址总线, 扫 描开始进入发射、 接收阵列的下一列, 随即返回步骤 2);
10) 扫描到此时, 已完成一个扫描周期, 即全部发射、接收管的扫描工作, 判断是否有移动目标捕获, 若否, 则进入步骤 12), 若是, 则进入下 一步;
11 ) 若捕获单一目标, 则将该周期内捕捉到的移动目标的坐标(Xn, Yn) 及 W值按扫描周期的序号 η储存到与微处理器相连的储存装置 MMC 记忆卡中, 并通过 RS232端口上传给电脑, 随即进入步骤 14); 若捕 获多个目标,则将该周期内捕捉到的移动目标的坐标 (X(m)n, Y(m)n)、
(X(m+l)n, Y(m+l)n)、…(X(m+i)n, Y(m+i)n),及 W(m)、 W(m+1) … W(m+i)值按扫描周期的序号 n储存到 MMC记忆卡中,并通过 RS232 端口上传给电脑, 随即进入步骤 14);
12) 判断电脑交互模式是否打开, 若否, 则进入步骤 14), 若是, 则进入 下一步;
13) 判断在上一个扫描周期里是否有坐标(X(n4), Y(n-1))被捕获, 若是, 则通过 RS232上传一个 "终止"标记给电脑, 通知电脑应用程序移动 目标已经离幵捕捉范围, 随即进入下一步; 若否, 则进入下一步;
14) 微处理器将行地址码清 "00Η", 列地址码清 "00Η", 列地址码输出 到列驱动地址总线, 行地址码输出到行驱动地址总线, 返回步骤 2, 继续扫描下一周期;
其中 A/D电压与移动坐标的转换子程序是:
设 d为目标在光轴通道中拦截部分的宽度、 j为 X轴上接收管的排列序号、 k为 Y轴上接收管的排列序号;
1) 微处理器读入 A/D转换器输出的数据后, 随即将该数据代入到含有 tan(x)函数的曲线方程或是一个二次或二次以上的函数的曲线方程式, 然后, 求得拦截目标在该接收管的光轴通道中拦截的具体长度或宽度 di, 即被遮挡部分弓形的高度;
2) 再将该值 di与实验中采集建立的接收管输出电压变化曲线标准数据表 进行比较、 拟合、 取值后取得最后的精确位置 di;
3)利用以下公式, 通过代入已知数 j、 k, 接收管尺寸 L, 光轴通道受遮挡 部分弓形高度 ·, 进行坐标计算, 便可求得在扫描周期 n内, 所捕获的 目标, 在 X、 Y轴上移动的最终的位置, 即-
Figure imgf000026_0001
iJL \
Yn = kxL-dk +\ ^di \÷2
4)将该转化目标移动 或 坐标值存储到微处理器寄存器内, 若有多用户 同时使用白板时, 即,在轴 X或 Y上应有多过一个坐标时, 则将若干个 (X(m)n、 (111+1)„...乂(111+ „或若干个(¥(1!1)„、 Y(ra+l)n...Y(m+i)n)存入微处 理器寄存器内;
5) 返回主程序;
其中对单一移动目标的识别、 轨迹重现及储存的方法如下:
1) 电脑通过应用程序对 RS232端口进行扫描, 并读取由微处理器上传的坐标 (Xn, Yn)、 W值和扫描周期序号后, 应用程序开始判断在上一个扫描周期 里是否有(X(n-1), Y(n-1))坐标被捕获; 若否, 则进入步骤 3); 若是, 则进 入下一步;
2) 将上一个扫描周期捕获的坐标(Χ(η-1), Υ(η-1))及目前的坐标值(Χη, Υη) 代代入入公公式式 ==
Figure imgf000026_0002
进进行行坐坐标标距距离离运运算算,, 求求得得 DD值值,, 并并将将 DD值值与与标标准准值值比比较较,, 标标准准值值由由用用户户根根据据需需要要调调整整,, 但但最最小小不不得得小小于于 22WW,, 若若 DD<<22WW,, 则则进进入入步步骤骤 44)),, 若若 DD 22WW,, 则则进进入入下下一一步步;; 3) 可确定这是另一条线的开端或是另一个点, 随即继续判断目标的种类, 设定 若 W 2L, 这个条件也可以由用户根据需要调整, 则确认移动目标为笔, 应 用软件开始在屏幕上相应的(Xn, Yn)坐标位置画一个直径为 W, 颜色为黑 色的点, 继续进入步骤 5), 若 W>2L, 则可确认移动目标为擦除装置, 于是 在相对应的(Xn, Yn)坐标位置画一个直径为 W, 颜色为白色的点, 即擦除 该点, 进入步骤 5); ,
