WO2004058434A1 - Vacuum die casting and method for production thereof - Google Patents

Vacuum die casting and method for production thereof Download PDF

Info

Publication number
WO2004058434A1
WO2004058434A1 PCT/JP2003/016541 JP0316541W WO2004058434A1 WO 2004058434 A1 WO2004058434 A1 WO 2004058434A1 JP 0316541 W JP0316541 W JP 0316541W WO 2004058434 A1 WO2004058434 A1 WO 2004058434A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
vacuum die
product
less
vacuum
Prior art date
Application number
PCT/JP2003/016541
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Kaneuchi
Tomoya Imamura
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to JP2004562905A priority Critical patent/JP4518256B2/en
Priority to AU2003292610A priority patent/AU2003292610A1/en
Publication of WO2004058434A1 publication Critical patent/WO2004058434A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity

Definitions

  • the present invention relates to a vacuum die-cast product of an aluminum alloy having excellent mechanical strength and a method for producing the same, and more particularly to a vacuum die-cast product of an aluminum alloy suitable for transportation equipment having high strength and high toughness and its production. About the method. Background art
  • Die-casting is a technology for manufacturing metal parts by filling molten metal into the mold at high speed and high pressure. It has higher dimensional accuracy than other manufacturing methods, and has beautiful skin and productivity. Has the advantage of being high.
  • the high-speed filling of the molten metal causes the surrounding gas to be entrained in the molten metal, resulting in a large number of air bubbles filled with gas inside the product and inclusions such as oxidized substances formed by the reaction between the gas and the metal.
  • These defects not only reduce the mechanical strength of the product, but also the gas-filled bubbles, especially during heat treatment and welding, become blisters due to the expansion of the internal gas, which significantly reduces the mechanical strength. Therefore, the use of the die-cast product as a structural member has been limited.
  • the gas contained in the die-cast product includes, in addition to atmospheric components, a combustion gas of a lubricant for a plunger and a release agent for a mold cavity.
  • a vacuum die-casting method of reducing the pressure inside the mold cavity and making it has been put to practical use.
  • Japanese Patent Application Laid-Open No. 6-126415 discloses a vacuum die force apparatus for reducing the pressure in the cavity and loading the molten metal into the injection sleeve, which includes a fixed type mounted on a fixed platen, and a movable type forming a cavity together with the fixed type.
  • An injection sleep communicating with the cavity, a plunger moving forward and backward in the injection sleeve, a holding furnace below the injection sleeve for storing the molten metal, and one end connected to the hot water inlet of the injection sleeve, and the other end connected to the injection sleeve.
  • a hot water supply pipe immersed in the molten metal in the holding furnace and a vacuum inside the cavity
  • a pressure reducing means for reducing the pressure and loading the molten metal in the holding furnace into the injection sleeve via a hot water supply pipe.
  • silicone-based emulsion release agents have been used for die casting of aluminum alloys.
  • the silicone emulsion type release agent is obtained by emulsifying a modified silicone oil with an emulsifier using water as a medium.
  • the emulsion-type release agent it was found that not only the total amount of gas remaining in the product was large, but also that more than 30% of the remaining gas was H 2 , C 2 H 6 , CH 4, etc. .
  • there is more CO2 gas than CO2 gas there is a problem that the product becomes brittle during heat treatment and welding.
  • the mold cavity has a temperature of about 300 ° C
  • the use of an aqueous mold release agent causes almost all of the water to evaporate. Release agent adheres. Since the surface temperature of the mating surface is low, the moisture in the release agent remains without evaporating. For this reason, even if the pressure is reduced after clamping, the release agent is sucked into the cavity from the gap between the movable mold and the fixed mold and continues to evaporate. The same phenomenon occurs when an aqueous release agent adheres to the movable part behind the nest. As a result, the degree of vacuum in the cavity does not decrease and the amount of hydrogen gas generated increases.
  • gas-containing pores are often near the surface of the article.
  • heat treatment or welding is performed on a product having such gas-containing pores, the gas in the pores expands, and the pores become so-called blisters, which become B-shaped protrusions protruding from the surface of the product.
  • Prestars can be the starting point for cracks and fractures when loaded.
  • the gas sealed in the pores is hydrogen, it is absorbed by the product during heat treatment or welding, causing deterioration of the product. Therefore, it was found that it is necessary not only to reduce the entrainment of gas during vacuum die casting, but also to reduce the proportion of hydrogen in the entrained gas. Purpose of the invention
  • Another object of the present invention is to provide a method for reliably manufacturing such a vacuum die-cast product.
  • the composition of H 2 gas is smaller than that of the C 0 2 gas. It is characterized by having.
  • 50% of the total amount of gas remaining in the vacuum die casting ⁇ article is preferably C0 2 gas.
  • the total amount of residual gas is 20 cm3 / 100 g or less at any point. It is preferably 10 cms / 100 g or less on average for the entire product.
  • C0 2 gas of the residual gas is preferably not more than 9 cm 3/100 g as an average of the entire Kagamizo products. Further, the total amount of H 2 gas, CBU gas and C 2 H 6 gas is preferably 5 cm3 / 100 g or less on average for the entire manufactured product.
  • the proportion of H 2 gas in the residual gas is preferably 15% or less, more preferably 10% or less. Further, the total amount of CH 4 gas, C 2 gas and CO gas is preferably 20% or less as an average of the entire manufactured product.
  • the vacuum die-casting product of the present invention is preferably used for undercarriage parts of transport equipment or body component parts.
  • the aluminum alloy melt is charged into the injection sleeve by reducing the pressure in the mold cavity, and then the plunger fitted to the injection sleeve is advanced to move the inside of the injection sleeve.
  • the gas remaining in the air bubbles of a vacuum die-cast product is released by dissolution of the product and measured by gas chromatography, the gas is less than the CO 2 gas.
  • the method is characterized by applying a synthetic water substantially free of water as a release agent to a mold cavity so as to have a small composition, and then performing a structure.
  • the chemically synthesized oil contains 70% by mass or more of silicone oil and has a kinematic viscosity of 200 ⁇ 10 ⁇ 2 m 2 / s or less. Further, it is preferable to apply a lubricant substantially free of water into the injection sleeve.
  • FIG. 1 is a schematic cross-sectional view showing one example of a vacuum die casting apparatus (in a mold opened state) used in the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a state in which the vacuum die casting apparatus of FIG. 1 is clamped, and a molten aluminum alloy is charged in an injection sleeve.
  • Fig. 3 is a schematic cross-sectional view showing a state in which the plunger of the vacuum-die-casting apparatus that has been clamped is pushed into the injection sleeve, and the molten aluminum alloy is injected into the mold cavity.
  • Figure 4 is a graph showing the degree of vacuum in the cavity from the start of hot water supply to the completion of injection.
  • FIG. 5 is a schematic perspective view showing an example of the vacuum die-cast product of the present invention
  • FIG. 6 is a micrograph showing the metal structure of the vacuum die-cast product having a vacuum-like shrinkage cavity.
  • Figure 7 is a micrograph showing the metal and tissue of a vacuum die-cast product having voids in which gas remains.
  • FIG. 8 is a micrograph showing a state in which voids in which gas remains have become prestars by heat treatment.
  • the total amount of residual gas in a vacuum die-cast product depends not only on the manufacturing method but also on the shape of the product. For example, a simple flat plate shape can reduce the total amount of residual gas.However, for die-cast products that require complex shapes, it is not possible to determine whether the manufacturing method was optimal only with the total amount of residual gas. difficult. Thus, the ratio of C0 2 gas ⁇ Pi H 2 gas remaining in the gas as well the total amount of residual gas is important in determining the quality of the vacuum die force strike ⁇ products.
  • total amount and composition of the residual gas generated by the thermal decomposition of the release agent and the lubricant can be measured only after removing the gas remaining in the bubbles of the product, but in order to completely remove the residual gas, Must dissolve.
  • the molten aluminum alloy reacts with oxygen and water vapor to produce aluminum oxide, which consumes oxygen and reduces the water vapor to hydrogen gas.
  • the total amount and composition of the gas do not completely match the total amount and composition of the gas present in the manufactured product. Therefore, in this specification, simply referring to “total amount and composition of residual gas” shall mean the total amount and composition of residual gas extracted by dissolving the product unless otherwise specified.
  • the product is melted at 700 ° C in an Ar atmosphere decompressed to 4 ⁇ 10 3 kPa, and the generated gas is gas chromatographed with an Ar carrier gas at a flow rate of 50 ml / min.
  • the mixture was poured into a parallel split column of a mattography analyzer (GC-8AIT, manufactured by Shimadzu Corporation) and analyzed by gas chromatography. The analysis time is 15 seconds. The total amount and composition of the residual gas are measured under the above conditions unless otherwise specified.
  • the residual gas is not uniformly contained in the product, but varies depending on the location. In concrete terms, less the total amount of the residual gas in the out sprue portion near ⁇ products, and the proportion of the C0 2 gas of the residual gas is high, the farthest portion (the vacuum pump side) the remaining gas from the sprue And the proportion of CO2 gas in the residual gas tends to be low. Therefore, in the vicinity of the gate, the part farthest from the gate, and in the middle part, the test pieces were sampled from 3 to 10 places, and the amount and composition of the residual gas were measured for each test piece, and the measurement of each part was performed. Values and their averages need to be determined.
  • the total amount of residual gas 20 is preferably at cms / 100 g or less, and preferably Ru der 10 cm 3/100 g or less as an average of the entire ⁇ products the most common sprue portion near. If the total amount of residual gas exceeds these upper limits, presters are generated during (heat treatment of the product) and welding, causing not only poor appearance but also a decrease in mechanical strength.
  • the total amount of residual gas is preferably Ri good not more than average 8.0 cm 3/100 g.
  • the gas amount is expressed in the standard state (20 ° C, 1 atm) unless otherwise specified, regardless of the gas type.
  • the upper limit of the amount of CO 2 gas is also preferably 9 cms / 100 g on the average of the entire manufactured product.
  • the lower limit of the amount of the co 2 gas is not limited, but in many cases it is preferably about 2.5 cm 3 as an average of the entire product.
  • CO gas is very fine, less than 10 m, and is dispersed as bubbles in the manufactured product. Such bubbles have a very small notch coefficient and a very low stress concentration due to their spherical shape.
  • gases total amount of (CH 4, C 2 3 ⁇ 4 and 3 ⁇ 4) is preferably not more than 5 cm 3/100 g as the average of the entire ⁇ products.
  • N 2 gas is inert, in order to prevent the occurrence of Bliss coater, 7 cm 3 / is preferably at 100 g or less as an average of the entire ⁇ product, equal to or less than l cm 3/100 g Is more preferred.
  • N 2 gas is at 7 cm 3/100 g than vacuum mold Kiyabiti it is insufficient.
  • the composition of the residual gas is necessary 3 ⁇ 4 gas is less than C0 2 gas is there.
  • Preferably, at least 50% of the total amount of residual gas is C02 gas.
  • H 2 is severe reduction in the mechanical strength of ⁇ article by hydrogen embrittlement is 15 percent to average even locally
  • the proportion of H 2 is Ru der than 15% to the total amount of residual gas, More preferably, it is 10% or less.
  • CH 4 , C 2 H 6 and CO which are decomposition products of the release agent, be as small as possible in order to reduce the total amount of residual gas and obtain stable mechanical strength.
  • the total amount of CH 4 , C 2 H 6 and CO is preferably in a range of 20% or less based on the total amount of the residual gas.
  • a chemical synthetic oil substantially free of water is used as a release agent as a gas generating source.
  • This non-aqueous release agent can significantly reduce the amount of application as compared with a conventional aqueous emulsion type release agent, so that the residual gas amount of the vacuum die-cast product obtained can be reduced.
  • silicone oil substantially free of moisture
  • silicone oils include dimethyl silicone oil, -olefin modified silicone oil, methylstyryl silicone oil, methylphenyl silicone oil, alkylaryl modified silicone oil, and methyl hydrogen silicone oil.
  • polyolefin include low molecular weight polyethylene, polypropylene, polybutene-1, and poly4-methylpentene-1. It is preferable that the polyolefin be reduced in molecular weight by an oxidation reaction, if necessary, and also be improved in compatibility with silicone oil. Since these components have a large amount of carbon, the proportion of CO 2 gas in the gas generated by decomposition increases.
  • kinematic viscosity of at 40 ° C in synthetic lubricant 200 X 10- 6 m 2 / s (200 cSt) or less, preferably 100 X 10- 6 m 2 / s (100 cSt) or less Lower, more preferably 50 X 10- 6 m 2 / s (50 cSt) or less.
  • the kinematic viscosity described in this specification was measured using AKV-201 manufactured by Tanaka Scientific Instruments, based on JIS K 2283.
  • the kinematic viscosity exceeds 200 X 10-6 m 2 / s, it cannot be applied as a release agent to the mold cavity surface thinly and uniformly, and the amount applied per unit area increases. As a result, the total amount of gas to be volatilized by the molten metal exceeds the 10 cm 3/100 g.
  • the release agent applied to the mating surface of the movable mold and the fixed mold closes the gap between the movable mold and the fixed mold when the mold is clamped. It prevents the atmosphere from entering the cavity and plays a role in increasing the degree of vacuum in the mold cavity.
  • Additives to the synthetic oil include surfactants, preservatives, antiseptics, lubricants, viscosity modifiers, and the like.
  • the amount of these additives is preferably 3% by mass or less based on the total amount of the synthetic oil so as not to impair the function of the synthetic oil.
  • the release agent In order to apply the release agent thinly and uniformly on the surface of the mold cavity, it is preferable to spray the release agent. Therefore, it is preferable not to use powders such as graphite, mica, tanolek, kaolin, boron nitride, and fluorinated graphite, or to set the particle size and the addition amount to such an extent as not to hinder fogging.
  • a powder lubricant which does not substantially contain water.
  • metal oxides such as PbO, sulfides such as molybdenum disulfide and tungsten disulfide, ceramics, graphite, polymer compounds, etc. are added to wax or paraffin in an appropriate amount, and a granular powder of about 0.1 to 2 mm Preferably, it is in the body.
  • the aluminum alloy that can be used in the present invention is not particularly limited, and examples thereof include aluminum alloys such as Al-Si-Cu, Al-Si-Mg, and Al-Mg, such as ADC3, ADC5, ADC10, and ADC12.
  • aluminum alloys such as Al-Si-Cu, Al-Si-Mg, and Al-Mg, such as ADC3, ADC5, ADC10, and ADC12.
  • Al alloys such as Al-Si-Cu, Al-Si-Mg, and Al-Mg, such as ADC3, ADC5, ADC10, and ADC12.
  • Al alloys such as Al-Si-Cu, Al-Si-Mg, and Al-Mg, such as ADC3, ADC5, ADC10, and ADC12.
  • Si 1% or less of Mg, 10% or less of Cu, 1% or less of Ti, 1% or less of Fe
  • Hydrogen dissolved in the aluminum alloy melt can be reduced to less than 0.2 cm3 / 100 g by degassing.
  • the amount of oxygen ⁇ Pi carbon in the aluminum alloy in the molten metal is less than 0.1 cm 3/100 g.
  • the degree of depressurization of the mold cavity be as follows.
  • the vacuum die-casting apparatus preferably has a mechanism for charging the molten metal in the holding furnace into the injection sleeve by reducing the pressure in the mold cavity.
  • the vacuum die casting apparatus 10 communicates with a cavity 16 formed by a fixed mold 16c attached to a fixed platen 16a, a movable mold 16d attached to a movable platen 16b, and a fixed mold 16c and a movable mold 16d.
  • An injection sleeve 11 attached to a fixed die 16c, a plunger 12 moving back and forth within the injection sleeve 11, a holding furnace 13 below the injection sleeve 11 for accommodating the molten aluminum alloy M, and one end of the injection sleeve 11.
  • the hot water supply pipe 14 has the other end 14a immersed in the molten metal M in the holding furnace 13, the cutoff pulp 18a communicates with the cavity 16, and the cavity 16 through a pipe 18b.
  • a vacuum pump 18 for reducing the pressure in the cavity 16 to a vacuum state and sucking the molten metal M in the holding furnace 13 into the injection sleeve 11.
  • the holding furnace 13 is placed on a lift 15, and the level of the molten metal M is kept constant by moving the lift 15 up and down.
  • the hot water supply pipe 14 is made of ceramic with an inner surface coated with BN to prevent a reaction with the molten metal M, and the lower end 14a is an orifice shape.
  • the outer periphery of the hot water supply pipe 14 is surrounded by a heater (not shown), and keeps the hot water supply pipe 14 close to the temperature of the molten metal M.
  • the vacuum die-casting apparatus 10 includes an apparatus 20 for applying a mold release agent made of a synthetic oil containing no water to the mold cavity 16 and an apparatus 30 for applying a non-aqueous lubricant to the sleeve 11.
  • Have. Release agent coating device 20 is arm 22
  • a nozzle 21 for spraying a release agent is provided at the tip of the mold, and the release agent is sprayed on the surface of the mold cavity 16 with the movable die 16d opened from the fixed die 16c.
  • the amount of the release agent used in each cycle is preferably 0.3 to 50 g / m 2 , more preferably 1.0 to 25 g / m 2 , based on the surface area of the mold cavity 16.
  • the lubricant ejection device 30 has a nozzle 32 for spraying the powder lubricant 31 from the mold cavity side opening of the sleeve 11 when the mold is opened.
  • the amount of the lubricant used per cycle is preferably 0.3 to 30 g / m 2 , more preferably 0.5 to 20 g / m 2 , based on the inner peripheral area of the sleep 11.
  • the interior of the cavity 16 is evacuated to a vacuum (for example, 50 kPa or less, preferably 20 kPa or less, more preferably 10 kPa or less, particularly 5 kPa or less). kPa or less). Due to the reduced pressure in the cavity 16, the pressure inside the injection sleeve 11 is also reduced, and the molten metal M in the holding furnace 13 is loaded into the injection sleeve 11 via the hot water supply pipe 14 (FIG. 2). 2 ⁇ : After evacuating the cavity 16 for L0 seconds, the plunger 12 is pushed into the sleeve 11, and the molten metal M is filled into the cavity 16 (Fig. 3). After the injection, the plunger 12 is retracted, the movable die 16d is separated from the fixed die 16c, and the solidified product is removed from the cavity 16.
  • a vacuum for example, 50 kPa or less, preferably 20 kPa or less, more preferably 10 kPa or less, particularly 5 kP
  • molten metal M can be manufactured without being brought into contact with the atmosphere by the vacuum die casting device 10, oxidation of the molten metal M and entrainment of gas are reduced.
  • a mold release agent is sprayed on the surfaces of the cavities of the fixed type 16c and the movable type 16d which are opened again, and a lubricant is sprayed on the inner surface of the sleep 11.
  • the manufactured product obtained by the vacuum die-casting method of the present invention not only has a small residual gas amount but also a small proportion of hydrogen gas which causes brittleness during heat treatment and welding. There is little risk of generation of prestar and there is no decrease in mechanical strength.
  • the vacuum die-cast product of the present invention has few oxides and inclusions, which are the major causes of the decrease in toughness. Therefore, it can be used as undercarriage parts for transportation equipment and vehicle body components that require high strength and high toughness. ' The present effort will be described in more detail by the following examples, but the present invention is not limited thereto.
  • Example 1 The present effort will be described in more detail by the following examples, but the present invention is not limited thereto.
  • the mold release agent is obtained by blowing air into atactic polypropylene melted at 220 ° C and oxidizing it.
  • Astrol powder GW-23 (manufactured by Hanano Shoji Co., Ltd.) containing Tanolek, natural graphite and synthetic wax as a powder lubricant was applied to the inner peripheral surface of the sleeve 11 at an amount of 1.5 g / m 2 per cycle. Fog.
  • silicone oil emulsion (trade name: TSM6352, manufactured by GE Toshiba Silicone Co., Ltd.) was used as a release agent.
  • the silicone oil E Mar Ji is 15 mass% of modified recone oil, 2.0 wt 0/0 emulsion polypropylene, 0.3 wt% of Etokishii ⁇ A alcohol emulsifier, 2.0 wt% of a corrosion inhibitor, with balance water Had.
  • the silicone oil emulsion was further diluted 40 times with water and sprayed onto the surface of the mold cavity at a rate of 300 g / m 2 per cycle.
  • Example 2 The same measurement as in Example 1 was performed on a test piece cut out from the vicinity Pi of the obtained manufactured product. The results are shown in Tables 1 and 2.
  • the gas remaining in the product of Comparative Example 1 was 8.8 cm3 / 100 g, which was not only larger than that in Example 1, but also a composition containing a large amount of H 2 gas, C 2 H 6 gas and CH 4 gas. Had. This is probably because an aqueous release agent was used.
  • the mechanical strength of the product of Comparative Example 1 was lower than that of the product of Example 1.
  • Example 3 In order to increase the amount of residual gas to be almost the same as in Comparative Example 1, the vacuum die-cast product was manufactured in the same manner as in Example 1 except that the amount of the chemically synthesized oil-based release agent was increased to 4.5 g / m 2. Was fabricated, and the relationship between the composition of the residual gas and the mechanical strength of the manufactured product was examined. The residual gas amount in the test piece cut out from the part near the gate was Pi 7.7 cm3 / 100 g. Tables 1 and 2 show the residual gas composition and mechanical strength measured in the same manner as in Example 1. From Tables 1 and 2, it can be seen that the mechanical strength is clearly improved from Comparative Example 1, although the residual gas amount is almost the same as Comparative Example 1. Example 3
  • Example 2 A vacuum die-cast product having a more complicated shape than in Example 1 was produced, and the total amount and composition of the residual gas were measured in the same manner as in Example 1. Table 1 shows the results. The total amount of residual gas is suppressed to 7.1 cm 3/100 g, and H 2 gas was less than the CO 2 gas. Although Preparative On and Ho in Example 1 and different residual gas was N 2, this is because the mold Canon Activity has been made complicated shape than in Example 1, the degree of vacuum in Kiyabiti is about 25 kPa, It is considered that exhaust was not always sufficient. Comparative Example 2
  • a vacuum die casting having the same shape as in Example 1 was manufactured by a conventional vacuum die casting method in which the molten metal was supplied into the sleeve and then depressurized, and the total amount, composition, and mechanical properties of the residual gas were measured.
  • the same aluminum alloy melt as in Example 1 was directly poured into the injection sleeve, the injection sleeve was air-tight, and then inert gas and the same release agent as used in Example 1 were supplied.
  • the pressure inside the sleeve was reduced as follows. Thereafter, the plunger was advanced, and the molten metal was filled into the mold cavity.
  • the cycle time was the same as in Example 1.
  • the vacuum die-cast product manufactured in Example 1 was placed in a heat treatment furnace at 500 ° C in an air atmosphere for 4 hours, and then poured into hot water at 60 ° C to perform a solution treatment (T6 treatment). .
  • T6 treatment a solution treatment
  • the fabricated product was subjected to an aging treatment at 150 ° C for 2 hours. No blisters were generated on the surface of the article heat-treated in this way. This is closed This is probably because the shrinkage nest did not expand due to the heat treatment because the inside of the nest was almost vacuum.
  • FIG. 6 is a micrograph showing the metal structure of the manufactured product, and the dark portion in the center of Fig. 6 is a void. Most voids were shrinkage cavities formed during the solidification shrinkage of the molten aluminum alloy. It can be seen that the shrinkage cavities have a smooth shape and are almost in a vacuum state, so they do not cause a decrease in mechanical strength.
  • a vacuum die-cast product of an aluminum alloy in which not only the amount of residual gas is small but also the amount of hydrogen in the residual gas is reduced.
  • Such a vacuum die-cast product is suitable for undercarriage parts for transportation equipment and vehicle body components, etc., which require high strength and high toughness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A vacuum die casting of an aluminum alloy, characterized in that a gas remaining in a bubble in the casting has a composition wherein the content of a H2 gas is less than that of a CO2 gas, as measured by gas chromatography after the release of the bubble by the melting of the casting.

Description

明細書 真空ダイカスト铸造品及びその製造方法 発明の分野  FIELD OF THE INVENTION Field of the Invention
本発明は、機械的強度に優れたアルミニウム合金の真空ダイカスト铸造 品及ぴその製造方法に関し、 特に高強度及ぴ高靭性を有する輸送機器用に好適 なアルミニウム合金の真空ダイカスト鍰造品及びその製造方法に関する。 背景技術  The present invention relates to a vacuum die-cast product of an aluminum alloy having excellent mechanical strength and a method for producing the same, and more particularly to a vacuum die-cast product of an aluminum alloy suitable for transportation equipment having high strength and high toughness and its production. About the method. Background art
ダイカスト铸造法は高速'高圧で金型内へ溶融金属を充填することによ り錄造品を製造する技術であり、 他の铸造法に比べて寸法精度が高く、 鎵肌が 美しく、 生産性が高いという利点がある。 しかしながら溶湯の高速充填により 周囲のガスを溶湯中に巻き込んでしまい、 铸造品の内部にガスが充填された多 量の気泡や、 ガスと金属との反応によりできた酸ィヒ物等の介在物が存在すると いう問題がある。 これらの欠陥は錶造品の機械的強度を低下させるだけでなく、 特にガスが充填された気泡は、 熱処理や溶接時に内部ガスの膨張によりブリス ターとなり、 機械的強度を著しく低下させる。 従って、 ダイカスト鎵造品の構 造用部材としての用途は限られていた。  Die-casting is a technology for manufacturing metal parts by filling molten metal into the mold at high speed and high pressure. It has higher dimensional accuracy than other manufacturing methods, and has beautiful skin and productivity. Has the advantage of being high. However, the high-speed filling of the molten metal causes the surrounding gas to be entrained in the molten metal, resulting in a large number of air bubbles filled with gas inside the product and inclusions such as oxidized substances formed by the reaction between the gas and the metal. There is a problem that exists. These defects not only reduce the mechanical strength of the product, but also the gas-filled bubbles, especially during heat treatment and welding, become blisters due to the expansion of the internal gas, which significantly reduces the mechanical strength. Therefore, the use of the die-cast product as a structural member has been limited.
ダイカスト鎵造品に内在するガスには、大気成分の他、プランジャ用の 潤滑剤や金型キヤビティ用の離型剤の燃焼ガス等も含まれる。 これらのガスの 巻き込みを低減するため、 金型キヤビティ内を減圧して鎵造する真空ダイカス ト法が実用化されている。  The gas contained in the die-cast product includes, in addition to atmospheric components, a combustion gas of a lubricant for a plunger and a release agent for a mold cavity. In order to reduce the entrainment of these gases, a vacuum die-casting method of reducing the pressure inside the mold cavity and making it has been put to practical use.
キヤビティ内を減圧して溶湯を射出スリーブ内に装填する真空ダイ力 スト装置として、例えば特開平 6-126415号は、 固定プラテンに取り付けられた 固定型と、 固定型とともにキヤビティを形成する可動型と、 キヤビティに連通 する射出スリープと、 射出スリーブ内を前後進するプランジャと、 射出スリー ブの下方にあって溶湯を収容する保持炉と、 一端が射出スリーブの給湯口に連 結し、 他端が保持炉内の溶湯に没入する給湯管と、 キヤビティ内を真空状態に 減圧して保持炉内の溶湯を給湯管を介して射出スリーブ内に装填する減圧手段 とを有する真空ダイカスト装置を開示している。 For example, Japanese Patent Application Laid-Open No. 6-126415 discloses a vacuum die force apparatus for reducing the pressure in the cavity and loading the molten metal into the injection sleeve, which includes a fixed type mounted on a fixed platen, and a movable type forming a cavity together with the fixed type. An injection sleep communicating with the cavity, a plunger moving forward and backward in the injection sleeve, a holding furnace below the injection sleeve for storing the molten metal, and one end connected to the hot water inlet of the injection sleeve, and the other end connected to the injection sleeve. A hot water supply pipe immersed in the molten metal in the holding furnace and a vacuum inside the cavity And a pressure reducing means for reducing the pressure and loading the molten metal in the holding furnace into the injection sleeve via a hot water supply pipe.
しかしながらこの真空ダイカスト装置を用いた真空ダイカスト法でも、 内在する残存ガスを減らせても、 皆無にすることは不可能である。 それは、 (1) 金型キヤビティを完全に真空状態にするのは工業的に困難であり、また (2)離型 剤及び潤滑剤から発生するガスを完全に除去することも困難であるという理由 による。  However, even with the vacuum die-casting method using this vacuum die-casting device, it is impossible to eliminate the residual gas even if it can be reduced. It is because (1) it is industrially difficult to make the mold cavity completely vacuum, and (2) it is also difficult to completely remove the gas generated from the release agent and lubricant. by.
特にアルミニウムダイカストの場合、その機械的特性を向上させるには、 (a)溶湯に溶解した水素が凝固時に排出されて、 鎵造品に気孔が形成されるのを 防止すること、 (b)水素による脆ィ匕を防ぐため、 溶湯から水素を除去すること、 (c)酸化物等の介在物の生成を抑制するため、酸素を除去すること等が重要であ る。 特に酸化膜や介在物がアルミニウム铸造品中に存在する場合、 それらの端 部周辺は大きな切欠係数を持つので、 応力集中により亀裂の原因になり、 铸造 品の靱性を大きく低下させる。  In particular, in the case of aluminum die-casting, to improve its mechanical properties, it is necessary to (a) prevent hydrogen dissolved in the molten metal from being discharged during solidification to form pores in the product, and (b) hydrogen It is important to remove hydrogen from the molten metal in order to prevent brittleness due to water, and (c) to remove oxygen in order to suppress the formation of inclusions such as oxides. In particular, when oxide films and inclusions are present in aluminum products, the edges around them have a large notch coefficient, which causes cracks due to stress concentration and greatly reduces the toughness of the products.
従来アルミニウム合金のダイカストには、シリコーン系ェマルジョン型 の離型剤が用いられている。 シリコーン系ェマルジョン型の離型剤は水を媒体 とし、 変成シリコーンオイルを乳化剤により乳化させたものである。 しかしェ マルジョン型の離型剤では、 鎳造品に残存するガスの総量が多いのみならず、 残存ガスのうち 30%超が H2、 C2H6、 CH4等であることが分かった。 特に CO2 ガスより ¾ガスが多いので、熱処理や溶接時に錶造品が脆化するという問題が めった。 Conventionally, silicone-based emulsion release agents have been used for die casting of aluminum alloys. The silicone emulsion type release agent is obtained by emulsifying a modified silicone oil with an emulsifier using water as a medium. However, with the emulsion-type release agent, it was found that not only the total amount of gas remaining in the product was large, but also that more than 30% of the remaining gas was H 2 , C 2 H 6 , CH 4, etc. . In particular, because there is more CO2 gas than CO2 gas, there is a problem that the product becomes brittle during heat treatment and welding.
これは以下の理由によると考えられる。 すなわち、 金型キヤビティは 300°C程度であるので、水性離型剤を使用して.も水分はほとんど蒸発するが、大 量に塗布するため可動型と固定型のあわせ面にも相当量の離型剤が付着する。 あわせ面の表面温度は低いので、 離型剤中の水分は蒸発しきらずに残留する。 このため、 型締め後に減圧しても可動型と固定型の隙間から離型剤がキヤビテ ィ内に吸い込まれ、 蒸発し続ける。 入れ子の奥の可動部分に水性離型剤が付着 しても同様の現象が起きる。 これによりキヤビティ内の真空度が低下しないば かり力、 水素ガスの発生量が多くなる。 ガスの巻き込みは金型キヤビティの表面近くで起こりやすいので、ガス を含有する気孔は铸造品の表面近傍にあることが多い。 このようなガス含有気 孔を有する錶造品に対して熱処理とか溶接を行うと、 気孔中のガスが膨張し、 気孔はいわゆるブリスターとなつて铸造品表面から突出した B彭れとなる。 プリ スターは負荷がかかつたときに亀裂や破断の起点となるおそれがある。 This is considered for the following reasons. In other words, since the mold cavity has a temperature of about 300 ° C, the use of an aqueous mold release agent causes almost all of the water to evaporate. Release agent adheres. Since the surface temperature of the mating surface is low, the moisture in the release agent remains without evaporating. For this reason, even if the pressure is reduced after clamping, the release agent is sucked into the cavity from the gap between the movable mold and the fixed mold and continues to evaporate. The same phenomenon occurs when an aqueous release agent adheres to the movable part behind the nest. As a result, the degree of vacuum in the cavity does not decrease and the amount of hydrogen gas generated increases. Since gas entrainment is likely to occur near the surface of the mold cavity, the gas-containing pores are often near the surface of the article. When heat treatment or welding is performed on a product having such gas-containing pores, the gas in the pores expands, and the pores become so-called blisters, which become B-shaped protrusions protruding from the surface of the product. Prestars can be the starting point for cracks and fractures when loaded.
気孔に封止されたガスが水素の場合、熱処理や溶接の際に鎳造品に吸蔵 され、 铸造品の劣化の原因となる。 従って、 真空ダイカストの際にガスの卷き 込みを低減するだけでなく、 巻き込まれたガスのうち水素の割合を低減するこ とも必要であることが分かつた。 発明の目的  If the gas sealed in the pores is hydrogen, it is absorbed by the product during heat treatment or welding, causing deterioration of the product. Therefore, it was found that it is necessary not only to reduce the entrainment of gas during vacuum die casting, but also to reduce the proportion of hydrogen in the entrained gas. Purpose of the invention
従って本発明の目的は、ガスが残留する気泡が少ないのみならず、気泡 内ガス中の水素の割合も少なく、 もって輸送用機器の足回り部品や車体構成部 品等に好適な真空ダイカスト铸造品を提供することである。  Accordingly, it is an object of the present invention to provide a vacuum die-casting product which is suitable not only for a small number of bubbles in which gas remains but also for a small proportion of hydrogen in the gas in the gas bubble, and is therefore suitable for undercarriage parts of transport equipment and vehicle body components. It is to provide.
本発明のもう一つの目的は、かかる真空ダイカスト铸造品を確実に製造 する方法を提供することである。 、 発明の開示  Another object of the present invention is to provide a method for reliably manufacturing such a vacuum die-cast product. DISCLOSURE OF THE INVENTION
上記目的に鑑み鋭意研究の結果、真空ダイカストの際に溶湯に卷き込ま れるガスの発生量が少ないのみならず、 水素ガスの発生量も少ない離型剤を使 用することにより、 熱処理や溶接をしてもブリスターの発生や水素脆性の問題 が起こらない真空ダイカスト鎳造品が得られることを発見し、 本発明に想到し た。  In light of the above objectives, as a result of intensive research, heat release and welding have been achieved by using a release agent that not only generates a small amount of gas wound into the molten metal during vacuum die casting but also generates a small amount of hydrogen gas. The present inventors have found that a vacuum die-cast product which does not cause blistering and hydrogen embrittlement problems can be obtained even when the above method is performed, and reached the present invention.
すなわち、本発明のアルミニウム合金の真空ダイカスト鎳造品は、気泡 中に残存するガスが、 铸造品の溶解により放出させた後にガスクロマトグラフ ィにより測定した場合、 H2ガスが C02ガスより少ない組成を有することを特徴 とする。 That is, in the vacuum die-cast aluminum alloy product of the present invention, when the gas remaining in the bubbles is released by dissolution of the product and measured by gas chromatography, the composition of H 2 gas is smaller than that of the C 0 2 gas. It is characterized by having.
真空ダイカスト铸造品に残存するガスの総量の 50%以上は C02ガスで あるのが好ましい。 残存ガスの総量はいずれの箇所でも 20 cm3/100 g以下であ るのが好ましく、 铸造品全体の平均として 10 cms/100 g以下であるのが好まし レ、。 50% of the total amount of gas remaining in the vacuum die casting铸造article is preferably C0 2 gas. The total amount of residual gas is 20 cm3 / 100 g or less at any point. It is preferably 10 cms / 100 g or less on average for the entire product.
残存ガスのうち C02ガスは鏡造品全体の平均として 9 cm3/100 g以下 であるのが好ましい。 また H2ガス、 CBUガス及ぴ C2H6ガスの合計量は鎵造品全 体の平均として 5 cm3/100 g以下であるのが好ましい。 C0 2 gas of the residual gas is preferably not more than 9 cm 3/100 g as an average of the entire Kagamizo products. Further, the total amount of H 2 gas, CBU gas and C 2 H 6 gas is preferably 5 cm3 / 100 g or less on average for the entire manufactured product.
残存ガスのうち H2ガスの割合は 15%以下であるのが好ましく、 10%以 下であるのがより好ましい。 また CH4ガス、 C2¾ガス及び COガスの合計量は铸 造品全体の平均として 20%以下であるのが好ましい。 The proportion of H 2 gas in the residual gas is preferably 15% or less, more preferably 10% or less. Further, the total amount of CH 4 gas, C 2 gas and CO gas is preferably 20% or less as an average of the entire manufactured product.
本発明の真空ダイカスト鑤造品は輸送用機器の足回り部品又は車体構 成部品に使用するのが好ましい。  The vacuum die-casting product of the present invention is preferably used for undercarriage parts of transport equipment or body component parts.
本発明の真空ダイカスト铸造品の製造方法は、金型キヤビティ内を減圧 することによりアルミニウム合金溶湯を射出スリーブ内に装填した後、 射出ス リ一ブに嵌合するプランジャを前進して射出スリーブ内の溶湯をキヤビティ内 に充填するもので、 真空ダイカスト錶造品の気泡中に残存するガスが、 鎳造品 の溶解により放出させた後にガスクロマトグラフィにより測定した場合、 ¾ガ スが CO2ガスより少ない組成を有するように、離型剤として実質的に水分を含ま ない化学合成油を金型キヤビティに塗布した後铸造を行うことを特徴とする。 In the method for manufacturing a vacuum die-cast product according to the present invention, the aluminum alloy melt is charged into the injection sleeve by reducing the pressure in the mold cavity, and then the plunger fitted to the injection sleeve is advanced to move the inside of the injection sleeve. When the gas remaining in the air bubbles of a vacuum die-cast product is released by dissolution of the product and measured by gas chromatography, the gas is less than the CO 2 gas. The method is characterized by applying a synthetic water substantially free of water as a release agent to a mold cavity so as to have a small composition, and then performing a structure.
化学合成油はシリコーンオイルを 70質量%以上含み、 かつ動粘度が 20 0X 10-2 m2/s以下であるのが好ましい。また射出スリーブ内に実質的に水分を含 まない潤滑剤を塗布するのが好ましい。 図面の簡単な説明 It is preferable that the chemically synthesized oil contains 70% by mass or more of silicone oil and has a kinematic viscosity of 200 × 10 −2 m 2 / s or less. Further, it is preferable to apply a lubricant substantially free of water into the injection sleeve. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に用いる真空ダイカスト錶造装置 (型開きした状態) の 一例を示す概略断面図であり、  FIG. 1 is a schematic cross-sectional view showing one example of a vacuum die casting apparatus (in a mold opened state) used in the present invention.
図 2は図 1の真空ダイカスト錶造装置を型締めし、 射出スリーブ内に アルミニウム合金溶湯を装入した状態を示す概略断面図であり、  FIG. 2 is a schematic cross-sectional view showing a state in which the vacuum die casting apparatus of FIG. 1 is clamped, and a molten aluminum alloy is charged in an injection sleeve.
図 3は型締めした真空ダイカスト铸造装置のプランジャを射出スリー ブ内に押し込んで、 アルミニウム合金溶湯を金型キヤビティ内に注入した状態 を示す概略断面図であり、 図 4は給湯開始から射出完了までのキヤビティ内の真空度を示すグラ フであり、 Fig. 3 is a schematic cross-sectional view showing a state in which the plunger of the vacuum-die-casting apparatus that has been clamped is pushed into the injection sleeve, and the molten aluminum alloy is injected into the mold cavity. Figure 4 is a graph showing the degree of vacuum in the cavity from the start of hot water supply to the completion of injection.
図 5は本発明の真空ダイカスト铸造品の一例を示す概略斜視図であり、 図 6は真空状の引け巣を有する真空ダイカスト铸造品の金属組織を示 す顕微鏡写真であり、  FIG. 5 is a schematic perspective view showing an example of the vacuum die-cast product of the present invention, and FIG. 6 is a micrograph showing the metal structure of the vacuum die-cast product having a vacuum-like shrinkage cavity.
図 7はガスが残存するボイドを有する真空ダイカスト铸造品の金属,祖 織を示す顕微鏡写真であり、  Figure 7 is a micrograph showing the metal and tissue of a vacuum die-cast product having voids in which gas remains.
図 8はガスが残存するボイドが熱処理によりプリスターとなった状態 を示す顕微鏡写真である。 発明を実施するための最良の形態  FIG. 8 is a micrograph showing a state in which voids in which gas remains have become prestars by heat treatment. BEST MODE FOR CARRYING OUT THE INVENTION
[1] 真空ダイカスト鎳造品 [1] Vacuum die-casting products
真空ダイカスト铸造品中の残存ガスの総量は鎵造方案だけでなく、錶造 品の形状にも依存する。 例えば単純な平板形状等にすれば残存ガスの総量を低 減できるが、 複雑な形状が求められるダイカスト鎵造品では残存ガスの総量だ けで錶造方案が最適であったかどうかを判定することは難しい。 従って、 残存 ガスの総量だけでなく残存ガス中の C02ガス及ぴ H2ガスの割合が真空ダイ力 スト铸造品の良否を判定する上で重要である。 The total amount of residual gas in a vacuum die-cast product depends not only on the manufacturing method but also on the shape of the product. For example, a simple flat plate shape can reduce the total amount of residual gas.However, for die-cast products that require complex shapes, it is not possible to determine whether the manufacturing method was optimal only with the total amount of residual gas. difficult. Thus, the ratio of C0 2 gas及Pi H 2 gas remaining in the gas as well the total amount of residual gas is important in determining the quality of the vacuum die force strike铸造products.
離型剤及び潤滑剤の熱分解により発生した残存ガスの総量及び組成は 铸造品の気泡に残存するガスを取り出した後でなければ測定できないが、 残存 ガスを完全に取り出すには錶造品を溶解しなければならない。 しかしながら、 アルミニゥム合金の溶湯は酸素や水蒸気と反応して、 酸化アルミニゥムを生成 し、 酸素を消費するとともに水蒸気を還元して水素ガスにすると考えられるの で、 鎳造品の溶解により取り出した残存ガスの総量及ぴ組成は、 鎵造品中に存 在していたガスの総量及ぴ糸且成と完全に一致する訳ではなレ、。 従つて本明細書 において単に 「残存ガスの総量及び組成」 という場合、 特に断りがなければ、 鎵造品の溶解により取り出した残存ガスの総量及び組成を表すものとする。  The total amount and composition of the residual gas generated by the thermal decomposition of the release agent and the lubricant can be measured only after removing the gas remaining in the bubbles of the product, but in order to completely remove the residual gas, Must dissolve. However, the molten aluminum alloy reacts with oxygen and water vapor to produce aluminum oxide, which consumes oxygen and reduces the water vapor to hydrogen gas. The total amount and composition of the gas do not completely match the total amount and composition of the gas present in the manufactured product. Therefore, in this specification, simply referring to “total amount and composition of residual gas” shall mean the total amount and composition of residual gas extracted by dissolving the product unless otherwise specified.
具体的には、 4X 10·3 kPaに減圧した Ar雰囲気で铸造品を 700°Cで溶 解させ、発生したガスを 50 ml/minの流量の Arキャリアガスにより、ガスクロ マトグラフィ分析装置 (GC-8AIT、 島津製作所 (株) 製) の並列分流カラムに 流し入れ、 ガスクロマトグラフィ分析をした。 分析時間は 15秒である。 残存ガ スの総量及ぴ組成は、 特に断りがなければ上記条件で測定したものである。 Specifically, the product is melted at 700 ° C in an Ar atmosphere decompressed to 4 × 10 3 kPa, and the generated gas is gas chromatographed with an Ar carrier gas at a flow rate of 50 ml / min. The mixture was poured into a parallel split column of a mattography analyzer (GC-8AIT, manufactured by Shimadzu Corporation) and analyzed by gas chromatography. The analysis time is 15 seconds. The total amount and composition of the residual gas are measured under the above conditions unless otherwise specified.
残存ガスは錶造品に均一に含まれるのではなく、部位により異なる。具 体的には、 錶造品のうち湯口近傍部分では残存ガスの総量が少なく、 かつ残存 ガスのうちの C02ガスの割合が高いが、湯口から最も遠い部分(真空ポンプ側) では残存ガスの総量が多く、 かつ残存ガスのうちの CO2ガスの割合が低い傾向 がある。 従って、 湯口近傍部分、 湯口から最も遠い部分及ぴ途中の部分におけ る 3〜: 10箇所から試験片をサンプリングし、 各試験片について残存ガスの量及 ぴ組成を測定し、 各部分の測定値及びそれらの平均値を求める必要がある。 The residual gas is not uniformly contained in the product, but varies depending on the location. In concrete terms, less the total amount of the residual gas in the out sprue portion near錶造products, and the proportion of the C0 2 gas of the residual gas is high, the farthest portion (the vacuum pump side) the remaining gas from the sprue And the proportion of CO2 gas in the residual gas tends to be low. Therefore, in the vicinity of the gate, the part farthest from the gate, and in the middle part, the test pieces were sampled from 3 to 10 places, and the amount and composition of the residual gas were measured for each test piece, and the measurement of each part was performed. Values and their averages need to be determined.
残存ガスの総量については、 最も多い湯口近傍部分では 20 cms/100 g 以下であるのが好ましく、 また铸造品全体の平均として 10 cm3/100 g以下であ るのが好ましい。 残存ガスの総量がこれらの上限値を超えると、 鎳造品の熱処 理ゃ溶接時にプリスターが発生し、 外観不良を起こすのみならず、 機械的強度 の低下を引き起こす。残存ガスの総量は平均で 8.0 cm3/100 g以下であるのがよ り好ましい。 なお、 ガス量は、 ガスの種類に関係なく、 特に断りがなければ標 準状態 (20°C、 1気圧) における量として表す。 The total amount of residual gas 20 is preferably at cms / 100 g or less, and preferably Ru der 10 cm 3/100 g or less as an average of the entire铸造products the most common sprue portion near. If the total amount of residual gas exceeds these upper limits, presters are generated during (heat treatment of the product) and welding, causing not only poor appearance but also a decrease in mechanical strength. The total amount of residual gas is preferably Ri good not more than average 8.0 cm 3/100 g. In addition, the gas amount is expressed in the standard state (20 ° C, 1 atm) unless otherwise specified, regardless of the gas type.
CO2ガスの量の上限も、铸造品全体の平均として 9 cms/100 gであるの が好ましい。 co2ガスの量の下限は限定的ではないが、 多くの場合铸造品全体 の平均として 2.5 cm3程度であるのが好ましい。 COガスは、 ダイカストのよう な高速充填の場合、 10 m以下と非常に細かレ、気泡になって铸造品内に分散す る。 このような気泡は球形のため切欠係数が非常に小さく、 応力集中も非常に 小さい。 The upper limit of the amount of CO 2 gas is also preferably 9 cms / 100 g on the average of the entire manufactured product. The lower limit of the amount of the co 2 gas is not limited, but in many cases it is preferably about 2.5 cm 3 as an average of the entire product. In the case of high-speed filling such as die casting, CO gas is very fine, less than 10 m, and is dispersed as bubbles in the manufactured product. Such bubbles have a very small notch coefficient and a very low stress concentration due to their spherical shape.
その他のガス (CH4、 C2¾及び ¾) の合計量は、 鐃造品全体の平均と して 5 cm3/100 g以下であるのが好ましい。 N2ガスは不活性であるが、 ブリス ターの発生を防止するために、錶造品全体の平均として 7 cm3/100 g以下である のが好ましく、 l cm3/100 g以下であるのがより好ましい。 N2ガスが 7 cm3/100 g超であると、 金型キヤビティの減圧が不十分である。 Other gases total amount of (CH 4, C 2 ¾ and ¾) is preferably not more than 5 cm 3/100 g as the average of the entire鐃造products. Although N 2 gas is inert, in order to prevent the occurrence of Bliss coater, 7 cm 3 / is preferably at 100 g or less as an average of the entire錶造product, equal to or less than l cm 3/100 g Is more preferred. When N 2 gas is at 7 cm 3/100 g than vacuum mold Kiyabiti it is insufficient.
残存ガスの組成としては、 ¾ガスが C02ガスより少ないことが必要で ある。残存ガスの総量の 50%以上が C02ガスであるのが好ましい。 これらの条 件を満たすことにより、 気泡中のガスの大部分が不活性であるために、 熱処理 や溶接時に铸造品が脆化することはない。 The composition of the residual gas, is necessary ¾ gas is less than C0 2 gas is there. Preferably, at least 50% of the total amount of residual gas is C02 gas. By satisfying these conditions, most of the gas in the bubbles is inert, so that the product does not become brittle during heat treatment or welding.
H2が局部的にも平均的にも 15%超では水素脆性による铸造品の機械 的強度の低下が激しいので、残存ガスの総量に対する H2の割合は 15%以下であ るのが好ましく、 10%以下であるのがより好ましい。 また離型剤の分解生成物 である CH4、 C2H6及び COについては、残存ガスの総量を低減して安定した機 械的強度を得るために、 できるだけ少ない方が好ましい。 具体的には、 CH4、 C2H6及ぴ COの合計量は残存ガスの総量に対して 20%以下の範囲であるのが好 ましい。 Since H 2 is severe reduction in the mechanical strength of铸造article by hydrogen embrittlement is 15 percent to average even locally, preferably the proportion of H 2 is Ru der than 15% to the total amount of residual gas, More preferably, it is 10% or less. It is preferable that CH 4 , C 2 H 6 and CO, which are decomposition products of the release agent, be as small as possible in order to reduce the total amount of residual gas and obtain stable mechanical strength. Specifically, the total amount of CH 4 , C 2 H 6 and CO is preferably in a range of 20% or less based on the total amount of the residual gas.
[2]真空ダイカスト铸造法  [2] Vacuum die casting method
(1)離型剤 (1) Release agent
本発明では、ガス発生源である離型剤として実質的に水分を含まない化 学合成油を使用する。 この非水系離型剤は従来の水性ェマルジヨン型の離型剤 に比べて、 塗布量を著しく低減できるので、 得られる真空ダイカスト铸造品の 残存ガス量を低減することができる。  In the present invention, a chemical synthetic oil substantially free of water is used as a release agent as a gas generating source. This non-aqueous release agent can significantly reduce the amount of application as compared with a conventional aqueous emulsion type release agent, so that the residual gas amount of the vacuum die-cast product obtained can be reduced.
実質的に水分を含まない化学合成油として、例えばシリコーンオイルを As a synthetic oil substantially free of moisture, for example, silicone oil
70質量0/。以上含み、 残部はポリオレフインやパラフィンであるのが好ましい。 シリコーンオイルとしては、 ジメチルシリコーンオイル、 -ォレフィン変性シ リコーンオイル、 メチルスチリルシリコーンオイル、 メチルフエニルシリコ ーンオイル、 アルキルァリール変性シリコーンオイル、 メチルハイドロジェン シリコーンオイル等が好ましい。 またポリオレフインとしては、 低分子量のポ リエチレン、 ポリプロピレン、 ポリブテン- 1、 ポリ 4-メチルペンテン- 1等が挙 げられる。 ポリオレフインは、 必要に応じて、 酸化反応により分子量を低減さ せるとともに、 シリコーンオイルとの相溶性を向上させるのが好ましい。 これ らの成分は炭素量が多いため、 分解により発生するガス中で CO2ガスの割合が 多くなる。 70 mass 0 /. The above is included, and the balance is preferably polyolefin or paraffin. Preferred silicone oils include dimethyl silicone oil, -olefin modified silicone oil, methylstyryl silicone oil, methylphenyl silicone oil, alkylaryl modified silicone oil, and methyl hydrogen silicone oil. Examples of polyolefin include low molecular weight polyethylene, polypropylene, polybutene-1, and poly4-methylpentene-1. It is preferable that the polyolefin be reduced in molecular weight by an oxidation reaction, if necessary, and also be improved in compatibility with silicone oil. Since these components have a large amount of carbon, the proportion of CO 2 gas in the gas generated by decomposition increases.
金型キヤビティ表面への噴霧を考慮して、 化学合成油の 40°Cでの動粘 度は 200 X 10-6 m2/s (200 cSt) 以下、 好ましくは 100 X 10-6 m2/s (100 cSt) 以 下、 より好ましくは 50 X 10-6 m2/s (50 cSt) 以下である。 本明細書に記載の動 粘度は、 田中科学機器製作所 (株) の AKV-201を用いて、 JIS K 2283〖こ基づ き測定したものである。 動粘度が 200 X 10-6 m2/sを超えると、 離型剤として金 型キヤビティ表面に薄く均一に塗布できず、 単位面積あたりの塗布量が増える。 その結果、 溶湯により揮発するガスの総量が 10 cm3/100 gを超えてしまう。 ま た上記範囲内の動粘度を有する離型剤を使用すれば、 可動型と固定型のあわせ 面に塗布された離型剤が型締めの際に可動型と固定型の隙間を塞ぎ、 外部雰囲 気がキヤビティ内に侵入するのを防止し、 金型キヤビティ内の真空度を高める 役割を果たす。 The spraying of the mold Kiyabiti surface in view, kinematic viscosity of at 40 ° C in synthetic lubricant 200 X 10- 6 m 2 / s (200 cSt) or less, preferably 100 X 10- 6 m 2 / s (100 cSt) or less Lower, more preferably 50 X 10- 6 m 2 / s (50 cSt) or less. The kinematic viscosity described in this specification was measured using AKV-201 manufactured by Tanaka Scientific Instruments, based on JIS K 2283. If the kinematic viscosity exceeds 200 X 10-6 m 2 / s, it cannot be applied as a release agent to the mold cavity surface thinly and uniformly, and the amount applied per unit area increases. As a result, the total amount of gas to be volatilized by the molten metal exceeds the 10 cm 3/100 g. In addition, if a release agent having a kinematic viscosity within the above range is used, the release agent applied to the mating surface of the movable mold and the fixed mold closes the gap between the movable mold and the fixed mold when the mold is clamped. It prevents the atmosphere from entering the cavity and plays a role in increasing the degree of vacuum in the mold cavity.
化学合成油への添加剤として、 界面活性剤、 防腐剤、 防鲭剤、 潤滑剤、 粘度調節剤等が挙げられる。 これらの添加剤の量は、 化学合成油の機能を損な わないように、 化学合成油全体に対して 3質量%以下とするのが好ましい。  Additives to the synthetic oil include surfactants, preservatives, antiseptics, lubricants, viscosity modifiers, and the like. The amount of these additives is preferably 3% by mass or less based on the total amount of the synthetic oil so as not to impair the function of the synthetic oil.
離型剤を金型キヤビティの表面に薄く均一に塗布するために、離型剤を 嘖霧するのが好ましい。 そのため、 黒鉛、 雲母、 タノレク、 カオリン、 窒化ホウ 素、 フッ化黒鉛等の粉体を使用しないか、 もしくは嘖霧するのを妨げない程度 の粒径及ぴ添加量とするのが好ましい。  In order to apply the release agent thinly and uniformly on the surface of the mold cavity, it is preferable to spray the release agent. Therefore, it is preferable not to use powders such as graphite, mica, tanolek, kaolin, boron nitride, and fluorinated graphite, or to set the particle size and the addition amount to such an extent as not to hinder fogging.
(2)潤滑剤  (2) Lubricant
スリーブとプランジャの潤滑性を保っため、実質的に水分を含まない粉 体潤滑剤を用いるのが好ましい。 例えば、 PbO等の金属酸化物、 二硫化モリブ デン、 二硫化タングステン等の硫化物、 セラミックス、 黒鉛、 高分子化合物等 を、 ワックスやパラフィンに適量添カ卩し、 0.1〜2 mm程度の粒状粉体にしたも のが好ましい。  In order to maintain the lubricity of the sleeve and the plunger, it is preferable to use a powder lubricant which does not substantially contain water. For example, metal oxides such as PbO, sulfides such as molybdenum disulfide and tungsten disulfide, ceramics, graphite, polymer compounds, etc. are added to wax or paraffin in an appropriate amount, and a granular powder of about 0.1 to 2 mm Preferably, it is in the body.
(3) ァノレミニゥム合金  (3) anore mini alloy
本発明に使用し得るアルミユウム合金は特に限定的でなく、 Al-Si-Cu、 Al-Si-Mg, Al-Mg等のアルミニゥム合金、例えば ADC3、 ADC5、 ADC10、 ADC12 等が挙げられる。 例えば、 質量基準で 5〜20%の Si、 1%以下の Mg、 10%以下 の Cu、 1%以下の Ti、 1%以下の Fe、 1%以下の Mn、 残部 A1及び不可避不純 物からなるアルミニウム合金、 又は 2%以下の Si、 1%以下の Mg、 10%以下の Cu、 1%以下の Ti、 1%以下の Fe、 1%以下の Mn、 残部 A1及ぴ不可避不純物 力 らなるアルミニゥム合金が使用可能である。 The aluminum alloy that can be used in the present invention is not particularly limited, and examples thereof include aluminum alloys such as Al-Si-Cu, Al-Si-Mg, and Al-Mg, such as ADC3, ADC5, ADC10, and ADC12. For example, 5 to 20% by mass of Si, 1% or less of Mg, 10% or less of Cu, 1% or less of Ti, 1% or less of Fe, 1% or less of Mn, balance A1 and inevitable impurities Aluminum alloy or 2% or less Si, 1% or less Mg, 10% or less Cu, 1% or less Ti, 1% or less Fe, 1% or less Mn, balance A1 and inevitable impurities Strong aluminum alloys can be used.
アルミニウム合金溶湯に溶存する水素は、 脱ガス処理により 0.2 cm3/100 g以下に減少させることができる。アルミニウム合金溶湯中の酸素及ぴ 炭素の量は 0.1 cm3/100 g以下である。 Hydrogen dissolved in the aluminum alloy melt can be reduced to less than 0.2 cm3 / 100 g by degassing. The amount of oxygen及Pi carbon in the aluminum alloy in the molten metal is less than 0.1 cm 3/100 g.
(4)真空ダイカスト装置及ぴ金型キヤビティの減圧 (4) Vacuum die casting equipment and decompression of mold cavity
金型キヤビティの減圧が十分であれば、铸造品中の残存ガスに窒素はほ とんど含まれない。 従って、 金型キヤビティの減圧度は以下にするのが好まし い。  If the depressurization of the mold cavity is sufficient, the residual gas in the manufactured product contains almost no nitrogen. Therefore, it is preferable that the degree of depressurization of the mold cavity be as follows.
真空ダイカスト装置は、金型キヤビティ内を減圧することにより保持炉 内の溶湯を射出スリーブ内に装填する機構を具備するものが好ましい。 具体的 には、 図 1〜3に例示する真空ダイカスト装置 10が好ましい。  The vacuum die-casting apparatus preferably has a mechanism for charging the molten metal in the holding furnace into the injection sleeve by reducing the pressure in the mold cavity. Specifically, a vacuum die casting apparatus 10 illustrated in FIGS.
真空ダイカスト装置 10は、固定プラテン 16aに取り付けられた固定型 16cと、 可動プラテン 16bに取り付けられた可動型 16dと、 固定型 16c及ぴ可 動型 16dにより形成されたキャビティ 16に連通するように固定型 16cに取り付 けられた射出スリーブ 11と、射出スリーブ 11内を前後進するプランジャ 12と、 射出スリーブ 11の下方でアルミニウム合金溶湯 Mを収容する保持炉 13と、一 端が射出スリーブ 11に形成した給湯口 11aに連通し、他端 14aが保持炉 13内 の溶湯 Mに没入する給湯管 14と、キヤビティ 16に連通するカツトオフパルプ 18aと、 パイプ 18bを介してキヤビティ 16に連通し、 キヤビティ 16内を真空 状態に減圧して保持炉 13内の溶湯 Mを射出スリーブ 11内に吸引する真空ボン プ 18とを有する。  The vacuum die casting apparatus 10 communicates with a cavity 16 formed by a fixed mold 16c attached to a fixed platen 16a, a movable mold 16d attached to a movable platen 16b, and a fixed mold 16c and a movable mold 16d. An injection sleeve 11 attached to a fixed die 16c, a plunger 12 moving back and forth within the injection sleeve 11, a holding furnace 13 below the injection sleeve 11 for accommodating the molten aluminum alloy M, and one end of the injection sleeve 11. The hot water supply pipe 14 has the other end 14a immersed in the molten metal M in the holding furnace 13, the cutoff pulp 18a communicates with the cavity 16, and the cavity 16 through a pipe 18b. A vacuum pump 18 for reducing the pressure in the cavity 16 to a vacuum state and sucking the molten metal M in the holding furnace 13 into the injection sleeve 11.
保持炉 13は昇降台 15上に载置されており、昇降台 15を上下すること により溶湯 Mの湯面が一定に保たれる。 給湯管 14は、 溶湯 Mとの反応を防止 するために内面に BN コーティングを施したセラミック製であり、 下端 14aは オリフィス状である。給湯管 14の外周はヒータ(図示せず)で包囲されており、 給湯管 14を溶湯 Mの温度近くに保持している。  The holding furnace 13 is placed on a lift 15, and the level of the molten metal M is kept constant by moving the lift 15 up and down. The hot water supply pipe 14 is made of ceramic with an inner surface coated with BN to prevent a reaction with the molten metal M, and the lower end 14a is an orifice shape. The outer periphery of the hot water supply pipe 14 is surrounded by a heater (not shown), and keeps the hot water supply pipe 14 close to the temperature of the molten metal M.
図 1に示すように、 真空ダイカスト装置 10は、 金型キヤビティ 16に 水分を含まない化学合成油からなる離型剤を塗布する装置 20と、 スリーブ 11 に非水系潤滑剤を塗布する装置 30を有する。離型剤の塗布装置 20はアーム 22 の先端に離型剤を嘖霧するノズル 21を具備し、可動型 16dが固定型 16cから開 いた状態で金型キヤビティ 16の表面に離型剤を噴霧する。離型剤の 1サイクル ごとの使用量は金型キヤビティ 16の表面積に対して好ましくは 0.3〜50 g/ m2 であり、 より好ましくは 1.0〜25 g/ m2である。 潤滑剤の噴出装置 30は、 型開 きされた時にスリーブ 11の金型キヤビティ側開口部から粉体潤滑剤 31を噴霧 するノズル 32を有する。 潤滑剤の 1サイクルごとの使用量はスリープ 11の内 周面積に対して好ましくは 0.3〜30 g/ m2であり、より好ましくは 0.5〜20 g/ m2 である。 As shown in FIG. 1, the vacuum die-casting apparatus 10 includes an apparatus 20 for applying a mold release agent made of a synthetic oil containing no water to the mold cavity 16 and an apparatus 30 for applying a non-aqueous lubricant to the sleeve 11. Have. Release agent coating device 20 is arm 22 A nozzle 21 for spraying a release agent is provided at the tip of the mold, and the release agent is sprayed on the surface of the mold cavity 16 with the movable die 16d opened from the fixed die 16c. The amount of the release agent used in each cycle is preferably 0.3 to 50 g / m 2 , more preferably 1.0 to 25 g / m 2 , based on the surface area of the mold cavity 16. The lubricant ejection device 30 has a nozzle 32 for spraying the powder lubricant 31 from the mold cavity side opening of the sleeve 11 when the mold is opened. The amount of the lubricant used per cycle is preferably 0.3 to 30 g / m 2 , more preferably 0.5 to 20 g / m 2 , based on the inner peripheral area of the sleep 11.
図 4に示すように、 可動型 16dと固定型 16cを閉じた状態で、 キヤビ ティ 16内を真空状態に減圧 (例えば 50 kPa以下、 好ましくは 20 kPa以下、 より好ましくは 10 kPa以下、 特に 5 kPa以下) にする。 キヤビティ 16内の減 圧により射出スリーブ 11内も減圧になり、 保持炉 13内の溶湯 Mは給湯管 14 を介して射出スリーブ 11内に装填される (図 2) 。 2〜: L0秒間でキヤビティ 16 内を排気した後、 プランジャ 12をスリーブ 11内に押し込み、溶湯 Mをキヤビ ティ 16内に充填する (図 3) 。 射出後プランジャ 12を後退させるとともに、 可動型 16dを固定型 16cから離隔させ、キヤビティ 16から凝固した鎵造品を取 り出す。  As shown in FIG. 4, with the movable mold 16d and the fixed mold 16c closed, the interior of the cavity 16 is evacuated to a vacuum (for example, 50 kPa or less, preferably 20 kPa or less, more preferably 10 kPa or less, particularly 5 kPa or less). kPa or less). Due to the reduced pressure in the cavity 16, the pressure inside the injection sleeve 11 is also reduced, and the molten metal M in the holding furnace 13 is loaded into the injection sleeve 11 via the hot water supply pipe 14 (FIG. 2). 2 ~: After evacuating the cavity 16 for L0 seconds, the plunger 12 is pushed into the sleeve 11, and the molten metal M is filled into the cavity 16 (Fig. 3). After the injection, the plunger 12 is retracted, the movable die 16d is separated from the fixed die 16c, and the solidified product is removed from the cavity 16.
真空ダイカスト装置 10により溶湯 Mを大気と接触させずに铸造でき るので、 溶湯 Mの酸化やガスの巻き込みが低減される。 真空ダイカスト錶造の 終了後、 再度開いた固定型 16c及ぴ可動型 16dのキヤビティ表面に離型剤を噴 霧するとともに、 スリープ 11の内面に潤滑剤を噴霧する。 この操作を繰り返す ことにより、 所望の数の真空ダイカスト鎳造品を作製する。  Since the molten metal M can be manufactured without being brought into contact with the atmosphere by the vacuum die casting device 10, oxidation of the molten metal M and entrainment of gas are reduced. After the completion of the vacuum die-casting, a mold release agent is sprayed on the surfaces of the cavities of the fixed type 16c and the movable type 16d which are opened again, and a lubricant is sprayed on the inner surface of the sleep 11. By repeating this operation, a desired number of vacuum die-cast products are produced.
[3] 用途  [3] Applications
本発明の真空ダイカス ト錶造法により得られた铸造品は、残存ガス量が 少ないのみならず、 熱処理や溶接時に脆ィヒの原因となる水素ガスの割合が少な いので、 熱処理や溶接によりプリスターが発生するおそれが少なく、 かつ機械 的強度の低下もない。 また本発明の真空ダイカスト錶造品は靱性低下の大きな 要因である酸化物や介在物が少ない。 従って、 高強度及び高靭性が要求される 輸送機器用の足回り部品や車体構成部品等に使用できる。 ' 本努明を以下の実施例によりさらに詳細に説明するが、本発明はそれら に限定されるものではない。 実施例 1 The manufactured product obtained by the vacuum die-casting method of the present invention not only has a small residual gas amount but also a small proportion of hydrogen gas which causes brittleness during heat treatment and welding. There is little risk of generation of prestar and there is no decrease in mechanical strength. In addition, the vacuum die-cast product of the present invention has few oxides and inclusions, which are the major causes of the decrease in toughness. Therefore, it can be used as undercarriage parts for transportation equipment and vehicle body components that require high strength and high toughness. ' The present effort will be described in more detail by the following examples, but the present invention is not limited thereto. Example 1
図 1〜3に示す構造を有する 1000 トンのダイカスト装置を使用し、 質 量基準で 9.3%の Si、 0.5%の Mg、 0.9%の Fe、 0.1%の Mn、 0.05%の Cu、 0.07% の Ni及び 0.2%の Znを含有するアルミユウム合金 (ASTM B85の A360) を 真空ダイカスト铸造して、図 5に示すスノーモービル用の座席部品 40を作製し た。ダイカスト铸造した溶湯の铸込み温度は 670°Cであり、溶湯のゲート速度は 高速時に 20〜40 m/秒であった。  Using a 1000-ton die-casting machine with the structure shown in Figs. 1-3, 9.3% Si, 0.5% Mg, 0.9% Fe, 0.1% Mn, 0.05% Cu, 0.07% An aluminum alloy containing Ni and 0.2% Zn (A360 of ASTM B85) was vacuum-die-casted to produce a snowmobile seat component 40 shown in FIG. The casting temperature of the die-cast melt was 670 ° C, and the gate speed of the melt was 20-40 m / sec at high speed.
離型剤は、 220°Cで溶融したァタクチックポリプロピレンに空気を吹き 込んで酸化反応させたものを 100°Cまで冷却し、 シリコーンオイル  The mold release agent is obtained by blowing air into atactic polypropylene melted at 220 ° C and oxidizing it.
[Wacker-Chemie GMBH製 Wacker TN]を完全に攪拌混合したものである。 こ の混合物に少量の殺菌剤を加えた。 各成分の添加量は、 シリコーンオイルが 85 質量0 /0、 ァタクチックポリプロピレンが 14.9質量0 /0、 殺菌剤が 0.1質量0 /0であ つた。 この離型剤の 40°Cでの動粘度は 5 10-6 m2/s~1.0 x 10'4 m2/s 〜 100 cSt) であった。 この離型剤を 1サイクル当たり 2.5 g/ m2の割合で金型キヤビ ティ 16の表面に嘖霧した。 [Wacker-Chemie Wacker TN manufactured by GMBH] is completely stirred and mixed. A small amount of fungicide was added to the mixture. The addition amount of each component, the silicone oil is 85 mass 0/0, § isotactic polypropylene 14.9 wt 0/0, fungicides 0.1 0/0 der ivy. Kinematic viscosity at 40 ° C of the releasing agent was 5 10-6 m 2 /s~1.0 x 10 ' 4 m 2 / s ~ 100 cSt). This release agent was sprayed on the surface of the mold cavity 16 at a rate of 2.5 g / m 2 per cycle.
粉体潤滑剤として、タノレク、天然黒鉛及び合成ワックスを含有するァス トロルブ GW-23 (花野商事株式会社製) を、 1サイクル当たり 1.5 g/ m2の量で スリーブ 11の内周面に嘖霧した。 Astrol powder GW-23 (manufactured by Hanano Shoji Co., Ltd.) containing Tanolek, natural graphite and synthetic wax as a powder lubricant was applied to the inner peripheral surface of the sleeve 11 at an amount of 1.5 g / m 2 per cycle. Fog.
図 4に示す減圧条件で得られた真空ダイカスト錶造品を金型から取り だし、 鏡造品の湯口近傍部分 Ρι、 バルブ 18a近傍部分 P2及び中央部分 P3を切 り出して試験片とし、 各試験片を 4X 10-3 kPaに減圧した真空チャンバ内の Ar 雰囲気中で 700°Cで溶解させ、発生したガスを 50 ml/minの流量の Arキャリア ガスにより、 ガスクロマトグラフィ分析装置 (GC-8AIT、 島津製作所 (株) 製) の並列分流力ラムに流し入れ、ガスの総量及ぴ組成を 15秒間ガスクロマトダラ フィ一により測定した。湯口近傍部分 Pi及ぴバルブ近傍部分 P2における残存ガ スの総量 (標準状態) 及び組成、 並びに残存ガスの総量 (標準状態) 及び組成 の平均値 Paを表 1に示す。 The vacuum die casting錶造product obtained under a reduced pressure of 4 out taken from the mold, the sprue portion near the mirror forming products Roiota, out disconnect the valve 18a adjacent portion P 2 and a central portion P 3 a test piece , each specimen was dissolved in 700 ° C in an Ar atmosphere in the vacuum chamber pressure was reduced to 4X 10- 3 kPa, the Ar carrier gas at a flow rate of the generated gas 50 ml / min, gas chromatographic analysis apparatus (GC -8AIT, manufactured by Shimadzu Corporation), and the total amount and composition of gas were measured by gas chromatography for 15 seconds. Sprue portion near Pi及Pi total residual gas in the valve vicinity of P 2 (normal state) and composition, as well as the total amount of residual gas (standard state) and composition Table 1 shows the average value of Pa.
同様に製造した真空ダイ力スト鎳造品の湯口近傍部分 Piから切り出し た幅 6.5 mm、厚さ 3 mm及び長さ 100 mmの板状の試験片に対して、 JIS規格 (JIS Z 2241) に従って引張り強さ、 0.2%耐カ及ぴ伸ぴを、 標点距離を 25 mm として測定した。 結果を表 2に示す。 比較例 1  According to the JIS standard (JIS Z 2241), a 6.5 mm wide, 3 mm thick and 100 mm long plate-shaped test piece cut out from the vicinity of the gate of a vacuum die-cast product manufactured in the same manner Tensile strength, 0.2% strength and elongation were measured with a gauge length of 25 mm. Table 2 shows the results. Comparative Example 1
離型剤としてシリコーンオイルェマルジヨン [商品名 TSM6352、 GE 東芝シリコーン (株) 製] を用いた以外実施例 1と同様にして、 真空ダイカス ト铸造を行なった。 このシリコーンオイルェマルジヨンは、 15質量%の変性シ リコーンオイル、 2.0質量0 /0の乳化ポリプロピレン、 0.3質量%のエトキシィ匕ァ ルコール乳化剤、 2.0質量%の腐食防止剤、 残部水からなる組成を有していた。 このシリコーンオイルェマルジョンをさらに水で 40倍に希釈し、金型キヤビテ ィの表面に 1サイクル当たり 300 g/ m2の割合で噴霧した。 Vacuum die casting was performed in the same manner as in Example 1 except that silicone oil emulsion (trade name: TSM6352, manufactured by GE Toshiba Silicone Co., Ltd.) was used as a release agent. The silicone oil E Mar Ji is 15 mass% of modified recone oil, 2.0 wt 0/0 emulsion polypropylene, 0.3 wt% of Etokishii匕A alcohol emulsifier, 2.0 wt% of a corrosion inhibitor, with balance water Had. The silicone oil emulsion was further diluted 40 times with water and sprayed onto the surface of the mold cavity at a rate of 300 g / m 2 per cycle.
得られた铸造品の湯口近傍部分 Piから切り出した試験片に対して、 実 施例 1と同じ測定を行った。 結果を表 1及ぴ 2に示す。 比較例 1の鎵造品に残 存するガスは、 8.8 cm3/100 gと実施例 1より多かつただけでなく、 H2ガス、 C2H6ガス及ぴ CH4ガスを多量に含有する組成を有していた。これは水性離型剤 を使用したためであると考えられる。比較例 1の铸造品の機械的強度は実施例 1 の鎳造品と比較して低かった。 実施例 2 The same measurement as in Example 1 was performed on a test piece cut out from the vicinity Pi of the obtained manufactured product. The results are shown in Tables 1 and 2. The gas remaining in the product of Comparative Example 1 was 8.8 cm3 / 100 g, which was not only larger than that in Example 1, but also a composition containing a large amount of H 2 gas, C 2 H 6 gas and CH 4 gas. Had. This is probably because an aqueous release agent was used. The mechanical strength of the product of Comparative Example 1 was lower than that of the product of Example 1. Example 2
残存ガス量を比較例 1とほぼ同じになるように増やすために化学合成 油系離型剤の使用量を 4.5 g/m2と多くした以外実施例 1と同様にして、 真空ダ ィカスト铸造品を作製し、 残存ガスの組成と錶造品の機械的強度との関係を調 ベた。湯口近傍部分 Piから切り出した試験片における残存ガス量は 7.7 cm3/100 gであった。実施例 1と同様にして測定した残存ガス組成及び機械的強度を表 1 及び 2に示す。 表 1及ぴ 2から、 残存ガス量が比較例 1とほぼ同程度であるに もかかわらず、比較例 1より明らかに機械的強度が向上していることが分かる。 実施例 3 In order to increase the amount of residual gas to be almost the same as in Comparative Example 1, the vacuum die-cast product was manufactured in the same manner as in Example 1 except that the amount of the chemically synthesized oil-based release agent was increased to 4.5 g / m 2. Was fabricated, and the relationship between the composition of the residual gas and the mechanical strength of the manufactured product was examined. The residual gas amount in the test piece cut out from the part near the gate was Pi 7.7 cm3 / 100 g. Tables 1 and 2 show the residual gas composition and mechanical strength measured in the same manner as in Example 1. From Tables 1 and 2, it can be seen that the mechanical strength is clearly improved from Comparative Example 1, although the residual gas amount is almost the same as Comparative Example 1. Example 3
実施例 1より複雑な形状の真空ダイカスト铸造品を作製し、 実施例 1 と同じ方法で残存ガスの総量及び組成を測定した。 結果を表 1に示す。 残存ガ スの総量は 7.1 cm3/100 gに抑えられ、かつ H2ガスが CO2ガスより少なかった。 なお実施例 1と異なり残存ガスのほとんとが N2であったが、 これは、金型キヤ ビティが実施例 1より複雑形状であつたために、 キヤビティ中の真空度が 25 kPa程度であり、 排気が必ずしも十分ではなかったためと考えられる。 比較例 2 A vacuum die-cast product having a more complicated shape than in Example 1 was produced, and the total amount and composition of the residual gas were measured in the same manner as in Example 1. Table 1 shows the results. The total amount of residual gas is suppressed to 7.1 cm 3/100 g, and H 2 gas was less than the CO 2 gas. Although Preparative On and Ho in Example 1 and different residual gas was N 2, this is because the mold Canon Activity has been made complicated shape than in Example 1, the degree of vacuum in Kiyabiti is about 25 kPa, It is considered that exhaust was not always sufficient. Comparative Example 2
溶湯をスリーブ内に供給してから減圧する従来の真空ダイカスト鎳造 法により、 実施例 1と同一形状の真空ダイカスト铸造品を製造し、 残存ガスの 総量及び組成並びに機械的性質を測定した。 先ず実施例 1と同じアルミニゥム 合金溶湯を射出スリーブ内に直接注湯し、 射出スリーブを気密状態にした後不 活生ガス及ぴ実施例 1で用いたのと同じ離型剤を供給し、 射出スリーブ内を以 下に減圧した。 その後プランジャを前進させ、 溶湯を金型キヤビティ内に充填 した。 サイクルタイムは実施例 1と同じであった。  A vacuum die casting having the same shape as in Example 1 was manufactured by a conventional vacuum die casting method in which the molten metal was supplied into the sleeve and then depressurized, and the total amount, composition, and mechanical properties of the residual gas were measured. First, the same aluminum alloy melt as in Example 1 was directly poured into the injection sleeve, the injection sleeve was air-tight, and then inert gas and the same release agent as used in Example 1 were supplied. The pressure inside the sleeve was reduced as follows. Thereafter, the plunger was advanced, and the molten metal was filled into the mold cavity. The cycle time was the same as in Example 1.
得られた真空ダイカスト鎵造品の湯口近傍部分 Piでの残存ガスの総量 及ぴ組成並びに機械的強度を実施例 1と同様に測定した。 結果を表 1及び 2に 示す。 比較例 2ではスリーブ内に注湯してから金型キヤビティ内を減圧したた めに、 減圧時間は短かった。 そのためスリーブ内が十分に排気されず、 N2や H2の量が増えていることが分かる。 残存ガス量は 21.75 cm3/100 であった。 比較例 2の鎵造品の機械的強度は非常に低かった。 表 1 The total amount, composition, and mechanical strength of residual gas in the vicinity Pi of the gate of the obtained vacuum die-cast product were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2. In Comparative Example 2, since the pressure in the mold cavity was reduced after pouring into the sleeve, the decompression time was short. Therefore, it can be seen that the inside of the sleeve was not sufficiently exhausted, and the amount of N 2 and H 2 was increased. Residual gas amount was 21.75 cm 3/100. The mechanical strength of the product of Comparative Example 2 was very low. table 1
Figure imgf000016_0001
(2) Pa:平均値。
Figure imgf000016_0001
(2) Pa: average value.
Pi:湯口近傍部分。  Pi: Near the gate.
P2:真空ポンプ近傍部分。 表 2 P 2 : Near the vacuum pump. Table 2
Figure imgf000016_0002
実施例 4
Figure imgf000016_0002
Example 4
実施例 1で作製した真空ダイカスト鎳造品を大気雰囲気の 500°Cの熱 処理炉内に 4時間載置した後、 60°Cの温水に投入し、 溶体化処理 (T6処理) を 施した。 次いで鎳造品に 150°Cで 2時間の時効処理を施した。 このようにして 熱処理した鎵造品の表面にはブリスターが発生していなかった。 これは、 引け 巣内部がほとんど真空であるために、 引け巣が熱処理により膨張しなかったた めであると考えられる。 The vacuum die-cast product manufactured in Example 1 was placed in a heat treatment furnace at 500 ° C in an air atmosphere for 4 hours, and then poured into hot water at 60 ° C to perform a solution treatment (T6 treatment). . Next, the fabricated product was subjected to an aging treatment at 150 ° C for 2 hours. No blisters were generated on the surface of the article heat-treated in this way. This is closed This is probably because the shrinkage nest did not expand due to the heat treatment because the inside of the nest was almost vacuum.
熱処理した铸造品から試験片を切り出し、铸造品内部のボイドを調べた。 図 6は錶造品の金属組織を示す顕微鏡写真であり、 図 6中央の濃色部分がボイ ドである。 ほとんどのボイドはアルミニウム合金溶湯の凝固収縮の際にできた 引け巣であった。 引け巣はなめらかな形状を有し、 かつほとんど真空状態であ るために、 機械的強度の低下の原因にはならないことが分かる。  A test piece was cut out from the heat-treated structure, and voids inside the structure were examined. Fig. 6 is a micrograph showing the metal structure of the manufactured product, and the dark portion in the center of Fig. 6 is a void. Most voids were shrinkage cavities formed during the solidification shrinkage of the molten aluminum alloy. It can be seen that the shrinkage cavities have a smooth shape and are almost in a vacuum state, so they do not cause a decrease in mechanical strength.
熱処理によるプリスタ一の発生の有無を調べるため、熱処理による铸造 品の体積膨張率を測定した。 結果を表 3に示す。 熱処理後の体積膨張率が小さ いことから、 プリスターとなる残存ガスを含有する気泡が少ないことが分かる。 また実施例 1の铸造品を溶接したもブリスターの発生は認められなかった。 こ れらの結果から、 実施例 1の铸造品は強度のばらつきが著しく小さいことが分 かる。 比較例 3  In order to examine whether or not the pre-star was generated by the heat treatment, the volume expansion coefficient of the product by the heat treatment was measured. Table 3 shows the results. Since the volume expansion coefficient after the heat treatment is small, it can be seen that there are few bubbles containing the residual gas serving as a prestar. No blistering was observed even when the product of Example 1 was welded. From these results, it can be seen that the manufactured product of Example 1 has extremely small variation in strength. Comparative Example 3
比較例 1の铸造品に対して実施例 4と同様に熱処理を行い、 ブリスタ 一の有無及ぴ体積膨張率を測定した。 結果を表 3に示す。 またこの鍀造品の金 属組織を図 7に示す。 図 7から、 ほとんどのボイドが残存ガスを含有し、 ほぼ 粒状であることが分かる。 そのため、 図 8に示すように、 熱処理後の铸造品に はブリスターが認められた。 このような鎵造品は、 輸送用機器の足回り部品又 は車体構成部品のような激しい振動を受ける条件下で使用するのに必要な機械 的強度を有さない。 また比較例 1の铸造品に溶接を行うと、 プリスターが発生 した。 比較例 4  The article of Comparative Example 1 was subjected to a heat treatment in the same manner as in Example 4, and the presence or absence of the blister and the volume expansion coefficient were measured. Table 3 shows the results. Figure 7 shows the metal structure of this product. From Fig. 7, it can be seen that most of the voids contain residual gas and are almost granular. Therefore, as shown in Fig. 8, blisters were observed in the heat-treated product. Such structures do not have the mechanical strength required for use under conditions of severe vibration, such as undercarriage parts or body components of transportation equipment. When welding was performed on the product of Comparative Example 1, a pre-star occurred. Comparative Example 4
比較例 2の铸造品に対して実施例 4と同様に熱処理を行!/、、 ブリスタ 一の有無及ぴ体積膨張率の測定を行った。 結果を表 3に示す。 比較例 4では比 較例 3より多くブリスターが発生した。 表 3 The heat-treated article of Comparative Example 2 was subjected to the same heat treatment as in Example 4, and the presence or absence of the blister and the volume expansion coefficient were measured. Table 3 shows the results. In Comparative Example 4, more blisters were generated than in Comparative Example 3. Table 3
Figure imgf000018_0001
産業上の利用可能性
Figure imgf000018_0001
Industrial applicability
以上詳細に説明したように、本発明により、残存ガス量が少ないのみな らず、 残存ガス中の水素量が低減したアルミニウム合金の真空ダイカスト鍚造 品を得ることができる。 このような真空ダイカスト錶造品は、 高強度及び高靭 性が要求される輸送機器用の足回り部品や車体構成部品等に好適である。  As described in detail above, according to the present invention, it is possible to obtain a vacuum die-cast product of an aluminum alloy in which not only the amount of residual gas is small but also the amount of hydrogen in the residual gas is reduced. Such a vacuum die-cast product is suitable for undercarriage parts for transportation equipment and vehicle body components, etc., which require high strength and high toughness.

Claims

請求の範囲 The scope of the claims
1. アルミニウム合金の真空ダイカスト铸造品であって、前記真空ダイカス ト鎳造品の気泡中に残存するガスは、 前記鍚造品の溶解により放出させた後に ガスクロマトグラフィにより測定した場合、 H2ガスが C02ガスより少ない組成 を有することを特徴とする真空ダイカスト錶造品。 1. A vacuum die-cast product of an aluminum alloy, the gas remaining in the air bubbles of the vacuum die-cast product is H 2 gas when measured by gas chromatography after being released by melting of the product. There vacuum die casting錶造article characterized by having a composition less than C0 2 gas.
2. 請求項 1に記載の真空ダイカスト铸造品において、 前記残存ガスの総量 の 50%以上が C02ガスであることを特徴とする真空ダイカスト铸造品。 2. claimed in vacuum die casting铸造product according to claim 1, vacuum die casting铸造product more than 50% of the total amount of the residual gas is characterized in that it is a C0 2 gas.
3. 請求項 1又は 2に記載の真空ダイカスト铸造品において、 前記残存ガス の総量がいずれの箇所でも 20 cms/100 g以下であることを特徴とする真空ダイ カスト錶造品。  3. The vacuum die-cast product according to claim 1, wherein a total amount of the residual gas is 20 cms / 100 g or less at any position.
4. 請求項 1〜3のいずれかに記載の真空ダイカスト铸造品において、 前記 残存ガスの総量が前記铸造品全体の平均として 10 cm3/100 g以下であることを 特徴とする真空ダイカスト鎳造品。  4. The vacuum die-cast product according to any one of claims 1 to 3, wherein a total amount of the residual gas is 10 cm3 / 100 g or less as an average of the entire product. .
5. 請求項 1〜4のいずれかに記載の真空ダイカスト錶造品において、 前記 残存ガスのうち C02ガスが前記鎵造品全体の平均として 9 cms/100 g以下であ ることを特徴とする真空ダイカスト錶造品。 5. In the vacuum die casting錶造article according to any one of claims 1 to 4, and wherein the 9 cms / 100 g or less der Rukoto average C0 2 gas of the entire鎵造product of the residual gas Vacuum die casting.
6. 請求項 1〜5のいずれかに記載の真空ダイカスト铸造品において、 H2ガ ス、 CBUガス及ぴ C2H6ガスの合計量が铸造品全体の平均として 5 cm3/100 g以 下であることを特徴とする真空ダイカスト錶造品。 6. In the vacuum die casting铸造article according to any one of claims 1 to 5, H 2 gas, 5 cm 3/100 g or less total amount of CBU gas及Pi C 2 H 6 gas as an average for the entire铸造products A vacuum die-casting product characterized by the following.
7. 請求項 1〜6のいずれかに記載の真空ダイカスト鎳造品において、 前記 残存ガスのうち H2ガスの割合が 15%以下であることを特徴とする真空ダイカス ト錶造品。 7. The vacuum die-cast product according to any one of claims 1 to 6, wherein a ratio of H 2 gas to the remaining gas is 15% or less.
8. 請求項 7に記載の真空ダイカスト錶造品において、 前記残存ガスのうち H2ガスの割合が 10%以下であることを特徴とする真空ダイ力スト錶造品。 8. The vacuum die cast product according to claim 7, wherein a ratio of H 2 gas in the residual gas is 10% or less.
9. 請求項:!〜 8のいずれかに記載の真空ダイカスト錶造品において、 前記 残存ガスの総量に対して、 CH4ガス、 C2H6ガス及び COガスの合計量が鍚造品全 体の平均として 20%以下であることを特徴とする真空ダイカスト铸造品。 9. Claim: a vacuum die casting錶造article according to any one of 1-8, the total amount of the residual gas, CH 4 gas, the total amount of C2H 6 gas and CO gas is鍚造products overall Vacuum die-casting product characterized in that it is less than 20% on average.
10. 請求項 1〜9のいずれかに記載の真空ダイカスト铸造品において、輸送 用機器の足回り部品又は車体構成部品に使用されることを特徴とする真空ダイ カスト錶造品。 10. The vacuum die-cast product according to any one of claims 1 to 9, wherein the vacuum die is used as a suspension part or a vehicle body component of a transportation device. Cast products.
11. 金型キヤビティ内を減圧することによりアルミニウム合金溶湯を射出 スリーブ内に装填した後、 前記射出スリ^"ブに嵌合するプランジャを前進して 前記射出スリープ内の溶湯を前記キヤビティ内に充填することにより真空ダイ カスト铸造品を製造する方法であって、 前記真空ダイカスト鍚造品の気泡中に 残存するガスが、 前記铸造品の溶解により放出させた後にガスクロマトグラフ ィにより測定した場合、 ¾ガスが co2ガスより少ない組成を有するように、 離 型剤として実質的に水分を含まない化学合成油を前記金型キヤビティに塗布し た後錶造を行うことを特徴とする真空ダイカスト铸造品の製造方法。 11. After the molten aluminum alloy is loaded into the injection sleeve by reducing the pressure in the mold cavity, the plunger fitted to the injection sleeve is advanced to fill the molten metal in the injection sleep into the cavity. A method of producing a vacuum die-cast product by performing gas chromatography after gas remaining in bubbles of the vacuum die-cast product is released by dissolution of the product. as the gas having a composition less than co 2 gas, vacuum die cast铸造product a synthetic oil which is substantially free of moisture and performing錶造after application to the mold Kiyabiti as a mold release agent Manufacturing method.
12. 請求項 11に記載の真空ダイカスト铸造品の製造方法において、 前記化 学合成油はシリコーンオイルを 70質量%以上含み、 かつ動粘度が 200 X 10-2 m2/ s以下であることを特徴とする真空ダイカスト铸造品の製造方法。 12. The method of manufacturing a vacuum die casting铸造article according to claim 11, said chemical synthetic oil comprises a silicone oil 70 mass% or more and a kinematic viscosity of less 200 X 10- 2 m 2 / s Characterized by the method of manufacturing vacuum die-cast products.
13. 請求項 11又は 12に記載の真空ダイカスト铸造品の製造方法において、 前記射出スリーブ内に実質的に水分を含まない潤滑剤を塗布することを特徴と する真空ダイカスト铸造品の製造方法。  13. The method for producing a vacuum die-cast product according to claim 11 or 12, wherein a lubricant substantially free of moisture is applied to the inside of the injection sleeve.
PCT/JP2003/016541 2002-12-24 2003-12-24 Vacuum die casting and method for production thereof WO2004058434A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004562905A JP4518256B2 (en) 2002-12-24 2003-12-24 Vacuum die casting product and method for manufacturing the same
AU2003292610A AU2003292610A1 (en) 2002-12-24 2003-12-24 Vacuum die casting and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002371961 2002-12-24
JP2002-371961 2002-12-24

Publications (1)

Publication Number Publication Date
WO2004058434A1 true WO2004058434A1 (en) 2004-07-15

Family

ID=32677220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016541 WO2004058434A1 (en) 2002-12-24 2003-12-24 Vacuum die casting and method for production thereof

Country Status (4)

Country Link
JP (1) JP4518256B2 (en)
CN (1) CN1322951C (en)
AU (1) AU2003292610A1 (en)
WO (1) WO2004058434A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210266A (en) * 2009-03-06 2010-09-24 Toyota Motor Corp Gas analyzer
DE102013223311A1 (en) * 2013-11-15 2015-05-21 Bayerische Motoren Werke Aktiengesellschaft Maintenance station for casting tools and method for servicing a casting tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126009A (en) * 2011-03-01 2011-07-20 宁波旭升机械有限公司 Die casting manufacturing process of aluminum alloy pump head
CN103212688A (en) * 2013-04-08 2013-07-24 杭州友阳电器有限公司 Die-casting manufacturing method for electric appliance joint
CN111531146B (en) * 2020-05-14 2021-06-29 深圳市协力达精密科技有限公司 Aluminum alloy die-casting release agent and preparation system and method thereof
JP7367640B2 (en) * 2020-09-02 2023-10-24 トヨタ自動車株式会社 Blast hole analysis method, program, and casting condition derivation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117992A (en) * 1988-10-27 1990-05-02 Kawasaki Steel Corp Oil lubricating mold release agent
JPH09241784A (en) * 1996-03-05 1997-09-16 Hitachi Metals Ltd Die cast product
EP0941788A2 (en) * 1998-03-09 1999-09-15 Acheson Industries, Inc. Process and device for preparing the walls of a mold for molding or shaping to make them ready for the next molding cycle, spray element with centrifugal atomization and air guidance, and use of this spray element for spraying essentially solvent-free mold wall treatment agent
JP2003010958A (en) * 2001-06-28 2003-01-15 Mitsui Mining & Smelting Co Ltd Mold for die cast molding, die cast molding method, and molded product
JP2003136211A (en) * 2001-10-26 2003-05-14 Nippon Achison Kk Apply method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924454A (en) * 1995-07-11 1997-01-28 Toyota Motor Corp Casting device
CA2188906C (en) * 1995-10-27 2006-06-06 Onofre Costilla-Vela Method and apparatus for preheating molds for aluminum castings
JP2003164954A (en) * 2001-11-30 2003-06-10 Nissan Motor Co Ltd Device and method for die casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117992A (en) * 1988-10-27 1990-05-02 Kawasaki Steel Corp Oil lubricating mold release agent
JPH09241784A (en) * 1996-03-05 1997-09-16 Hitachi Metals Ltd Die cast product
EP0941788A2 (en) * 1998-03-09 1999-09-15 Acheson Industries, Inc. Process and device for preparing the walls of a mold for molding or shaping to make them ready for the next molding cycle, spray element with centrifugal atomization and air guidance, and use of this spray element for spraying essentially solvent-free mold wall treatment agent
JP2003010958A (en) * 2001-06-28 2003-01-15 Mitsui Mining & Smelting Co Ltd Mold for die cast molding, die cast molding method, and molded product
JP2003136211A (en) * 2001-10-26 2003-05-14 Nippon Achison Kk Apply method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210266A (en) * 2009-03-06 2010-09-24 Toyota Motor Corp Gas analyzer
DE102013223311A1 (en) * 2013-11-15 2015-05-21 Bayerische Motoren Werke Aktiengesellschaft Maintenance station for casting tools and method for servicing a casting tool
US10695829B2 (en) 2013-11-15 2020-06-30 Bayerische Motoren Werke Aktiengesellschaft Maintenance station for casting molds and maintenance method for a casting mold

Also Published As

Publication number Publication date
JPWO2004058434A1 (en) 2006-04-27
JP4518256B2 (en) 2010-08-04
AU2003292610A1 (en) 2004-07-22
CN1322951C (en) 2007-06-27
CN1732058A (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP5036656B2 (en) Surface treatment method for casting mold and casting mold using the same
CA2660484A1 (en) Metal injection moulding method
WO2004058434A1 (en) Vacuum die casting and method for production thereof
JP5645048B2 (en) Heat dissipation member, semiconductor device, and method for manufacturing composite material
Finkelstein et al. Microstructures, mechanical properties ingot AlSi7Fe1 after blowing oxygen through melt
CA2431580A1 (en) Dense, dry, self-lubricating material; mechanical part made of the said material; procedure for fabricating such material
JP5641248B2 (en) Method for producing foam metal precursor and method for producing foam metal
EP3215644B1 (en) Process for using a tubular sonotrode
JP2009208094A (en) Die casting for vehicle steering gear housing, and method for producing the same
Wahba et al. A fundamental study of laser welding of hot extruded powder metallurgy (P/M) AZ31B magnesium alloy
CA2244145C (en) Metal alloy mass for semi-solid forming
US8297338B2 (en) Sand core for casting and process for producing the same
JP2009226459A (en) Mold release agent for die casting, method for imparting mold releasability to mold for die casting and method for casting die-cast product
Ünal et al. Production of High Strength Al—Mg—Sc Alloys by PM
JP4107945B2 (en) Casting mold release agent and casting method using the mold release agent
EP2744612A2 (en) Method for producing investment castings
EP0475804A1 (en) Process for manufacture of tool steel, in particular for moulds and steel produced by this method
JP2004306039A (en) Continuously casting method for magnesium alloy molten metal
JP2005046905A (en) Vacuum die-casting machine
Srinivasan et al. Enhanced high temperature properties of low pressure cast AZ91 Mg alloy
Tang et al. Role of manganese in the soldering reaction in magnesium high pressure die casting
Batistão et al. Wet chemical surface functionalization of AA2017 powders for additive manufacturing
Shin et al. Gas pore formation in lost foam casting of AZ91H Mg alloy in comparison with A356 Al alloy
JPH0211243A (en) Mold for casting
WO2018180317A1 (en) Nozzle, casting device, and method for manufacturing cast material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004562905

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A73866

Country of ref document: CN

122 Ep: pct application non-entry in european phase