WO2004059221A1 - Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique - Google Patents
Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique Download PDFInfo
- Publication number
- WO2004059221A1 WO2004059221A1 PCT/CH2003/000839 CH0300839W WO2004059221A1 WO 2004059221 A1 WO2004059221 A1 WO 2004059221A1 CH 0300839 W CH0300839 W CH 0300839W WO 2004059221 A1 WO2004059221 A1 WO 2004059221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- compartment
- heat
- rotary element
- cold
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the present invention relates to a process for continuously generating cold and heat by magneto-calorific effect through at least one heat exchanger.
- It also relates to a device for continuously generating cold and heat by magneto-caloric effect comprising at least one heat exchanger.
- US Pat. No. 4,674,288 describes a device for liquefying helium comprising a magnetizable substance movable in a magnetic field generated by a coil and a reservoir containing helium and in thermal conduction with said coil. The translational movement of the magnetizable substance generates cold which is transmitted to helium via conductive elements.
- the subject of FR-A-2,525,748 is a magnetic refrigeration device comprising a magnetizable material, a system for generating a variable magnetic field and means for transferring heat and cold with a chamber filled with a saturated liquid refrigerant.
- the magnetizable material generates cold in a position in which the cold transfer means extract the cold from the magnetizable material by condensation of a coolant, and the magnetizable material generates heat in another position in which the transfer means heat extract heat from the magnetizable material by boiling another coolant.
- the publication FR-A- 2,586,793 describes a device comprising a substance intended to produce heat when it magnetizes and to produce cold when it demagnetizes, a means for generating a variable magnetic field, said means magnetic field generator comprising a superconductive coil and a reservoir containing an element to be cooled.
- US Patent 3,108,444 describes a magneto-calorific refrigerator apparatus comprising a wheel composed of superconductive elements passing alternately in a hot circuit, in a cold circuit and in a space subjected to a magnetic field.
- the purpose of this device is to generate extremely low temperatures, of the order of 4 ° Kelvin.
- This type of equipment is not suitable for a domestic installation and does not operate at ambient temperatures or close to 0 ° Celsius.
- US Patent 5,091,361 relates to a heat pump using a reverse magneto-caloric effect.
- the heat pump comprises a paramagnetic or ferromagnetic material alternately exposed to a very high magnetic field.
- Such a system cannot be used for a domestic application, for example in a conventional refrigeration installation working at temperatures close to 0 ° Celsius.
- the present invention proposes to overcome the drawbacks of known -systems by providing a cooling method and device which do not use polluting refrigerants and which therefore do not have the drawbacks of previous systems.
- a first heat transfer fluid is circulated in a first circuit, called the hot circuit, connected to a first compartment of an enclosure containing a rotary element and a second heat transfer fluid in a second circuit, called the cold circuit, connected to a second compartment of said enclosure, said compartments being juxtaposed and separated by a partition, said enclosure being associated with magnetic means for generating a magnetic field in said first compartment, at least in the zone corresponding to said rotary element and said rotary element comprising ' at least one magneto-calorific material arranged to undergo a rise in temperature when it passes through said first compartment subjected to the magnetic field and cooling when passes into said second compartment not subjected to the magnetic field, in that the heat is extracted from said first circuit by means of a first heat exchanger disposed in said circuit and connected to a heat utilization circuit, and in that cold is extracted from said second circuit by means of a second heat exchanger disposed in said circuit and connected to a circuit for
- the first and second heat transfer fluid are circulated in the same direction or in the opposite direction in the compartments of the enclosure.
- Said first and second heat transfer fluids can be in the liquid state or in the gaseous state.
- These fluids can be in the form of suspensions, sludges commonly called “slurry”, nanofluids, colloids for example, or the like.
- the position of the magnetic means is reversed with respect to the compartments of the enclosure in order to generate cold and heat indifferently in one of said compartments.
- the device according to the invention as defined in the preamble and characterized in that it comprises: an enclosure divided into a first and a second compartment juxtaposed and separated by a partition, said enclosure containing an element rotary, mounted transversely to the compartments, rotating about an axis disposed in the plane of said partition, so that it is located simultaneously and partially in said first and second compartments, - a first circuit, called hot circuit, connected to said first compartment of said enclosure and comprising a first heat exchanger, in which a first heat transfer fluid circulates, said first exchanger being connected to a heat utilization circuit, a second circuit, said cold circuit, connected to said second compartment of said enclosure and comprising a second heat exchanger, in which a second heat transfer fluid circulates, said second heat exchanger hanger being connected to a circuit for using the cold, and magnetic means for generating a magnetic field in said first compartment, at least in the zone corresponding to said rotary element, said rotary element comprising at least one magneto-calorific material arranged to undergo
- said magnetic means can comprise permanent magnets or electromagnets or any other means to create a magnetic field. They can also be arranged to generate a constant or variable magnetic field.
- the device may include complementary magnetic means arranged to create a magnetic insulating field isolating the second compartment from the magnetic field generated by said magnetic means.
- said magnetic means are mobile, so that they can be arranged either in a first position in which they generate a magnetic field in one of said compartments, or in a second position in which they generate a magnetic field in other of said compartments.
- said magnetic means comprise first electromagnets arranged to create a magnetic field in said first compartment, second electromagnets arranged to create a magnetic field in said second compartment and control means arranged to activate respectively the first or the second electromagnets.
- the first and second heat exchangers are chosen from the group consisting of heat exchangers of the liquid - liquid, liquid - gas and gas - gas type.
- the first circuit comprises a first pump and the second circuit comprises a second pump, these pumps being arranged to circulate the first and second heat transfer fluids respectively in each of the compartments.
- the rotary element comprises a set of through passages, these passages being arranged to allow the circulation of the first and second heat transfer fluids in said rotary element.
- said rotary element may comprise a set of stacked discs, made of different magneto-caloric materials, each disc comprising a set of passages communicating with the passages of the adjacent disc or discs.
- said rotary element may comprise a set of nested hollow cylindrical elements, made of different magneto-caloric materials, each cylindrical element comprising a set of through passages.
- said rotary element comprises a set of nested angular sectors, made of different magneto-caloric materials, these angular sectors being isolated from one another by thermally insulating elements, and each angular sector comprising a set of through passages.
- Said rotary element can also consist of a single cylindrical element made of a magneto-caloric material, said cylindrical element comprising a set of passages opening on its two faces.
- said rotary element comprises partitioned angular sectors containing grains of substantially spherical shape made up of at least one magneto-caloric material, the through passages being defined by interstices formed between the grains.
- the through passages can be defined by a honeycomb structure or by hollow tubes arranged along the axis of the rotary element.
- said through passages are formed by a porous structure whose porosity is connected and open.
- FIG. 1 represents a schematic view of an advantageous embodiment of the device according to the invention
- FIG. 2A represents a view in longitudinal section of a part of the device of FIG. 1,
- FIGS. 2B and 2C respectively illustrate views in cross section of a part of the device of FIG. 1,
- FIGS. 3A and 3B respectively illustrate alternative embodiments of the device according to the invention
- FIGS. 4 to 10 show, in axial section, several embodiments of the rotary element of the device according to the invention
- FIG. 11 is a view in longitudinal section schematically showing another embodiment of the device according to the invention.
- FIG. 12 is a schematic view illustrating an installation comprising several devices according to the invention mounted in cascade.
- the device 10 comprises an enclosure 11, comprising a first compartment 12 and a second compartment 13 juxtaposed and separated by a partition 14.
- a rotary element 15 constituted by a wheel rotating around an axis 9 disposed substantially in the plane of said partition 14.
- a first circuit 17a, said circuit hot, is connected to the first compartment 12 of the enclosure and comprises a first heat exchanger 18, in which a first heat transfer fluid circulates, said first exchanger 18 being for example connected to a heat utilization circuit 19 or simply intended to dissipate the heat.
- a second circuit 17b is connected to the second compartment 13 of the enclosure and includes a second heat exchanger 21, in which a second heat transfer fluid circulates, said second exchanger 21 being for example connected to a use circuit 22 or combined with a refrigerated enclosure.
- the device 10 is equipped with magnetic means 16 for generating a magnetic field in the first compartment 12, at least in the zone corresponding to the rotary element 15.
- a first pump 23 is mounted in the first circuit 17a and circulates the first fluid coolant in said first circuit and a second pump 24, mounted in the second circuit 17b, circulates the second coolant in said second circuit.
- the rotary element 15 which, in this embodiment, consists of a single cylindrical element, is mounted transversely with respect to the two compartments 12 and 13 so that it is located simultaneously and partially in said first compartment 12 and in said second compartment 13.
- This rotary element 15 consists at least partially of at least one magneto-caloric material and has through passages 25 opening on its two faces and allowing the two parts of each compartment 12 and 13 located on the side and on the other side of the rotary element 15 to communicate with each other.
- the rotary element 15 is rotated by a suitable drive motor. Its speed of rotation is low compared to the speed of circulation of the heat transfer fluids in the two circuits and in the through passages 25.
- FIGS. 2A, 2B and 2C illustrate in more detail the positioning of the magnetic means 16.
- the enclosure 11 is provided with a wall 11a and comprises a central partition 14 serving to delimit the two compartments 12 and 13 made of a thermally insulating material , disposed in the median plane of the enclosure 11.
- This partition 14 is discontinuous and disposed in the plane of the axis of rotation 9 of the rotary element 15.
- Each end of the two compartments 12 and 13 is open to be connected to a pipe in the corresponding heat transfer fluid circuit.
- the magnetic means 16 which may consist of either permanent magnets or electromagnets, are arranged on either side of the part of the rotary element 15 which is located in the first compartment 12. For this purpose, these magnetic means 16 are preferably arranged below and against the median plane passing through the partition 14.
- the rotary element 15 is mounted coaxially in the enclosure 11 on the axis 9 passing through the median plane separating the two compartments 12 and 13.
- This axis 9 is arranged so as to allow the rotation of the rotary element 15 by means a drive motor (not shown).
- the diameter of the rotary element 15 and the inside diameter of the enclosure 11 are defined so that these two members leave only a small space between them. This makes it possible to limit the flow of the heat transfer fluid which could pass through this space during the operation of the device 10.
- the rotary element may include, on its periphery, a sealing element such as a seal. Seals can also be placed on the inner edges of the partition 14 to make the two compartments 12 and 13 waterproof.
- the through passages 25 of the rotary element 15 open at their two ends on each of the faces of the element 15 so that these passages communicate with each of the two parts of each compartment 12, 13 located on either side of said rotary element 15.
- These passages 25 can be defined by a honeycomb structure of the honeycomb type or formed by hollow tubes parallel to the axis 9 of the rotary element 15. They can also be defined by a porous structure of the material of the rotary element 15.
- FIGS. 2B and 2C represent two different constructions of the device 10.
- the magnetic means 16 are either integrated into the wall 11a, as shown in FIG. 2B, or arranged outside this wall, as shown in FIG. 2C.
- the operation of the device 10 is based on the method in which the rotary element 15 is rotated by means of a drive motor (not shown), the part of said rotary element 15 located in the magnetic field generated by the means magnetic 16 loses its entropy by undergoing a rise in temperature.
- the first heat transfer fluid of the circuit 17a set in motion by the first pump 19 and flowing in the opposite direction of the second heat transfer fluid of the second circuit 17b enters the first compartment 12 at a given temperature T c1 and passes through, via the through passages 25, the part of the rotary element 15 subjected to the rise in temperature.
- the first heat transfer fluid undergoes in this part of the rotary element 15 a rise in temperature by heat transfer.
- said heat transfer fluid At the outlet of the first compartment 12, said heat transfer fluid then has a temperature T c2. Greater than T c. .
- the heat transfer fluid of the heat utilization circuit 19 enters the first heat exchanger 18 at a temperature T cs ⁇ and in turn undergoes a temperature rise by heat exchange with the first heat transfer fluid having passed through the enclosure 11 and heated by its passage through compartment 12.
- the fluid of the heat utilization circuit 19 emerges from said first heat exchanger 18 at a temperature T cs2 higher than T cs ⁇ .
- the heat stored by this heat transfer fluid can be used for any application. It can also be simply discharged into the ambient atmosphere.
- a second part of the rotary element 15 situated outside said magnetic field demagnetizes as it cools.
- this second part is in turn exposed to the magnetic field and loses its entropy by undergoing a rise in temperature.
- the part previously subjected to a rise in temperature leaves the magnetic field generated by the magnetic means 16, and demagnetizes while cooling down to a given temperature.
- This second heat transfer fluid undergoes cooling in this part of the rotary element 15 and leaves the compartment 13 at a temperature T f2 ' lower than T f i.
- the fluid of the cold use circuit 22 enters the second heat exchanger 21 at a temperature T fs1 and in turn undergoes cooling by heat exchange with the second heat transfer fluid having passed through the enclosure 11 and cooled by its passage through compartment 13.
- This fluid leaves said second heat exchanger 21 at a temperature T fs2 lower than T fS. to be used.
- the cold stored by this fluid can be used in any cold application, in particular for cooling a refrigeration cabinet, an air conditioning circuit or the like.
- the rotation of the rotary element 15 alternately renews this operating cycle by generating heat in the first heat exchanger 18 and cold in the second heat exchanger 21.
- the rotary element 15 is driven at a speed of rotation defined as a function of the application as well as the amplitude of the magnetic field and the flow of the heat transfer fluid passing through said rotary element 15.
- the first heat transfer fluid flowing in the first circuit 17a and the second heat transfer fluid flowing in the second circuit 17b may be different or identical. They can also be either in the gaseous state or in the liquid state or be in different states depending on the applications. In addition, the fluids circulating in the circuits for using heat 19 and cold 22 may be either in the gaseous state or in the liquid state, depending on the applications. Therefore, the heat exchangers 18 and 21 of this device 10 can be of any known type depending on the state of the heat transfer fluid. They can be of the liquid - liquid, liquid - gas or gas - gas type. Instead of each of the exchangers 18 and 21, one can have any device generating respectively heat or cold, such as for example a radiator, a heat pump, a refrigerator, an air conditioning device.
- FIGS. 3A and 3B schematically represent a variant of the. device of FIG. 1.
- This device differs from the device 10 of FIG. 1 in that it comprises mobile magnetic means 16 which, when they are placed in a first position Pi , that is to say integral with the compartment 13 (fig. 3A) or in a second position P 2, that is to say integral with the compartment 12 (fig. 3B), make it possible to invert the circuits generating cold and heat as required.
- the two positions Pi and P 2 are symmetrical to each other with respect to the plane of the partition 14.
- the magnetic means 16 are provided with fixing elements 26, such as a U-axis, whose 180 ° pivoting or translation, by control means known per se, allows to pass from one position to another.
- a circuit generating cold when the magnetic means 16 are in the position Pi generates heat when these magnetic means 16 are placed in the position P 2 and a circuit generating heat when the magnetic means 16 are in the position Pi, generates cold when these magnetic means 16 are placed in the position P 2 .
- the part of the rotary element 15 subjected to a temperature rise by magnetic effect is located in the second compartment 13.
- the first heat transfer fluid circulating in the second circuit 17b heats up .
- the heat exchanger 21 then functions as a heat source and delivers heat to any fluid passing through it.
- the part of the rotary element 15 which demagnetizes as it cools is located in the first compartment 12.
- the first heat transfer fluid circulating in the first circuit 17a cools.
- the heat exchanger 18 then functions as a source generating cold and can deliver cold at its outlet.
- the part of the rotary element 15 which demagnetizes as it cools is located in the second compartment 13.
- the second heat transfer fluid circulating in the second circuit 17b cools down.
- the heat exchanger 21 then functions as a source generating cold and delivers cold to any fluid passing through it.
- the part of the rotary element 15 subjected to a temperature rise by magnetic effect is located in the first compartment 12.
- the first heat transfer fluid circulating in the first circuit 17a heats up.
- the heat exchanger 18 then functions as a heat source and can deliver heat at its outlet.
- the same magnetic means 16 fixed to generate a magnetic field in the first compartment 12 can also be fixed in duplicate in a symmetrical position relative to the plane separating the two compartments 12 and 13 to generate a field magnetic in the second compartment 13.
- These magnetic means 16 can be activated separately by the same control which generates a magnetic field in one or other of the compartments 12 or 13 depending on the position of this control. It is also possible to provide magnetic means generating a variable magnetic field to vary the temperatures of the heat transfer fluids passing through it.
- FIGS. 4 to 10 schematically illustrate alternative embodiments of the rotary element 15 of the device according to the invention.
- the rotary member 15 consists of several discs 30 mounted coaxially. These discs have the same diameter and can be of the same thickness or of different thicknesses. They are either glued by their faces, or assembled by any suitable means. Each disc has a set of through passages 25 which communicate with the passages of the adjacent disc (s) to open out on each face of the rotary element 15 thus formed. Each disc is made of a different magneto-calorific material. The number of disks depends on the number of magneto-caloric materials which must constitute the rotary element 15. These materials are defined as a function of the application of the device 10 for generating cold and heat. For a given application, the magneto-caloric materials are chosen according to their Curie temperatures.
- the magneto-caloric materials whose Curie temperature is between 0 ° C and -5 ° C are for example suitable for air conditioning applications, those whose Curie temperature is between 40 ° C and 70 ° C, and preferably magneto-caloric materials whose Curie temperature is around 60 ° C, are suitable for heating applications and magneto-caloric materials whose Curie temperature is between -10 ° C and 70 ° C are suitable for energy storage.
- the rotary member 15 consists of several hollow cylindrical elements 40, each made of a different magneto-calorific material, mounted concentrically.
- cylindrical elements have the same height and their internal and external diameters are defined so that each element fits into the adjacent element.
- the outside diameter of the largest hollow cylindrical member 40 constitutes the diameter of the resulting rotary member and the hole inside the smallest hollow cylindrical member corresponds to the bore through which passes the axis 9 on which the rotary element 15.
- the through passages 25 are formed in the thickness of each cylinder.
- the rotary element 15, illustrated in FIG. 6, consists of several angular sectors 50 each made of a different magneto-calorific material. These elements, with equal angles at the top, have the same radius and the same height corresponding to the radius and to the height of the rotary element 15.
- Each sector 50 has through passages 25 which can be obtained for example by a structure of the fine grid type.
- Thermally insulating elements 26 can be mounted between the different sectors to better isolate the part of the rotary element 15 undergoing cooling from its part undergoing a rise in temperature. This is intended to increase the efficiency of the device of the invention by preventing respectively the loss of cold and heat generated.
- the rotary member 15 consists of cavities 60 filled with grains 27 made of a magneto-caloric material. These cavities can be in the form of angular sectors separated by thermally insulating elements 26.
- the through passages 25 are defined by the interstices defined between the grains 27. These interstices communicate with one another to open out on the two faces of the rotary element 15 These two faces are covered by a thin wall (not shown) having meshes of dimensions smaller than those of the grains 27 of smaller size. This wall is not necessary if the grains 27 are assembled by a binder.
- the grains 27 can have any shape and any size. Their average dimension is preferably between 0.4 mm and 0.9 mm. They can be of the same size and the same shape or of different shapes and sizes.
- Each cavity can contain grains of the same magneto-caloric material, the materials differing from one cavity to another or a mixture of grains of different magneto-caloric materials, the mixtures also varying from one cavity to another. It is quite obvious that the disks 30 and the hollow cylindrical elements 40, of the embodiments described above could also consist of cavities filled with grains 27.
- the rotary element 15 is composed of a set of coaxial tubular elements 70 spaced apart and whose spaces are filled by a pleated structure 71 which defines a multitude of through passages 25
- This structure can be made of a magneto-caloric material or can serve as a support for such materials.
- FIG. 9 shows another embodiment in which the rotary element 15 comprises an inner annular element 15a and an outer annular element 15b coaxial.
- the enclosure is defined by an inner channel 80a disposed between the two elements and by an outer channel 80b formed at the periphery of the element 15b.
- the magnetic means are broken down into a pair of inner magnets 81a cooperating with the inner element 15a and a pair of outer magnets 81b cooperating with the outer element 15b. This arrangement improves the penetration of the magnetic field and its action on magneto-caloric materials, thus increasing the efficiency of the device.
- FIG. 10 Another embodiment is represented by FIG. 10.
- the magnetic means are broken down into angular segments respectively interior angular segments 90a and exterior angular segments 90b.
- the magnetic field is not limited to a sector corresponding to a semicircle, but is located by angular sectors all around the rotary element.
- FIG. 11 illustrates a variant in which the magnetic means are housed in the enclosure 11 and more specifically inside the first compartment 12. They consist of at least one pair of magnets 100 provided with passage orifices 101 heat transfer fluid.
- FIG. 12 schematically represents a complex arrangement consisting of a set of devices according to the invention mounted in cascade.
- this arrangement comprises four devices 110, 120, 130 and 140 respectively comprising the rotary elements 115, 125, 135 and 145 made of magneto-caloric materials.
- the heat transfer fluid of the cold circuit 17b is brought to the cold inlet of the rotary element 115 and is then decomposed at the outlet of this element into two streams 17b ⁇ which is brought to the cold inlet of the second rotary element 125 and 17b 2 which is brought to the hot inlet of the second rotary element 125. It is the same in all the other rotary elements. However, reverse circulation can be produced when the temperatures reached are appropriate. It is represented by the arrows in dashed lines 125th, 135th and 145th.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Hard Magnetic Materials (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03776751A EP1581774A1 (fr) | 2002-12-24 | 2003-12-22 | Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique |
CA002511541A CA2511541A1 (fr) | 2002-12-24 | 2003-12-22 | Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique |
US10/540,079 US7481064B2 (en) | 2002-12-24 | 2003-12-22 | Method and device for continuous generation of cold and heat by means of the magneto-calorific effect |
JP2004562427A JP2006512556A (ja) | 2002-12-24 | 2003-12-22 | 電磁熱効果による冷気及び熱の連続生成方法および装置 |
AU2003286077A AU2003286077A1 (en) | 2002-12-24 | 2003-12-22 | Method and device for continuous generation of cold and heat by means of the magneto-calorific effect |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2211/02 | 2002-12-24 | ||
CH02211/02A CH695836A5 (fr) | 2002-12-24 | 2002-12-24 | Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004059221A1 true WO2004059221A1 (fr) | 2004-07-15 |
Family
ID=32661023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH2003/000839 WO2004059221A1 (fr) | 2002-12-24 | 2003-12-22 | Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique |
Country Status (7)
Country | Link |
---|---|
US (1) | US7481064B2 (fr) |
EP (1) | EP1581774A1 (fr) |
JP (1) | JP2006512556A (fr) |
AU (1) | AU2003286077A1 (fr) |
CA (1) | CA2511541A1 (fr) |
CH (1) | CH695836A5 (fr) |
WO (1) | WO2004059221A1 (fr) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006112709A (ja) * | 2004-10-14 | 2006-04-27 | Ebara Corp | 磁気冷凍装置 |
WO2006061387A1 (fr) * | 2004-12-09 | 2006-06-15 | De' Longhi Spa | Appareil et procede de conditionnement d'air |
EP1736717A1 (fr) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Réfrigérateur magnétique continuellement rotatif et pompe à chaleur et procédé pour le chauffage magnétique et/ou la réfrigération avec un tel réfrigérateur ou une telle pompe |
EP1736719A1 (fr) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Réfrigérateur ou pompe à chaleur magnétique continuellement rotatif |
WO2007068134A2 (fr) | 2005-12-13 | 2007-06-21 | Heig-Vd | Dispositif de generation de froid et de chaleur par effet magneto-calorique |
WO2007101433A1 (fr) * | 2006-03-09 | 2007-09-13 | Webasto Ag | Dispositif et procédé de production de froid et de chaleur reposant sur l'utilisation de l'effet magnétocalorique |
EP1836445A1 (fr) * | 2005-01-12 | 2007-09-26 | The Technical University of Denmark (DTU) | Regenerateur magnetique, procede de fabrication d'un regenerateur magnetique, refrigerateur magnetique actif et procede de fabrication d'un refrigerateur magnetique actif |
EP1918662A2 (fr) * | 2006-10-30 | 2008-05-07 | Liebherr-Hausgeräte Ochsenhausen GmbH | Appareil de réfrigération et/ou de refroidissement |
EP1957891A1 (fr) * | 2005-11-10 | 2008-08-20 | Daewoo Electronics Corporation | Echangeur de chaleur magnetique pour refrigerateur magnetique |
FR2914051A1 (fr) * | 2007-03-19 | 2008-09-26 | Cooltech Applic Soc Par Action | Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique |
FR2914503A1 (fr) * | 2007-08-31 | 2008-10-03 | B L B S Technologies Sarl | Dispositif de transfert de chaleur et ensemble de generation d'energie electrique |
FR2914502A1 (fr) * | 2007-03-30 | 2008-10-03 | B L B S Technologies Sarl | Dispositif de generation d'energie electrique ou de transfert de chaleur, et ensemble de generation d'energie electrique |
EP2038590A1 (fr) * | 2006-07-10 | 2009-03-25 | Daewoo Electronics Corporation | Régénérateur de type rotatif et réfrigérateur magnétique employant le régénérateur |
JP2009515135A (ja) * | 2005-11-10 | 2009-04-09 | 株式会社大宇エレクトロニクス | 磁気冷凍機 |
FR2922999A1 (fr) * | 2007-10-30 | 2009-05-01 | Cooltech Applic Soc Par Action | Generateur thermique a materiau magnetocalorique |
EP2108904A1 (fr) | 2008-04-07 | 2009-10-14 | Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) | Dispositif magnétocalorique, en particulier réfrigérateur magnétique, pompe à chaleur ou générateur de puissance |
FR2932254A1 (fr) * | 2008-06-10 | 2009-12-11 | Commissariat Energie Atomique | Dispositif de refrigeration magnetique et procede de refrigeration |
FR2937182A1 (fr) * | 2008-10-14 | 2010-04-16 | Cooltech Applications | Generateur thermique a materiau magnetocalorique |
WO2010043782A1 (fr) * | 2008-10-16 | 2010-04-22 | Cooltech Applications S.A.S. | Generateur thermioue magnetocalorioue |
WO2010046559A1 (fr) * | 2008-10-24 | 2010-04-29 | Cooltech Applications S.A.S. | Generateur thermique magnetocalorique |
WO2010086399A1 (fr) * | 2009-01-30 | 2010-08-05 | Technical University Of Denmark | Ensemble réfrigérateur magnétique parallèle et procédé de réfrigération |
CN101979937A (zh) * | 2010-10-15 | 2011-02-23 | 西安交通大学 | 一种旋转式磁制冷装置及其应用 |
WO2011015648A3 (fr) * | 2009-08-07 | 2011-07-21 | Behr Gmbh & Co. Kg | Vanne de rotation et pompe à chaleur |
WO2012091672A1 (fr) * | 2010-12-30 | 2012-07-05 | Delaval Holding Ab | Réfrigération et chauffage d'un fluide en vrac |
US20120266607A1 (en) * | 2011-04-25 | 2012-10-25 | Denso Corporation | Magneto-caloric effect type heat pump apparatus |
US9222707B2 (en) | 2013-02-14 | 2015-12-29 | Globalfoundries Inc. | Temperature stabilization in semiconductors using the magnetocaloric effect |
US10145591B2 (en) | 2015-04-09 | 2018-12-04 | Eberspächer Climate Control Systems GmbH & Co. KG | Temperature control unit, especially vehicle temperature control unit |
DE102012206359B4 (de) | 2011-04-28 | 2021-08-26 | Denso Corporation | Magnetisches Wärmepumpensystem |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2890158A1 (fr) * | 2005-09-01 | 2007-03-02 | Cooltech Applic Soc Par Action | Generateur thermique a materiau magnetocalorique |
JP4551867B2 (ja) * | 2005-12-07 | 2010-09-29 | 株式会社東芝 | 磁性材料羽根を有する磁気冷凍装置 |
JP4567609B2 (ja) * | 2006-01-12 | 2010-10-20 | 財団法人鉄道総合技術研究所 | 磁気作業物質回転型磁気冷凍機 |
JP2010523073A (ja) * | 2007-03-28 | 2010-07-08 | アーベーベー・リサーチ・リミテッド | エネルギーを変換するためのデバイス及び方法 |
FR2924489B1 (fr) * | 2007-12-04 | 2015-09-04 | Cooltech Applications | Generateur magnetocalorique |
DE112008000146T5 (de) * | 2008-05-16 | 2010-02-11 | Vacuumschmelze Gmbh & Co. Kg | Gegenstand zum magnetischen Wärmeaustausch und Verfahren zur Herstellung eines Gegenstandes zum magnetischen Wärmeaustausch |
JP4703699B2 (ja) | 2008-09-04 | 2011-06-15 | 株式会社東芝 | 磁気冷凍用磁性材料、磁気冷凍デバイスおよび磁気冷凍システム |
FR2942304B1 (fr) * | 2009-02-17 | 2011-08-12 | Cooltech Applications | Generateur thermique magnetocalorique |
FR2942305B1 (fr) * | 2009-02-17 | 2011-02-18 | Cooltech Applications | Generateur thermique magnetocalorique |
FR2943406B1 (fr) * | 2009-03-20 | 2013-04-12 | Cooltech Applications | Procede de generation de flux thermique a partir d'un element magnetocalorique et generateur thermique magnetocalorique |
US8453466B2 (en) * | 2009-08-31 | 2013-06-04 | Delta Electronics, Inc. | Heat-power conversion magnetism device and system for converting energy thereby |
US9739510B2 (en) * | 2009-09-17 | 2017-08-22 | Charles N. Hassen | Flow-synchronous field motion refrigeration |
US9702594B2 (en) * | 2010-06-07 | 2017-07-11 | Aip Management, Llc | Magnetocaloric refrigerator |
TWI537509B (zh) | 2010-06-15 | 2016-06-11 | 拜歐菲樂Ip有限責任公司 | 從導熱金屬導管提取熱能的方法、裝置和系統 |
US20120023969A1 (en) * | 2010-07-28 | 2012-02-02 | General Electric Company | Cooling system of an electromagnet assembly |
JP5728489B2 (ja) * | 2010-10-29 | 2015-06-03 | 株式会社東芝 | 磁気冷凍システム |
JP5729119B2 (ja) * | 2011-05-11 | 2015-06-03 | 株式会社デンソー | 磁気冷凍システムを用いた空気調和装置 |
CN102997485A (zh) * | 2011-09-09 | 2013-03-27 | 台达电子工业股份有限公司 | 磁热交换单元 |
JP5760976B2 (ja) * | 2011-11-24 | 2015-08-12 | 日産自動車株式会社 | 磁気冷暖房装置 |
US9709303B1 (en) * | 2011-11-30 | 2017-07-18 | EMC IP Holding Company LLC | Magneto-caloric cooling system |
US9631842B1 (en) | 2011-11-30 | 2017-04-25 | EMC IP Holding Company LLC | Magneto-caloric cooling system |
TWI525184B (zh) | 2011-12-16 | 2016-03-11 | 拜歐菲樂Ip有限責任公司 | 低溫注射組成物,用於低溫調節導管中流量之系統及方法 |
KR101887917B1 (ko) * | 2012-01-16 | 2018-09-20 | 삼성전자주식회사 | 자기 냉각 장치 및 그 제어 방법 |
US8955351B2 (en) * | 2012-03-12 | 2015-02-17 | Kunshan Jue-Chung Electronics Co., Ltd. | Energy storable air conditioning device |
US20130319012A1 (en) * | 2012-05-29 | 2013-12-05 | Delta Electronics, Inc. | Magnetic cooling device |
JP5644812B2 (ja) * | 2012-06-06 | 2014-12-24 | 株式会社デンソー | 磁気ヒートポンプシステム及び該システムを用いた空気調和装置 |
EA201492049A1 (ru) * | 2012-06-29 | 2015-06-30 | Юнилевер Н.В. | Прилавки-витрины для замороженных продуктов |
US9746214B2 (en) * | 2012-12-17 | 2017-08-29 | Astronautics Corporation Of America | Use of unidirectional flow modes of magnetic cooling systems |
US9245673B2 (en) * | 2013-01-24 | 2016-01-26 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
JP2016520170A (ja) * | 2013-05-23 | 2016-07-11 | ハニング・エレクトロ−ヴェルケ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト | ポンプ装置 |
KR102158130B1 (ko) * | 2013-07-04 | 2020-09-21 | 삼성전자주식회사 | 자기 냉각 장치 |
WO2015017230A1 (fr) | 2013-08-02 | 2015-02-05 | General Electric Company | Ensembles magnéto-caloriques |
FR3010511B1 (fr) * | 2013-09-10 | 2017-08-11 | Air Liquide | Procede et appareil de separation d'un melange gazeux a temperature subambiante |
US20160223253A1 (en) * | 2013-09-10 | 2016-08-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and device for separation at cryogenic temperature |
EA201600243A1 (ru) | 2013-09-13 | 2016-10-31 | БАЙОФИЛМ АйПи, ЛЛЦ | Магнитокриогенные затворы, системы и способы модулирования потока в канале |
FR3015306A1 (fr) * | 2013-12-20 | 2015-06-26 | Air Liquide | Procede et appareil de separation a temperature subambiante |
JP6003879B2 (ja) * | 2013-12-26 | 2016-10-05 | 株式会社デンソー | 熱磁気サイクル装置 |
EP2910873A1 (fr) * | 2014-02-19 | 2015-08-26 | Siemens Aktiengesellschaft | Refroidissement d'une machine électrique |
US9851128B2 (en) | 2014-04-22 | 2017-12-26 | Haier Us Appliance Solutions, Inc. | Magneto caloric heat pump |
DE102014107294B4 (de) * | 2014-05-23 | 2017-02-09 | Andreas Hettich Gmbh & Co. Kg | Zentrifuge |
CN107735628B (zh) * | 2015-06-19 | 2021-07-06 | 永磁电机有限公司 | 改进的填充屏型磁热元件 |
DE102015111661B4 (de) * | 2015-07-17 | 2020-07-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Magnetokalorische Vorrichtung |
US11233254B2 (en) | 2016-02-22 | 2022-01-25 | Battelle Memorial Institute | Process for delivering liquid H2 from an active magnetic regenerative refrigerator H2 liquefier to a liquid H2 vehicle dispenser |
US10443928B2 (en) | 2016-02-22 | 2019-10-15 | Battelle Memorial Institute | Active magnetic regenerative liquefier using process gas pre-cooling from bypass flow of heat transfer fluid |
US10299655B2 (en) | 2016-05-16 | 2019-05-28 | General Electric Company | Caloric heat pump dishwasher appliance |
DE102016110385A1 (de) * | 2016-06-06 | 2017-12-07 | Technische Universität Darmstadt | Kühlvorrichtung und ein Verfahren zum Kühlen |
US10006673B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10047979B2 (en) | 2016-07-19 | 2018-08-14 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US9915448B2 (en) | 2016-07-19 | 2018-03-13 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10006674B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10006672B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10274231B2 (en) | 2016-07-19 | 2019-04-30 | Haier Us Appliance Solutions, Inc. | Caloric heat pump system |
US10006675B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10047980B2 (en) | 2016-07-19 | 2018-08-14 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10281177B2 (en) | 2016-07-19 | 2019-05-07 | Haier Us Appliance Solutions, Inc. | Caloric heat pump system |
US10222101B2 (en) | 2016-07-19 | 2019-03-05 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10295227B2 (en) | 2016-07-19 | 2019-05-21 | Haier Us Appliance Solutions, Inc. | Caloric heat pump system |
US9869493B1 (en) | 2016-07-19 | 2018-01-16 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10443585B2 (en) | 2016-08-26 | 2019-10-15 | Haier Us Appliance Solutions, Inc. | Pump for a heat pump system |
US9857106B1 (en) | 2016-10-10 | 2018-01-02 | Haier Us Appliance Solutions, Inc. | Heat pump valve assembly |
US9857105B1 (en) | 2016-10-10 | 2018-01-02 | Haier Us Appliance Solutions, Inc. | Heat pump with a compliant seal |
EP3839379A3 (fr) * | 2016-11-02 | 2021-06-30 | Ngk Insulators, Ltd. | Élément magnétique pour réfrigérateur magnétique |
US10288326B2 (en) | 2016-12-06 | 2019-05-14 | Haier Us Appliance Solutions, Inc. | Conduction heat pump |
US10386096B2 (en) | 2016-12-06 | 2019-08-20 | Haier Us Appliance Solutions, Inc. | Magnet assembly for a magneto-caloric heat pump |
EP3601914A4 (fr) * | 2017-03-28 | 2020-12-23 | Barclay, John | Systèmes de régénérateur magnétique actif multicouche avancé et procédés de liquéfaction magnétocalorique |
US11009282B2 (en) | 2017-03-28 | 2021-05-18 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with a caloric heat pump |
US11231225B2 (en) * | 2017-03-28 | 2022-01-25 | Battelle Memorial Institute | Active magnetic regenerative processes and systems employing hydrogen as heat transfer fluid and process gas |
US10527325B2 (en) | 2017-03-28 | 2020-01-07 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance |
US10451320B2 (en) | 2017-05-25 | 2019-10-22 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with water condensing features |
US10451322B2 (en) | 2017-07-19 | 2019-10-22 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with a caloric heat pump |
US10422555B2 (en) | 2017-07-19 | 2019-09-24 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with a caloric heat pump |
US11125477B2 (en) | 2017-08-25 | 2021-09-21 | Astronautics Corporation Of America | Drum-type magnetic refrigeration apparatus with improved magnetic-field source |
WO2019038719A1 (fr) | 2017-08-25 | 2019-02-28 | Astronautics Corporation Of America | Appareil de réfrigération magnétique de type tambour à anneaux de lit multiples |
US10520229B2 (en) | 2017-11-14 | 2019-12-31 | Haier Us Appliance Solutions, Inc. | Caloric heat pump for an appliance |
US11022348B2 (en) * | 2017-12-12 | 2021-06-01 | Haier Us Appliance Solutions, Inc. | Caloric heat pump for an appliance |
US10648706B2 (en) | 2018-04-18 | 2020-05-12 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder |
US10551095B2 (en) | 2018-04-18 | 2020-02-04 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10782051B2 (en) | 2018-04-18 | 2020-09-22 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10648705B2 (en) | 2018-04-18 | 2020-05-12 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10557649B2 (en) | 2018-04-18 | 2020-02-11 | Haier Us Appliance Solutions, Inc. | Variable temperature magneto-caloric thermal diode assembly |
US10830506B2 (en) | 2018-04-18 | 2020-11-10 | Haier Us Appliance Solutions, Inc. | Variable speed magneto-caloric thermal diode assembly |
US10876770B2 (en) | 2018-04-18 | 2020-12-29 | Haier Us Appliance Solutions, Inc. | Method for operating an elasto-caloric heat pump with variable pre-strain |
US10641539B2 (en) | 2018-04-18 | 2020-05-05 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10648704B2 (en) | 2018-04-18 | 2020-05-12 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US11015842B2 (en) | 2018-05-10 | 2021-05-25 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with radial polarity alignment |
US10989449B2 (en) | 2018-05-10 | 2021-04-27 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with radial supports |
US11054176B2 (en) | 2018-05-10 | 2021-07-06 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with a modular magnet system |
US10684044B2 (en) | 2018-07-17 | 2020-06-16 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with a rotating heat exchanger |
US11092364B2 (en) | 2018-07-17 | 2021-08-17 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with a heat transfer fluid circuit |
FR3090830B1 (fr) * | 2018-12-20 | 2022-03-11 | Commissariat Energie Atomique | Dispositif de refroidissement comprenant une ceramique de grenat paramagnetique |
US11274860B2 (en) | 2019-01-08 | 2022-03-15 | Haier Us Appliance Solutions, Inc. | Mechano-caloric stage with inner and outer sleeves |
US11149994B2 (en) | 2019-01-08 | 2021-10-19 | Haier Us Appliance Solutions, Inc. | Uneven flow valve for a caloric regenerator |
US11168926B2 (en) | 2019-01-08 | 2021-11-09 | Haier Us Appliance Solutions, Inc. | Leveraged mechano-caloric heat pump |
US11193697B2 (en) | 2019-01-08 | 2021-12-07 | Haier Us Appliance Solutions, Inc. | Fan speed control method for caloric heat pump systems |
US11112146B2 (en) | 2019-02-12 | 2021-09-07 | Haier Us Appliance Solutions, Inc. | Heat pump and cascaded caloric regenerator assembly |
US11015843B2 (en) | 2019-05-29 | 2021-05-25 | Haier Us Appliance Solutions, Inc. | Caloric heat pump hydraulic system |
CN110345680B (zh) * | 2019-08-09 | 2024-09-13 | 珠海格力电器股份有限公司 | 一种蓄冷床和磁制冷系统 |
WO2022224305A1 (fr) * | 2021-04-19 | 2022-10-27 | 三菱電機株式会社 | Échangeur de chaleur magnétique et système de ventilation de climatisation |
CN116007226B (zh) * | 2022-12-05 | 2024-07-02 | 武汉理工大学 | 一种基于热电磁耦合的室温固态制冷装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108444A (en) | 1962-07-19 | 1963-10-29 | Martin Marietta Corp | Magneto-caloric cryogenic refrigerator |
FR2525748A1 (fr) | 1982-04-23 | 1983-10-28 | Hitachi Ltd | Appareil de refrigeration magnetique |
FR2586793A1 (fr) | 1985-08-30 | 1987-03-06 | Toshiba Kk | Procede et appareil de refrigeration magnetique |
US5091361A (en) | 1990-07-03 | 1992-02-25 | Hed Aharon Z | Magnetic heat pumps using the inverse magnetocaloric effect |
JP2002356748A (ja) * | 2001-03-27 | 2002-12-13 | Toshiba Corp | 磁性材料 |
US20030051774A1 (en) * | 2001-03-27 | 2003-03-20 | Akiko Saito | Magnetic material |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4408463A (en) * | 1982-01-20 | 1983-10-11 | Barclay John A | Wheel-type magnetic refrigerator |
JPS60223972A (ja) * | 1984-04-20 | 1985-11-08 | 株式会社日立製作所 | 回転型磁気冷凍機 |
DE3539584C1 (de) * | 1985-11-08 | 1986-12-18 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn | Vorrichtung zur magnetokalorischen Kaelteerzeugung |
US4727722A (en) * | 1987-02-11 | 1988-03-01 | The United States Of America As Represented By The United States Department Of Energy | Rotary magnetic heat pump |
US4970866A (en) * | 1989-12-07 | 1990-11-20 | Sundstrand Corporation | Magneto caloric system |
US5231834A (en) * | 1990-08-27 | 1993-08-03 | Burnett James E | Magnetic heating and cooling systems |
US6221275B1 (en) * | 1997-11-24 | 2001-04-24 | University Of Chicago | Enhanced heat transfer using nanofluids |
EP1281032A2 (fr) * | 2000-05-05 | 2003-02-05 | Rhocraft R.& D. Ltd. University of Victoria | Appareil et procedes de refroidissement et de liquefaction d'un fluide par refrigeration magnetique |
DE60128361T2 (de) * | 2000-08-09 | 2008-01-17 | Astronautics Corp. Of America, Milwaukee | Magnetisches kältegerät mit drehbett |
AU2002360563A1 (en) * | 2001-12-12 | 2003-06-23 | Astronautics Corporation Of America | Rotating magnet magnetic refrigerator |
US6595004B1 (en) * | 2002-04-19 | 2003-07-22 | International Business Machines Corporation | Apparatus and methods for performing switching in magnetic refrigeration systems using thermoelectric switches |
-
2002
- 2002-12-24 CH CH02211/02A patent/CH695836A5/fr not_active IP Right Cessation
-
2003
- 2003-12-22 CA CA002511541A patent/CA2511541A1/fr not_active Abandoned
- 2003-12-22 EP EP03776751A patent/EP1581774A1/fr not_active Withdrawn
- 2003-12-22 JP JP2004562427A patent/JP2006512556A/ja active Pending
- 2003-12-22 WO PCT/CH2003/000839 patent/WO2004059221A1/fr active Application Filing
- 2003-12-22 AU AU2003286077A patent/AU2003286077A1/en not_active Abandoned
- 2003-12-22 US US10/540,079 patent/US7481064B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108444A (en) | 1962-07-19 | 1963-10-29 | Martin Marietta Corp | Magneto-caloric cryogenic refrigerator |
FR2525748A1 (fr) | 1982-04-23 | 1983-10-28 | Hitachi Ltd | Appareil de refrigeration magnetique |
FR2586793A1 (fr) | 1985-08-30 | 1987-03-06 | Toshiba Kk | Procede et appareil de refrigeration magnetique |
US4674288A (en) | 1985-08-30 | 1987-06-23 | Kabushiki Kaisha Toshiba | Method of magnetic refrigeration and a magnetic refrigerating apparatus |
US5091361A (en) | 1990-07-03 | 1992-02-25 | Hed Aharon Z | Magnetic heat pumps using the inverse magnetocaloric effect |
JP2002356748A (ja) * | 2001-03-27 | 2002-12-13 | Toshiba Corp | 磁性材料 |
US20030051774A1 (en) * | 2001-03-27 | 2003-03-20 | Akiko Saito | Magnetic material |
Non-Patent Citations (2)
Title |
---|
BOHIGAS X ET AL: "ROOM-TEMPERATURE MAGNETIC REFRIGERATOR USING PERMANENT MAGNETS", IEEE TRANSACTIONS ON MAGNETICS, IEEE INC. NEW YORK, US, vol. 36, no. 3, May 2000 (2000-05-01), pages 538 - 544, XP000951784, ISSN: 0018-9464 * |
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 04 2 April 2003 (2003-04-02) * |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006112709A (ja) * | 2004-10-14 | 2006-04-27 | Ebara Corp | 磁気冷凍装置 |
WO2006061387A1 (fr) * | 2004-12-09 | 2006-06-15 | De' Longhi Spa | Appareil et procede de conditionnement d'air |
US8616009B2 (en) | 2005-01-12 | 2013-12-31 | The Technical University Of Denmark | Magnetic regenerator, a method of making a magnetic regenerator, a method of making an active magnetic refrigerator and an active magnetic refrigerator |
US8061147B2 (en) | 2005-01-12 | 2011-11-22 | The Technical University Of Denmark | Magnetic regenerator, a method of making a magnetic regenerator, a method of making an active magnetic refrigerator and an active magnetic refrigerator |
EP1836445A1 (fr) * | 2005-01-12 | 2007-09-26 | The Technical University of Denmark (DTU) | Regenerateur magnetique, procede de fabrication d'un regenerateur magnetique, refrigerateur magnetique actif et procede de fabrication d'un refrigerateur magnetique actif |
EP1736719A1 (fr) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Réfrigérateur ou pompe à chaleur magnétique continuellement rotatif |
WO2006136042A1 (fr) * | 2005-06-20 | 2006-12-28 | Haute Ecole D'ingenierie Ei De Gestion Du Canton De Vaud (Heig-Vd) | Réfrigérateur ou pompe thermique magnétique à rotation continue |
EP1736717A1 (fr) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Réfrigérateur magnétique continuellement rotatif et pompe à chaleur et procédé pour le chauffage magnétique et/ou la réfrigération avec un tel réfrigérateur ou une telle pompe |
JP2009515135A (ja) * | 2005-11-10 | 2009-04-09 | 株式会社大宇エレクトロニクス | 磁気冷凍機 |
EP1957891A1 (fr) * | 2005-11-10 | 2008-08-20 | Daewoo Electronics Corporation | Echangeur de chaleur magnetique pour refrigerateur magnetique |
EP1957891A4 (fr) * | 2005-11-10 | 2008-12-17 | Daewoo Electronics Corp | Echangeur de chaleur magnetique pour refrigerateur magnetique |
JP4842327B2 (ja) * | 2005-11-10 | 2011-12-21 | 株式会社大宇エレクトロニクス | 磁気冷凍機 |
WO2007068134A2 (fr) | 2005-12-13 | 2007-06-21 | Heig-Vd | Dispositif de generation de froid et de chaleur par effet magneto-calorique |
WO2007068134A3 (fr) * | 2005-12-13 | 2007-11-22 | Heig Vd | Dispositif de generation de froid et de chaleur par effet magneto-calorique |
US8191375B2 (en) | 2005-12-13 | 2012-06-05 | Haute Ecole d'Ingenierie et de Gestion du Canton de Vaud ( Heig-VD) | Device for generating cold and heat by a magneto-calorific effect |
WO2007101433A1 (fr) * | 2006-03-09 | 2007-09-13 | Webasto Ag | Dispositif et procédé de production de froid et de chaleur reposant sur l'utilisation de l'effet magnétocalorique |
EP2038590A1 (fr) * | 2006-07-10 | 2009-03-25 | Daewoo Electronics Corporation | Régénérateur de type rotatif et réfrigérateur magnétique employant le régénérateur |
EP2038590A4 (fr) * | 2006-07-10 | 2013-05-01 | Daewoo Electronics Corp | Régénérateur de type rotatif et réfrigérateur magnétique employant le régénérateur |
EP1918662A3 (fr) * | 2006-10-30 | 2008-08-06 | Liebherr-Hausgeräte Ochsenhausen GmbH | Appareil de réfrigération et/ou de refroidissement |
EP1918662A2 (fr) * | 2006-10-30 | 2008-05-07 | Liebherr-Hausgeräte Ochsenhausen GmbH | Appareil de réfrigération et/ou de refroidissement |
WO2008132342A1 (fr) * | 2007-03-19 | 2008-11-06 | Cooltech Applications (S.A.S.) | Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique |
FR2914051A1 (fr) * | 2007-03-19 | 2008-09-26 | Cooltech Applic Soc Par Action | Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique |
US8904806B2 (en) | 2007-03-19 | 2014-12-09 | Cooltech Applications Societe Par Actions Simplifiee | Process and apparatus to increase the temperature gradient in a thermal generator using magneto-calorific material |
TWI425177B (zh) * | 2007-03-19 | 2014-02-01 | Cooltech Applications | 在使用磁熱材料的熱產生器中增加溫度梯度的方法和裝置 |
WO2008142253A2 (fr) * | 2007-03-30 | 2008-11-27 | B.L.B.S. Technologies (Societe A Responsabilite Limitee) | Dispositif de génération d'énergie électrique ou de transfert de chaleur, et ensemble de génération d'énergie électrique |
WO2008142253A3 (fr) * | 2007-03-30 | 2009-02-05 | B L B S Technologies Sarl | Dispositif de génération d'énergie électrique ou de transfert de chaleur, et ensemble de génération d'énergie électrique |
FR2914502A1 (fr) * | 2007-03-30 | 2008-10-03 | B L B S Technologies Sarl | Dispositif de generation d'energie electrique ou de transfert de chaleur, et ensemble de generation d'energie electrique |
FR2914503A1 (fr) * | 2007-08-31 | 2008-10-03 | B L B S Technologies Sarl | Dispositif de transfert de chaleur et ensemble de generation d'energie electrique |
US8869541B2 (en) | 2007-10-30 | 2014-10-28 | Cooltech Applications Societe Par Actions Simplifiee | Thermal generator with magnetocaloric material and incorporated heat transfer fluid circulation means |
WO2009087310A3 (fr) * | 2007-10-30 | 2009-09-17 | Cooltech Applications | Generateur thermique a materiau magnetocalorique |
WO2009087310A2 (fr) * | 2007-10-30 | 2009-07-16 | Cooltech Applications | Generateur thermique a materiau magnetocalorique |
FR2922999A1 (fr) * | 2007-10-30 | 2009-05-01 | Cooltech Applic Soc Par Action | Generateur thermique a materiau magnetocalorique |
EP2108904A1 (fr) | 2008-04-07 | 2009-10-14 | Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) | Dispositif magnétocalorique, en particulier réfrigérateur magnétique, pompe à chaleur ou générateur de puissance |
US8429920B2 (en) | 2008-06-10 | 2013-04-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Magnetic refrigeration device and refrigeration method |
FR2932254A1 (fr) * | 2008-06-10 | 2009-12-11 | Commissariat Energie Atomique | Dispositif de refrigeration magnetique et procede de refrigeration |
WO2010000962A2 (fr) * | 2008-06-10 | 2010-01-07 | Comissariat A L'energie Atomique | Dispositif de réfrigération magnétique et procédé de réfrigération |
WO2010000962A3 (fr) * | 2008-06-10 | 2010-03-18 | Comissariat A L'energie Atomique | Dispositif de réfrigération magnétique et procédé de réfrigération |
WO2010043781A1 (fr) * | 2008-10-14 | 2010-04-22 | Cooltech Applications S.A.S. | Generateur thermique a materiau magnetocalorioue |
US8937269B2 (en) | 2008-10-14 | 2015-01-20 | Cooltech Applications Societe par Actions Simplifee | Thermal generator with magnetocaloric material |
FR2937182A1 (fr) * | 2008-10-14 | 2010-04-16 | Cooltech Applications | Generateur thermique a materiau magnetocalorique |
FR2937466A1 (fr) * | 2008-10-16 | 2010-04-23 | Cooltech Applications | Generateur thermique magnetocalorique |
WO2010043782A1 (fr) * | 2008-10-16 | 2010-04-22 | Cooltech Applications S.A.S. | Generateur thermioue magnetocalorioue |
US9476616B2 (en) | 2008-10-16 | 2016-10-25 | Cooltech Applications Societe Par Actions Simplifiee | Magnetocaloric thermal generator |
US8881537B2 (en) | 2008-10-24 | 2014-11-11 | Cooltech Applications Societe Par Actions Simplifiee | Magnetocaloric thermal generator |
WO2010046559A1 (fr) * | 2008-10-24 | 2010-04-29 | Cooltech Applications S.A.S. | Generateur thermique magnetocalorique |
FR2937793A1 (fr) * | 2008-10-24 | 2010-04-30 | Cooltech Applications | Generateur thermique magnetocalorique |
CN102301191B (zh) * | 2009-01-30 | 2016-10-12 | 丹麦理工大学 | 并行磁制冷机组件及制冷方法 |
US9528728B2 (en) | 2009-01-30 | 2016-12-27 | Technical University Of Denmark | Parallel magnetic refrigerator assembly and a method of refrigerating |
CN102301191A (zh) * | 2009-01-30 | 2011-12-28 | 丹麦理工大学 | 并行磁制冷机组件及制冷方法 |
KR20110124268A (ko) * | 2009-01-30 | 2011-11-16 | 테크니칼 유니버시티 오브 덴마크 | 병렬식 자기 냉동 어셈블리 및 냉동 방법 |
WO2010086399A1 (fr) * | 2009-01-30 | 2010-08-05 | Technical University Of Denmark | Ensemble réfrigérateur magnétique parallèle et procédé de réfrigération |
KR101726368B1 (ko) | 2009-01-30 | 2017-04-13 | 테크니칼 유니버시티 오브 덴마크 | 병렬식 자기 냉동 어셈블리 및 냉동 방법 |
US8826684B2 (en) | 2009-08-07 | 2014-09-09 | Behr Gmbh & Co. Kg | Rotating valve and heat pump |
WO2011015648A3 (fr) * | 2009-08-07 | 2011-07-21 | Behr Gmbh & Co. Kg | Vanne de rotation et pompe à chaleur |
JP2013501205A (ja) * | 2009-08-07 | 2013-01-10 | ベール ゲーエムベーハー ウント コー カーゲー | 回転バルブおよびヒートポンプ |
CN101979937A (zh) * | 2010-10-15 | 2011-02-23 | 西安交通大学 | 一种旋转式磁制冷装置及其应用 |
US9173415B2 (en) | 2010-12-30 | 2015-11-03 | Delaval Holding Ab | Bulk fluid refrigeration and heating |
WO2012091672A1 (fr) * | 2010-12-30 | 2012-07-05 | Delaval Holding Ab | Réfrigération et chauffage d'un fluide en vrac |
US9534814B2 (en) * | 2011-04-25 | 2017-01-03 | Denso Corporation | Magneto-caloric effect type heat pump apparatus |
US20120266607A1 (en) * | 2011-04-25 | 2012-10-25 | Denso Corporation | Magneto-caloric effect type heat pump apparatus |
DE102012206359B4 (de) | 2011-04-28 | 2021-08-26 | Denso Corporation | Magnetisches Wärmepumpensystem |
US9222707B2 (en) | 2013-02-14 | 2015-12-29 | Globalfoundries Inc. | Temperature stabilization in semiconductors using the magnetocaloric effect |
US10145591B2 (en) | 2015-04-09 | 2018-12-04 | Eberspächer Climate Control Systems GmbH & Co. KG | Temperature control unit, especially vehicle temperature control unit |
Also Published As
Publication number | Publication date |
---|---|
CA2511541A1 (fr) | 2004-07-15 |
CH695836A5 (fr) | 2006-09-15 |
US7481064B2 (en) | 2009-01-27 |
AU2003286077A1 (en) | 2004-07-22 |
EP1581774A1 (fr) | 2005-10-05 |
JP2006512556A (ja) | 2006-04-13 |
US20070144181A1 (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004059221A1 (fr) | Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique | |
WO2007068134A2 (fr) | Dispositif de generation de froid et de chaleur par effet magneto-calorique | |
EP2215410B1 (fr) | Generateur thermique a materiau magnetocalorique | |
CA2543123C (fr) | Dispositif de generation de flux thermique a materiau magneto-calorique | |
EP2129976B1 (fr) | Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique | |
EP2340570B1 (fr) | Element magnetocalorique | |
EP2399087B1 (fr) | Generateur thermique magnetocalorique | |
CH695837A5 (fr) | Procéde et dispositif de génération de froid et de chaleur par effet magnétique. | |
FR2590004A1 (fr) | Dispositif pour la production magnetocalorique de froid | |
FR2890158A1 (fr) | Generateur thermique a materiau magnetocalorique | |
FR2974621A1 (fr) | Systeme de pompe a chaleur magnetique | |
EP0614059B1 (fr) | Refroidisseur muni d'un doigt froid du type tube pulsé | |
FR2548339A1 (fr) | Refrigerateur magnetique | |
FR2586793A1 (fr) | Procede et appareil de refrigeration magnetique | |
EP2603747B1 (fr) | Generateur thermique a materiau magnetocalorique | |
EP3087329B1 (fr) | Générateur thermique magnetocalorique et son procédé de refroidissement | |
FR2666875A1 (fr) | Machine frigorifique a adsorption-desorption sur zeolithes utilisant des echangeurs en profile d'aluminium. | |
EP2318785B1 (fr) | Générateur thermique magnétocalorique | |
WO2016020327A1 (fr) | Machine thermique à matériau magnétocalorique du genre machine frigorifique ou pompe à chaleur | |
FR2963823A1 (fr) | Generateur thermique magnetocalorique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004562427 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2511541 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003776751 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007144181 Country of ref document: US Ref document number: 10540079 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2003776751 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10540079 Country of ref document: US |