4) 继续判断目标的种类,设定若 W 2L,这个条件也可以由用户根据需要调整, 则确认移动目标为笔, 将坐标(X(n-1), Y(n-1))与坐标 (Xn, Yn)用一条 直径为 W, 颜色为黑色的线连接, 然后进入下一步, 若 W>2L, 则可确认移 动目标为擦除装置, 并将坐标(X(n-1), Y(n-1)) 与坐标 (Xn, Yn)用一条 直径为 W, 颜色为白色的线连接, 即擦除该线, 然后进入下一步;
5) 继续扫描 RS232端口, 然后返回步骤 1 )。
9、 根据权利要求 6或者 7或者 8所述的一种交互式红外线电子白板,其特征 在于: 多移动目标捕捉、 识别、 轨迹重现及储存方法如下:
1 ) 电脑通过应用程序对 RS232端口进行扫描, 并读取由微处理器上传的 坐标数值 ( X(m) n , Y(m)n)、 (X(m+l) n , Y (m+l)n)、 ··· ( X(m+i) n >
Y(m+i) n), W(m)、 W(m+1)、 - Wdn+i)值后及扫描周期序号后, 随即将 该数据存入电脑记忆, 并利用 W 值判断目标的类别, 即: 是否 W{m)WW{m+V W{m+i)≥ 2L , 该条件可以由用户调整, 可以是 W>3L或其它数值, 若是, 则判断为目标是擦除装置, 随即退出多目标 捕捉程序, 并进入单一目标捕捉应用程序; 若否, 则判断为目标可能 是多个移动拦截物, 随即进入下一步;
2) 禾 II用公式 D{m +
Figure imgf000027_0001
Y(m)„)、 (X(m+1)„, Y(ra+1)„)、 … (X(m+i)„, Y(m+i)n)坐标值代入, 并对同一周期, 不同目标之间的距离进行运算, 求得 + 值后, 判 断是否这些坐标具有连续性特征, 即: 是否 Z)(« + 0 < 2^,若是, 则判断 为目标是擦除装置, 进入单一目标捕捉应用程序, 若否, 则判断为目 标是多个移动拦截物, 随即进入下一步; 应用程序开始判断在上一个扫描周期里是否有移动目标
Figure imgf000028_0001
(m+l)n-i、 … (m+i)n-i坐标被捕获, 若目标 m是, 则进入步骤 4); 若目标 m否, 则在坐标(X(m)n, Y(m)n)画出一宽度为 W(tn)的点, 随 后进入步骤 7); 若目标 (m+1)是, 则进入步骤 5), 若 (m+1)否, 则在 坐标(X(m+l)n, Y(m+l)n)画出一宽度为 W(m+1)的点, 随后进入步骤
7); 若 (m+i)是, 则进入步骤 6), 若 (m+i)否, 则在坐标 (X(m+i)n
Y(m+i)n)画出一宽度为 W(m+i)的点, 随后进入步骤 7);
利用公式 D n = i{X(m)n― X(m)n_i)2 + (Y(m)n一 Y(m)n_X)2, 将上一个扫描周 期捕获的目标 m 的坐标(X(m)n— 1, Y(m)n-i) 与目前该目标的坐标值 (X(m)n, Y(m)n)进行距离运算, 若结果 D(«)„≥2i, 则判断是目标 m 画的一条线的开端,或是一个点,并开始在屏幕上坐标(X(ra)n,Y(m)n) 画出一宽度为 W(m)的点, 随后进入步骤 7); 若^«)„<2 , 则将坐标
(X(m)n-i, Y(m)n-i)与坐标(X(m)n, Y(m)n)以宽为 W(m)的线相连接, 随后进入步骤 7);
利用公式 D(m + 1)„ = ^(X(m + 1)„ - X(m + \)η_ )2 + (Y(m + \)n - Y{m + 1)^)2 , 将上 一个扫描周期捕获的目标 m+1的坐标(X n+ n-i, Y(m+l)n-i)与目前 该目标的坐标值 (X(m+l)n, Y(m+l)n) 进行距离运算, 若结果 D(m + \)„≥2W,则判断是目标 m+1画的一条线的开端,或是一个点, 并在屏幕上坐标 (X(m+l)n, Y(m+l)n) 画一宽度为 W (m+1)的点, 随后 进入步骤 7); ^D(m + l)n <2W, 则将坐标(X(m+l)n-i, Y(m+l)n—i) 与坐标 (X(m+l)n, Y(m+l)n) 以宽为 W(m+1)的线相连接, 随后进入步 骤 7);
利用公式 D(m + i)n = ^( (m +! ·)„ - X{m + !·)„-1)2 + (Y(m + ΐ)η - Y(m + «-l)2 ,将上一 个扫描周期捕获的目标 m+i的坐标(X(m+i)n- 1, Y(m+i)n-i)与目前该 目标的坐标值 (X(m+i)n, Y(m+i)n ) 进行距离运算, 若结果 D(m + i)n≥2W,则判断是目标 m+i画的一条线的开端,或是一个点, 并在屏幕上坐标(X(m+i)n, Y(m+i)n) 画一宽度为 W(m+i)的点, 随后
- 进入下一步; ^D(m + i)n <2W , 则将坐标(X(m+i)n— 1, Y(m+i)n— 1) 与坐标 (X(m+i)n, Y(m+i)n) 以宽为 W(m+i)的线相连接; 随后, 进入 下一步;
7) 继续扫描 RS232端口, 然后返回步骤 1)。
根据权利要求 6或 7或 8或 9所述的一种交互式红外线电子白板,其特征 在于: 电子白板与电脑在交互操作模式下的程序是:
1) 电脑通过应用程序对 RS232端口进行扫描, 并读入由微处理器上传的 坐标 (Xn, Yn) 或 "终止"标记;
2) 继续步骤 1), 判断若收到的是坐标 "终止 "标记时, 则进入步骤 4); 若收到的是坐标(Xn, Yn)和 W值, 则将鼠标移动到(Xn, Yn)对应的 屏幕位置上, 随即进入下一步;
3) 判断在上一个扫描周期里是否有目标(Xn-L Yn-l)被捕获, 若是, 则 判断为触摸正在进行中, 随即进入步骤 6); 若否, 则判断为触摸开始 切入, 随即打开计时器 T, 同时开计时, 进入步骤 6);
4) 应用程序判断计时器是否 Τ < 100ms, 该值可由用户通过应用软件设 置调整,若否,则判断为一个无效触摸行为,随即进入步骤 6);若是, 则为有效触摸, 进入下一步;
5) 判断该触摸或点击位置 (Xn, Yn) 是否在指令有效范围内, 若是, 则 执行微软视窗系统的点击命令或其它应用软件指令, 同时将计时器 T 清 " 0", 进入下一步; 若否, 则将计时器 T清 " 0", 进入下一步;
6) 继续扫描 RS232端口,返回步骤 1),读取由微处理器上传的下一个周 期捕获的坐标值。
PCT/CN2003/000973 2002-12-27 2003-11-17 Tableau blanc electronique interactif a infrarouges WO2004059570A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/540,899 US7429706B2 (en) 2002-12-27 2003-11-17 Interactive IR electronic white board
AU2003303400A AU2003303400A1 (en) 2002-12-27 2003-11-17 Interactive ir electronic white board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02149761.3 2002-12-27
CN02149761.3A CN1196077C (zh) 2002-12-27 2002-12-27 一种交互式红外线电子白板

Publications (1)

Publication Number Publication Date
WO2004059570A1 true WO2004059570A1 (fr) 2004-07-15

Family

ID=4751750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000973 WO2004059570A1 (fr) 2002-12-27 2003-11-17 Tableau blanc electronique interactif a infrarouges

Country Status (4)

Country Link
US (1) US7429706B2 (zh)
CN (1) CN1196077C (zh)
AU (1) AU2003303400A1 (zh)
WO (1) WO2004059570A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458673C (zh) * 2006-05-31 2009-02-04 北京汇冠新技术有限公司 使用总线结构实现扫描驱动的红外触摸屏
CN114237425A (zh) * 2021-12-21 2022-03-25 深圳市普锐高科实业有限公司 一种基于手写笔的屏幕可控方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9471170B2 (en) * 2002-11-04 2016-10-18 Neonode Inc. Light-based touch screen with shift-aligned emitter and receiver lenses
US9778794B2 (en) 2001-11-02 2017-10-03 Neonode Inc. Light-based touch screen
US9052777B2 (en) 2001-11-02 2015-06-09 Neonode Inc. Optical elements with alternating reflective lens facets
US9213443B2 (en) * 2009-02-15 2015-12-15 Neonode Inc. Optical touch screen systems using reflected light
US8674966B2 (en) 2001-11-02 2014-03-18 Neonode Inc. ASIC controller for light-based touch screen
US8339379B2 (en) * 2004-04-29 2012-12-25 Neonode Inc. Light-based touch screen
US9052771B2 (en) 2002-11-04 2015-06-09 Neonode Inc. Touch screen calibration and update methods
US20100238139A1 (en) * 2009-02-15 2010-09-23 Neonode Inc. Optical touch screen systems using wide light beams
US8587562B2 (en) 2002-11-04 2013-11-19 Neonode Inc. Light-based touch screen using elliptical and parabolic reflectors
US8416217B1 (en) 2002-11-04 2013-04-09 Neonode Inc. Light-based finger gesture user interface
US9389730B2 (en) * 2002-12-10 2016-07-12 Neonode Inc. Light-based touch screen using elongated light guides
US8902196B2 (en) 2002-12-10 2014-12-02 Neonode Inc. Methods for determining a touch location on a touch screen
US7436394B2 (en) * 2004-07-13 2008-10-14 International Business Machines Corporation Apparatus, system and method of importing data arranged in a table on an electronic whiteboard into a spreadsheet
US7450109B2 (en) * 2004-07-13 2008-11-11 International Business Machines Corporation Electronic whiteboard
CA2516083C (en) 2004-08-17 2013-03-12 Dirtt Environmental Solutions Ltd. Integrated reconfigurable wall system
US8031179B2 (en) * 2006-06-30 2011-10-04 Canon Kabushiki Kaisha Control apparatus for operation panel and electronic apparatus
WO2008095412A1 (fr) * 2007-02-02 2008-08-14 Wai Ho Carte circuit d'émission-réception infrarouge, et écran tactile infrarouge l'utilisant
US8416197B2 (en) * 2007-06-15 2013-04-09 Ricoh Co., Ltd Pen tracking and low latency display updates on electronic paper displays
US20090029338A1 (en) * 2007-07-24 2009-01-29 Acco Brands Usa Llc Display board assembly
CN101387930B (zh) * 2007-09-12 2012-11-28 许军 电子白板
TWI396119B (zh) * 2007-10-28 2013-05-11 Univ Lunghwa Sci & Technology 觸控式螢幕
TWI365400B (en) * 2007-11-29 2012-06-01 Ibm Infrared touch screen apparatus
TWI382502B (zh) * 2007-12-02 2013-01-11 Univ Lunghwa Sci & Technology 晶片封裝之結構改良
CN101526867B (zh) * 2008-03-03 2013-03-06 贺伟 一种红外线发射或接收电路板单元及红外线触摸屏
US20090233714A1 (en) * 2008-03-14 2009-09-17 William Toro Three Dimensional Infrared Movement Sensing Matrix
JP2010039804A (ja) 2008-08-06 2010-02-18 Nitto Denko Corp 光学式タッチパネル
CN102177493B (zh) * 2008-08-07 2014-08-06 拉普特知识产权公司 具有被调制的发射器的光学控制系统
CN101770353A (zh) * 2008-12-30 2010-07-07 上海京城高新技术开发有限公司 一种电子白板显示处理方法
EP2377005B1 (de) * 2009-01-14 2014-12-17 Citron GmbH Multitouch-bedienfeld
US8775023B2 (en) 2009-02-15 2014-07-08 Neanode Inc. Light-based touch controls on a steering wheel and dashboard
US9063614B2 (en) 2009-02-15 2015-06-23 Neonode Inc. Optical touch screens
US20110095995A1 (en) * 2009-10-26 2011-04-28 Ford Global Technologies, Llc Infrared Touchscreen for Rear Projection Video Control Panels
CN102053757B (zh) * 2009-11-05 2012-12-19 上海精研电子科技有限公司 一种红外触摸屏装置及其多点定位方法
US8330736B2 (en) * 2009-11-19 2012-12-11 Garmin International, Inc. Optical overlay for an electronic display
CN201654744U (zh) * 2009-12-08 2010-11-24 张银虎 一种拼接式结构的电子白板
CN102117154B (zh) * 2010-12-16 2013-03-06 合肥天鹅电子技术有限公司 一种交互式红外白板的信号处理方法
CN102799315B (zh) * 2011-05-24 2016-09-14 程抒一 红外触摸屏精确擦除系统
USD669531S1 (en) * 2012-02-24 2012-10-23 Steelcase Inc. Display board
US9207800B1 (en) 2014-09-23 2015-12-08 Neonode Inc. Integrated light guide and touch screen frame and multi-touch determination method
US9921661B2 (en) 2012-10-14 2018-03-20 Neonode Inc. Optical proximity sensor and associated user interface
US10282034B2 (en) 2012-10-14 2019-05-07 Neonode Inc. Touch sensitive curved and flexible displays
US9164625B2 (en) 2012-10-14 2015-10-20 Neonode Inc. Proximity sensor for determining two-dimensional coordinates of a proximal object
US12032817B2 (en) 2012-11-27 2024-07-09 Neonode Inc. Vehicle user interface
US9092093B2 (en) 2012-11-27 2015-07-28 Neonode Inc. Steering wheel user interface
US8991118B2 (en) 2013-01-16 2015-03-31 Hardwire, Llc Armored door panel
US9333714B2 (en) 2013-01-16 2016-05-10 Hardwire, Llc Vehicular armor system
CN103164086B (zh) * 2013-03-15 2016-05-25 创维光电科技(深圳)有限公司 一种基于红外触摸屏的触摸显示方法、装置及红外触摸屏
SG11201605989QA (en) 2014-02-20 2016-08-30 Dirtt Environmental Solutions Method of configuring walls
US9367174B2 (en) * 2014-03-28 2016-06-14 Intel Corporation Wireless peripheral data transmission for touchscreen displays
US10400448B2 (en) * 2015-03-16 2019-09-03 Dirtt Environmental Solutions, Ltd. Reconfigurable wall panels
CN110058782B (zh) * 2016-02-22 2020-11-24 广州视睿电子科技有限公司 基于交互式电子白板的触摸操作方法及其系统
CN105892764A (zh) * 2016-04-29 2016-08-24 杭州碳诺光电材料有限公司 基于书写笔迹无线同步的智能手写板
CN105892765A (zh) * 2016-04-29 2016-08-24 杭州碳诺光电材料有限公司 基于书写笔迹识别和同步终端显示的智能手写板
US11093087B2 (en) 2016-06-10 2021-08-17 Dirtt Environmental Solutions Ltd. Glass substrates with touchscreen technology
US11240922B2 (en) 2016-06-10 2022-02-01 Dirtt Environmental Solutions Ltd. Wall system with electronic device mounting assembly
USD787593S1 (en) 2016-06-29 2017-05-23 Bruce Robins Whiteboard
EP3482255A4 (en) 2016-07-08 2020-03-11 DIRTT Environmental Solutions, Ltd. SMART GLASS WITH LOW VOLTAGE
CN106598294A (zh) * 2016-12-23 2017-04-26 郑州云海信息技术有限公司 一种具有电子白板功能的笔记本电脑
CN107741799A (zh) * 2017-11-16 2018-02-27 江门市星望教育科技有限公司 一种可录入式教学装置
CN110146931B (zh) * 2018-06-26 2024-07-23 山东蓝贝思特教装集团股份有限公司 一种液晶书写膜局部擦除红外定位系统
EP3887192B1 (en) 2018-11-28 2023-06-07 Neonode Inc. Motorist user interface sensor
KR20220098024A (ko) 2019-12-31 2022-07-08 네오노드, 인크. 비 접촉식 터치 입력 시스템
US11669210B2 (en) 2020-09-30 2023-06-06 Neonode Inc. Optical touch sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928094A (en) * 1988-01-25 1990-05-22 The Boeing Company Battery-operated data collection apparatus having an infrared touch screen data entry device
CN1118083A (zh) * 1995-05-19 1996-03-06 珠海科健实业有限公司 红外触摸屏光电检测定位系统
CN2453484Y (zh) * 2000-09-06 2001-10-10 北京汇冠科技有限公司 一体化红外触摸显示器
US6429857B1 (en) * 1999-12-02 2002-08-06 Elo Touchsystems, Inc. Apparatus and method to improve resolution of infrared touch systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059620B2 (ja) * 2000-09-20 2008-03-12 株式会社リコー 座標検出方法、座標入力/検出装置及び記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928094A (en) * 1988-01-25 1990-05-22 The Boeing Company Battery-operated data collection apparatus having an infrared touch screen data entry device
CN1118083A (zh) * 1995-05-19 1996-03-06 珠海科健实业有限公司 红外触摸屏光电检测定位系统
US6429857B1 (en) * 1999-12-02 2002-08-06 Elo Touchsystems, Inc. Apparatus and method to improve resolution of infrared touch systems
CN2453484Y (zh) * 2000-09-06 2001-10-10 北京汇冠科技有限公司 一体化红外触摸显示器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458673C (zh) * 2006-05-31 2009-02-04 北京汇冠新技术有限公司 使用总线结构实现扫描驱动的红外触摸屏
CN114237425A (zh) * 2021-12-21 2022-03-25 深圳市普锐高科实业有限公司 一种基于手写笔的屏幕可控方法
CN114237425B (zh) * 2021-12-21 2024-01-16 深圳市普锐高科实业有限公司 一种基于手写笔的屏幕可控方法

Also Published As

Publication number Publication date
US20060097989A1 (en) 2006-05-11
CN1196077C (zh) 2005-04-06
CN1424696A (zh) 2003-06-18
US7429706B2 (en) 2008-09-30
AU2003303400A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
WO2004059570A1 (fr) Tableau blanc electronique interactif a infrarouges
CN1023039C (zh) 坐标输入装置
CN101630213B (zh) 光触摸屏和光触摸屏光源以及触摸笔
CN101231450B (zh) 多点及物体触摸屏装置及多点触摸的定位方法
CN101634919B (zh) 一种手势识别的装置与方法
CN101916152B (zh) 一种多点触摸的红外定位装置及方法
CN100555179C (zh) 一种基于cmos数字图像传感器定位装置及定位方法
EP1221132B1 (en) System and devices for electronic recording of handwritten information
CN201535956U (zh) 光学定位点读机
CN101882032B (zh) 一种手写输入方法、装置、接收器及系统
CN201562264U (zh) 自适应型智能互动投影机
CN104965625B (zh) 一种可视化教学展示系统
US11182029B2 (en) Smart interactive tablet and driving method thereof
CN102375598A (zh) 采用蓝牙通信的触摸屏
CN103399671A (zh) 双摄像头触摸屏及其触摸笔
CN103123555A (zh) 一种基于红外触摸屏的图形识别方法、装置及红外触摸屏
CN203070256U (zh) 一种超声波红外触摸屏
CN113934323B (zh) 基于智能黑板的多点显示方法、装置和终端设备
CN101504580A (zh) 光学触摸屏及其配套的触摸笔
CN1196078C (zh) 一种高分辨率红外线触摸装置
JP4615178B2 (ja) 情報入出力システム、プログラムおよび記憶媒体
CN102298471A (zh) 光学触摸屏
CN201107729Y (zh) 光学人机互动识别系统
CN201322920Y (zh) 一种简易大屏幕多点触摸定位器
CN110989844A (zh) 一种基于超声波的输入方法、手表、系统及存储介质

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2006097989

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540899

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10540899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP