JPWO2004058434A1 - Vacuum die casting product and method for manufacturing the same - Google Patents

Vacuum die casting product and method for manufacturing the same Download PDF

Info

Publication number
JPWO2004058434A1
JPWO2004058434A1 JP2004562905A JP2004562905A JPWO2004058434A1 JP WO2004058434 A1 JPWO2004058434 A1 JP WO2004058434A1 JP 2004562905 A JP2004562905 A JP 2004562905A JP 2004562905 A JP2004562905 A JP 2004562905A JP WO2004058434 A1 JPWO2004058434 A1 JP WO2004058434A1
Authority
JP
Japan
Prior art keywords
gas
vacuum die
die casting
cast product
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004562905A
Other languages
Japanese (ja)
Other versions
JP4518256B2 (en
Inventor
金内 良夫
良夫 金内
具哉 今村
具哉 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2004058434A1 publication Critical patent/JPWO2004058434A1/en
Application granted granted Critical
Publication of JP4518256B2 publication Critical patent/JP4518256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity

Abstract

アルミニウム合金の真空ダイカスト鋳造品であって、真空ダイカスト鋳造品の気泡中に残存するガスは、鋳造品の溶解により放出させた後にガスクロマトグラフィにより測定した場合、H2ガスがCO2ガスより少ない組成を有する真空ダイカスト鋳造品。An aluminum alloy vacuum die cast product, wherein the gas remaining in the bubbles of the vacuum die cast product has a composition in which H2 gas is less than CO2 gas when measured by gas chromatography after being released by dissolution of the cast product. Vacuum die casting product.

Description

発明の分野
本発明は、機械的強度に優れたアルミニウム合金の真空ダイカスト鋳造品及びその製造方法に関し、特に高強度及び高靭性を有する輸送機器用に好適なアルミニウム合金の真空ダイカスト鋳造品及びその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to an aluminum alloy vacuum die cast product having excellent mechanical strength and a method for producing the same, and particularly to an aluminum alloy vacuum die cast product suitable for use in transportation equipment having high strength and high toughness and the production thereof. Regarding the method.

ダイカスト鋳造法は高速・高圧で金型内へ溶融金属を充填することにより鋳造品を製造する技術であり、他の鋳造法に比べて寸法精度が高く、鋳肌が美しく、生産性が高いという利点がある。しかしながら溶湯の高速充填により周囲のガスを溶湯中に巻き込んでしまい、鋳造品の内部にガスが充填された多量の気泡や、ガスと金属との反応によりできた酸化物等の介在物が存在するという問題がある。これらの欠陥は鋳造品の機械的強度を低下させるだけでなく、特にガスが充填された気泡は、熱処理や溶接時に内部ガスの膨張によりブリスターとなり、機械的強度を著しく低下させる。従って、ダイカスト鋳造品の構造用部材としての用途は限られていた。
ダイカスト鋳造品に内在するガスには、大気成分の他、プランジャ用の潤滑剤や金型キャビティ用の離型剤の燃焼ガス等も含まれる。これらのガスの巻き込みを低減するため、金型キャビティ内を減圧して鋳造する真空ダイカスト法が実用化されている。
キャビティ内を減圧して溶湯を射出スリーブ内に装填する真空ダイカスト装置として、例えば特開平6−126415号は、固定プラテンに取り付けられた固定型と、固定型とともにキャビティを形成する可動型と、キャビティに連通する射出スリーブと、射出スリーブ内を前後進するプランジャと、射出スリーブの下方にあって溶湯を収容する保持炉と、一端が射出スリーブの給湯口に連結し、他端が保持炉内の溶湯に没入する給湯管と、キャビティ内を真空状態に減圧して保持炉内の溶湯を給湯管を介して射出スリーブ内に装填する減圧手段とを有する真空ダイカスト装置を開示している。
しかしながらこの真空ダイカスト装置を用いた真空ダイカスト法でも、内在する残存ガスを減らせても、皆無にすることは不可能である。それは、(1)金型キャビティを完全に真空状態にするのは工業的に困難であり、また(2)離型剤及び潤滑剤から発生するガスを完全に除去することも困難であるという理由による。
特にアルミニウムダイカストの場合、その機械的特性を向上させるには、(a)溶湯に溶解した水素が凝固時に排出されて、鋳造品に気孔が形成されるのを防止すること、(b)水素による脆化を防ぐため、溶湯から水素を除去すること、(c)酸化物等の介在物の生成を抑制するため、酸素を除去すること等が重要である。特に酸化膜や介在物がアルミニウム鋳造品中に存在する場合、それらの端部周辺は大きな切欠係数を持つので、応力集中により亀裂の原因になり、鋳造品の靱性を大きく低下させる。
従来アルミニウム合金のダイカストには、シリコーン系エマルジョン型の離型剤が用いられている。シリコーン系エマルジョン型の離型剤は水を媒体とし、変成シリコーンオイルを乳化剤により乳化させたものである。しかしエマルジョン型の離型剤では、鋳造品に残存するガスの総量が多いのみならず、残存ガスのうち30%超がH、C、CH等であることが分かった。特にCOガスよりHガスが多いので、熱処理や溶接時に鋳造品が脆化するという問題があった。
これは以下の理由によると考えられる。すなわち、金型キャビティは300℃程度であるので、水性離型剤を使用しても水分はほとんど蒸発するが、大量に塗布するため可動型と固定型のあわせ面にも相当量の離型剤が付着する。あわせ面の表面温度は低いので、離型剤中の水分は蒸発しきらずに残留する。このため、型締め後に減圧しても可動型と固定型の隙間から離型剤がキャビティ内に吸い込まれ、蒸発し続ける。入れ子の奥の可動部分に水性離型剤が付着しても同様の現象が起きる。これによりキャビティ内の真空度が低下しないばかりか、水素ガスの発生量が多くなる。
ガスの巻き込みは金型キャビティの表面近くで起こりやすいので、ガスを含有する気孔は鋳造品の表面近傍にあることが多い。このようなガス含有気孔を有する鋳造品に対して熱処理とか溶接を行うと、気孔中のガスが膨張し、気孔はいわゆるブリスターとなって鋳造品表面から突出した膨れとなる。ブリスターは負荷がかかったときに亀裂や破断の起点となるおそれがある。
気孔に封止されたガスが水素の場合、熱処理や溶接の際に鋳造品に吸蔵され、鋳造品の劣化の原因となる。従って、真空ダイカストの際にガスの巻き込みを低減するだけでなく、巻き込まれたガスのうち水素の割合を低減することも必要であることが分かった。
発明の目的
従って本発明の目的は、ガスが残留する気泡が少ないのみならず、気泡内ガス中の水素の割合も少なく、もって輸送用機器の足回り部品や車体構成部品等に好適な真空ダイカスト鋳造品を提供することである。
本発明のもう一つの目的は、かかる真空ダイカスト鋳造品を確実に製造する方法を提供することである。
The die-casting method is a technology that manufactures cast products by filling molten metal into the mold at high speed and high pressure, and has high dimensional accuracy, beautiful casting surface, and high productivity compared to other casting methods. There are advantages. However, the surrounding gas is entrained in the molten metal by high-speed filling of the molten metal, and there are a large amount of bubbles filled with the gas inside the casting and inclusions such as oxides formed by the reaction between the gas and the metal. There is a problem. These defects not only lower the mechanical strength of the cast product, but especially the gas-filled bubbles become blisters due to the expansion of the internal gas during heat treatment and welding, and significantly reduce the mechanical strength. Therefore, the use as a structural member of a die cast product has been limited.
In addition to atmospheric components, the gas inherent in the die cast product includes a lubricant for the plunger, a combustion gas for the mold release agent for the mold cavity, and the like. In order to reduce the entrainment of these gases, a vacuum die casting method in which the inside of the mold cavity is reduced in pressure and cast has been put into practical use.
As a vacuum die casting apparatus that decompresses the inside of a cavity and loads molten metal into an injection sleeve, for example, Japanese Patent Laid-Open No. 6-126415 discloses a fixed mold attached to a fixed platen, a movable mold that forms a cavity together with the fixed mold, and a cavity An injection sleeve that communicates with the injection sleeve, a plunger that moves back and forth in the injection sleeve, a holding furnace that is below the injection sleeve and contains the molten metal, one end connected to the hot water inlet of the injection sleeve, and the other end in the holding furnace There is disclosed a vacuum die casting apparatus having a hot water supply pipe immersed in the molten metal and a pressure reducing means for reducing the pressure in the cavity to a vacuum state and loading the molten metal in the holding furnace into the injection sleeve through the hot water supply pipe.
However, even with the vacuum die casting method using this vacuum die casting apparatus, it is impossible to completely eliminate the residual gas even if it is reduced. This is because (1) it is industrially difficult to make the mold cavity completely vacuum, and (2) it is also difficult to completely remove the gas generated from the mold release agent and lubricant. by.
In particular, in the case of aluminum die casting, in order to improve the mechanical properties, (a) preventing hydrogen dissolved in the molten metal from being discharged during solidification and forming pores in the cast product; (b) due to hydrogen In order to prevent embrittlement, it is important to remove hydrogen from the molten metal, and (c) remove oxygen to suppress the formation of inclusions such as oxides. In particular, when an oxide film and inclusions are present in an aluminum cast product, the periphery of the end portion has a large notch coefficient, which causes a crack due to stress concentration and greatly reduces the toughness of the cast product.
Conventionally, silicone-based emulsion mold release agents have been used for die casting of aluminum alloys. The silicone emulsion type release agent is obtained by emulsifying a modified silicone oil with an emulsifier using water as a medium. However, it was found that not only the total amount of gas remaining in the cast product is large in the emulsion type mold release agent, but also more than 30% of the remaining gas is H 2 , C 2 H 6 , CH 4, and the like. In particular, since CO 2 H 2 gas is higher than the gas, there is a problem that casting becomes brittle during heat treatment or welding.
This is considered to be due to the following reason. That is, since the mold cavity is about 300 ° C., even if an aqueous mold release agent is used, the water is almost evaporated. Adheres. Since the surface temperature of the mating surfaces is low, the moisture in the release agent remains without being evaporated. For this reason, even if the pressure is reduced after mold clamping, the release agent is sucked into the cavity from the gap between the movable mold and the fixed mold, and continues to evaporate. The same phenomenon occurs even if an aqueous release agent adheres to the movable part at the back of the nest. This not only reduces the degree of vacuum in the cavity, but also increases the amount of hydrogen gas generated.
Since gas entrainment tends to occur near the surface of the mold cavity, the gas-containing pores are often near the surface of the casting. When heat treatment or welding is performed on a cast product having such gas-containing pores, the gas in the pores expands, and the pores become so-called blisters and become blisters protruding from the surface of the cast product. Blisters can be the starting point for cracks and breaks when loaded.
When the gas sealed in the pores is hydrogen, the cast product is occluded during heat treatment or welding, which causes deterioration of the cast product. Accordingly, it has been found that it is necessary not only to reduce gas entrainment during vacuum die casting, but also to reduce the proportion of hydrogen in the entrained gas.
Accordingly, an object of the present invention is to provide not only a small number of bubbles in which gas remains, but also a small proportion of hydrogen in the gas in the bubbles, and hence vacuum die casting suitable for undercarriage parts of transportation equipment and vehicle body components. It is to provide castings.
Another object of the present invention is to provide a method for reliably producing such a vacuum die cast product.

上記目的に鑑み鋭意研究の結果、真空ダイカストの際に溶湯に巻き込まれるガスの発生量が少ないのみならず、水素ガスの発生量も少ない離型剤を使用することにより、熱処理や溶接をしてもブリスターの発生や水素脆性の問題が起こらない真空ダイカスト鋳造品が得られることを発見し、本発明に想到した。
すなわち、本発明のアルミニウム合金の真空ダイカスト鋳造品は、気泡中に残存するガスが、鋳造品の溶解により放出させた後にガスクロマトグラフィにより測定した場合、HガスがCOガスより少ない組成を有することを特徴とする。
真空ダイカスト鋳造品に残存するガスの総量の50%以上はCOガスであるのが好ましい。残存ガスの総量はいずれの箇所でも20cm/100g以下であるのが好ましく、鋳造品全体の平均として10cm/100g以下であるのが好ましい。
残存ガスのうちCOガスは鋳造品全体の平均として9cm/100g以下であるのが好ましい。またHガス、CHガス及びCガスの合計量は鋳造品全体の平均として5cm/100g以下であるのが好ましい。
残存ガスのうちHガスの割合は15%以下であるのが好ましく、10%以下であるのがより好ましい。またCHガス、Cガス及びCOガスの合計量は鋳造品全体の平均として20%以下であるのが好ましい。
本発明の真空ダイカスト鋳造品は輸送用機器の足回り部品又は車体構成部品に使用するのが好ましい。
本発明の真空ダイカスト鋳造品の製造方法は、金型キャビティ内を減圧することによりアルミニウム合金溶湯を射出スリーブ内に装填した後、射出スリーブに嵌合するプランジャを前進して射出スリーブ内の溶湯をキャビティ内に充填するもので、真空ダイカスト鋳造品の気泡中に残存するガスが、鋳造品の溶解により放出させた後にガスクロマトグラフィにより測定した場合、HガスがCOガスより少ない組成を有するように、離型剤として実質的に水分を含まない化学合成油を金型キャビティに塗布した後鋳造を行うことを特徴とする。
化学合成油はシリコーンオイルを70質量%以上含み、かつ動粘度が200×10−2/s以下であるのが好ましい。また射出スリーブ内に実質的に水分を含まない潤滑剤を塗布するのが好ましい。
As a result of diligent research in view of the above purpose, heat treatment and welding are performed by using a release agent that not only generates a small amount of gas to be caught in the molten metal during vacuum die casting but also generates a small amount of hydrogen gas. In addition, it was discovered that a vacuum die-cast product free from blistering and hydrogen embrittlement problems can be obtained, and the present invention has been conceived.
That is, the vacuum die cast product of the aluminum alloy of the present invention has a composition in which H 2 gas is less than CO 2 gas when the gas remaining in the bubbles is measured by gas chromatography after being released by dissolution of the cast product. It is characterized by that.
50% or more of the total amount of gas remaining in the vacuum die cast product is preferably CO 2 gas. It is preferably at 20 cm 3/100 g or less in total amount any point of the residual gas, preferably at 10 cm 3/100 g or less as an average of the entire casting.
CO 2 gas of the residual gas is preferably not less 9cm 3/100 g or less as an average of the entire casting. The H 2 gas, the total amount of CH 4 gas and C 2 H 6 gas is preferably at 5 cm 3/100 g or less as an average of the entire casting.
The proportion of H 2 gas in the residual gas is preferably 15% or less, and more preferably 10% or less. Further, the total amount of CH 4 gas, C 2 H 6 gas and CO gas is preferably 20% or less as an average of the entire cast product.
The vacuum die cast product of the present invention is preferably used for an undercarriage part or a vehicle body component part of a transportation device.
In the manufacturing method of the vacuum die casting product of the present invention, after the molten aluminum alloy is loaded into the injection sleeve by reducing the pressure inside the mold cavity, the plunger fitted to the injection sleeve is advanced to move the molten metal in the injection sleeve. intended to be filled into the cavity, the gas remaining in the bubble of the vacuum die casting article, when measured by gas chromatography after were released by the dissolution of the casting, so that H 2 gas has a composition less than the CO 2 gas Further, it is characterized in that a chemical synthetic oil substantially free of moisture as a release agent is applied to the mold cavity and then cast.
The chemically synthesized oil preferably contains 70% by mass or more of silicone oil and has a kinematic viscosity of 200 × 10 −2 m 2 / s or less. Further, it is preferable to apply a lubricant substantially free of moisture in the injection sleeve.

図1は本発明に用いる真空ダイカスト鋳造装置(型開きした状態)の一例を示す概略断面図であり、
図2は図1の真空ダイカスト鋳造装置を型締めし、射出スリーブ内にアルミニウム合金溶湯を装入した状態を示す概略断面図であり、
図3は型締めした真空ダイカスト鋳造装置のプランジャを射出スリーブ内に押し込んで、アルミニウム合金溶湯を金型キャビティ内に注入した状態を示す概略断面図であり、
図4は給湯開始から射出完了までのキャビティ内の真空度を示すグラフであり、
図5は本発明の真空ダイカスト鋳造品の一例を示す概略斜視図であり、
図6は真空状の引け巣を有する真空ダイカスト鋳造品の金属組織を示す顕微鏡写真であり、
図7はガスが残存するボイドを有する真空ダイカスト鋳造品の金属組織を示す顕微鏡写真であり、
図8はガスが残存するボイドが熱処理によりブリスターとなった状態を示す顕微鏡写真である。
FIG. 1 is a schematic cross-sectional view showing an example of a vacuum die casting apparatus (a state where the mold is opened) used in the present invention.
FIG. 2 is a schematic cross-sectional view showing a state in which the vacuum die casting apparatus of FIG. 1 is clamped and the molten aluminum alloy is charged into the injection sleeve,
FIG. 3 is a schematic cross-sectional view showing a state in which the plunger of the clamped vacuum die casting apparatus is pushed into the injection sleeve and the molten aluminum alloy is injected into the mold cavity.
FIG. 4 is a graph showing the degree of vacuum in the cavity from the start of hot water supply to the completion of injection,
FIG. 5 is a schematic perspective view showing an example of a vacuum die cast product of the present invention,
FIG. 6 is a photomicrograph showing the metallographic structure of a vacuum die cast product having a vacuum-like shrinkage nest,
FIG. 7 is a photomicrograph showing the metallographic structure of a vacuum die cast product having voids in which gas remains,
FIG. 8 is a photomicrograph showing a state in which the voids in which the gas remains are blistered by heat treatment.

[1]真空ダイカスト鋳造品
真空ダイカスト鋳造品中の残存ガスの総量は鋳造方案だけでなく、鋳造品の形状にも依存する。例えば単純な平板形状等にすれば残存ガスの総量を低減できるが、複雑な形状が求められるダイカスト鋳造品では残存ガスの総量だけで鋳造方案が最適であったかどうかを判定することは難しい。従って、残存ガスの総量だけでなく残存ガス中のCOガス及びHガスの割合が真空ダイカスト鋳造品の良否を判定する上で重要である。
離型剤及び潤滑剤の熱分解により発生した残存ガスの総量及び組成は鋳造品の気泡に残存するガスを取り出した後でなければ測定できないが、残存ガスを完全に取り出すには鋳造品を溶解しなければならない。しかしながら、アルミニウム合金の溶湯は酸素や水蒸気と反応して、酸化アルミニウムを生成し、酸素を消費するとともに水蒸気を還元して水素ガスにすると考えられるので、鋳造品の溶解により取り出した残存ガスの総量及び組成は、鋳造品中に存在していたガスの総量及び組成と完全に一致する訳ではない。従って本明細書において単に「残存ガスの総量及び組成」という場合、特に断りがなければ、鋳造品の溶解により取り出した残存ガスの総量及び組成を表すものとする。
具体的には、4×10−3kPaに減圧したAr雰囲気で鋳造品を700℃で溶解させ、発生したガスを50ml/minの流量のArキャリアガスにより、ガスクロマトグラフィ分析装置(GC−8AIT、島津製作所(株)製)の並列分流カラムに流し入れ、ガスクロマトグラフィ分析をした。分析時間は15秒である。残存ガスの総量及び組成は、特に断りがなければ上記条件で測定したものである。
残存ガスは鋳造品に均一に含まれるのではなく、部位により異なる。具体的には、鋳造品のうち湯口近傍部分では残存ガスの総量が少なく、かつ残存ガスのうちのCOガスの割合が高いが、湯口から最も遠い部分(真空ポンプ側)では残存ガスの総量が多く、かつ残存ガスのうちのCOガスの割合が低い傾向がある。従って、湯口近傍部分、湯口から最も遠い部分及び途中の部分における3〜10箇所から試験片をサンプリングし、各試験片について残存ガスの量及び組成を測定し、各部分の測定値及びそれらの平均値を求める必要がある。
残存ガスの総量については、最も多い湯口近傍部分では20cm/100g以下であるのが好ましく、また鋳造品全体の平均として10cm/100g以下であるのが好ましい。残存ガスの総量がこれらの上限値を超えると、鋳造品の熱処理や溶接時にブリスターが発生し、外観不良を起こすのみならず、機械的強度の低下を引き起こす。残存ガスの総量は平均で8.0cm/100g以下であるのがより好ましい。なお、ガス量は、ガスの種類に関係なく、特に断りがなければ標準状態(20℃、1気圧)における量として表す。
COガスの量の上限も、鋳造品全体の平均として9cm/100gであるのが好ましい。COガスの量の下限は限定的ではないが、多くの場合鋳造品全体の平均として2.5cm程度であるのが好ましい。COガスは、ダイカストのような高速充填の場合、10μm以下と非常に細かい気泡になって鋳造品内に分散する。このような気泡は球形のため切欠係数が非常に小さく、応力集中も非常に小さい。
その他のガス(CH、C及びH)の合計量は、鋳造品全体の平均として5cm/100g以下であるのが好ましい。Nガスは不活性であるが、ブリスターの発生を防止するために、鋳造品全体の平均として7cm/100g以下であるのが好ましく、1cm/100g以下であるのがより好ましい。Nガスが7cm/100g超であると、金型キャビティの減圧が不十分である。
残存ガスの組成としては、HガスがCOガスより少ないことが必要である。残存ガスの総量の50%以上がCOガスであるのが好ましい。これらの条件を満たすことにより、気泡中のガスの大部分が不活性であるために、熱処理や溶接時に鋳造品が脆化することはない。
が局部的にも平均的にも15%超では水素脆性による鋳造品の機械的強度の低下が激しいので、残存ガスの総量に対するHの割合は15%以下であるのが好ましく、10%以下であるのがより好ましい。また離型剤の分解生成物であるCH、C及びCOについては、残存ガスの総量を低減して安定した機械的強度を得るために、できるだけ少ない方が好ましい。具体的には、CH、C及びCOの合計量は残存ガスの総量に対して20%以下の範囲であるのが好ましい。
[2]真空ダイカスト鋳造法
(1)離型剤
本発明では、ガス発生源である離型剤として実質的に水分を含まない化学合成油を使用する。この非水系離型剤は従来の水性エマルジョン型の離型剤に比べて、塗布量を著しく低減できるので、得られる真空ダイカスト鋳造品の残存ガス量を低減することができる。
実質的に水分を含まない化学合成油として、例えばシリコーンオイルを70質量%以上含み、残部はポリオレフィンやパラフィンであるのが好ましい。シリコーンオイルとしては、ジメチルシリコーンオイル、α−オレフィン変性シリコーンオイル、α−メチルスチリルシリコーンオイル、メチルフェニルシリコーンオイル、アルキルアリール変性シリコーンオイル、メチルハイドロジェンシリコーンオイル等が好ましい。またポリオレフィンとしては、低分子量のポリエチレン、ポリプロピレン、ポリブテン−1、ポリ 4−メチルペンテン−1等が挙げられる。ポリオレフィンは、必要に応じて、酸化反応により分子量を低減させるとともに、シリコーンオイルとの相溶性を向上させるのが好ましい。これらの成分は炭素量が多いため、分解により発生するガス中でCOガスの割合が多くなる。
金型キャビティ表面への噴霧を考慮して、化学合成油の40℃での動粘度は200×10−6/s(200cSt)以下、好ましくは100×10−6/s(100cSt)以下、より好ましくは50×10−6/s(50cSt)以下である。本明細書に記載の動粘度は、田中科学機器製作所(株)のAKV−201を用いて、JIS K 2283に基づき測定したものである。動粘度が200×10−6/sを超えると、離型剤として金型キャビティ表面に薄く均一に塗布できず、単位面積あたりの塗布量が増える。その結果、溶湯により揮発するガスの総量が10cm/100gを超えてしまう。また上記範囲内の動粘度を有する離型剤を使用すれば、可動型と固定型のあわせ面に塗布された離型剤が型締めの際に可動型と固定型の隙間を塞ぎ、外部雰囲気がキャビティ内に侵入するのを防止し、金型キャビティ内の真空度を高める役割を果たす。
化学合成油への添加剤として、界面活性剤、防腐剤、防錆剤、潤滑剤、粘度調節剤等が挙げられる。これらの添加剤の量は、化学合成油の機能を損なわないように、化学合成油全体に対して3質量%以下とするのが好ましい。
離型剤を金型キャビティの表面に薄く均一に塗布するために、離型剤を噴霧するのが好ましい。そのため、黒鉛、雲母、タルク、カオリン、窒化ホウ素、フッ化黒鉛等の粉体を使用しないか、もしくは噴霧するのを妨げない程度の粒径及び添加量とするのが好ましい。
(2)潤滑剤
スリーブとプランジャの潤滑性を保つため、実質的に水分を含まない粉体潤滑剤を用いるのが好ましい。例えば、PbO等の金属酸化物、二硫化モリブデン、二硫化タングステン等の硫化物、セラミックス、黒鉛、高分子化合物等を、ワックスやパラフィンに適量添加し、0.1〜2mm程度の粒状粉体にしたものが好ましい。
(3)アルミニウム合金
本発明に使用し得るアルミニウム合金は特に限定的でなく、Al−Si−Cu、Al−Si−Mg、Al−Mg等のアルミニウム合金、例えばADC3、ADC5、ADC10、ADC12等が挙げられる。例えば、質量基準で5〜20%のSi、1%以下のMg、10%以下のCu、1%以下のTi、1%以下のFe、1%以下のMn、残部Al及び不可避不純物からなるアルミニウム合金、又は2%以下のSi、1%以下のMg、10%以下のCu、1%以下のTi、1%以下のFe、1%以下のMn、残部Al及び不可避不純物からなるアルミニウム合金が使用可能である。
アルミニウム合金溶湯に溶存する水素は、脱ガス処理により0.2cm/100g以下に減少させることができる。アルミニウム合金溶湯中の酸素及び炭素の量は0.1cm/100g以下である。
(4)真空ダイカスト装置及び金型キャビティの減圧
金型キャビティの減圧が十分であれば、鋳造品中の残存ガスに窒素はほとんど含まれない。従って、金型キャビティの減圧度は以下にするのが好ましい。
真空ダイカスト装置は、金型キャビティ内を減圧することにより保持炉内の溶湯を射出スリーブ内に装填する機構を具備するものが好ましい。具体的には、図1〜3に例示する真空ダイカスト装置10が好ましい。
真空ダイカスト装置10は、固定プラテン16aに取り付けられた固定型16cと、可動プラテン16bに取り付けられた可動型16dと、固定型16c及び可動型16dにより形成されたキャビティ16に連通するように固定型16cに取り付けられた射出スリーブ11と、射出スリーブ11内を前後進するプランジャ12と、射出スリーブ11の下方でアルミニウム合金溶湯Mを収容する保持炉13と、一端が射出スリーブ11に形成した給湯口11aに連通し、他端14aが保持炉13内の溶湯Mに没入する給湯管14と、キャビティ16に連通するカットオフバルブ18aと、パイプ18bを介してキャビティ16に連通し、キャビティ16内を真空状態に減圧して保持炉13内の溶湯Mを射出スリーブ11内に吸引する真空ポンプ18とを有する。
保持炉13は昇降台15上に載置されており、昇降台15を上下することにより溶湯Mの湯面が一定に保たれる。給湯管14は、溶湯Mとの反応を防止するために内面にBNコーティングを施したセラミック製であり、下端14aはオリフィス状である。給湯管14の外周はヒータ(図示せず)で包囲されており、給湯管14を溶湯Mの温度近くに保持している。
図1に示すように、真空ダイカスト装置10は、金型キャビティ16に水分を含まない化学合成油からなる離型剤を塗布する装置20と、スリーブ11に非水系潤滑剤を塗布する装置30を有する。離型剤の塗布装置20はアーム22の先端に離型剤を噴霧するノズル21を具備し、可動型16dが固定型16cから開いた状態で金型キャビティ16の表面に離型剤を噴霧する。離型剤の1サイクルごとの使用量は金型キャビティ16の表面積に対して好ましくは0.3〜50g/mであり、より好ましくは1.0〜25g/mである。潤滑剤の噴出装置30は、型開きされた時にスリーブ11の金型キャビティ側開口部から粉体潤滑剤31を噴霧するノズル32を有する。潤滑剤の1サイクルごとの使用量はスリーブ11の内周面積に対して好ましくは0.3〜30g/mであり、より好ましくは0.5〜20g/mである。
図4に示すように、可動型16dと固定型16cを閉じた状態で、キャビティ16内を真空状態に減圧(例えば50kPa以下、好ましくは20kPa以下、より好ましくは10kPa以下、特に5kPa以下)にする。キャビティ16内の減圧により射出スリーブ11内も減圧になり、保持炉13内の溶湯Mは給湯管14を介して射出スリーブ11内に装填される(図2)。2〜10秒間でキャビティ16内を排気した後、プランジャ12をスリーブ11内に押し込み、溶湯Mをキャビティ16内に充填する(図3)。射出後プランジャ12を後退させるとともに、可動型16dを固定型16cから離隔させ、キャビティ16から凝固した鋳造品を取り出す。
真空ダイカスト装置10により溶湯Mを大気と接触させずに鋳造できるので、溶湯Mの酸化やガスの巻き込みが低減される。真空ダイカスト鋳造の終了後、再度開いた固定型16c及び可動型16dのキャビティ表面に離型剤を噴霧するとともに、スリーブ11の内面に潤滑剤を噴霧する。この操作を繰り返すことにより、所望の数の真空ダイカスト鋳造品を作製する。
[3]用途
本発明の真空ダイカスト鋳造法により得られた鋳造品は、残存ガス量が少ないのみならず、熱処理や溶接時に脆化の原因となる水素ガスの割合が少ないので、熱処理や溶接によりブリスターが発生するおそれが少なく、かつ機械的強度の低下もない。また本発明の真空ダイカスト鋳造品は靱性低下の大きな要因である酸化物や介在物が少ない。従って、高強度及び高靭性が要求される輸送機器用の足回り部品や車体構成部品等に使用できる。
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
[1] Vacuum die casting product The total amount of residual gas in the vacuum die casting product depends not only on the casting method but also on the shape of the casting product. For example, a simple flat plate shape or the like can reduce the total amount of residual gas, but it is difficult to determine whether or not the casting method is optimal only with the total amount of residual gas in a die-cast product that requires a complicated shape. Therefore, not only the total amount of residual gas but also the proportion of CO 2 gas and H 2 gas in the residual gas is important in determining the quality of the vacuum die cast product.
The total amount and composition of the residual gas generated by the thermal decomposition of the mold release agent and lubricant can be measured only after the gas remaining in the bubbles of the cast product is taken out, but the cast product must be dissolved to completely remove the residual gas. Must. However, the molten aluminum alloy reacts with oxygen and water vapor to produce aluminum oxide, which consumes oxygen and reduces water vapor to hydrogen gas, so the total amount of residual gas extracted by melting the casting And the composition does not exactly match the total amount and composition of gas present in the casting. Accordingly, in the present specification, the term “total amount and composition of residual gas” refers to the total amount and composition of residual gas taken out by dissolution of a cast product unless otherwise specified.
Specifically, the cast product was dissolved at 700 ° C. in an Ar atmosphere decompressed to 4 × 10 −3 kPa, and the generated gas was analyzed by a gas chromatography analyzer (GC-8AIT, The sample was poured into a parallel diversion column manufactured by Shimadzu Corporation and subjected to gas chromatography analysis. The analysis time is 15 seconds. The total amount and composition of the residual gas are measured under the above conditions unless otherwise specified.
The residual gas is not uniformly contained in the casting, but varies depending on the part. Specifically, the total amount of residual gas is small in the vicinity of the sprue of the cast product, and the ratio of CO 2 gas in the residual gas is high, but the total amount of residual gas in the portion farthest from the spout (vacuum pump side). And the ratio of CO 2 gas in the residual gas tends to be low. Therefore, the test piece is sampled from 3 to 10 locations in the vicinity of the gate, the portion farthest from the gate, and the middle portion, and the amount and composition of the residual gas are measured for each test piece. It is necessary to find a value.
The total amount of residual gas is preferably equal to or less than 20 cm 3/100 g is the most common sprue portion near and preferably at 10 cm 3/100 g or less as an average of the entire casting. If the total amount of residual gas exceeds these upper limit values, blisters are generated during heat treatment or welding of the cast product, causing not only a poor appearance but also a decrease in mechanical strength. The total amount of residual gas is more preferably at most 8.0 cm 3/100 g on average. The gas amount is expressed as the amount in a standard state (20 ° C., 1 atm) unless otherwise specified regardless of the type of gas.
The upper limit of the amount of CO 2 gas is also preferably a 9cm 3/100 g as an average of the entire casting. The lower limit of the amount of CO 2 gas is not limited, but in many cases, it is preferably about 2.5 cm 3 as an average of the entire cast product. In the case of high-speed filling such as die casting, CO gas becomes very fine bubbles of 10 μm or less and is dispersed in the cast product. Since these bubbles are spherical, the notch coefficient is very small and the stress concentration is very small.
The total amount of other gases (CH 4, C 2 H 6 and H 2) is preferably in the range 5 cm 3/100 g or less as an average of the entire casting. Although N 2 gas is inert, in order to prevent occurrence of blisters, preferably at 7 cm 3/100 g or less as an average of the entire casting, and more preferably not more than 1 cm 3/100 g. When N 2 gas is at 7 cm 3/100 g greater vacuum of the mold cavity is insufficient.
As the composition of the residual gas, it is necessary that the H 2 gas is less than the CO 2 gas. It is preferable that 50% or more of the total amount of residual gas is CO 2 gas. By satisfying these conditions, most of the gas in the bubbles is inactive, so that the cast product does not become brittle during heat treatment or welding.
If H 2 exceeds 15% both locally and on average, the mechanical strength of the cast product is drastically reduced due to hydrogen embrittlement. Therefore, the ratio of H 2 to the total amount of residual gas is preferably 15% or less. % Or less is more preferable. Further, CH 4 , C 2 H 6 and CO, which are decomposition products of the release agent, are preferably as small as possible in order to reduce the total amount of residual gas and obtain a stable mechanical strength. Specifically, the total amount of CH 4 , C 2 H 6 and CO is preferably in the range of 20% or less with respect to the total amount of residual gas.
[2] Vacuum die casting method (1) Release agent In the present invention, a chemically synthesized oil substantially free of moisture is used as a release agent which is a gas generation source. Since this non-aqueous release agent can significantly reduce the coating amount as compared with the conventional aqueous emulsion release agent, the residual gas amount of the obtained vacuum die cast product can be reduced.
As a chemically synthetic oil substantially free of moisture, it is preferable that, for example, 70% by mass or more of silicone oil is contained and the balance is polyolefin or paraffin. As the silicone oil, dimethyl silicone oil, α-olefin-modified silicone oil, α-methylstyryl silicone oil, methylphenyl silicone oil, alkylaryl-modified silicone oil, methylhydrogen silicone oil and the like are preferable. Examples of the polyolefin include low molecular weight polyethylene, polypropylene, polybutene-1, and poly-4-methylpentene-1. If necessary, the polyolefin preferably has a molecular weight reduced by an oxidation reaction and an improved compatibility with silicone oil. Since these components have a large amount of carbon, the proportion of CO 2 gas in the gas generated by decomposition increases.
Considering spraying onto the mold cavity surface, the kinematic viscosity of chemically synthesized oil at 40 ° C. is 200 × 10 −6 m 2 / s (200 cSt) or less, preferably 100 × 10 −6 m 2 / s (100 cSt). ) Or less, more preferably 50 × 10 −6 m 2 / s (50 cSt) or less. The kinematic viscosity described in this specification is measured based on JIS K 2283 using AKV-201 of Tanaka Scientific Instruments Co., Ltd. When the kinematic viscosity exceeds 200 × 10 −6 m 2 / s, it cannot be applied thinly and uniformly as a mold release agent on the mold cavity surface, and the coating amount per unit area increases. As a result, the total amount of gas volatilized exceeds the 10 cm 3/100 g by melt. If a release agent having a kinematic viscosity within the above range is used, the release agent applied to the mating surface of the movable mold and the stationary mold closes the gap between the movable mold and the fixed mold when clamping, and the external atmosphere Prevents the intrusion into the cavity and increases the degree of vacuum in the mold cavity.
Examples of additives to chemically synthesized oils include surfactants, preservatives, rust inhibitors, lubricants, viscosity modifiers, and the like. The amount of these additives is preferably 3% by mass or less based on the entire chemically synthesized oil so as not to impair the function of the chemically synthesized oil.
In order to apply the release agent thinly and uniformly to the surface of the mold cavity, it is preferable to spray the release agent. Therefore, it is preferable not to use powders such as graphite, mica, talc, kaolin, boron nitride, and graphite fluoride, or to have a particle size and an addition amount that do not hinder spraying.
(2) Lubricant In order to maintain the lubricity of the sleeve and the plunger, it is preferable to use a powder lubricant that does not substantially contain moisture. For example, metal oxides such as PbO, sulfides such as molybdenum disulfide and tungsten disulfide, ceramics, graphite, polymer compounds, etc. are added in appropriate amounts to wax and paraffin to form granular powder of about 0.1 to 2 mm. Is preferred.
(3) Aluminum alloy The aluminum alloy that can be used in the present invention is not particularly limited, and aluminum alloys such as Al-Si-Cu, Al-Si-Mg, and Al-Mg, such as ADC3, ADC5, ADC10, ADC12, etc. Can be mentioned. For example, aluminum consisting of 5 to 20% Si, 1% or less Mg, 10% or less Cu, 1% or less Ti, 1% or less Fe, 1% or less Mn, the balance Al and inevitable impurities on a mass basis Alloy or aluminum alloy consisting of 2% or less Si, 1% or less Mg, 10% or less Cu, 1% or less Ti, 1% or less Fe, 1% or less Mn, balance Al and inevitable impurities Is possible.
Hydrogen dissolved in the molten aluminum alloy can be reduced to below 0.2 cm 3/100 g by degassing. Oxygen and the amount of carbon in the aluminum alloy melt is less than 0.1 cm 3/100 g.
(4) Decompression of vacuum die casting apparatus and mold cavity If the depressurization of the mold cavity is sufficient, the residual gas in the cast product contains almost no nitrogen. Therefore, the pressure reduction degree of the mold cavity is preferably set to the following.
The vacuum die casting apparatus preferably includes a mechanism for loading the molten metal in the holding furnace into the injection sleeve by reducing the pressure in the mold cavity. Specifically, the vacuum die casting apparatus 10 illustrated in FIGS.
The vacuum die casting apparatus 10 includes a fixed die 16c attached to the fixed platen 16a, a movable die 16d attached to the movable platen 16b, and a fixed die so as to communicate with the cavity 16 formed by the fixed die 16c and the movable die 16d. An injection sleeve 11 attached to 16 c, a plunger 12 that moves forward and backward in the injection sleeve 11, a holding furnace 13 that houses the molten aluminum alloy M below the injection sleeve 11, and a hot water inlet that is formed at one end of the injection sleeve 11 11a, and the other end 14a communicates with the cavity 16 via the hot water pipe 14 into which the molten metal M in the holding furnace 13 is immersed, the cut-off valve 18a communicated with the cavity 16, and the pipe 18b. A vacuum pump for reducing the pressure to a vacuum state and sucking the molten metal M in the holding furnace 13 into the injection sleeve 11 And a 8.
The holding furnace 13 is placed on the lifting platform 15, and the molten metal M surface is kept constant by moving the lifting platform 15 up and down. The hot water supply pipe 14 is made of ceramic whose inner surface is coated with BN in order to prevent reaction with the molten metal M, and the lower end 14a has an orifice shape. The outer periphery of the hot water supply pipe 14 is surrounded by a heater (not shown), and the hot water supply pipe 14 is held near the temperature of the molten metal M.
As shown in FIG. 1, the vacuum die casting apparatus 10 includes a device 20 for applying a mold release agent made of chemically synthesized oil not containing moisture to a mold cavity 16 and a device 30 for applying a non-aqueous lubricant to the sleeve 11. Have. The release agent coating device 20 includes a nozzle 21 for spraying the release agent at the tip of the arm 22, and sprays the release agent onto the surface of the mold cavity 16 with the movable die 16 d opened from the fixed die 16 c. . The amount of the release agent used per cycle is preferably 0.3 to 50 g / m 2 , more preferably 1.0 to 25 g / m 2 with respect to the surface area of the mold cavity 16. The lubricant ejection device 30 has a nozzle 32 that sprays the powder lubricant 31 from the mold cavity side opening of the sleeve 11 when the mold is opened. The amount of each cycle of the lubricant is preferably the inner circumferential area of the sleeve 11 is 0.3 to 30 g / m 2, more preferably from 0.5 to 20 g / m 2.
As shown in FIG. 4, with the movable die 16d and the fixed die 16c closed, the inside of the cavity 16 is evacuated to a reduced pressure (eg, 50 kPa or less, preferably 20 kPa or less, more preferably 10 kPa or less, especially 5 kPa or less). . Due to the reduced pressure in the cavity 16, the inside of the injection sleeve 11 is also reduced in pressure, and the molten metal M in the holding furnace 13 is loaded into the injection sleeve 11 through the hot water supply pipe 14 (FIG. 2). After the cavity 16 is evacuated in 2 to 10 seconds, the plunger 12 is pushed into the sleeve 11 to fill the cavity 16 with the molten metal M (FIG. 3). After the injection, the plunger 12 is retracted and the movable die 16d is separated from the fixed die 16c, and the solidified casting is taken out from the cavity 16.
Since the molten metal M can be cast without being brought into contact with the atmosphere by the vacuum die casting apparatus 10, oxidation of the molten metal M and gas entrainment are reduced. After completion of the vacuum die casting, the release agent is sprayed on the cavity surfaces of the fixed mold 16c and the movable mold 16d which are opened again, and the lubricant is sprayed on the inner surface of the sleeve 11. By repeating this operation, a desired number of vacuum die cast products are produced.
[3] Applications The cast product obtained by the vacuum die casting method of the present invention not only has a small amount of residual gas, but also has a small proportion of hydrogen gas that causes embrittlement during heat treatment and welding. There is little risk of blistering and there is no decrease in mechanical strength. Further, the vacuum die cast product of the present invention has few oxides and inclusions which are a major factor in reducing toughness. Therefore, it can be used for undercarriage parts and body components for transportation equipment that require high strength and high toughness.
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

図1〜3に示す構造を有する1000トンのダイカスト装置を使用し、質量基準で9.3%のSi、0.5%のMg、0.9%のFe、0.1%のMn、0.05%のCu、0.07%のNi及び0.2%のZnを含有するアルミニウム合金(ASTM B85のA360)を真空ダイカスト鋳造して、図5に示すスノーモービル用の座席部品40を作製した。ダイカスト鋳造した溶湯の鋳込み温度は670℃であり、溶湯のゲート速度は高速時に20〜40m/秒であった。
離型剤は、220℃で溶融したアタクチックポリプロピレンに空気を吹き込んで酸化反応させたものを100℃まで冷却し、シリコーンオイル[Wacker−Chemie GMBH製Wacker TN]を完全に攪拌混合したものである。この混合物に少量の殺菌剤を加えた。各成分の添加量は、シリコーンオイルが85質量%、アタクチックポリプロピレンが14.9質量%、殺菌剤が0.1質量%であった。この離型剤の40℃での動粘度は5x10−6/s〜1.0x10−4/s(5〜100cSt)であった。この離型剤を1サイクル当たり2.5g/mの割合で金型キャビティ16の表面に噴霧した。
粉体潤滑剤として、タルク、天然黒鉛及び合成ワックスを含有するアストロルブGW−23(花野商事株式会社製)を、1サイクル当たり1.5g/mの量でスリーブ11の内周面に噴霧した。
図4に示す減圧条件で得られた真空ダイカスト鋳造品を金型から取りだし、鋳造品の湯口近傍部分P、バルブ18a近傍部分P及び中央部分Pを切り出して試験片とし、各試験片を4×10−3kPaに減圧した真空チャンバ内のAr雰囲気中で700℃で溶解させ、発生したガスを50ml/minの流量のArキャリアガスにより、ガスクロマトグラフィ分析装置(GC−8AIT、島津製作所(株)製)の並列分流カラムに流し入れ、ガスの総量及び組成を15秒間ガスクロマトグラフィーにより測定した。湯口近傍部分P及びバルブ近傍部分Pにおける残存ガスの総量(標準状態)及び組成、並びに残存ガスの総量(標準状態)及び組成の平均値Paを表1に示す。
同様に製造した真空ダイカスト鋳造品の湯口近傍部分Pから切り出した幅6.5mm、厚さ3mm及び長さ100mmの板状の試験片に対して、JIS規格(JIS Z 2241)に従って引張り強さ、0.2%耐力及び伸びを、標点距離を25mmとして測定した。結果を表2に示す。
比較例1
離型剤としてシリコーンオイルエマルジョン[商品名TSM6352、GE東芝シリコーン(株)製]を用いた以外実施例1と同様にして、真空ダイカスト鋳造を行なった。このシリコーンオイルエマルジョンは、15質量%の変性シリコーンオイル、2.0質量%の乳化ポリプロピレン、0.3質量%のエトキシ化アルコール乳化剤、2.0質量%の腐食防止剤、残部水からなる組成を有していた。このシリコーンオイルエマルジョンをさらに水で40倍に希釈し、金型キャビティの表面に1サイクル当たり300g/mの割合で噴霧した。
得られた鋳造品の湯口近傍部分Pから切り出した試験片に対して、実施例1と同じ測定を行った。結果を表1及び2に示す。比較例1の鋳造品に残存するガスは、8.8cm/100gと実施例1より多かっただけでなく、Hガス、Cガス及びCHガスを多量に含有する組成を有していた。これは水性離型剤を使用したためであると考えられる。比較例1の鋳造品の機械的強度は実施例1の鋳造品と比較して低かった。
Using a 1000 ton die casting apparatus having the structure shown in FIGS. 1-3, 9.3% Si, 0.5% Mg, 0.9% Fe, 0.1% Mn, 0 The aluminum alloy (ASTM B85 A360) containing 0.05% Cu, 0.07% Ni and 0.2% Zn is vacuum die cast to produce the seat component 40 for a snowmobile shown in FIG. did. The casting temperature of the melt cast by die casting was 670 ° C., and the gate speed of the melt was 20 to 40 m / sec at high speed.
The mold release agent is an atactic polypropylene melted at 220 ° C., blown with air and cooled to 100 ° C., and completely stirred and mixed with silicone oil [Wacker TN manufactured by Wacker-Chemie GMBH]. . A small amount of fungicide was added to this mixture. The amount of each component added was 85% by mass for silicone oil, 14.9% by mass for atactic polypropylene, and 0.1% by mass for bactericides. Kinematic viscosity at 40 ° C. The release agent was 5x10 -6 m 2 /s~1.0x10 -4 m 2 / s (5~100cSt). This release agent was sprayed on the surface of the mold cavity 16 at a rate of 2.5 g / m 2 per cycle.
Astrorub GW-23 (manufactured by Hanano Corporation) containing talc, natural graphite and synthetic wax as a powder lubricant was sprayed on the inner peripheral surface of the sleeve 11 in an amount of 1.5 g / m 2 per cycle. .
The vacuum die cast product obtained under the decompression condition shown in FIG. 4 is taken out from the mold, and the vicinity of the gate P 1 , the vicinity of the valve 18a P 2 and the central part P 3 of the casting are cut out to form test pieces. Was dissolved at 700 ° C. in an Ar atmosphere in a vacuum chamber depressurized to 4 × 10 −3 kPa, and the generated gas was analyzed by a gas chromatography analyzer (GC-8AIT, Shimadzu Corporation) using an Ar carrier gas having a flow rate of 50 ml / min. The total amount and composition of the gas were measured by gas chromatography for 15 seconds. Table 1 shows the total amount (standard state) and composition of residual gas, and the total amount (standard state) and composition average Pa of residual gas in the vicinity of the gate P 1 and the portion near the valve P 2 .
Produced as in width 6.5mm cut from the sprue portion near P 1 of the vacuum die casting products were, to the plate-like test piece having a thickness of 3mm and length 100 mm, tensile strength according to JIS standards (JIS Z 2241) 0.2% proof stress and elongation were measured with a gauge distance of 25 mm. The results are shown in Table 2.
Comparative Example 1
Vacuum die casting was performed in the same manner as in Example 1 except that a silicone oil emulsion [trade name TSM6352, manufactured by GE Toshiba Silicone Co., Ltd.] was used as a release agent. This silicone oil emulsion has a composition comprising 15% by weight modified silicone oil, 2.0% by weight emulsified polypropylene, 0.3% by weight ethoxylated alcohol emulsifier, 2.0% by weight corrosion inhibitor and the balance water. Had. This silicone oil emulsion was further diluted 40 times with water and sprayed onto the surface of the mold cavity at a rate of 300 g / m 2 per cycle.
On specimens cut out from the sprue portion near P 1 of the resulting castings were subjected to the same measurements as in Example 1. The results are shown in Tables 1 and 2. Gas remaining in the casting of Comparative Example 1, 8.8 cm 3/100 g and not only was greater than in Example 1, H 2 gas, C 2 H 6 gas and CH 4 have a composition large amount containing gas Was. This is probably because an aqueous release agent was used. The mechanical strength of the cast product of Comparative Example 1 was lower than that of the cast product of Example 1.

残存ガス量を比較例1とほぼ同じになるように増やすために化学合成油系離型剤の使用量を4.5g/mと多くした以外実施例1と同様にして、真空ダイカスト鋳造品を作製し、残存ガスの組成と鋳造品の機械的強度との関係を調べた。湯口近傍部分Pから切り出した試験片における残存ガス量は7.7cm/100gであった。実施例1と同様にして測定した残存ガス組成及び機械的強度を表1及び2に示す。表1及び2から、残存ガス量が比較例1とほぼ同程度であるにもかかわらず、比較例1より明らかに機械的強度が向上していることが分かる。A vacuum die cast product in the same manner as in Example 1, except that the amount of the chemically synthesized oil-based mold release agent was increased to 4.5 g / m 2 in order to increase the residual gas amount to be substantially the same as in Comparative Example 1. The relationship between the composition of the residual gas and the mechanical strength of the cast product was investigated. Remaining gas amount in a test piece cut from the sprue portion near P 1 was 7.7 cm 3/100 g. The residual gas composition and the mechanical strength measured in the same manner as in Example 1 are shown in Tables 1 and 2. From Tables 1 and 2, it can be seen that the mechanical strength is clearly improved compared to Comparative Example 1 even though the amount of residual gas is almost the same as that of Comparative Example 1.

実施例1より複雑な形状の真空ダイカスト鋳造品を作製し、実施例1と同じ方法で残存ガスの総量及び組成を測定した。結果を表1に示す。残存ガスの総量は7.1cm/100gに抑えられ、かつHガスがCOガスより少なかった。なお実施例1と異なり残存ガスのほとんとがNであったが、これは、金型キャビティが実施例1より複雑形状であったために、キャビティ中の真空度が25kPa程度であり、排気が必ずしも十分ではなかったためと考えられる。
比較例2
溶湯をスリーブ内に供給してから減圧する従来の真空ダイカスト鋳造法により、実施例1と同一形状の真空ダイカスト鋳造品を製造し、残存ガスの総量及び組成並びに機械的性質を測定した。先ず実施例1と同じアルミニウム合金溶湯を射出スリーブ内に直接注湯し、射出スリーブを気密状態にした後不活性ガス及び実施例1で用いたのと同じ離型剤を供給し、射出スリーブ内を以下に減圧した。その後プランジャを前進させ、溶湯を金型キャビティ内に充填した。サイクルタイムは実施例1と同じであった。
得られた真空ダイカスト鋳造品の湯口近傍部分Pでの残存ガスの総量及び組成並びに機械的強度を実施例1と同様に測定した。結果を表1及び2に示す。比較例2ではスリーブ内に注湯してから金型キャビティ内を減圧したために、減圧時間は短かった。そのためスリーブ内が十分に排気されず、NやHの量が増えていることが分かる。残存ガス量は21.75cm/100gであった。比較例2の鋳造品の機械的強度は非常に低かった。

Figure 2004058434
Figure 2004058434
A vacuum die cast product having a more complicated shape than that of Example 1 was produced, and the total amount and composition of the residual gas were measured in the same manner as in Example 1. The results are shown in Table 1. The total amount of residual gas is suppressed to 7.1 cm 3/100 g, and H 2 gas was less than the CO 2 gas. Although Preparative On and Ho residual gas unlike the first embodiment was N 2, this is because the mold cavity is complicated shape than in the first embodiment, a degree of vacuum of about 25kPa in the cavity, the exhaust This is probably because it was not always sufficient.
Comparative Example 2
A vacuum die casting product having the same shape as in Example 1 was manufactured by a conventional vacuum die casting method in which the molten metal was supplied into the sleeve and then depressurized, and the total amount and composition of residual gas and mechanical properties were measured. First, the same molten aluminum alloy as in Example 1 was poured directly into the injection sleeve, and after the injection sleeve was made airtight, an inert gas and the same release agent used in Example 1 were supplied, Was reduced in pressure below. Thereafter, the plunger was advanced to fill the mold cavity with molten metal. The cycle time was the same as in Example 1.
The obtained total amount and composition and the mechanical strength of the residual gas in the sprue portion near P 1 of the vacuum die casting products were measured in the same manner as in Example 1 were. The results are shown in Tables 1 and 2. In Comparative Example 2, since the mold cavity was decompressed after pouring into the sleeve, the decompression time was short. Therefore, it can be seen that the inside of the sleeve is not exhausted sufficiently and the amount of N 2 and H 2 is increased. Residual gas amount was 21.75cm 3 / 100g. The mechanical strength of the casting of Comparative Example 2 was very low.
Figure 2004058434
Figure 2004058434

実施例1で作製した真空ダイカスト鋳造品を大気雰囲気の500℃の熱処理炉内に4時間載置した後、60℃の温水に投入し、溶体化処理(T6処理)を施した。次いで鋳造品に150℃で2時間の時効処理を施した。このようにして熱処理した鋳造品の表面にはブリスターが発生していなかった。これは、引け巣内部がほとんど真空であるために、引け巣が熱処理により膨張しなかったためであると考えられる。
熱処理した鋳造品から試験片を切り出し、鋳造品内部のボイドを調べた。図6は鋳造品の金属組織を示す顕微鏡写真であり、図6中央の濃色部分がボイドである。ほとんどのボイドはアルミニウム合金溶湯の凝固収縮の際にできた引け巣であった。引け巣はなめらかな形状を有し、かつほとんど真空状態であるために、機械的強度の低下の原因にはならないことが分かる。
熱処理によるブリスターの発生の有無を調べるため、熱処理による鋳造品の体積膨張率を測定した。結果を表3に示す。熱処理後の体積膨張率が小さいことから、ブリスターとなる残存ガスを含有する気泡が少ないことが分かる。また実施例1の鋳造品を溶接したもブリスターの発生は認められなかった。これらの結果から、実施例1の鋳造品は強度のばらつきが著しく小さいことが分かる。
比較例3
比較例1の鋳造品に対して実施例4と同様に熱処理を行い、ブリスターの有無及び体積膨張率を測定した。結果を表3に示す。またこの鋳造品の金属組織を図7に示す。図7から、ほとんどのボイドが残存ガスを含有し、ほぼ粒状であることが分かる。そのため、図8に示すように、熱処理後の鋳造品にはブリスターが認められた。このような鋳造品は、輸送用機器の足回り部品又は車体構成部品のような激しい振動を受ける条件下で使用するのに必要な機械的強度を有さない。また比較例1の鋳造品に溶接を行うと、ブリスターが発生した。
比較例4
比較例2の鋳造品に対して実施例4と同様に熱処理を行い、ブリスターの有無及び体積膨張率の測定を行った。結果を表3に示す。比較例4では比較例3より多くブリスターが発生した。

Figure 2004058434
The vacuum die cast product produced in Example 1 was placed in a heat treatment furnace at 500 ° C. in the air atmosphere for 4 hours, and then poured into warm water at 60 ° C. to perform a solution treatment (T6 treatment). The cast product was then aged at 150 ° C. for 2 hours. Blisters were not generated on the surface of the cast product thus heat-treated. This is presumably because the shrinkage nest did not expand due to the heat treatment because the inside of the shrinkage nest was almost vacuum.
A test piece was cut out from the heat-treated casting, and the void inside the casting was examined. FIG. 6 is a photomicrograph showing the metallographic structure of the cast product, and the dark colored portion in the center of FIG. 6 is a void. Most of the voids were shrinkage cavities formed during solidification shrinkage of the molten aluminum alloy. It can be seen that the shrinkage nest has a smooth shape and is almost in a vacuum state, so that it does not cause a decrease in mechanical strength.
In order to investigate whether or not blisters were generated by heat treatment, the volume expansion coefficient of the cast product by heat treatment was measured. The results are shown in Table 3. From the fact that the volume expansion coefficient after the heat treatment is small, it can be seen that there are few bubbles containing residual gas that becomes blisters. In addition, no blistering was observed when the cast of Example 1 was welded. From these results, it can be seen that the casting of Example 1 has extremely small variation in strength.
Comparative Example 3
The cast product of Comparative Example 1 was heat-treated in the same manner as in Example 4, and the presence or absence of blisters and the volume expansion coefficient were measured. The results are shown in Table 3. The metal structure of this cast product is shown in FIG. It can be seen from FIG. 7 that most voids contain residual gas and are almost granular. Therefore, as shown in FIG. 8, blisters were observed in the cast product after the heat treatment. Such castings do not have the mechanical strength necessary for use under conditions subject to severe vibrations such as undercarriage parts of transport equipment or vehicle body components. Moreover, when welding was performed on the cast product of Comparative Example 1, blisters were generated.
Comparative Example 4
The cast product of Comparative Example 2 was heat-treated in the same manner as in Example 4, and the presence or absence of blisters and the volume expansion coefficient were measured. The results are shown in Table 3. In Comparative Example 4, more blisters were generated than in Comparative Example 3.
Figure 2004058434

以上詳細に説明したように、本発明により、残存ガス量が少ないのみならず、残存ガス中の水素量が低減したアルミニウム合金の真空ダイカスト鋳造品を得ることができる。このような真空ダイカスト鋳造品は、高強度及び高靭性が要求される輸送機器用の足回り部品や車体構成部品等に好適である。        As described above in detail, according to the present invention, it is possible to obtain a vacuum die cast product of an aluminum alloy in which not only the residual gas amount is small but also the hydrogen amount in the residual gas is reduced. Such a vacuum die cast product is suitable for undercarriage parts for transportation equipment and body component parts that require high strength and high toughness.

Claims (13)

アルミニウム合金の真空ダイカスト鋳造品であって、前記真空ダイカスト鋳造品の気泡中に残存するガスは、前記鋳造品の溶解により放出させた後にガスクロマトグラフィにより測定した場合、HガスがCOガスより少ない組成を有することを特徴とする真空ダイカスト鋳造品。A vacuum die casting products of the aluminum alloy, the gas remaining in the vacuum die casting product bubbles, as measured by gas chromatography after were released by the dissolution of the cast product, H 2 gas from the CO 2 gas A vacuum die casting product characterized by having a small composition. 請求項1に記載の真空ダイカスト鋳造品において、前記残存ガスの総量の50%以上がCOガスであることを特徴とする真空ダイカスト鋳造品。In the vacuum die casting product according to claim 1, vacuum die casting product, characterized in that more than 50% of the total amount of the residual gas is CO 2 gas. 請求項1又は2に記載の真空ダイカスト鋳造品において、前記残存ガスの総量がいずれの箇所でも20cm/100g以下であることを特徴とする真空ダイカスト鋳造品。In the vacuum die casting product according to claim 1 or 2, vacuum die casting products, wherein the total amount of the residual gas is 20 cm 3/100 g or less at any position. 請求項1〜3のいずれかに記載の真空ダイカスト鋳造品において、前記残存ガスの総量が前記鋳造品全体の平均として10cm/100g以下であることを特徴とする真空ダイカスト鋳造品。In the vacuum die casting product according to claim 1, vacuum die casting products, wherein the total amount of the residual gas is 10 cm 3/100 g or less as an average of the entire casting. 請求項1〜4のいずれかに記載の真空ダイカスト鋳造品において、前記残存ガスのうちCOガスが前記鋳造品全体の平均として9cm/100g以下であることを特徴とする真空ダイカスト鋳造品。In the vacuum die casting product according to claim 1, vacuum die casting product, characterized in that the CO 2 gas of the residual gas is 9cm 3/100 g or less as an average of the entire casting. 請求項1〜5のいずれかに記載の真空ダイカスト鋳造品において、Hガス、CHガス及びCガスの合計量が鋳造品全体の平均として5cm/100g以下であることを特徴とする真空ダイカスト鋳造品。Wherein the vacuum die casting article according to any one of claims 1 to 5, H 2 gas, that the total amount of CH 4 gas and C 2 H 6 gas is 5 cm 3/100 g or less as an average of the entire casting Vacuum die casting products. 請求項1〜6のいずれかに記載の真空ダイカスト鋳造品において、前記残存ガスのうちHガスの割合が15%以下であることを特徴とする真空ダイカスト鋳造品。The vacuum die cast product according to any one of claims 1 to 6, wherein a ratio of H 2 gas in the residual gas is 15% or less. 請求項7に記載の真空ダイカスト鋳造品において、前記残存ガスのうちHガスの割合が10%以下であることを特徴とする真空ダイカスト鋳造品。In the vacuum die casting product according to claim 7, vacuum die casting products, wherein the proportion of H 2 gas of the residual gas is 10% or less. 請求項1〜8のいずれかに記載の真空ダイカスト鋳造品において、前記残存ガスの総量に対して、CHガス、Cガス及びCOガスの合計量が鋳造品全体の平均として20%以下であることを特徴とする真空ダイカスト鋳造品。In the vacuum die casting product according to claim 1, the total amount of the residual gas, CH 4 gas, 20% the total amount of C 2 H 6 gas and CO gas as an average for the entire casting A vacuum die cast product characterized by: 請求項1〜9のいずれかに記載の真空ダイカスト鋳造品において、輸送用機器の足回り部品又は車体構成部品に使用されることを特徴とする真空ダイカスト鋳造品。The vacuum die cast product according to any one of claims 1 to 9, wherein the vacuum die cast product is used for an undercarriage part or a vehicle body component part of a transportation device. 金型キャビティ内を減圧することによりアルミニウム合金溶湯を射出スリーブ内に装填した後、前記射出スリーブに嵌合するプランジャを前進して前記射出スリーブ内の溶湯を前記キャビティ内に充填することにより真空ダイカスト鋳造品を製造する方法であって、前記真空ダイカスト鋳造品の気泡中に残存するガスが、前記鋳造品の溶解により放出させた後にガスクロマトグラフィにより測定した場合、HガスがCOガスより少ない組成を有するように、離型剤として実質的に水分を含まない化学合成油を前記金型キャビティに塗布した後鋳造を行うことを特徴とする真空ダイカスト鋳造品の製造方法。After the molten aluminum alloy is loaded into the injection sleeve by reducing the pressure inside the mold cavity, the plunger fitted to the injection sleeve is advanced to fill the cavity with the molten metal in the injection sleeve, thereby vacuum die casting. a method of manufacturing a cast article, a gas remaining in the bubble of the vacuum die casting article, when measured by gas chromatography after were released by the dissolution of the cast product, H 2 gas is less than the CO 2 gas A method for producing a vacuum die cast product, comprising applying a chemically synthesized oil substantially free of moisture as a mold release agent to the mold cavity so as to have a composition, and then performing casting. 請求項11に記載の真空ダイカスト鋳造品の製造方法において、前記化学合成油はシリコーンオイルを70質量%以上含み、かつ動粘度が200×10−2/s以下であることを特徴とする真空ダイカスト鋳造品の製造方法。The method for producing a vacuum die cast product according to claim 11, wherein the chemically synthesized oil contains 70% by mass or more of silicone oil and has a kinematic viscosity of 200 × 10 −2 m 2 / s or less. A manufacturing method of vacuum die casting products. 請求項11又は12に記載の真空ダイカスト鋳造品の製造方法において、前記射出スリーブ内に実質的に水分を含まない潤滑剤を塗布することを特徴とする真空ダイカスト鋳造品の製造方法。13. The method for manufacturing a vacuum die cast product according to claim 11 or 12, wherein a lubricant substantially free of moisture is applied to the injection sleeve.
JP2004562905A 2002-12-24 2003-12-24 Vacuum die casting product and method for manufacturing the same Expired - Lifetime JP4518256B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002371961 2002-12-24
JP2002371961 2002-12-24
PCT/JP2003/016541 WO2004058434A1 (en) 2002-12-24 2003-12-24 Vacuum die casting and method for production thereof

Publications (2)

Publication Number Publication Date
JPWO2004058434A1 true JPWO2004058434A1 (en) 2006-04-27
JP4518256B2 JP4518256B2 (en) 2010-08-04

Family

ID=32677220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004562905A Expired - Lifetime JP4518256B2 (en) 2002-12-24 2003-12-24 Vacuum die casting product and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP4518256B2 (en)
CN (1) CN1322951C (en)
AU (1) AU2003292610A1 (en)
WO (1) WO2004058434A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238553B2 (en) * 2009-03-06 2013-07-17 トヨタ自動車株式会社 Gas analyzer
CN102126009A (en) * 2011-03-01 2011-07-20 宁波旭升机械有限公司 Die casting manufacturing process of aluminum alloy pump head
CN103212688A (en) * 2013-04-08 2013-07-24 杭州友阳电器有限公司 Die-casting manufacturing method for electric appliance joint
DE102013223311A1 (en) 2013-11-15 2015-05-21 Bayerische Motoren Werke Aktiengesellschaft Maintenance station for casting tools and method for servicing a casting tool
CN111531146B (en) * 2020-05-14 2021-06-29 深圳市协力达精密科技有限公司 Aluminum alloy die-casting release agent and preparation system and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117992A (en) * 1988-10-27 1990-05-02 Kawasaki Steel Corp Oil lubricating mold release agent
JPH0924454A (en) * 1995-07-11 1997-01-28 Toyota Motor Corp Casting device
JPH09241784A (en) * 1996-03-05 1997-09-16 Hitachi Metals Ltd Die cast product
JP2003164954A (en) * 2001-11-30 2003-06-10 Nissan Motor Co Ltd Device and method for die casting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2188906C (en) * 1995-10-27 2006-06-06 Onofre Costilla-Vela Method and apparatus for preheating molds for aluminum castings
DE19810032A1 (en) * 1998-03-09 1999-09-16 Acheson Ind Inc Method and device for preparing the mold walls of a mold for primary shaping or shaping for the next molding cycle, spray element with centrifugal atomization and air guidance and use of such a spray element for spraying essentially solvent-free mold wall treatment agents
JP2003010958A (en) * 2001-06-28 2003-01-15 Mitsui Mining & Smelting Co Ltd Mold for die cast molding, die cast molding method, and molded product
JP2003136211A (en) * 2001-10-26 2003-05-14 Nippon Achison Kk Apply method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117992A (en) * 1988-10-27 1990-05-02 Kawasaki Steel Corp Oil lubricating mold release agent
JPH0924454A (en) * 1995-07-11 1997-01-28 Toyota Motor Corp Casting device
JPH09241784A (en) * 1996-03-05 1997-09-16 Hitachi Metals Ltd Die cast product
JP2003164954A (en) * 2001-11-30 2003-06-10 Nissan Motor Co Ltd Device and method for die casting

Also Published As

Publication number Publication date
CN1732058A (en) 2006-02-08
JP4518256B2 (en) 2010-08-04
AU2003292610A1 (en) 2004-07-22
CN1322951C (en) 2007-06-27
WO2004058434A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP5036656B2 (en) Surface treatment method for casting mold and casting mold using the same
JP4518256B2 (en) Vacuum die casting product and method for manufacturing the same
JP2011104600A (en) Method and device for manufacturing semi-solidified slurry
CA2431580A1 (en) Dense, dry, self-lubricating material; mechanical part made of the said material; procedure for fabricating such material
JP2007185678A (en) Casting method and water soluble releasing agent for casting mold
KR100581198B1 (en) Process of diecasting titanium and titanium-alloy mould
Salimi et al. Microstructure characteristics and mechanical properties of the interface layer of coated steel insert-aluminum bimetals
CA2244145C (en) Metal alloy mass for semi-solid forming
JP2009208094A (en) Die casting for vehicle steering gear housing, and method for producing the same
Chang et al. Enhancement of erosion resistance on AISI H13 tool steel by oxynitriding treatment
JP2009226459A (en) Mold release agent for die casting, method for imparting mold releasability to mold for die casting and method for casting die-cast product
US6722417B2 (en) Deoxidation casting, aluminium casting and casting machine
EP0972594B1 (en) Pressure die-casting method and products obtained thereby
US20110094697A1 (en) Sand core for casting and process for producing the same
US6845808B2 (en) Reduction casting method
US6932142B2 (en) Reduction casting method
JP4107945B2 (en) Casting mold release agent and casting method using the mold release agent
EP2744612B1 (en) Method for producing investment castings
US6923246B2 (en) Billet, horizontal continuous casting process, and thixocasting process
Srinivasan et al. Enhanced high temperature properties of low pressure cast AZ91 Mg alloy
JP2005046905A (en) Vacuum die-casting machine
JP2011255411A (en) Seizure-resistance improvement method for die-casting die
JP3489522B2 (en) Steel continuous casting method
JP2007167908A (en) Seizure preventive for magnesium alloy molding, releasing agent for magnesium alloy molding and method for molding magnesium alloy
Akbarifar et al. Effect of Melt/Insert volume ratio and pouring temperature on Al/Al alloy interface in compound casting process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

EXPY Cancellation because of completion of term