JP2645600B2 - Manufacturing method of magnesium alloy casting - Google Patents

Manufacturing method of magnesium alloy casting

Info

Publication number
JP2645600B2
JP2645600B2 JP2014761A JP1476190A JP2645600B2 JP 2645600 B2 JP2645600 B2 JP 2645600B2 JP 2014761 A JP2014761 A JP 2014761A JP 1476190 A JP1476190 A JP 1476190A JP 2645600 B2 JP2645600 B2 JP 2645600B2
Authority
JP
Japan
Prior art keywords
sand
casting
mold
magnesium alloy
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2014761A
Other languages
Japanese (ja)
Other versions
JPH03221259A (en
Inventor
良和 平澤
邦彦 牧野
脩二郎 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014761A priority Critical patent/JP2645600B2/en
Publication of JPH03221259A publication Critical patent/JPH03221259A/en
Application granted granted Critical
Publication of JP2645600B2 publication Critical patent/JP2645600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、消失模型鋳造法(以下「フルモールド鋳造
法」ということもある)によって鋳造されたマグネシウ
ム合金(純マグネシウムを含む、以下同じ)鋳物の製造
法に係わり、更に詳細には、特定の鋳物砂を使用した消
失模型鋳造法によるマグネシウム合金鋳物の製造法に係
わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnesium alloy (including pure magnesium, hereinafter the same) cast by a vanishing model casting method (hereinafter sometimes referred to as “full mold casting method”). The present invention relates to a method for producing a casting, and more particularly, to a method for producing a magnesium alloy casting by a vanishing model casting method using a specific molding sand.

[従来の技術] 「最新フルモールド法の理論と実際」(1970年,ヴュ
・ア・オゼロフ,外2名著)では、消失模型鋳造法によ
り鋳造される金属として、鋳鉄,鋳鋼,アルミニウム合
金などが取上げられている。しかし、マグネシウム合金
については何ら記述がない。今日でも、マグネシウム合
金鋳物を消失模型鋳造法によって鋳造したという文献は
見当らない。
[Prior art] In "Theory and practice of the latest full mold method" (1970, Vue A Ozeroff, two other authors), cast iron, cast steel, aluminum alloy, and the like are used as metals cast by the vanishing model casting method. Has been picked up. However, there is no description about magnesium alloy. Even today, there is no reference to casting magnesium alloy castings by the vanishing model casting method.

従来、マグネシウム合金の砂型鋳物などに用いられて
来た鋳物砂は、主として珪砂であった。しかし、鉄鋼や
アルミニウム合金の溶湯と違ってマグネシウム合金の溶
湯は酸化し易く珪砂(主成分SiO2)と容易に化学反応を
起こすので、空気および珪砂による酸化を防止するため
酸化防止剤,防燃剤などを珪砂に添加混練することが必
要となる。
Conventionally, foundry sand used for sand casting of a magnesium alloy and the like has been mainly silica sand. However, unlike molten iron and steel alloys, molten magnesium alloys are easily oxidized and easily react with silica sand (main component SiO 2 ). Therefore, antioxidants and flame retardants are used to prevent oxidation by air and silica sand. And the like must be added and kneaded to silica sand.

ところが珪砂を消失模型鋳造法の鋳型の鋳物砂として
使用する場合、珪砂に酸化防止剤などを添加すると珪砂
の通気性が悪化し、マグネシウム合金溶湯の比重が非常
に軽いこともあり鋳物に欠陥が生じ易くなる。また、鋳
造作業の省力化のためにも、珪砂には酸化防止剤などを
添加しないことが望まれる。更に、通常の粘結剤を含有
しない珪砂を鋳物砂として使用するときには鋳型が比較
的崩れ易く、珪砂が鋳込まれた溶湯中に崩壊すると、鋳
物に欠陥が生じる外、珪砂と溶湯とが反応して発熱し溶
湯の温度が急上昇して鋳型より溶湯が噴出する原因とも
なる。
However, when silica sand is used as the casting sand for the mold of the vanishing model casting method, the addition of an antioxidant or the like to the silica sand deteriorates the permeability of the silica sand, and the specific gravity of the magnesium alloy melt may be very light, resulting in defects in the casting. It is easy to occur. It is also desirable not to add an antioxidant or the like to silica sand in order to save labor in the casting operation. Furthermore, when silica sand containing no ordinary binder is used as molding sand, the mold is relatively easily broken, and when collapsed in the molten metal into which the silica sand is cast, defects occur in the casting, and the silica sand reacts with the molten metal. As a result, heat is generated and the temperature of the molten metal rises sharply, causing the molten metal to be ejected from the mold.

[発明が解決しようとする課題] マグネシウムは活性であるため、消失模型鋳造法によ
る鋳造法で酸化防止剤などを含まない珪砂を鋳物砂とし
て使用する場合、何らかの理由で鋳物砂が鋳型に鋳込ま
れたマグネシウム合金溶湯中に崩壊すると、珪砂は溶湯
と激しく反応して多量の熱を発生し、これが原因で溶湯
が鋳型から噴出することがあり危険である。上記のマグ
ネシウム合金特有の原因による溶湯噴出を避けるために
は、従来砂型鋳造法で行なわれているように酸化防止
剤,防燃剤などを鋳物砂に添加する方法も考えられた。
しかし、この方法は鋳物砂の通気性を低下させ、鋳物に
ポロシティなどの鋳造欠陥をもたらす。また、煩雑な作
業を必要とするので省力化のためには使わないで済ませ
たい手段であった。本発明の目的は、マグネシウム合金
溶湯と反応しない鋳物砂の開発であり、上記困難を克服
した消失模型鋳造法によるマグネシウム合金鋳物の製造
方法を提供することにある。
[Problems to be Solved by the Invention] Since magnesium is active, when silica sand containing no antioxidant is used as the molding sand in the casting method by the vanishing model casting method, the molding sand is cast into the mold for some reason. When collapsed in the molten magnesium alloy, the silica sand violently reacts with the molten metal to generate a large amount of heat, which may cause the molten metal to erupt from the mold, which is dangerous. In order to prevent the molten metal from being ejected due to the above-described factors specific to the magnesium alloy, a method of adding an antioxidant, a flame retardant and the like to the molding sand as in the conventional sand casting method has been considered.
However, this method reduces the permeability of the foundry sand and causes casting defects such as porosity in the foundry. In addition, since it requires complicated work, it is a means that should not be used for labor saving. An object of the present invention is to develop a casting sand that does not react with a molten magnesium alloy, and an object of the present invention is to provide a method of manufacturing a magnesium alloy casting by a vanishing model casting method that overcomes the above difficulties.

[課題を解決するための手段] 上述の目的は、本発明によれば、 (1)消失模型鋳造法において、鋳物砂としてその酸化
物が1000℃以下の温度で金属マグネシウムによって還元
されない金属元素の炭酸塩を使用することを特徴とする
マグネシウム合金鋳物の製造方法、 により達成される。
[Means for Solving the Problems] According to the present invention, the object described above is as follows: (1) In a vanishing model casting method, a metal element whose oxide is not reduced by metal magnesium at a temperature of 1000 ° C. or less in a casting sand. A method for producing a magnesium alloy casting, characterized by using a carbonate.

即ち、本発明の製造法で使用する金属元素の炭酸塩
は、当該金属元素の酸化物が1000℃以下の温度で金属マ
グネシウムによって還元されないものであり、具体的に
例示するとマグネサイト、ドロマイト、石灰石であり、
このような金属元素の炭酸塩を使用することにより本発
明の目的は好適に達成される。
That is, the carbonate of the metal element used in the production method of the present invention is such that the oxide of the metal element is not reduced by the metal magnesium at a temperature of 1000 ° C. or less, and specific examples include magnesite, dolomite, and limestone. And
The object of the present invention is suitably achieved by using such a carbonate of a metal element.

従来の鋳造法では、溶湯は鋳型内部にあらかじめつく
られた空洞に鋳込まれるが、消失模型鋳造法では、別名
フルモールド(FULL MOULD)法と呼ばれるように鋳型
に空洞がない。即ち、気化性模型を鋳物砂の中に埋め
て、この模型を鋳物砂から抜きとることなく、そのまま
鋳型に直接溶湯を注入し鋳物をつくる。気化性模型には
普通発泡スチロールが使用され、その表面には鋳物と砂
との焼付防止のため塗型が塗られ充分乾燥させられる。
溶湯が鋳込まれると溶湯の熱により模型が蒸発して消失
し、そこにできた空洞に溶湯が入れ替りに流入して鋳物
ができる。消失模型鋳造法で使用される鋳型は、大別す
ると砂に粘結剤又は硬化剤を加えて強化された鋳型と粘
結剤などを含まない砂から成る鋳型の二通りになる。後
者の鋳型は造型や型ばらしの作業がし易いので、今日の
ように製造工程を自動化し、同種の鋳物を大量生産する
ような場合に好適である。しかし、この種類の鋳型は強
度が比較的弱いので、鋳込まれた溶湯の中に崩壊した鋳
型の砂が落下することがある。このとき、砂に付着して
いたガス及び少量の水分が砂から遊離し、水分は溶湯と
発熱反応する。もし、鋳物砂に珪砂を使っていた場合に
は、化学反応 SiO2+2Mg→Si+2MgO+70.4kcal/mole により多量の生成熱が発生する。この反応熱により溶湯
温度が急激に上昇して発泡スチロールを急速に気化さ
せ、そのガス圧によりマグネシウム合金溶湯が鋳型から
外へ噴出する。また、溶湯温度が上昇して沸点に達する
場合には、マグネシウム合金の蒸気も上記溶湯噴出に加
担する。マグネシウム合金溶湯は、普通、700〜750℃で
鋳造されるが、鋳物砂として常圧,1000℃以下の温度で
金属マグネシウムによって還元されない金属元素の酸化
物(酸化マグネシウム、又は1000℃以下の温度で酸化マ
グネシウムより熱力学的に安定な金属元素の酸化物)を
使用する場合には、マグネシウム合金溶湯が鋳物砂によ
って酸化され発熱するということがない。鋳物砂として
は、上記の金属元素の酸化物の外に、その炭酸塩も使用
できる。炭酸塩は加熱されると、酸化物と炭酸ガスに分
解する。例えばマグネサイトは600℃、ドロマイトは750
℃、石灰石は900℃で熱分解する。この反応は吸熱反応
であり溶湯温度を下げる方向に作用するので、鋳型が崩
壊し砂が溶湯と接触するようなことがあっても実害はな
い。例えば750℃の純マグネシウム溶湯7Kgの中に20℃の
マグネサイト粉1.5Kg(嵩にして約1)が落下する
と、分解吸熱により600℃以下に温度が下がる計算にな
る。炭酸ガスは熱力学的にはマグネシウムを酸化する筈
であるが、実際はこの程度の溶湯温度ではほとんど酸化
が認められない。上記の条件を満たす酸化物としては、
例えばマグネシアクリンカー、また、炭酸塩としては、
上記のマグネサイト,ドロマイト,石灰石などが挙げら
れるが、これらに限るものでないことは言うまでもな
い。
In the conventional casting method, the molten metal is cast into a cavity previously formed in the mold, but in the vanishing model casting method, there is no cavity in the mold as is also called a full mold (FULL MOULD) method. That is, the vaporizable model is buried in the molding sand, and the casting is made by directly injecting the molten metal into the mold without removing the model from the molding sand. Styrofoam is usually used for the vaporizable model, and its surface is coated with a mold to prevent seizure between the casting and sand, and is sufficiently dried.
When the molten metal is cast, the model evaporates and disappears due to the heat of the molten metal, and the molten metal alternately flows into the cavity formed therein to form a casting. The molds used in the vanishing model casting method are roughly classified into two types: a mold reinforced by adding a binder or a hardening agent to sand, and a mold made of sand without a binder. The latter mold is suitable for mass production of the same type of casting, as in today, because the molding and unmolding operations are easy to perform. However, since the strength of this type of mold is relatively weak, the collapsed mold sand may fall into the cast molten metal. At this time, the gas adhering to the sand and a small amount of water are released from the sand, and the water reacts exothermically with the molten metal. If silica sand is used as the molding sand, a large amount of heat is generated due to the chemical reaction SiO 2 + 2Mg → Si + 2MgO + 70.4kcal / mole. The heat of the reaction causes the temperature of the molten metal to rise rapidly, causing the styrofoam to rapidly evaporate, and the gas pressure causes the molten magnesium alloy to be ejected from the mold. Further, when the temperature of the molten metal rises and reaches the boiling point, the vapor of the magnesium alloy also contributes to the above-mentioned molten metal ejection. Magnesium alloy melts are usually cast at 700 to 750 ° C, but as casting sand, they are not reduced by metallic magnesium at normal pressure and at temperatures below 1000 ° C. When an oxide of a metal element that is more thermodynamically stable than magnesium oxide) is used, the molten magnesium alloy is not oxidized by the molding sand to generate heat. As the foundry sand, in addition to the above-mentioned oxides of the metal elements, carbonates thereof can also be used. When heated, carbonates decompose into oxides and carbon dioxide. For example, magnesite is 600 ℃, dolomite is 750
℃, limestone pyrolyzes at 900 ℃. Since this reaction is an endothermic reaction and acts in a direction to lower the temperature of the molten metal, there is no actual harm even if the mold collapses and the sand comes into contact with the molten metal. For example, when 1.5 kg (approximately 1 in bulk) of 20 ° C. magnesite powder falls into 7 kg of pure magnesium melt at 750 ° C., the temperature is reduced to 600 ° C. or less due to decomposition endotherm. Carbon dioxide should oxidize magnesium thermodynamically, but practically, almost no oxidation is observed at such a molten metal temperature. Oxides satisfying the above conditions include:
For example, magnesia clinker, or carbonate,
The above-mentioned magnesite, dolomite, limestone and the like are mentioned, but it goes without saying that they are not limited to these.

以下で実施例および比較例により本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

[実施例] (実施例1) 第1図に示すように、直径400mm,厚さ30mmの発泡スチ
ロール製円板の中心に、垂直に縦・横40mm×長さ150mm
の発泡スチロール製角柱を接着剤で接着し、それらの表
面に塗型を乾燥状態で約0.5mmの厚さに塗り1週間乾燥
させたものを、粒径1.4mmアンダーの石灰石粉の中に埋
め、上記角柱の上にレンガ製湯口を載せた鋳型を用意し
た。上記石灰石粉より成る鋳物砂の上に約20Kgの重しを
置いた。また、この石灰石粉の水分含有量は約0.02%で
あった。この鋳型に、マグネシウム合金AZ91(Be含有)
溶湯を750℃で0.5%の六塩化エタン添加により脱ガス
後、同じ温度で鋳込んだ。
[Examples] (Example 1) As shown in Fig. 1, the center of a styrofoam disk having a diameter of 400 mm and a thickness of 30 mm is vertically and horizontally 40 mm long x 150 mm long.
The styrofoam prisms are glued together with an adhesive, and the molds are applied to the surfaces of the prisms in a dry state to a thickness of about 0.5 mm and dried for one week. A mold having a brick gate placed on the prism was prepared. A weight of about 20 kg was placed on the foundry sand composed of the limestone powder. The water content of the limestone powder was about 0.02%. In this mold, magnesium alloy AZ91 (containing Be)
The molten metal was degassed at 750 ° C. by adding 0.5% ethane hexachloride, and then cast at the same temperature.

鋳込んだ溶湯が凝固後鋳物を砂より取出して調べた
所、寸法は溶湯が凝固する際の収縮分だけ小さくなって
いたが外観は良好であった。
When the cast molten metal was solidified and the casting was removed from the sand and examined, the dimensions were reduced by the amount of shrinkage when the molten metal was solidified, but the appearance was good.

(実施例2) 実施例1とほぼ同じ実験を行なった。ただし、鋳造
後、直ちに木槌で湯口の近くの砂(石灰石粉)を1回打
撃し衝撃を与えた。このとき湯口から溶湯があふれ、砂
の上に流れ落ちるとともに湯口の中より少しガスが出る
のが観察されたが、溶湯の噴出はなかった。凝固後鋳物
を砂より取出して調べた所、鋳物の一部に砂が入ってい
た。
(Example 2) Almost the same experiment as in Example 1 was performed. However, immediately after casting, the sand (limestone powder) near the gate was hit once with a mallet to give an impact. At this time, it was observed that the molten metal overflowed from the gate and flowed down onto the sand, and gas was slightly emitted from the inside of the gate, but there was no ejection of the molten metal. When the casting was removed from the sand after solidification and examined, it was found that the casting contained sand.

(実施例3)および(実施例4) 鋳物砂として粒径0.5mmアンダーのマグネシアクリン
カー(水分含有量0.05%)を使用して、実施例1および
実施例2と同じ実験を行なった。結果はそれぞれほぼ同
じであった。
(Example 3) and (Example 4) The same experiment as in Example 1 and Example 2 was performed using magnesia clinker (water content: 0.05%) having a particle size of 0.5 mm or less as the molding sand. The results were almost the same.

(比較例1) 粒径0.5mmアンダーの珪砂の鋳物砂として、実施例1
と同じ鋳型を用意した。珪砂の水分含有量は0.02%であ
った。この鋳型に実施例1の場合と同じ脱ガス処理を施
した750℃のAZ91(Be含有)合金溶湯を鋳込んだ。ただ
し、実施例2の場合とは違って木槌による衝撃な加えな
かった。鋳造約5秒後、湯口より溶湯が噴出し始めた。
鋳物が凝固後、砂より取り出して調べた所、角柱部分,
円板部分ともにいびつに変形し、黒色の中空のセラミッ
クスと化していた。
(Comparative Example 1) Example 1 was used as a casting sand of silica sand having a particle diameter of 0.5 mm or less.
The same mold as that described above was prepared. The water content of the quartz sand was 0.02%. A AZ91 (Be-containing) alloy melt at 750 ° C. subjected to the same degassing treatment as in Example 1 was cast into this mold. However, unlike the case of Example 2, no impact was applied by a mallet. About 5 seconds after casting, the molten metal began to squirt from the gate.
After the casting was solidified, it was taken out of the sand and examined.
Both disk parts were deformed into irregular shapes, turning into black hollow ceramics.

(比較例2) 粒径0.5mmアンダーの珪砂に下記のような防燃剤を下
記の添加割合となるように添加し、混練機で混練したも
のを鋳物砂として、実施例1と同じ鋳型をつくった。
(Comparative Example 2) The following flame retardant was added to silica sand having a particle diameter of 0.5 mm or less so that the following addition ratio was obtained, and the mixture was kneaded by a kneading machine as casting sand to prepare the same mold as in Example 1. Was.

ジエチレングリコール 2 % ホウ酸 2 % ホウ弗化カリ 1 % イオウ(粉末) 0.5% この鋳型に実施例1で使用したと同種のマグネシウム
合金溶湯を鋳込んだが溶湯の噴出はなかった。鋳造した
鋳物の円板部分は元の消失模型より厚みがかなり増加し
ており、外観にも欠陥が見られた。
Diethylene glycol 2% Boric acid 2% Potassium borofluoride 1% Sulfur (powder) 0.5% The same type of magnesium alloy melt as used in Example 1 was cast into this mold, but there was no ejection of the melt. The disc portion of the cast casting was much thicker than the original vanishing model, and the appearance was defective.

[発明の効果] 本発明は、鋳造の際に溶湯噴出が起こらず安全に作業
を行なうことができる消失模型鋳造法によるマグネシウ
ム合金鋳物の製造方法を提供している。また、鋳物砂に
防燃剤などを添加する作業も不要であり、省力化が可能
である。
[Effects of the Invention] The present invention provides a method for manufacturing a magnesium alloy casting by a vanishing model casting method, in which a molten metal is not spouted during casting and work can be performed safely. In addition, there is no need to add a flame retardant or the like to the foundry sand, so that labor can be saved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本願明細書の実施例1で使用した鋳型を示す概
略図である。 ……鋳枠、……石灰石粉(鋳物砂)、 ……湯口、……発泡スチロール製角柱、 ……発泡スチロール製円板、 ……重し。
FIG. 1 is a schematic view showing a mold used in Example 1 of the present specification. …… Cast frame,… Limestone powder (casting sand),… Gate,… Styrofoam square pillar,… Styrofoam disc, …… Weight.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】消失模型鋳造法において、鋳物砂としてそ
の酸化物が1000℃以下の温度で金属マグネシウムによっ
て還元されない金属元素の炭酸塩を使用することを特徴
とするマグネシウム合金鋳物の製造方法。
1. A method for producing a magnesium alloy casting, wherein in the vanishing model casting method, a carbonate of a metal element whose oxide is not reduced by metal magnesium at a temperature of 1000 ° C. or less is used as casting sand.
JP2014761A 1990-01-26 1990-01-26 Manufacturing method of magnesium alloy casting Expired - Lifetime JP2645600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014761A JP2645600B2 (en) 1990-01-26 1990-01-26 Manufacturing method of magnesium alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014761A JP2645600B2 (en) 1990-01-26 1990-01-26 Manufacturing method of magnesium alloy casting

Publications (2)

Publication Number Publication Date
JPH03221259A JPH03221259A (en) 1991-09-30
JP2645600B2 true JP2645600B2 (en) 1997-08-25

Family

ID=11870066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014761A Expired - Lifetime JP2645600B2 (en) 1990-01-26 1990-01-26 Manufacturing method of magnesium alloy casting

Country Status (1)

Country Link
JP (1) JP2645600B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560501A (en) * 2021-07-15 2021-10-29 四川简阳海特有限公司 Sand core for casting and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927750A (en) * 1982-08-06 1984-02-14 Toyota Motor Corp Casting method of magnesium alloy

Also Published As

Publication number Publication date
JPH03221259A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
JP4610679B2 (en) Manufacturing procedures for ferrules for molds, other feeding heads and feeding elements, and compositions for the production of said ferrules and elements
JP3374242B2 (en) Exothermic assembly for castings
KR100681539B1 (en) CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
JP3278168B2 (en) Sleeve, its manufacturing method and application
US3764575A (en) Salt core containing synthetic resin and water-glass as binders
JPS61242972A (en) Tube for casting and manufacture
KR20140138555A (en) Eco magnesium alloy manufacturing method and manufacturing apparatus thereof
KR100883567B1 (en) SrO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
JP2645600B2 (en) Manufacturing method of magnesium alloy casting
US3810506A (en) Molding for use in steel ingot making by bottom pouring and method of making steel ingot
CN1668402A (en) Sleeve, manufacturing method thereof and mixture for the production of said sleeve
KR20090071903A (en) Cax chemical compound added magnesium and magnesium alloys and their manufacturing method thereof
JP4403233B2 (en) Casting core manufacturing method
JP4688618B2 (en) Anti-sulfur coating agent
US2380201A (en) Manufacture of castings
US3121269A (en) Mold wash
RU2299781C2 (en) Insert, method for making it and molding sand for making insert
JPS574352A (en) Method for preventing sulfurization of cast steel casting
JPH04123841A (en) Production of exothermic neck-down core and exothermic neck-down core
JP2001293537A (en) Method for manufacturing molding sand
SU713651A1 (en) Method of protecting castings against decarbonization
KR101495852B1 (en) Eco magnesium alloy and manufacturing method thereof
JPS6393445A (en) Core for die casting
JP5176015B2 (en) Molding core
JPS6015417B2 (en) Coated sand composition for light alloy casting