JP4107945B2 - Casting mold release agent and casting method using the mold release agent - Google Patents

Casting mold release agent and casting method using the mold release agent Download PDF

Info

Publication number
JP4107945B2
JP4107945B2 JP2002323599A JP2002323599A JP4107945B2 JP 4107945 B2 JP4107945 B2 JP 4107945B2 JP 2002323599 A JP2002323599 A JP 2002323599A JP 2002323599 A JP2002323599 A JP 2002323599A JP 4107945 B2 JP4107945 B2 JP 4107945B2
Authority
JP
Japan
Prior art keywords
release agent
mold release
mold
casting
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002323599A
Other languages
Japanese (ja)
Other versions
JP2004154833A (en
Inventor
淳 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002323599A priority Critical patent/JP4107945B2/en
Publication of JP2004154833A publication Critical patent/JP2004154833A/en
Application granted granted Critical
Publication of JP4107945B2 publication Critical patent/JP4107945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳造の際に予め金型内表面に塗布する離型剤と、この離型剤を用いた鋳造方法に関する。
【0002】
【従来の技術】
重力鋳造或いは加圧鋳造などによりアルミニウム合金を鋳造する際に、金型内を流れるアルミニウム合金の溶湯表面に酸化被膜ができると、溶湯の流動性が失われ鋳造欠陥を招くことがある。
斯かる不具合を解消するため、窒化マグネシウム(マグネシウム窒素化合物:Mg)を金型の成形面(内表面)に形成し、この窒化マグネシウムとアルミニウム合金溶湯とを反応させ、溶湯表面の酸化被膜を還元して溶湯の流動性を確保するようにしている。(特許文献1)
【0003】
また、前記特許文献1の内容を改良した技術として、特許文献2〜特許文献7に記載の技術が知られている。
特許文献2に開示される内容は、マグネシウムをアルゴンなどの不活性ガスにより金型内に送り込むようにしている。
特許文献3に開示される内容は、キャビティ内を減圧状態として非酸化雰囲気とした後、マグネシウムガスと窒素ガスをキャビティ内に送り込んで反応させるようにしている。
特許文献4に開示される内容は、別々の注入孔からマグネシウムガスと窒素ガスをキャビティ内に送り込むようにしている。
特許文献5に開示される内容は、キャビティ内を非反応性のガスで加圧した状態で、溶湯を供給するようにしている。
特許文献6に開示される内容は、キャビティ内にマグネシウムガスと窒素ガスを導入する直前で反応させ、窒化マグネシウムの状態でキャビティ内に供給するようにしている。
特許文献7に開示される内容は、キャビティの直前にマグネシウムガスと窒素ガスを反応させるチャンバーを設けている。
特許文献8に開示される内容は、成形型の温度を300℃未満として溶湯をキャビティ内に供給するようにしている。
【0004】
【特許文献1】
特開2000−280063号公報
【特許文献2】
特開2001−321918号公報
【特許文献3】
特開2001−321919号公報
【特許文献4】
特開2001−321920号公報
【特許文献5】
特開2001−321921号公報
【特許文献6】
特開2001−353567号公報
【特許文献7】
特開2002−028770号公報
【特許文献8】
特開2002−028771号公報
【0005】
【発明が解決しようとする課題】
上述した窒化マグネシウムを用いる場合は、マグネシウムを加熱して気化し、このガス状マグネシウムと窒素ガスとをキャビティ内またはキャビティ内で反応させることになる。したがって、特別に加熱炉が必要となり装置が大掛かりになる。
【0006】
また、窒化マグネシウムは還元性を有するが、それ程強力ではないためキャビティ内を不活性状態に維持しなければならない。
【0007】
また、自動車や自動二輪車のボディなどの材料とされるアルミニウム合金には機械的強度をアップさせるため、マグネシウムを添加することが行われている。しかしながら、マグネシウムを添加するとアルミニウム合金溶湯の流動性が悪化し充填不良を生じやすい。
この流動性の悪化はアルミニウム合金溶湯表面にMgOやAlなどの酸化被膜が形成されることに起因しているが、窒化マグネシウムを用いてもMgOを還元することはできない。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明は離型剤中に還元剤を含有させるようにした。従来技術はいずれもキャビティ内またはキャビティ外でマグネシウムをガス化しこれを窒素ガスと反応させて還元剤とするため、加熱炉を必要としているが、本発明ではその必要がない。
【0009】
本発明に係る還元剤としては、水素化カルシウム、水素化ナトリウム、水素化リチウムが挙げられる。これらは溶湯の熱で分解し強力な還元作用を発揮し、例えばMgOなども還元して金属Mgにする。尚、還元剤としては他の水素化金属も考えられる。尚、還元剤の離型剤に対する割合は、離型剤1に対し還元剤を20wt%以上40wt%以下とするのが好ましい。
【0010】
一方、本発明に係る鋳造方法は、前記の還元剤入り離型剤を金型の成形面に塗布し、この金型内にアルミニウム合金溶湯を注湯し、このアルミニウム合金溶湯の熱により離型剤中の還元剤を分解し、分解した還元剤によりアルミニウム合金溶湯表面の酸化被膜を還元しつつ鋳造する。
【0011】
前記アルミニウム合金溶湯中にマグネシウムが含まれていると溶湯表面にMgOの酸化被膜が形成されるが、例えば還元剤として水素化カルシウムを用いた場合には、以下の式に示すように、反応のエントロピーは負となり、CaはMgOを還元する。

Figure 0004107945
【0012】
【発明の実施の形態】
以下に本発明の実施の態様を添付図面に基づいて説明する。図1(a)〜(d)は本発明に係る鋳造法を説明した図、図2は金型のキャビティに離型剤を噴霧している状態の断面図、図3はアルミニウム合金溶湯の表面における反応を説明した図である。
【0013】
先ず、図1(a)に示すように、鋳造装置は固定金型1と可動金型2からなり、固定金型1のランナ3には溶湯をキャビティに押し込むプランジャ4が摺動自在に配置され、可動金型2には離型剤をキャビティ内面に向かって噴出するノズル5を設けている。
【0014】
そして、図1(a)に示す離型状態から可動金型2を移動して(b)に示す型締め状態とし、次いで(c)に示すようにキャビティの上方から排気して減圧状態にあるキャビティ内に、前記ノズル5から離型剤6を供給する。
【0015】
本実施例の場合、離型剤6は滑石や雲母などの粉体とするとともに還元剤を含有している。還元剤としては水素化カルシウム(CaH)を用いる。離型剤に対する還元剤の割合は20wt%以上40wt%が適当であり、この範囲以下であると還元効果が不充分となり、この範囲を超えると離型剤としての効果が低下する。
【0016】
離型剤6がキャビティ内面に付着したならば、図1(d)に示すように、プランジャ4を突出せしめてキャビティ内に、例えばマグネシウムを添加(含有)したアルミニウム合金の溶湯を供給する。
【0017】
キャビティ内に供給されたアルミニウム合金溶湯はプランジャ4の加圧により上方に移動するが、その際、図3に示すように、キャビティ内に酸素が存在すると溶湯の表面は当該酸素と結合して、MgO或いはAlになる。これら酸化被膜は溶湯の流動性を阻害することになる。
しかしながら本実施例にあっては、金型の残存熱、溶湯の熱により離型剤6中の還元剤(水素化カルシウム:CaH)がCaとHに分解し、これらはキャビティ内の酸素と結合してそれぞれCaOおよびHOとなり、キャビティ内の酸素は消費されMgO或いはAlが形成され難くなる。
【0018】
特に、離型剤中の還元剤は溶湯に接触する前に、金型の残存熱である程度分解しているため、溶湯がキャビティ内に入る時点では、既に非酸素雰囲気に近い状態になっている。
【0019】
また、多少キャビティ内に残っている酸素と溶湯中のMg或いはAlが反応してMgO或いはAlの酸化被膜となっても、これらは以下の式に示すようにCaによって還元せしめられ、被膜はなくなり流動性は確保される。
MgO+Ca→Mg+CaO
Al+3Ca→2Al+3CaO
【0020】
上記の還元反応により、CaOが生成され、これは溶湯中に残ることになるが、その量は極微量であり且つCaOは化学的に安定で鋳巣の原因になることはない。
【0021】
尚、実施例では加圧鋳造を示したが、本発明は重力鋳造、低圧鋳造にも適用できる。また、還元剤としては水素化カルシウム(CaH)の他に、水素化ナトリウム(NaH)、水素化リチウム(LiH)などの水素化金属も有効である。
【0022】
【発明の効果】
以上に説明したように、本発明に係る離型剤は、例えば水素化カルシウム、水素化ナトリウム、水素化リチウムなどの水素化金属からなる還元剤を含んでいるので、溶湯に接することで前記還元剤が分解し、強力な還元作用を発揮し、溶湯表面の酸化膜を還元して溶湯の流動性を確保することができる。特に、加熱装置が不要のため、従来の装置をそのまま使用することができる。
【0023】
また、本発明に係る鋳造法によればアルミニウム合金表面の酸化膜を効果的に還元することができ、特に強度アップのためマグネシウムを添加したアルミニウム合金溶湯の流動性を改善することができる。
【図面の簡単な説明】
【図1】(a)〜(d)は本発明に係る鋳造法を説明した図
【図2】金型のキャビティに離型剤を噴霧している状態の断面図
【図3】アルミニウム合金溶湯の表面における反応を説明した図
【符号の説明】
1…固定金型、2…可動金型、3…ランナ、4…プランジャ、5…ノズル、6…離型剤。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold release agent that is applied to a mold inner surface in advance during casting, and a casting method using the mold release agent.
[0002]
[Prior art]
When casting an aluminum alloy by gravity casting or pressure casting, if an oxide film is formed on the surface of the molten aluminum alloy flowing in the mold, the fluidity of the molten metal is lost and casting defects may be caused.
To solve such a problem, magnesium nitride (magnesium nitride compound: Mg 3 N 2) was formed on the molding surface of the mold (inner surface) is reacted with magnesium this nitride and aluminum alloy melt, oxidation of the molten metal surface The film is reduced to ensure the fluidity of the molten metal. (Patent Document 1)
[0003]
Moreover, the technique of patent document 2-patent document 7 is known as a technique which improved the content of the said patent document 1. FIG.
The content disclosed in Patent Document 2 is such that magnesium is fed into a mold by an inert gas such as argon.
The content disclosed in Patent Document 3 is such that after the inside of the cavity is in a reduced pressure state to form a non-oxidizing atmosphere, magnesium gas and nitrogen gas are sent into the cavity for reaction.
The content disclosed in Patent Document 4 is such that magnesium gas and nitrogen gas are fed into the cavity from separate injection holes.
The content disclosed in Patent Document 5 is such that molten metal is supplied in a state where the inside of the cavity is pressurized with a non-reactive gas.
The contents disclosed in Patent Document 6 are made to react immediately before introducing magnesium gas and nitrogen gas into the cavity, and are supplied into the cavity in the form of magnesium nitride.
The content disclosed in Patent Document 7 is provided with a chamber for reacting magnesium gas and nitrogen gas immediately before the cavity.
The content disclosed in Patent Document 8 is such that the temperature of the mold is less than 300 ° C. and the molten metal is supplied into the cavity.
[0004]
[Patent Document 1]
JP 2000-280063 A [Patent Document 2]
JP 2001-321918 A [Patent Document 3]
JP 2001-321919 A [Patent Document 4]
JP 2001-321920 A [Patent Document 5]
JP 2001-321921 A [Patent Document 6]
JP 2001-353567 A [Patent Document 7]
JP 2002-028770 A [Patent Document 8]
Japanese Patent Laid-Open No. 2002-028771
[Problems to be solved by the invention]
When using the magnesium nitride mentioned above, magnesium is heated and vaporized, and this gaseous magnesium and nitrogen gas are made to react in a cavity or a cavity. Therefore, a special heating furnace is required and the apparatus becomes large.
[0006]
Moreover, although magnesium nitride has a reducing property, it is not so strong, so the inside of the cavity must be maintained in an inactive state.
[0007]
Further, magnesium is added to aluminum alloys used as materials for automobiles and motorcycle bodies in order to increase mechanical strength. However, when magnesium is added, the fluidity of the molten aluminum alloy is deteriorated and filling failure tends to occur.
This deterioration in fluidity is caused by the formation of an oxide film such as MgO or Al 2 O 3 on the surface of the molten aluminum alloy, but MgO cannot be reduced even if magnesium nitride is used.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a reducing agent in the release agent. In any of the prior arts, a heating furnace is required because magnesium is gasified inside or outside the cavity and reacted with nitrogen gas to form a reducing agent, but this is not necessary in the present invention.
[0009]
Examples of the reducing agent according to the present invention include calcium hydride, sodium hydride, and lithium hydride. These are decomposed by the heat of the molten metal and exert a strong reducing action. For example, MgO or the like is reduced to form metallic Mg. Note that other metal hydrides are also conceivable as the reducing agent. The ratio of the reducing agent to the release agent is preferably 20 wt% or more and 40 wt% or less with respect to the release agent 1.
[0010]
On the other hand, in the casting method according to the present invention, the release agent containing the reducing agent is applied to the molding surface of the mold, the molten aluminum alloy is poured into the mold, and the mold is released by the heat of the molten aluminum alloy. The reducing agent in the agent is decomposed, and the oxide film on the surface of the molten aluminum alloy is reduced and cast with the decomposed reducing agent.
[0011]
When magnesium is contained in the molten aluminum alloy, an oxide film of MgO is formed on the surface of the molten metal. For example, when calcium hydride is used as a reducing agent, as shown in the following formula, Entropy becomes negative and Ca reduces MgO.
Figure 0004107945
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 (a) to 1 (d) are diagrams illustrating a casting method according to the present invention, FIG. 2 is a cross-sectional view of a mold cavity sprayed with a release agent, and FIG. 3 is a surface of a molten aluminum alloy. It is a figure explaining reaction in.
[0013]
First, as shown in FIG. 1 (a), the casting apparatus includes a fixed mold 1 and a movable mold 2. A runner 3 of the fixed mold 1 is slidably disposed with a plunger 4 for pushing the molten metal into the cavity. The movable mold 2 is provided with a nozzle 5 for ejecting a release agent toward the inner surface of the cavity.
[0014]
Then, the movable mold 2 is moved from the mold release state shown in FIG. 1A to the mold clamped state shown in FIG. 1B, and then is exhausted from above the cavity as shown in FIG. A release agent 6 is supplied from the nozzle 5 into the cavity.
[0015]
In this embodiment, the release agent 6 is a powder such as talc or mica and contains a reducing agent. Calcium hydride (CaH 2 ) is used as the reducing agent. The ratio of the reducing agent to the mold release agent is suitably 20 wt% or more and 40 wt%. If the ratio is less than this range, the reduction effect is insufficient, and if it exceeds this range, the effect as the mold release agent is reduced.
[0016]
When the release agent 6 adheres to the inner surface of the cavity, as shown in FIG. 1 (d), the plunger 4 is projected to supply, for example, molten aluminum alloy containing (containing) magnesium into the cavity.
[0017]
The molten aluminum alloy supplied into the cavity moves upward due to the pressurization of the plunger 4. At this time, as shown in FIG. 3, when oxygen is present in the cavity, the surface of the molten metal is combined with the oxygen, It becomes MgO or Al 2 O 3 . These oxide films inhibit the fluidity of the molten metal.
However, in this example, the reducing agent (calcium hydride: CaH 2 ) in the release agent 6 is decomposed into Ca and H 2 by the residual heat of the mold and the heat of the molten metal, and these are oxygen in the cavity. To form CaO and H 2 O, respectively, and oxygen in the cavity is consumed, making it difficult to form MgO or Al 2 O 3 .
[0018]
In particular, since the reducing agent in the mold release agent is decomposed to some extent by the residual heat of the mold before coming into contact with the molten metal, when the molten metal enters the cavity, it is already close to a non-oxygen atmosphere. .
[0019]
Further, even if oxygen remaining in the cavity somewhat reacts with Mg or Al in the molten metal to form an oxide film of MgO or Al 2 O 3 , these are reduced by Ca as shown in the following formula, The film disappears and fluidity is ensured.
MgO + Ca → Mg + CaO
Al 2 O 3 + 3Ca → 2Al + 3CaO
[0020]
The above reduction reaction produces CaO, which remains in the molten metal, but its amount is extremely small, and CaO is chemically stable and does not cause a cast hole.
[0021]
In addition, although the pressure casting was shown in the Example, this invention is applicable also to gravity casting and low pressure casting. In addition to calcium hydride (CaH 2 ), metal hydrides such as sodium hydride (NaH) and lithium hydride (LiH) are also effective as the reducing agent.
[0022]
【The invention's effect】
As described above, the release agent according to the present invention contains a reducing agent made of a metal hydride such as calcium hydride, sodium hydride, lithium hydride, etc., so that the reduction can be achieved by contacting the molten metal. The agent is decomposed to exert a strong reducing action, and the oxide film on the surface of the molten metal can be reduced to ensure the fluidity of the molten metal. In particular, since a heating device is unnecessary, a conventional device can be used as it is.
[0023]
In addition, according to the casting method of the present invention, the oxide film on the surface of the aluminum alloy can be effectively reduced, and in particular, the fluidity of the molten aluminum alloy to which magnesium is added to increase the strength can be improved.
[Brief description of the drawings]
FIGS. 1A to 1D are diagrams illustrating a casting method according to the present invention. FIG. 2 is a cross-sectional view of a mold cavity sprayed with a release agent. FIG. 3 is a molten aluminum alloy. Diagram explaining the reaction on the surface of the surface 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 ... Fixed mold, 2 ... Movable mold, 3 ... Runner, 4 ... Plunger, 5 ... Nozzle, 6 ... Release agent.

Claims (3)

金型の成形面に塗布される離型剤であって、この離型剤には還元剤が含有され、この還元剤は水素化カルシウム、水素化ナトリウム、水素化リチウムなどの水素化金属であることを特徴とする鋳造用離型剤。A mold release agent applied to the molding surface of a mold, the mold release agent containing a reducing agent, which is a metal hydride such as calcium hydride, sodium hydride, lithium hydride, etc. A mold release agent for casting. 請求項1に記載の鋳造用離型剤において、前記還元剤の離型剤に対する割合は、離型剤1に対し還元剤を20wt%以上40wt%以下としたことを特徴とする鋳造用離型剤。 The mold release agent for casting according to claim 1 , wherein the ratio of the reducing agent to the mold release agent is 20 wt% or more and 40 wt% or less of the reducing agent with respect to the mold release agent 1. Agent. 請求項1または請求項2に記載の離型剤を金型の成形面に塗布した鋳造用離型剤を使う鋳造法において、この金型内にアルミニウム合金溶湯を注湯し、このアルミニウム合金溶湯の熱により離型剤中の還元剤を分解し、分解した還元剤によりアルミニウム合金溶湯表面の酸化被膜を還元しつつ鋳造することを特徴とする鋳造法。A casting method using a casting mold release agent in which the mold release agent according to claim 1 or 2 is applied to a molding surface of the mold, wherein the molten aluminum alloy is poured into the mold, and the molten aluminum alloy A casting method characterized in that the reducing agent in the mold release agent is decomposed by the heat of the mold, and the oxide film on the surface of the molten aluminum alloy is reduced by the decomposed reducing agent for casting.
JP2002323599A 2002-11-07 2002-11-07 Casting mold release agent and casting method using the mold release agent Expired - Fee Related JP4107945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323599A JP4107945B2 (en) 2002-11-07 2002-11-07 Casting mold release agent and casting method using the mold release agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323599A JP4107945B2 (en) 2002-11-07 2002-11-07 Casting mold release agent and casting method using the mold release agent

Publications (2)

Publication Number Publication Date
JP2004154833A JP2004154833A (en) 2004-06-03
JP4107945B2 true JP4107945B2 (en) 2008-06-25

Family

ID=32803425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323599A Expired - Fee Related JP4107945B2 (en) 2002-11-07 2002-11-07 Casting mold release agent and casting method using the mold release agent

Country Status (1)

Country Link
JP (1) JP4107945B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638802B2 (en) * 2005-10-27 2011-02-23 トヨタ自動車株式会社 Mold release agent or casting method
CN101879578B (en) * 2010-06-18 2012-06-27 中国兵器工业第五二研究所 Mold release agent for rare-earth magnesium alloy pressure casting and prepration method thereof
CN106312010B (en) * 2015-06-17 2019-01-25 浙江盾安轻合金科技有限公司 Release agent preheating device and method

Also Published As

Publication number Publication date
JP2004154833A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
WO2012161463A2 (en) Alloy manufacturing method and alloy manufactured by means of same
JP4107945B2 (en) Casting mold release agent and casting method using the mold release agent
US8746322B2 (en) Technology of production of bimetallic and multilayer casts by gravity or spun casting
US6745817B2 (en) Casting method and casting apparatus
US3492114A (en) Method for alloying highly reactive alloying constituents
EP1178127A1 (en) Method for producing metal-based composite material
WO2012132789A1 (en) Method for manufacturing stainless steel
JP6627896B2 (en) Heating type front powder for continuous casting
JP5637081B2 (en) Mold flux for continuous casting of high Mn steel and continuous casting method
JP4518256B2 (en) Vacuum die casting product and method for manufacturing the same
US6722417B2 (en) Deoxidation casting, aluminium casting and casting machine
EP0691410A1 (en) Additive for treating molten metal, in particular for treating molten iron or steel
EP1270117B1 (en) Reduction casting method
JP2010024480A (en) Aluminum alloy material for generating hydrogen and production method therefor
US6845808B2 (en) Reduction casting method
JP4290630B2 (en) Reduction casting method and reducing agent used therefor
JPH083664A (en) Member for vacuum device and vacuum device
JP2645600B2 (en) Manufacturing method of magnesium alloy casting
JP3689375B2 (en) Flux for preventing reoxidation and continuous casting method using the same
DE10149876B4 (en) Exothermic material compositions for Speiserheizmassen
US20030173050A1 (en) Reduction casting method
JPH0740015A (en) Nozzle for continuous casting
EP0153260A2 (en) Process for the production of ferromanganese refined by metallothermic reactions in the ladle
JP2003053515A (en) Reduction-casting method and reduction-casting apparatus
Herrschaft et al. Pore Free Pressure Casting of Lead Alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees