JP2001293537A - Method for manufacturing molding sand - Google Patents

Method for manufacturing molding sand

Info

Publication number
JP2001293537A
JP2001293537A JP2000110607A JP2000110607A JP2001293537A JP 2001293537 A JP2001293537 A JP 2001293537A JP 2000110607 A JP2000110607 A JP 2000110607A JP 2000110607 A JP2000110607 A JP 2000110607A JP 2001293537 A JP2001293537 A JP 2001293537A
Authority
JP
Japan
Prior art keywords
slag
sand
casting
mold
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110607A
Other languages
Japanese (ja)
Inventor
Yuji Miyashita
雄次 宮下
Kanji Osakabe
勘ニ 長壁
Matsuo Kubota
松雄 窪田
Takeshi Komori
剛 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIJU CHUKO KK
Gun Ei Chemical Industry Co Ltd
Original Assignee
NICHIJU CHUKO KK
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIJU CHUKO KK, Gun Ei Chemical Industry Co Ltd filed Critical NICHIJU CHUKO KK
Priority to JP2000110607A priority Critical patent/JP2001293537A/en
Publication of JP2001293537A publication Critical patent/JP2001293537A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing molding sand which is suitable to improve the dimensional stability in a casting, suitable to prevent the casting defect, such as mold cracking, veining, scab, burning, and has excellent heat- resistance, low thermal-expansion and regeneration efficiency in repeated use. SOLUTION: After adjusting alumina content in slag generated when producing a ferro-chromium to 31-50 wt.%, air-granulated to obtain the high alumina spherical slag obtained by grading. Since the high alumina spherical slag is excellent in heat-resistance, low thermal-expansion and high hardness, the casting excellent in the outward appearance can be obtained by using the mold molded with this slag and a binder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、新規な鋳物砂の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing molding sand.

【0002】[0002]

【従来の技術】従来、鋳物砂として最も一般的なものは
シリカ(SiO)分90%以上の高純度珪砂である。
高純度珪砂は、各種鋳物用に広く使用されている一方、
熱膨張率が大きく、これを骨材として用いた鋳型(特に
中子)は注湯によってかなり膨張するため、鋳物の寸法
の狂いやベーニング、熱間亀裂といった鋳物欠陥を引き
起こす問題があった。これに対してシリカ分の少ない低
熱膨張の珪砂を使用した場合、鋳鋼、高マンガン鋼、ス
テンレス鋼のように比較的高温で注湯する鋳物あるいは
形状や方案によって鋳型内にホットスポットができる鋳
物に対しては熱容量や耐熱性が不足し溶湯が凝固する前
に珪砂が溶融してしまい、焼着現象を引き起こす。その
ため、このような鋳物用の鋳型に対してクロマイト砂、
ジルコン砂、ムライト砂が鋳型表面のみ(肌砂)や部分
的(ポケット砂)に使用されている。しかし、これらの
砂は高価であり、経済的に不利である。さらに、環境保
全や資源保護の目的から多くの鋳造工場では、鋳物砂を
熱的あるいは機械的に再生処理し使用しているが、珪砂
は角ばった形状をしていることや硬度が不足しているた
めに、これらの再生により一部が破砕し、微粉末(パン
分)が発生する。このパン分は鋳型には使用できず、有
料で廃棄処分されるため、経済的に負担がかかるととも
に、環境への負荷をかけてしまう弊害も生じている。こ
のような問題を解決するために、高炭素フェロクロムを
製造する際に副製するスラグに、高速空気を吹き付け球
状化(風砕)した粒径1〜2ミクロン程度の酸化物含有
スラグを鋳型砂として利用することが検討された。(フ
ェロアロイvol.36、No.1、p.114〜11
5)この報告では上記珪砂等の材料に比べ、抗折力等の
鋳型特性が向上したことが報告されている。
2. Description of the Related Art Conventionally, the most common casting sand is high-purity silica sand having a silica (SiO 2 ) content of 90% or more.
While high-purity silica sand is widely used for various castings,
Since the coefficient of thermal expansion is large, and a mold (especially a core) using this as an aggregate expands considerably by pouring, there is a problem that casting defects such as irregular dimensions of the casting, vaning, and hot cracks are caused. On the other hand, when low-thermal-expansion silica sand with low silica content is used, castings such as cast steel, high manganese steel, and stainless steel that are poured at a relatively high temperature or castings that can generate hot spots in the mold depending on the shape or plan are used. On the other hand, since the heat capacity and heat resistance are insufficient, the silica sand is melted before the molten metal solidifies, causing a seizure phenomenon. For this reason, chromite sand,
Zircon sand and mullite sand are used only on the mold surface (skin sand) or partially (pocket sand). However, these sands are expensive and economically disadvantageous. In addition, many foundries use thermal or mechanical regeneration of foundry sand for the purpose of environmental protection and resource protection, but silica sand has a square shape and lacks hardness. As a result, a part of the powder is crushed by the regeneration, and fine powder (bread) is generated. The bread cannot be used as a mold and is discarded for a fee, so that it is economically burdensome and has a negative effect on the environment. In order to solve such a problem, high-speed air is blown onto slag, which is produced as a by-product when producing high-carbon ferrochrome, and slag having a particle diameter of about 1 to 2 microns, which has been spheroidized (blasted), is cast into a mold sand. It was considered to be used as. (Ferroalloy vol. 36, No. 1, p. 114-11)
5) In this report, it is reported that the mold characteristics such as the transverse rupture force are improved as compared with the above-mentioned materials such as silica sand.

【0003】[0003]

【発明が解決しようとする課題】上記研究では、鋳型特
性の評価が行われたが、他の特性、たとえば急熱膨張等
による熱衝撃特性等の評価が行われておらず、その後の
研究によって、改善が必要な特性があることが判明し
た。本発明はこのような課題を解決するためになされた
ものであり、その目的は、耐熱性、低熱膨張性鋳型を得
るための鋳物砂の製造方法を提供するものである。
In the above research, the evaluation of the mold characteristics was performed, but other characteristics such as thermal shock characteristics due to rapid thermal expansion and the like were not evaluated. It turned out that there were characteristics that needed to be improved. The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for producing a molding sand for obtaining a heat-resistant, low-thermal-expansion mold.

【0004】[0004]

【課題を解決するための手段】本発明では、鋳鋼、合金
鋼のような注湯温度の高い鋳物の鋳造にも耐えうる耐熱
性を有し、高温時における急熱膨張が少なく、高収率で
の回収再生が可能であり、かつ安価で容易に入手可能な
耐火性骨材に着目して種々研究を重ねた結果、鋳物砂と
して実用上支障のない耐火性骨材を見出し、完成するに
至った。すなわち、本発明は、耐火性骨材に公知の様々
なバインダーを適用する鋳型造型に用いる耐火性骨材に
おいて、フェロクロムを製造する際に発生する高アルミ
ナ含有スラグを風砕し、整粒して得られる、耐熱性、低
熱膨張性、及び再生効率に優れた球形スラグ(以下、風
砕スラグという)の製造方法を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, the present invention has heat resistance enough to withstand casting of a high pouring temperature such as cast steel and alloy steel, has little rapid thermal expansion at high temperatures, and has a high yield. Focused on inexpensive and easily available refractory aggregates that can be recovered and recycled at the same time, as a result of repeated studies, we found a refractory aggregate that does not hinder practical use as molding sand and completed it. Reached. That is, the present invention, in a refractory aggregate used for mold molding applying various known binders to the refractory aggregate, air-crushed high alumina-containing slag generated when producing ferrochrome, and sized. An object of the present invention is to provide a method for producing a spherical slag (hereinafter, referred to as an air-crushed slag) which is excellent in heat resistance, low thermal expansion, and regeneration efficiency.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において用いられる新規な耐火性骨材は、天然に
産出されるフェロクロムの原鉱石を還元しフェロクロム
を製造する際に発生する溶融スラグよりメタル分を分離
除去し、次いで該溶融スラグを落下させ、落下中のスラ
グにノズルから高速でエアーを吹き付けて吹き飛ばして
得られる。風砕スラグは空中で表面張力により球形に凝
固する。フェロクロム風砕スラグは、SiO、Al
及びMgOの3成分を主体として構成され、スピネ
ル、フォルステライト、及びガラス質から成る緻密な組
織が形成されている。本発明の風砕スラグは、予めアル
ミナ分がスラグ成分に余剰に添加された溶融スラグを用
いることを特徴とし、風砕スラグ中のアルミナ分が31
〜50重量%となるよう調整されている。アルミナ分が
30重量%以下であると、耐熱性、低熱膨張性が不十分
なため、これらの特性が高度に要求される鋳型には不適
正なケースがある。また、50重量%を越えてもそれ以
上の改善効果が得られない。この構造及び組成が耐熱
性、低熱膨張性、高硬度等の風砕スラグが有する特徴の
由来である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The novel refractory aggregate used in the present invention reduces the ore of ferrochrome produced naturally and separates and removes the metal component from the molten slag generated when producing ferrochrome, and then drops the molten slag. It is obtained by blowing high-speed air from a nozzle onto a falling slag to blow it off. The air-milled slag solidifies into a sphere due to surface tension in the air. Ferrochrome slag is made of SiO 2 , Al 2
It is mainly composed of three components of O 3 and MgO, and has a dense structure composed of spinel, forsterite, and vitreous. The air-blasted slag of the present invention is characterized by using a molten slag in which an alumina component is added in excess to a slag component in advance.
It is adjusted to be about 50% by weight. If the alumina content is less than 30% by weight, the heat resistance and the low thermal expansion property are insufficient, so that there are cases where these characteristics are inappropriate for a mold that requires a high degree of these properties. Further, even if it exceeds 50% by weight, no further improvement effect can be obtained. This structure and composition are the origin of the characteristics of the air-crushed slag such as heat resistance, low thermal expansion, and high hardness.

【0006】上記風砕スラグを鋳物砂に使用した場合、
高アルミナ含有であり低熱膨張率であることから、ベー
ニング、熱間亀裂、型ワレのような膨張欠陥を防止で
き、さらに耐熱性に優れることから、鋳造時における焼
着、浸蝕性スクワレなどが少なく、また鋳肌面の外観不
良を防止しうること、並びに高硬度であることから骨材
の熱的あるいは機械的再生において良好な耐摩耗性と耐
破砕性を示し高歩留りで骨材回収が可能であるなどの利
点を有する。
When the above-mentioned crushed slag is used for foundry sand,
Since it contains high alumina and has a low coefficient of thermal expansion, expansion defects such as vaning, hot cracks and cracks can be prevented, and since it has excellent heat resistance, there is little baking, erosion, etc. during casting. In addition, it is possible to prevent poor appearance of the casting surface, and because of its high hardness, it exhibits good wear resistance and crush resistance in thermal or mechanical regeneration of aggregate, and aggregate can be collected with high yield. It has advantages such as

【0007】本発明で得られた風砕スラグは軽合金、鋳
鉄、ダクタイル鋳鉄、鉄鋼、及びマンガン鋼、クロム
鋼、ステンレス鋼のような合金鋼の鋳造用鋳型に適用で
きる。とりわけ鋳鋼、合金鋼のように融点が高く、溶融
粘性が高い、つまり、高い温度での注湯が要求される鋳
型に適している。
[0007] The air-blasted slag obtained by the present invention can be applied to a casting mold of light alloy, cast iron, ductile cast iron, steel, and alloy steel such as manganese steel, chromium steel, and stainless steel. In particular, it is suitable for molds such as cast steel and alloy steel, which have a high melting point and a high melt viscosity, that is, which require pouring at a high temperature.

【0008】又、本発明の鋳物砂が適用できる鋳型造型
法はとくに限定するものではないが、常温自硬化性の酸
硬化フラン法、酸硬化フェノール法、エステル硬化フェ
ノール法、ウレタン法、エステル硬化水ガラス法、ダイ
カル法、Nプロセス、コールドボックスとしてアミン硬
化ウレタン法、エステル硬化フェノール法、フェノール
法、CO硬化フェノール法、CO硬化水ガラス法、
熱硬化性として、シェルモールド法に適用できる。但
し、風砕スラグは弱アルカリ性であるため、酸硬化法で
は硬化遅延効果、ウレタン法では硬化促進効果があるの
で、硬化調整のための措置が必要となる。
The mold molding method to which the molding sand of the present invention can be applied is not particularly limited, but an acid-curing furan method, an acid-curing phenol method, an ester-curing phenol method, an urethane method, an ester-curing method which is self-curing at room temperature. Water glass method, diecal method, N process, amine cured urethane method as cold box, ester cured phenol method, phenol method, CO 2 cured phenol method, CO 2 cured water glass method,
As thermosetting, it can be applied to the shell mold method. However, since the air-milled slag is weakly alkaline, the acid curing method has a curing retarding effect, and the urethane method has a curing accelerating effect. Therefore, measures for curing adjustment are required.

【0009】鋳物砂の再生及び再使用は、資源保護、環
境保護及び経済的理由から盛んに行われている。再生技
術として種々の技術があるが、概ね熱的再生と機械的再
生に区別できる。再生方法は採用されている造型方法に
よって選択されるが、熱硬化性シェルモールド法では熱
的再生あるいは熱的/機械的再生の併用、常温硬化性の
場合は一般的に機械的再生である。とくに機械的再生は
砂同士、あるいは砂と機械を構成する材料(主に鉄)と
の摩擦力を利用しバインダーを剥離除去するため、鋳物
の砂の損傷、破壊が避けられない。破壊された部分は再
使用できず、廃棄される。風砕スラグは構造に由来した
高硬度であるため、従来の鋳物砂に比較して機械再生に
よる損傷が極めて少なく、従って砂の補給量及び損傷し
た部分(以下、パン分)の廃棄量が少なくてすみ、経済
的にも、環境的にもメリットがある。以上の通り、本発
明は低熱膨張、高硬度、高耐熱性の鋳物砂として、フェ
ロクロムを製造するに際して発生するスラグを風砕処理
し、整粒して得られる、耐熱性、低熱膨張性、再生効率
に優れる風砕スラグの製造方法を提供する。
[0009] Recycling and reuse of foundry sands are active for resource conservation, environmental protection and economic reasons. Although there are various regeneration techniques, it can be generally distinguished between thermal regeneration and mechanical regeneration. The regeneration method is selected depending on the molding method employed. In the thermosetting shell molding method, thermal regeneration or a combination of thermal / mechanical regeneration is used. In the case of room temperature curing, mechanical regeneration is generally used. In particular, mechanical regeneration uses frictional force between sand or between sand and a material constituting the machine (mainly iron) to peel off and remove the binder, so that damage and destruction of the sand in the casting are inevitable. The destroyed parts cannot be reused and are discarded. Since the crushed slag has a high hardness derived from its structure, the damage due to mechanical regeneration is extremely small as compared with the conventional foundry sand, and therefore the amount of sand replenishment and the amount of discarded damaged parts (hereinafter referred to as bread) are small. There are benefits both economically and environmentally. As described above, the present invention is a heat-resistant, low-thermal-expansion, reclaimed material obtained by subjecting slag generated during the production of ferrochrome to air-blasting and sizing, as a low thermal expansion, high hardness, high heat-resistant molding sand. Provided is a method for producing an air-crushed slag with excellent efficiency.

【0010】[0010]

【実施例】以下、本発明を、実施例を示して具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to embodiments.

【0011】[実施例1]鋳型用骨材として、アルミナ
分を40重量%に調整した風砕スラグ5000gを用
い、これをスーパーミキサー(浪速製作所(株)製)に
投入した。次いで、バインダーとしてエステル硬化用フ
ェノール樹脂(群栄ボーデン(株)製、TPA−36)
100g(風砕スラグ重量に対して2重量部)とエステ
ル(同、ACE−535)18g(バインダー重量に対
して18重量部)を投入し、ミキサー中で60秒混練し
た後排砂し、混練砂を得る。該混練砂を、混練後直ちに
50mmφ×50mmHのテストピース作成用木型に充
填し、25℃で30分間放置後抜型し圧縮強さ用テスト
ピースを得た。圧縮強さ、可使時間はJACT試験法H
M−1、HM−2に準じて行った。熱膨張率の測定はJ
ACT試験法M−2に準じて行った。テストピースの寸
法は30mmφ×100mmHで行った。
[Example 1] As an aggregate for a mold, 5000 g of crushed slag having an alumina content adjusted to 40% by weight was used, and this was charged into a super mixer (manufactured by Naniwa Seisakusho Co., Ltd.). Then, a phenol resin for ester curing (TPA-36, manufactured by Gunei Boden Co., Ltd.) as a binder
100 g (2 parts by weight based on the weight of the crushed slag) and 18 g (18 parts by weight based on the binder weight) of an ester (ACE-535) are added, and the mixture is kneaded in a mixer for 60 seconds, and then sand is discharged and kneaded. Get the sand. Immediately after kneading, the kneaded sand was filled in a test piece forming die of 50 mmφ × 50 mmH, left at 25 ° C. for 30 minutes, and then punched out to obtain a test piece for compressive strength. Compressive strength and pot life are JACT test method H
Performed according to M-1 and HM-2. Measurement of thermal expansion coefficient is J
It carried out according to ACT test method M-2. The dimensions of the test piece were 30 mmφ × 100 mmH.

【0012】[実施例2]鋳型用骨材として、アルミナ
分を40重量%に調整した風砕スラグ5000gを用
い、これを連続ミキサー(日本鋳造(株)製)を用い、
バインダーとしてエステル硬化用フェノール樹脂(群栄
ボーデン(株)製、TPA−36)を風砕スラグ重量に
対して2重量部、とエステル(同、ACE−535)を
バインダー重量に対して18重量部で連続的に混練砂を
得た。該混練砂は連続的に、単重55kg、鋳込み重量8
0kg、ハイマンガン鋼の“ハンマー”の鋳造品を得るべ
き主型、中子の模型に充填し、充填後1時間放置し抜型
し鋳型を得た。24時間後アルコール性ジルコン塗型を
施し、該鋳型を組み立て、1520℃の注湯温度でハイ
マンガン鋼を注湯した。注湯後24時間放置し鋳型をば
らし、ハイマンガン鋼製品の評価を行った。鋳造に使用
した風砕スラグをロータリーリクレーマー(日本鋳造
(株)製)でM型1段、5パスで再生した。再生歩留は
下式によって求め、特性は実施例1に準じて鋳型評価を
行った。 歩留(%)=(再生砂重量、kg)/(砂投入重量、k
g)×100
[Example 2] As an aggregate for a mold, 5000 g of crushed slag having an alumina content adjusted to 40% by weight was used, and this was mixed with a continuous mixer (manufactured by Nippon Casting Co., Ltd.).
As a binder, a phenol resin for curing an ester (TPA-36, manufactured by Gun-ei Boden Co., Ltd.) is 2 parts by weight based on the weight of the crushed slag, and an ester (ACE-535) is 18 parts by weight based on the binder weight. To obtain continuously kneaded sand. The kneading sand is continuously 55 kg in unit weight and 8 in casting weight.
A 0 kg, high-manganese steel "hammer" cast product was filled into a main mold and a core model to be obtained. Twenty-four hours later, alcoholic zircon coating was performed, the mold was assembled, and high-manganese steel was poured at a pouring temperature of 1520 ° C. After pouring, the mold was left to stand for 24 hours, and the high manganese steel product was evaluated. The air-blasted slag used for casting was regenerated with a rotary reclaimer (manufactured by Nippon Casting Co., Ltd.) in one stage of M type and five passes. The regeneration yield was determined by the following equation, and the characteristics were evaluated by using a mold according to Example 1. Yield (%) = (recycled sand weight, kg) / (sand input weight, k
g) x 100

【0013】[比較例1]鋳型用骨材として、溶融スラ
グにアルミナを添加しない風砕スラグ(以下、従来風砕
スラグという)及び飯豊珪砂5000gを用い、実施例
1と同様の手順で試験した。
[Comparative Example 1] The same procedure as in Example 1 was carried out using, as aggregates for a mold, air-blasted slag (hereinafter referred to as conventional air-blasted slag) and 5000 g of Iide silica sand without adding alumina to molten slag. .

【0014】[比較例2]鋳型用骨剤として、従来風砕
スラグ、及び飯豊珪砂5000gを用い、実施例2と同
様の手順で試験した。試験結果は下記に示す。
[Comparative Example 2] The same procedure as in Example 2 was carried out using a conventional crushed slag and 5000 g of Iide silica sand as an aggregate for a mold. The test results are shown below.

【0015】[0015]

【表1】原料砂の特性 [Table 1] Characteristics of raw material sand

【0016】[0016]

【表2】鋳型特性 [Table 2] Mold properties

【0017】[0017]

【表3】鋳物及び再生砂評価 [Table 3] Casting and recycled sand evaluation

【0018】すなわち、本発明はかかる耐火性骨材とし
て風砕スラグを用いて、鋳型がベーニング、焼着などの
鋳物欠陥に対し顕著な効果を示し、かつ再生効率に優れ
ていることが確認された。
That is, it has been confirmed that the present invention, using the air-blasted slag as such a refractory aggregate, shows that the mold has a remarkable effect on casting defects such as vaning and baking and has excellent regeneration efficiency. Was.

【0019】[0019]

【発明の効果】以上の説明により明らかなように、本発
明の高アルミナ含有風砕スラグを用いた鋳型は優れた低
熱膨張性を有するため、鋳造時における鋳型又は中子の
急熱膨張が小さく、寸法制度の優れた鋳物を提供しうる
ばかりでなく、型割れ、ベーニング、スクワレ、焼着な
どの鋳物欠陥を防止し、鋳肌の美しい鋳物を提供するこ
とができる。また、本発明における風砕スラグは、スピ
ネル構造を有するため高硬度であり、経済的かつ環境負
荷の少ない再生を行うことができる。従来のジルコンサ
ンド、オリビンサンド、アルミナサンドなどの高価な特
殊砂より大幅に安価な代替鋳物用骨材として用いること
ができる上に、鋳物用骨材の省資源に寄与するなどの利
点を有している。このように、本発明の風砕スラグは、
鋳物製造分野において工業的価値の極めて高いものであ
る。
As is clear from the above description, since the mold using the high alumina-containing crushed slag of the present invention has excellent low thermal expansion, the rapid thermal expansion of the mold or core during casting is small. In addition to providing castings with excellent dimensional accuracy, casting defects such as mold cracking, vaning, squaring, and seizure can be prevented, and castings with beautiful casting surfaces can be provided. Further, the crushed slag in the present invention has a spinel structure, has a high hardness, and can be recycled economically and with less environmental load. It can be used as an alternative casting aggregate that is significantly cheaper than expensive special sand such as conventional zircon sand, olivine sand, and alumina sand, and has the advantage of contributing to resource saving of casting aggregate. ing. Thus, the crushed slag of the present invention is:
It is of extremely high industrial value in the casting manufacturing field.

フロントページの続き (72)発明者 窪田 松雄 富山市高岡町吉久1−1−1 日重鋳鋼株 式会社内 (72)発明者 小森 剛 富山市高岡町吉久1−1−1 日重鋳鋼株 式会社内 Fターム(参考) 4E092 AA01 BA06 BA08 CA03 Continued on the front page (72) Inventor Matsuo Kubota 1-1-1 Yoshioka, Takaoka-cho, Toyama-shi Nippon Casting Steel Co., Ltd. (72) Inventor Tsuyoshi Komori 1-1-1 Yoshihisa, Takaoka-cho, Toyama-shi Nichiju Casting Steel Co., Ltd. Company F-term (reference) 4E092 AA01 BA06 BA08 CA03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フェロクロムを製造する際に発生する、
アルミナ分が31〜50重量%であるスラグを風砕し、
整粒して得られる高アルミナ球形スラグを鋳物砂とする
ことを特徴とする鋳物砂の製造方法。
1. A method for producing ferrochrome, the method comprising:
Slag having an alumina content of 31 to 50% by weight is air-crushed,
A method for producing molding sand, wherein a high alumina spherical slag obtained by sizing is used as molding sand.
JP2000110607A 2000-04-12 2000-04-12 Method for manufacturing molding sand Pending JP2001293537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110607A JP2001293537A (en) 2000-04-12 2000-04-12 Method for manufacturing molding sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110607A JP2001293537A (en) 2000-04-12 2000-04-12 Method for manufacturing molding sand

Publications (1)

Publication Number Publication Date
JP2001293537A true JP2001293537A (en) 2001-10-23

Family

ID=18623090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110607A Pending JP2001293537A (en) 2000-04-12 2000-04-12 Method for manufacturing molding sand

Country Status (1)

Country Link
JP (1) JP2001293537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
CN104014717A (en) * 2014-05-29 2014-09-03 朱小英 Casting method of ZL101 thin-wall aluminium alloy part
CN113976814A (en) * 2021-09-28 2022-01-28 山西沁新能源集团股份有限公司 Spherical sand for casting and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
CN104014717A (en) * 2014-05-29 2014-09-03 朱小英 Casting method of ZL101 thin-wall aluminium alloy part
CN113976814A (en) * 2021-09-28 2022-01-28 山西沁新能源集团股份有限公司 Spherical sand for casting and preparation method thereof
CN113976814B (en) * 2021-09-28 2023-10-17 山西沁新能源集团股份有限公司 Spherical sand for casting and preparation method thereof

Similar Documents

Publication Publication Date Title
US6372032B1 (en) Foundry exothermic assembly
JP3878496B2 (en) Mold sand and manufacturing method thereof
US20050155741A1 (en) Casting sand cores and expansion control methods therefor
US6863113B2 (en) Mould for metal casting
US6598654B2 (en) Molding sand appropriate for the fabrication of cores and molds
KR20120102122A (en) Foundry mixes containing sulfate and/or nitrate salts and their uses
AU2002210754A1 (en) Mould for metal casting
JP5600472B2 (en) Foundry sand, foundry sand composition, and casting mold obtained using the same
US8007580B2 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2011025310A (en) Spherical refractory particle, casting sand composed thereof and mold obtained using the same
JP2001293537A (en) Method for manufacturing molding sand
JPH11188454A (en) Mold sand
CA2461797A1 (en) Method for producing castings, molding sand and its use for carrying out said method
US8011419B2 (en) Material used to combat thermal expansion related defects in the metal casting process
JP2001286977A (en) Mold and method for manufacturing mold
JPH0663683A (en) Production of casting mold
JP2018140425A (en) Method for producing reconditioned sand and method for producing casting sand
JPS6340635A (en) Low expansion type resin coated sand
JP2007083284A (en) Core for die casting
CN117642240A (en) Inorganic binder system
JP2022034503A (en) Artificial sand formed by melt air-granulation method, and production method thereof
JPH08155581A (en) Casting mold for copper alloy
JP2003191043A (en) Sand for mold
JPH1147878A (en) Production of aluminum alloy casting