WO2004057674A2 - Electrical connection of optoelectronic devices - Google Patents
Electrical connection of optoelectronic devices Download PDFInfo
- Publication number
- WO2004057674A2 WO2004057674A2 PCT/GB2003/005571 GB0305571W WO2004057674A2 WO 2004057674 A2 WO2004057674 A2 WO 2004057674A2 GB 0305571 W GB0305571 W GB 0305571W WO 2004057674 A2 WO2004057674 A2 WO 2004057674A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- devices
- organic optoelectronic
- layer
- substrate
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 85
- 239000000463 material Substances 0.000 claims abstract description 111
- 238000013086 organic photovoltaic Methods 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims abstract description 78
- 239000000758 substrate Substances 0.000 claims abstract description 78
- 239000004020 conductor Substances 0.000 claims abstract description 52
- 229920000642 polymer Polymers 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 10
- 229920003023 plastic Polymers 0.000 claims description 10
- 238000001312 dry etching Methods 0.000 claims description 9
- 238000000608 laser ablation Methods 0.000 claims description 5
- 229920000620 organic polymer Polymers 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 73
- -1 polyethylene terephthalate Polymers 0.000 description 40
- 238000000151 deposition Methods 0.000 description 24
- 230000008021 deposition Effects 0.000 description 18
- 239000011368 organic material Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 11
- 239000010405 anode material Substances 0.000 description 9
- 239000012044 organic layer Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000007650 screen-printing Methods 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 229920000144 PEDOT:PSS Polymers 0.000 description 5
- 238000007641 inkjet printing Methods 0.000 description 5
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010129 solution processing Methods 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920002098 polyfluorene Polymers 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 2
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- YKTWIWYKBCLLHZ-UHFFFAOYSA-N 4,7-dithiophen-2-yl-1,3-benzothiazole Chemical compound S1C(=CC=C1)C1=CC=C(C2=C1N=CS2)C=1SC=CC=1 YKTWIWYKBCLLHZ-UHFFFAOYSA-N 0.000 description 1
- ZNSXNNUEMWLJEV-UHFFFAOYSA-N 4-butan-2-yl-n,n-diphenylaniline Chemical compound C1=CC(C(C)CC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ZNSXNNUEMWLJEV-UHFFFAOYSA-N 0.000 description 1
- CNXXSKARMYGQBG-UHFFFAOYSA-N 7,14,25,32-tetrazaundecacyclo[21.13.2.22,5.03,19.04,16.06,14.08,13.020,37.024,32.026,31.034,38]tetraconta-1(36),2,4,6,8,10,12,16,18,20(37),21,23(38),24,26,28,30,34,39-octadecaene-15,33-dione Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C1=CC=C2C(=O)N4C5=CC=CC=C5N=C4C4=CC=C3C1=C42 CNXXSKARMYGQBG-UHFFFAOYSA-N 0.000 description 1
- RXACYPFGPNTUNV-UHFFFAOYSA-N 9,9-dioctylfluorene Chemical compound C1=CC=C2C(CCCCCCCC)(CCCCCCCC)C3=CC=CC=C3C2=C1 RXACYPFGPNTUNV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920000292 Polyquinoline Polymers 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- GENZLHCFIPDZNJ-UHFFFAOYSA-N [In+3].[O-2].[Mg+2] Chemical compound [In+3].[O-2].[Mg+2] GENZLHCFIPDZNJ-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000005270 abrasive blasting Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229920003238 fullerene-containing polymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/10—Organic photovoltaic [PV] modules; Arrays of single organic PV cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/10—Organic photovoltaic [PV] modules; Arrays of single organic PV cells
- H10K39/12—Electrical configurations of PV cells, e.g. series connections or parallel connections
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/601—Assemblies of multiple devices comprising at least one organic radiation-sensitive element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/86—Series electrical configurations of multiple OLEDs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
- H10K71/231—Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
Definitions
- the present application is directed to a method of electrical connection of optoelectronic devices such as organic electroluminescent devices and organic photovoltaic devices and to electrically connected devices obtained according to this method.
- organic electroluminescent devices as disclosed in WO90/13148 and organic photovoltaic devices, as disclosed in US5670791.
- Both organic electroluminescent devices and organic photovoltaic devices are organic diodes comprising a layer of organic material between two electrodes.
- Organic electroluminescent devices emit light on the passage of a current between the two electrodes.
- Organic electroluminescent devices have a wide range of applications in the display industry.
- Organic photovoltaic devices generate a current between the two electrodes when light is incident upon the device.
- Organic photovoltaic devices are viewed as a replacement for inorganic silicon solar cells.
- Advantages associated with the use of organic optoelectronic devices include a greater flexibility in the design of materials and the tailoring of device properties, improved processability and lower cost.
- organic electroluminescent devices In addition to applications in the field of displays, organic electroluminescent devices have great potential for use in large area lighting applications such as in panel lighting, emergency lighting and advertising.
- organic electroluminescent devices When developing organic electroluminescent devices for use in large area lighting, in addition to the problems which occur in display technology, the skilled person is presented with a range of further problems, in particular how to prepare a large area electroluminescent light source which can be operated at higher voltages, such as at mains voltage and which can be prepared in an efficient manner.
- Organic photovoltaic devices have at present been used to generate voltages of around 1 V, such low voltages have relatively few practical applications. It is known in the art to connect silicon based photovoltaic cells and dye-sensitised photovoltaic cells in series in order to provide a greater volatge output. A simple and efficient method for the series connection of organic photovoltaic cells would enable higher voltages to be generated and allow organic photovoltaic devices to access a wider range of applications.
- the present application proposes a simple and efficient method for the preparation of a number of electrically connected optoelectronic devices on a single substrate.
- the method allows access to a range of applications including a plurality of series connected organic electroluminescent devices on a single substrate which can be driven at higher voltages than a single organic electroluminescent device, to arrangements of organic electroluminescent devices on a single substrate which can be driven to provide continuous light emission using an AC power source, to a plurality of series connected organic photovoltaic devices on a single substrate providing a higher output voltage and so enabling more practical applications and to a plurality of organic electroluminescent devices and organic photovoltaic devices on a single substrate.
- the method of the present invention obviates the need for external electrical connections between devices, simplifying processing and enabling a number of electrically connected devices to be encapsulated in a single, hermetically sealed package.
- the present invention provides a method of preparing a plurality of electrically connected organic optoelectronic devices on a substrate said method comprising the steps of;
- Organic optoelectronic devices which may be prepared by the present invention include organic diodes such as organic electroluminescent devices and organic photovoltaic devices and also organic transistors, organic photoluminescent devices, organic phosphorescent devices, organic resistors and organic capacitors. Organic electroluminescent devices and organic photovoltaic devices are preferred classes of organic optoelectronic devices.
- the substrate is preferably a single, unitary substrate at the time of carrying out the method according to the invention.
- the substrate may have a composite structure, for example, comprising layers of glass and plastic, plastic and ceramic or ceramic and metal.
- the first conductive material may be patterned on deposition using additive techniques or patterned following deposition using subtractive techniques.
- Organic optoelectronic materials are organic materials with optical and/or electronic properties, such properties include electroluminescence, photoluminescence, fluorescence, photoconductivity and conductivity.
- the second conductive material may be patterned on deposition using additive techniques or patterned following deposition using subtractive techniques.
- the patterned layer of second conductive material covers some regions of the organic optoelectronic material while leaving other regions uncovered or exposed.
- the patterned layer of second conductive material serves to define a plurality of optoelectronc devices, specifically the organic optoelectronic devices are defined by the areas of overlap of the first conductive material and the second conductive material.
- the patterned layer of second conductive material effectively acts as a mask, protecting the underlying layer of organic optoelectronic material during the process for the removal of the exposed organic optoelectronic material.
- Electrical connectors are deposited to provide electrical connections between organic optoelectronic devices on the substrate.
- Preferred methods or selectively removing said organic optoelectronic material comprise removing said organic optoelectronic material using a method selected from dry etching, laser ablation, wet etching, scribing, abrasive blasting or adhesive lift off. Dry etching is a more preferred method, in particular dry etching using an oxygen plasma such as an O 2 /CF plasma.
- said second conductive material partially overlies said first conductive material, such an arrangement enables electrical connections to be more readily made between neighbouring devices.
- the second conductive material only partially overlies the first conductive material
- removal of the organic optoelectronic material not covered by the second conductive material uncovers regions of the first conductive material.
- the removal of organic optoelectronic material from regions of the first conductive material enables electrical connection to be made between the first and second conductive materials of different organic optoelectronic devices in an efficient manner simply by depositing the connecting material such that it overlies the second conductive material of a first device and the first conductive material of a second device.
- the connecting material may be deposited by thermal deposition, e-beam evaporation or, where a suitable conducting material is used, by printing techniques such as ink-jet printing or screen printing.
- said first conductive material and said substrate are at least semitransparent or said second conductive material is at least semitransparent. Where the first and second conductive materials are opaque light may enter or leave the device through the edge of the device.
- said layer of organic optoelectronic material comprises at least an organic electron donor and at least an organic electron acceptor. Preferably at least one of said organic electron donor and said organic electron acceptor comprises a semiconductive organic polymer.
- organic optoelectronic material comprises a light emitting polymer.
- said method further comprises the step of providing a layer of hole injecting or hole transporting material over said patterned layer of first conductive material.
- said substrate comprises a plastic substrate.
- Suitable plastics include acrylic resins, polycarbonate resins, polyester resins, polyethylene terephthalate resins and cyclic olefin resins.
- the present invention is also directed to organic optoelectronic devices prepared according to the above method, in particular the present invention is directed to a plurality of electrically connected organic optoelectronic devices on a substrate obtainable according to the method of the present invention.
- Preferred optoelectronic devices include organic photovoltaic devices and organic electroluminescent devices.
- the present invention is directed to a substrate comprising both organic photovoltaic devices and organic electroluminescent devices.
- Figure 1 illustrates a method of preparation of electrically connected organic optoelectronic devices according to the present invention.
- Figure 2 shows a method of preparing series connected organic optoelectronic devices.
- Figure 3 shows a method of preparing a device on a single substrate comprising a combination of organic electroluminescent devices and organic photovoltaic devices.
- Figure 4 shows a large array of series connected organic photovoltaic devices for high voltage applications.
- Figure 5 shows a d.c. voltage converter comprising a large array of series connected organic photovoltaic devices on a single substrate and a light emitting polymer device.
- FIG. 1f shows a plurality of series connected organic photovoltaic devices 110 on a substrate 101.
- Each photovoltaic device comprises an electrode comprising a high work function conducting material suitable for accepting positive charge carriers or holes from the device, known as the anode 102, a layer of organic photovoltaic material capable of converting incident light into electricity 103 and an electrode comprising a low work function material suitable for accepting negative charge carriers, or electrons, from the device, known as the cathode 104.
- Neighbouring devices are electrically connected by connectors of a suitable conducting material 105.
- Organic photovoltaic diodes comprise a layer of organic photoconductive material between an anode and a cathode.
- Organic distributed heterojunction devices are one particularly efficient class of organic photovoltaic devices and operate in the following manner.
- the electrodes of different work function set up an internal electric field across the device.
- the organic layer comprises a mixture of a material having a higher electron affinity and a material having a lower electron affinity. Absorption of light by the materials of the organic layer generates bound electron-hole pairs, termed excitons.
- Excitons generated on the material of lower electron affinity dissociate by transfer of an electron to the material of higher electron affinity, the material of lower electron affinity is sometimes referred to as the electron donor or simply donor.
- Excitons generated on the material of higher electron affinity dissociate by transfer of a hole to the material of lower electron affinity, the material of higher electron affinity is sometimes referred to as the electron acceptor or simply acceptor.
- the electrons and holes generated by dissociation of the excitons then move through the device, with electrons moving to the lower work function cathode and holes moving to the higher work function anode. In this way light incident on the device generates a current which may be used in an external circuit.
- the substrate 101 of the organic photovoltaic device should provide mechanical stability to the device and act as a barrier to seal the device from the environment. Where it is desired that light enter or leave the device through the substrate, the substrate should be transparent or semi-transparent. Glass is widely used as a substrate due to its excellent barrier properties and transparency. Other suitable substrates include ceramics, as disclosed in WO02/23579 and plastics such as acrylic resins, polycarbonate resins, polyester resins, polyethylene terephthalate resins and cyclic olefin resins. Plastic substrates may require a barrier coating to ensure that they remain impermeable. The substrate may comprise a composite material such as the glass and plastic composite disclosed in EP0949850.
- the anode 102 comprises a high work function material suitable for accepting holes into the layer of organic photovoltaic material.
- Suitable anode materials typically have a work function of greater than 4.3 eV and may be selected from the group comprising indium-tin oxide (ITO), tin oxide, aluminum or indium doped zinc oxide, magnesium-indium oxide, cadmium tin-oxide, gold, silver, nickel, palladium and platinum.
- Conducting organic polymers such as polyaniline and polythiophene and their derivatives may also be used as the anode material.
- the anode material may be deposited upon the substrate using any appropriate technique such as sputtering, vapour deposition, printing, including ink-jet printing, screen printing and flexographic printing, or spraying.
- the anode material may be patterned post-deposition by a subtractive technique such as photolithography. Alternatively the anode material may be patterned during deposition by an additive technique such as screen printing.
- Figure 1a) shows a layer of anode material 102 overlying a substrate 101.
- Figure 1b) shows a layer of anode material 102 having been patterned by a subtractive technique overlying a substrate 101, the substrate is exposed at portions where the material forming the anode has been removed.
- the organic photovoltaic device may include further organic layers between the anode and cathode to improve charge extraction and transport.
- a layer of hole-transporting material may be situated over the anode. The hole-transport material serves to increase charge conduction through the device.
- the preferred hole-transport material used in the art is a conductive organic polymer such as polystyrene sulfonic acid doped polyethylene dioxythiophene (PEDOT:PSS) as disclosed in WO98/05187, although other hole transporting materials such as doped polyaniline or TPD (N,N'-diphenyl-N,N'-bis(3- methylphenyl)[1,1'-biphenyl]-4,4'-diamine) may also be used.
- the layer of hole transporting material may be deposited by any suitable technique such as vapour deposition or, where the hole transporting material is soluble, solution processing techniques such as spin-coating, screen-printing or ink-jet printing may be used.
- the organic photovoltaic material 103 preferably comprises an electron donor and electron acceptor.
- the electron donor and acceptor may comprise polymers or low molecular weight compounds.
- the electron donor and acceptor may be present as two separate layers, as disclosed in WO99/49525, or as a blend, as disclosed in US5670791, a so called bulk heterojunction.
- the electron donor and acceptor may be selected from perylene derivatives such as N, N'-diphenylglyoxaline-3, 4, 9, 10- perylene tetracarboxylic acid diacidamide, fullerenes (C 60 ), fullerene derivatives and fullerene containing polymers and semiconducting organic polymers such as polyfluorenes, polybenzothiazoles, polytriarylamines, poly(phenylenevinylenes), polyphenylenes, polythiophenes, polypyrroles, polyacetylenes, polyisonaphthalenes and polyquinolines.
- perylene derivatives such as N, N'-diphenylglyoxaline-3, 4, 9, 10- perylene tetracarboxylic acid diacidamide
- fullerenes C 60
- fullerene derivatives and fullerene containing polymers and semiconducting organic polymers such as polyfluorenes, polybenzothiazoles,
- Preferred polymers include MEH-PPV (poly(2-methoxy, 5-(2'- ethyl)hexyloxy-p-phenylenevinylene)), MEH-CN-PPV (poly (2,5-bis (nitrilemethyl)-l- methoxy-4- (2-ethyl-hexyloxy) benzene-co-2,5-dialdehyde-l-methoxy4- (2- ethylhexyloxy) benzene)) and CN-PPV cyano substituted PPV, polyalkylthiophenes, such as poly(3-hexylthiophene), POPT poly(3 (4-octylphenyl)thiophene) and poly(3- dodecylthiophene), polyfluorenes, such as poly(2,7-(9,9-di-n-octylfluorene), poly(2,7- (9,9-di-n-
- Typical device structures include a blend of N, N'- diphenylglyoxaiine-3, 4, 9, 10-perylene tetracarboxylic acid diacidamide and poly(3- dodecylthiophene), a layered structure comprising a layer of MEH-PPV and a layer of C 6 o, a blend of MEH-PPV and C 60 , a layered structure comprising a layer of MEH- CN-PPV and a layer of POPT, a blend comprising MEH-PPV and CN-PPV and a blend comprising poly(3-hexylthiophene) and poly(2,7-(9,9-di-n-octylfl ⁇ orene)-(4,7-di- 2-thienyl-(benzothiazole))
- the organic photovoltaic material may be deposited by any suitable technique. Where the organic photovoltaic materials are insoluble vapour deposition will be the preferred method. Where the organic photovoltaic materials are soluble solution processing deposition techniques will be preferred. Suitable solution processing techniques include spin-coating, dip-coating, doctor-blade coating, spraying, screen- printing, ink-jet printing and gravure printing.
- Figure 1c) shows a substrate 101, a patterned anode 102 and a layer of organic photovoltaic material 103 which has been deposited over the substrate and anode using a coating technique such as spin- coating.
- the organic photovoltaic device may include a further layer of electron accepting or hole blocking material between the layer of organic photovoltaic material 103 and the cathode 104.
- the cathode 104 comprises a layer of material of low work function.
- suitable materials for the cathode include Li, Na, K, Rb, Be, Mg, Ca, Sr, Ba, Yb, Sm and Al.
- the cathode may comprise an alloy of such metals or an alloy of such metals in combination with other metals, for example the alloys MgAg and LiAI.
- the cathode preferably comprises multiple layers, for example Ca/AI or LiAI/AI.
- the device may further comprise a layer of dielectric material between the cathode and the emitting layer, such as is disclosed in WO 97/42666.
- an alkali or alkaline earth metal fluoride as a dielectric layer between the cathode and the emitting material.
- Preferred cathode structures include LiF/Ca/AI and BaF 2 /Ca/AI.
- the cathode be transparent, for example when an opaque substrate or anode is used or where it is desired that the whole device be transparent.
- Suitable transparent cathodes include a cathode comprising a thin layer of highly conductive material such as Ca and a thicker layer of transparent conducting material such as ITO, a preferred transparent cathode structure comprises BaF 2 /Ca/Au.
- the cathode is typically deposited by vapour deposition or sputtering.
- Figure 1d shows a substrate 101, a patterned anode 102, a layer of organic photovoltaic material 103 and a patterned cathode 104.
- the cathode is deposited over the organic photovoltaic material to form a pattern, this is typically achieved by depositing the cathode material as a vapour through a shadow mask.
- Alternative methods of patterning the cathode include printing and photolithography.
- the patterned regions of anode and cathode material define a series of organic photovoltaic devices, each device comprising an anode, an opposing cathode and organic photovoltaic material situated between.
- Figure 1d) shows the cathode of each device partially overlying the anode of each device i.e.
- the cathode covers a large portion of the anode but is slightly offset to the anode such that at one edge of the device the cathode overhangs the anode and at the other edge of the device the cathode does not completely cover the anode.
- the organic photovoltaic material does provide some degree of electrical connection between neighbouring photovoltaic devices but owing to the high resistance of the organic photovoltaic material this is not sufficient to provide an effective electrical connection of the devices.
- the organic photovoltaic material may be removed by an etching technique or a mechanical technique.
- the cathode effectively acts as a mask, defining which areas are to be removed i.e. the uncovered portions of organic optoelectronic material and also protecting the organic optoelectronic material of the organic optoelectronic devices from damage.
- Suitable etching techniques include wet etching wherein the exposed regions of organic photovoltaic material are subjected to etching using a solvent in which the organic materials are soluble, for example toluene may be used to remove the organic photovoltaic layer and methanol may be used to remove the PEDOT layer.
- the organic material may be removed using a more aggressive etching solution such as an acidic solution, provided that this solution does not damage the material of the cathode.
- the organic material may be removed using dry etching wherein the organic material is exposed to a gaseous or plasma etching material, suitable dry etching materials include oxygen plasma.
- Mechanical techniques for removing the organic photovoltaic material include scribing the organic material with a sharp instrument, blasting the organic material with fine particles of abrasive material, bombarding the organic material with ions, lifting off organic material by contacting the organic material with a sheet of adhesive and then lifting off the sheet or removing the organic material using laser ablation.
- a suitable dry etching method involves exposing the organic optoelectronic devices to an RF or microwave induced O 2 /CF 4 plasma for a period of between 30 and 360 seconds, preferably of between 60 and 240 seconds.
- An advantage of O 2 /CF plasma etching is that it efficiently removes both the organic optoelectronic material and additional organic layers which are generally included in the devices, in particular the polythiophene derivative PEDOT-PSS which is widely used as a hole transport material.
- Laser ablation has also been found to be a suitable technique for the removal of the organic optoelectronic material.
- Laser ablation involves the use of a pulsed laser having a pulse energy density of 0.4 to 1.2J/cm 2 , a pulse rate of 50 to 150Hz and a spot size of radius 2 to 20mm.
- the laser and the substrate comprising the organic optoelectronic devices are moved in relation to each other such that the laser is focussed on the areas of exposed organic optoelectronic material causing this material to vaporise and so removing it from the substrate.
- FIG. 1f shows a series of organic photovoltaic devices 110 electrically connected by a number of aluminum contacts 105. Electrical contacts may be made between any devices on a substrate although generally contacts are made between neighbouring devices. The electrical contacts may be formed by depositing an electrically conducting material between devices. Deposition may be carried out using a shadow mask whereby a conducting material such as aluminum is deposited as a vapour on specific regions of the substrate through a patterned mask. Alternatively a suitable conductor may be printed onto the substrate by a technique such as screen printing or ink-jet printing. Suitable conducting materials for printing include silver resin pastes, graphite resin pastes and organic conducting materials such as PEDOT:PSS and polyaniline.
- the cathode only partially overlies the anode.
- the effect of this is that on removal of the organic optoelectronic material not covered by the cathode a region of anode is also exposed, this can be readily seen at feature 106 Figure 1f).
- the region of exposed anode can then be connected to a neighbouring cathode through the deposition of the electrical connector 105.
- An advantage of this arrangement is that in overlapping the anode, the cathode also provides that a region of optoelectronic material 107 remains between the cathode and the substrate. This region of organic optoelectronic material serves to insulate the anode of the neighbouring device from ,the connector 105.
- the organic optoelectronic device is provided with an encapsulation means which acts to seal the device from the atmosphere.
- encapsulation means which acts to seal the device from the atmosphere.
- Suitable methods of encapsulation include covering the device on the cathode side with a metal can or glass sheet or providing an impermeable film over the device, such as a film comprising a stack of polymer layers and inorganic layers.
- Organic electroluminescent devices comprise, on a substrate, a high work function anode, an optional layer of hole transporting material, a layer of organic light emitting material and a cathode. Suitable materials, and methods for their deposition and patterning, for the substrate, anode, hole transporting layer and the cathode are as described above in relation to organic photovoltaic devices.
- Organic light emitting materials for use in organic light emitting devices include polymeric light emitting materials, such as disclosed in Bernius et al Advanced Materials, 2000, 12, 1737, low molecular weight light emitting materials such aluminum trisquinoline, as disclosed in US5294869, light emitting dendrimers as disclosed in WO99/21935 and phosphorescent materials as disclosed in WOOO/70655.
- the light emitting material may comprise a blend of a light emitting material and a fluorescent dye or may comprise a layered structure of a light emitting material and a fluorescent dye. Due to their processability soluble light emitting materials are preferred, in particular soluble light-emitting polymers.
- Light emitting polymers include polyfluorene, polybenzothiazole, polytriarylamine, poly(phenylenevinylene) and polythiophene.
- Preferred light emitting polymers include homopolymers and copolymers of 9,9-di-n-octylfluorene (F8), N,N-bis(phenyl)-4-sec- butylphenylamine (TFB) and benzothiadiazole (BT).
- the substrate comprises a flexible, impervious plastic material such as an acrylic resin, a polycarbonate resin, a polyester resin, a polyethylene terephthalate resin or a cyclic olefin resin, or a laminate comprising a plastic resin and an impervious inorganic material.
- a device on a plastic substrate may be prepared in a so-called roll-to-roll or web process whereby the organic materials are deposited by solution deposition techniques such as printing or spraying.
- the present method has the advantage that, where suitable materials are selected, the electrical connectors can be deposited by the aforementioned solution processing techniques.
- the method of the present invention allows access to a variety of arrangements of electrically connected organic optoelectronic devices which hitherto could only be obtained using complex multistep techniques or through the integration of a number of separate units.
- the following describes a number of arrangements of organic optoelectronic devices which are made readily accessible by the method of the present invention.
- the series connection of photovoltaic devices allows higher voltages to be obtained.
- a typical organic photovoltaic cell has an open circuit voltage of around 1 V. Such low voltages are insufficient to power even low energy demanding applications such as calculators and watches.
- the present invention provides a method whereby several organic photovoltaic cells can be connected in series on a single substrate, allowing greater voltages to be generated.
- the present invention has the advantage that the connected organic photovoltaic cells lie on a single substrate allowing easier integration of the unit into electronic devices.
- Figure 2 shows a method for preparing a substrate comprising four series connected organic photovoltaic cells.
- a substrate 201 comprising a patterned layer of ITO 202 is prepared using photolithography. The ITO is patterned such that it defines the areas of the four eventual photovoltaic cells Figure 2a).
- a layer of hole transporting PEDOT-PSS is deposited over the ITO by spin-coating (not shown).
- a layer comprising a blend of poly(3-hexylthiophene) and poly(2,7-(9,9-di-n-octylfluorene)- (4,7-di-2-thienyl-(benzothiazole)) is then spin-coated over the layer of PEDOT-PSS (not shown).
- the cathodes are deposited.
- the cathodes comprise a layer of aluminum of thickness 300nm and are deposited by vapour deposition through a shadow mask.
- Figure 2b) shows the pattern of the cathodes 203 deposited over the organic layers.
- the cathodes are patterned such that the cathode at least partially overhangs the anode.
- the organic layers which are not covered by the cathode are then removed by exposure to an O 2 /CF 4 plasma.
- Metal interconnects are deposited over the cathodes to provide electrical connections between neighbouring devices.
- the pattern of the interconnects 204 is shown in Figure 2c).
- the series connected devices are finally encapsulated with a glass sheet placed over the cathodes of the devices and adhered to the substrate using a UV curing epoxy resin.
- Figure 2d shows a substrate 201 comprising four series connected organic photovoltaic devices.
- the devices are comprised of an anode 202 and a cathode 206 with layers of organic optoelectronic material between the two electrodes.
- the devices are electrically connected by connectors 207.
- Feature 208 shows a region of anode material which has been exposed by the plasma treatment and is connected to the cathode of a neighbouring organic photovoltaic device.
- Organic electroluminescent devices generally operate at voltages in the region of 1 to 15V. For applications in domestic, commercial and industrial lighting it is preferable that the light source is driven from mains voltage, for example 240V. To drive organic electroluminescent devices from mains voltage therefore requires the use of a transformer.
- the present invention provides a method for connecting a number of organic light emitting devices in series, these series connected devices can be driven a higher voltages and do not require the use of a transformer or other voltage conversion means.
- Series connected organic electroluminescent devices may be prepared by the above described method for the preparation of series connected organic photovoltaic devices with the layer of organic photovoltaic material being replaced by an organic electroluminescent material such as poly(9,9-di-n- octylfluorene). Other arrangements of organic electroluminescent devices may also be prepared such as series connected organic electroluminescent which may be driven by AC voltages.
- the method of the present invention may be used to provide substrates comprising electrically connected organic photovoltaic devices and organic electroluminescent devices.
- the advantages of such an arrangement are that the organic photovoltaic devices may be used to drive the organic electroluminescent devices so providing a source of illumination or an information display which requires neither a connection to a grid power supply nor a power source such as a battery.
- Figure 3a) shows a substrate 301 comprising a patterned layer of ITO 302 acting as an anode, the anode is patterned to define four organic photovoltaic devices around the edges of the substrate and an organic electroluminescent device at the centre of the substrate.
- a layer of hole transporting PEDOT-PSS is deposited over the ITO by spin-coating (not shown).
- a layer comprising a blend of poly(3-hexylthiophene) and pbly(2,7-(9,9-di-n- octylfluorene)-(4,7-di-2-thienyl-(benzothiazole)) is then spin-coated over the layer of PEDOT-PSS (not shown).
- the device cathodes are deposited.
- the cathodes comprise a layer of aluminum of thickness 300nm and are deposited by vapour deposition through a shadow mask.
- Figure 3b) shows the shape of the cathodes 303 of the organic photovoltaic devices which are deposited through the shadow mask.
- the exposed organic material is then removed by plasma etching and the organic photovoltaic devices are electrically connected using connectors 304 having the shape shown in Figure 3c).
- a layer of PEDOT.PSS is deposited by spin- coating over the substrate.
- a layer of the organic electroluminescent polymer poly(9,9-di-n-octylfluorene) is then spin-coated over the layer of PEDOTPSS.
- a cathode comprising a 5nm layer of LiF, a 10nm layer of Ca and a 100nm layer of Al is deposited over through a shadow mask.
- Figure 3d) shows the shape of the cathode 305 of the organic electroluminescent device.
- Exposed organic material is then removed by plasma etching leaving the layer of PEDOT:PSS and the layer of poly(9,9-di-n-octylfluorene) beneath the cathode.
- the organic electroluminescent device is then connected to the organic photovoltaic devices by means of a connector 306 shown in Figure 3e).
- Figure 3f shows four organic photovoltaic devices and an organic electroluminescent device connected in series on a single substrate 301.
- the devices comprise a common anode 302, layers of hole transporting material and photovoltaic material in the organic photovoltaic devices and a layer of hole transport material and a layer of organic electroluminescent material in the organic electroluminescent device.
- the organic photovoltaic devices comprise cathode 303 and the organic electroluminescent device comprises a cathode 305.
- the organic photovoltaic devices are connected in series by connectors 304 and the organic electroluminescent devices is connected to the organic photovoltaic devices by connector 306.
- Figure 4 shows an array of series connected organic photovoltaic devices 402 on a single substrate 401.
- the devices are electrically connected by connectors 403.
- Such an array may be used to generate high voltages, in the example shown the array of 14 x 14 organic photovoltaic devices, each capable of generating 1V, may be used to generate up to, 196V.
- the method of the present invention provides an efficient process for connecting large numbers of small organic electronic devices on a single substrate. For example using a substrate of size 150mm 2 and organic photovoltaic devices of size 9mm 2 an array of 30 x 30 organic photovoltaic devices may be connected in series, generating up to 900V.
- FIG. 5 shows a light emitting polymer device 502 on a glass substrate 501 and a large array of series connected organic photovoltaic devices 504 on a second glass substrate 503 (for clarity the series connectors are not shown).
- Light is emitted from the light emitting device on the application of a voltage of approximately 4-5V between the electrodes of the device.
- the emitted light is incident on the organic photovoltaic devices and, as described above, generates a voltage of several hundreds of volts, depending on the number of series connected devices in the array.
- a d.c. voltage converter of the type described may also be prepared by providing the organic light emitting device and the array of series connected organic photovoltaic devices on either side of a single substrate, thereby simplifying the structure of the voltage converter.
- a substrate patterned with ITO as shown in Figure 2a) was cleaned in an ultrasonic bath for ten minutes at 60°C, baked for 20mins at 110°C and treated with UV/Ozone for 90s. 10ml of an aqueous solution of PEDOT-PSS (available from Bayer as Baytron) was spin-coated onto the substrate and the substrate was baked on a hotplate to remove remaining solvent. A layer of PEDOT:PSS having a thickness of 60nm was deposited.
- a solution comprising a 1:1 blend of poly(3-hexylthiophene) and poly(2,7-(9,9-di-n-octylfluorene)-(4,7-di-2-thienyl-(benzothiazole)) at a concentration of 18mg/l in toluene was spin-coated onto the layer of PEDOT:PSS.
- a layer of polymer blend of thickness 80nm was deposited.
- Aluminium cathodes were deposited over the organic layers through a shadow mask. An initial deposition rate of 0.1 nms *1 was maintained to a total thickness of approximately 50nm, after which the rate was increased to 0.5nms-1. A total cathode thickness of 300nm was obtained.
- Figure 2b) shows the pattern of the deposited cathodes.
- the substrate was placed in a barrel etcher and treated for three minutes with an O /CF plasma.
- the O 2 /CF 4 plasma treatment was carried out in a RF barrel etcher of dimensions 300mm diameter, 450 mm depth, with a gas mixture of 0.5-2% CF in oxygen, at a pressure of 1.5 Torr and a power of 400 W.
- Aluminum connectors were then deposited to electrically connect neighbouring devices as shown in Figure 2d). The connectors were deposited through a shadow mask to a thickness of 300nm.
- the substrate was annealed overnight for approximately 14 hours at 140°C under vacuum in a glove box furnace.
- the substrate was encapsulated using a glass cover slide adhered with an epoxy resin.
- the four series connected devices were bonded to a pair of electrical leads.
- the voltage generated by the four series connected devices was measured to be 4V.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
- Handcart (AREA)
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03796194A EP1573816B1 (en) | 2002-12-20 | 2003-12-18 | Method of preparing electrically connected optoelectronic devices |
AU2003298447A AU2003298447A1 (en) | 2002-12-20 | 2003-12-18 | Electrical connection of optoelectronic devices |
AT03796194T ATE519230T1 (en) | 2002-12-20 | 2003-12-18 | METHOD FOR PRODUCING ELECTRICALLY CONNECTED OPTOELECTRIC SEMICONDUCTOR DEVICES |
US10/540,007 US7510885B2 (en) | 2002-12-20 | 2003-12-18 | Method of preparing electronically connected optoelectronic devices, and optoelectronic devices |
JP2004561651A JP2006511073A (en) | 2002-12-20 | 2003-12-18 | Optical device electrical connection |
HK06107030.1A HK1087245A1 (en) | 2002-12-20 | 2006-06-21 | A method for preparing a plurality of connected optoelectronic devices and corresponding optoelectronic devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0229653.1A GB0229653D0 (en) | 2002-12-20 | 2002-12-20 | Electrical connection of optoelectronic devices |
GB0229653.1 | 2002-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004057674A2 true WO2004057674A2 (en) | 2004-07-08 |
WO2004057674A3 WO2004057674A3 (en) | 2004-12-29 |
Family
ID=9950036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2003/005571 WO2004057674A2 (en) | 2002-12-20 | 2003-12-18 | Electrical connection of optoelectronic devices |
Country Status (10)
Country | Link |
---|---|
US (1) | US7510885B2 (en) |
EP (1) | EP1573816B1 (en) |
JP (1) | JP2006511073A (en) |
KR (1) | KR100726061B1 (en) |
CN (1) | CN100470797C (en) |
AT (1) | ATE519230T1 (en) |
AU (1) | AU2003298447A1 (en) |
GB (1) | GB0229653D0 (en) |
HK (1) | HK1087245A1 (en) |
WO (1) | WO2004057674A2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013456A (en) * | 2004-05-14 | 2006-01-12 | Konarka Technologies Inc | Apparatus and method for manufacturing electronic component having at least one active organic layer |
GB2416621A (en) * | 2004-07-27 | 2006-02-01 | Cambridge Display Tech Ltd | Laminated interconnects for opto-electronic device modules |
WO2006061589A1 (en) * | 2004-12-06 | 2006-06-15 | Plastic Logic Limited | Electronic devices |
EP1717876A1 (en) * | 2005-04-27 | 2006-11-02 | C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa | Interconnect in polymer light-emitting or light-detecting devices or solar cells |
JP2006351721A (en) * | 2005-06-14 | 2006-12-28 | Matsushita Electric Works Ltd | Stacked organic solar cell and its manufacturing method |
WO2007025188A1 (en) * | 2005-08-26 | 2007-03-01 | The Trustees Of Princeton University | Encapsulating electrode for organic device |
JP2007115849A (en) * | 2005-10-19 | 2007-05-10 | Matsushita Electric Works Ltd | Laminated organic solar cell |
KR100756286B1 (en) * | 2005-03-16 | 2007-09-06 | 한국과학기술원 | Integrated thin-film solar cells and method of manufacturing thereof |
US7378781B2 (en) | 2005-09-07 | 2008-05-27 | Nokia Corporation | Acoustic wave resonator with integrated temperature control for oscillator purposes |
FR2913146A1 (en) * | 2007-02-23 | 2008-08-29 | Saint Gobain | Discontinuous electrode e.g. indium oxide based transparent layer, for organic LED device, has electrode zones each having specific length in direction of row of zones, where zones of each row are separated by distance |
WO2009130164A2 (en) * | 2008-04-21 | 2009-10-29 | The Technical University Of Denmark | Photovoltaic device |
WO2010021374A1 (en) * | 2008-08-22 | 2010-02-25 | コニカミノルタホールディングス株式会社 | Organic photoelectric conversion element, solar cell and optical sensor array |
US7800194B2 (en) | 2002-04-23 | 2010-09-21 | Freedman Philip D | Thin film photodetector, method and system |
EP1684354A3 (en) * | 2004-12-22 | 2010-10-06 | General Electric Company | Vertical interconnect for organic electronic devices |
WO2010034431A3 (en) * | 2008-09-26 | 2010-11-18 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Organic opto-electric component and method for producing an organic opto-electric component |
US8339031B2 (en) | 2006-09-07 | 2012-12-25 | Saint-Gobain Glass France | Substrate for an organic light-emitting device, use and process for manufacturing this substrate, and organic light-emitting device |
US8421347B2 (en) | 2009-08-27 | 2013-04-16 | Kaneka Corporation | Integrated organic light-emitting device, method for producing organic light-emitting device and organic light-emitting device produced by the method |
US8593055B2 (en) | 2007-11-22 | 2013-11-26 | Saint-Gobain Glass France | Substrate bearing an electrode, organic light-emitting device incorporating it, and its manufacture |
EP2245684B1 (en) * | 2008-01-24 | 2013-12-25 | Global OLED Technology LLC | Electroluminescent device having improved brightness uniformity |
US8753906B2 (en) | 2009-04-02 | 2014-06-17 | Saint-Gobain Glass France | Method for manufacturing a structure with a textured surface for an organic light-emitting diode device, and structure with a textured surface |
US8786176B2 (en) | 2007-12-27 | 2014-07-22 | Saint-Gobain Glass France | Substrate for organic light-emitting device, and also organic light-emitting device incorporating it |
US8808790B2 (en) | 2008-09-25 | 2014-08-19 | Saint-Gobain Glass France | Method for manufacturing a submillimetric electrically conductive grid coated with an overgrid |
US8907323B2 (en) * | 2002-04-23 | 2014-12-09 | Philip D. Freedman | Microprocessor assembly |
US9099673B2 (en) | 2006-11-17 | 2015-08-04 | Saint-Gobain Glass France | Electrode for an organic light-emitting device, acid etching thereof and also organic light-emitting device incorporating it |
US9108881B2 (en) | 2010-01-22 | 2015-08-18 | Saint-Gobain Glass France | Glass substrate coated with a high-index layer under an electrode coating, and organic light-emitting device comprising such a substrate |
US9114425B2 (en) | 2008-09-24 | 2015-08-25 | Saint-Gobain Glass France | Method for manufacturing a mask having submillimetric apertures for a submillimetric electrically conductive grid, mask having submillimetric apertures and submillimetric electrically conductive grid |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005086255A1 (en) * | 2004-02-09 | 2005-09-15 | General Electric Company | Large-area photovoltaic devices and methods of making same |
CN100508238C (en) * | 2004-05-11 | 2009-07-01 | Lg化学株式会社 | Organic electronic device |
DE102005037289A1 (en) * | 2005-08-08 | 2007-02-22 | Siemens Ag | Photodetector, X-ray flat panel detector and method of manufacturing the same |
KR100785954B1 (en) * | 2006-05-04 | 2007-12-14 | 부산대학교 산학협력단 | Organic Photovoltaic Devices with Improved Power Conversion Efficiency and Method for Fabricating the same |
US7601558B2 (en) * | 2006-10-24 | 2009-10-13 | Applied Materials, Inc. | Transparent zinc oxide electrode having a graded oxygen content |
DE102007038797A1 (en) * | 2007-08-09 | 2009-02-19 | Biametrics Marken Und Rechte Gmbh | Investigation of molecular interactions on and / or in thin layers |
DE102008039337A1 (en) * | 2008-03-20 | 2009-09-24 | Siemens Aktiengesellschaft | Spraying apparatus, method and organic electronic component |
KR100979677B1 (en) * | 2008-04-28 | 2010-09-02 | 한국화학연구원 | Preparation method of organic photovoltaic cell's photoactive layer using aerosol jet printing |
EP2144290A1 (en) * | 2008-07-08 | 2010-01-13 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Electronic device and method of manufacturing the same |
US7932124B2 (en) * | 2008-07-16 | 2011-04-26 | Konarka Technologies, Inc. | Methods of preparing photovoltaic modules |
US8653544B2 (en) * | 2009-03-05 | 2014-02-18 | Koninklijke Philips N.V. | OLEDs connected in series |
US20100307799A1 (en) * | 2009-06-06 | 2010-12-09 | Chiang Cheng-Feng | Carrier Structure for Electronic Components and Fabrication Method of the same |
JP5648276B2 (en) * | 2009-10-30 | 2015-01-07 | 三菱化学株式会社 | Solar cell and manufacturing method thereof |
EP2355199B1 (en) * | 2010-01-29 | 2017-07-05 | Novaled GmbH | A method for producing an organic light emitting device |
JP2011124494A (en) * | 2009-12-14 | 2011-06-23 | Dainippon Printing Co Ltd | Organic thin film solar battery module |
JP5060541B2 (en) * | 2009-12-14 | 2012-10-31 | 大日本印刷株式会社 | Organic thin film solar cell module |
US8816335B2 (en) * | 2009-12-16 | 2014-08-26 | Koninklijke Philips N.V. | Method for creating serially-connected OLED devices |
JP2013516735A (en) * | 2010-01-08 | 2013-05-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method for maskless manufacturing of organic light emitting diode device |
JP5517640B2 (en) * | 2010-01-25 | 2014-06-11 | 日本写真印刷株式会社 | Organic thin film solar cell and manufacturing method thereof (2) |
JP5517639B2 (en) * | 2010-01-25 | 2014-06-11 | 日本写真印刷株式会社 | Organic thin film solar cell and manufacturing method thereof (1) |
JP5561722B2 (en) * | 2010-01-25 | 2014-07-30 | 日本写真印刷株式会社 | Manufacturing method of organic thin film solar cell and transfer sheet used therefor |
JP5561721B2 (en) * | 2010-01-25 | 2014-07-30 | 日本写真印刷株式会社 | Manufacturing method of organic thin film solar cell and transfer sheet used therefor |
JP5698921B2 (en) * | 2010-06-17 | 2015-04-08 | 株式会社カネカ | Organic EL light emitting device and method for manufacturing the same |
JP5007772B2 (en) * | 2010-06-23 | 2012-08-22 | 大日本印刷株式会社 | Organic solar cell module and organic solar cell panel |
WO2012044971A2 (en) * | 2010-09-30 | 2012-04-05 | University Of South Florida | All spray see-through organic solar array with encapsulation |
JP5609537B2 (en) * | 2010-10-26 | 2014-10-22 | 住友化学株式会社 | Power generator |
CN103314642B (en) * | 2011-01-13 | 2016-07-06 | 株式会社钟化 | Organic EL light emitting element and method for manufacturing same |
JP2013115084A (en) * | 2011-11-25 | 2013-06-10 | Rohm Co Ltd | Organic thin-film solar cell and method for manufacturing the same |
WO2014145609A1 (en) | 2013-03-15 | 2014-09-18 | University Of South Florida | Mask-stack-shift method to fabricate organic solar array by spray |
JP5808021B2 (en) * | 2013-07-16 | 2015-11-10 | 国立大学法人名古屋大学 | Activation container and kit used for electron affinity reduction processing apparatus, electron affinity reduction processing apparatus including the kit, photocathode electron beam source, electron gun including photocathode electron beam source, free electron laser accelerator, transmission Electron microscope, scanning electron microscope, electron holography microscope, electron beam drawing apparatus, electron beam diffractometer and electron beam inspection apparatus |
KR102367217B1 (en) * | 2013-12-17 | 2022-02-24 | 옥스포드 유니버시티 이노베이션 리미티드 | Photovoltaic device comprising a metal halide perovskite and a passivating agent |
DE102015103796A1 (en) * | 2015-03-16 | 2016-09-22 | Osram Oled Gmbh | Optoelectronic component and method for producing an optoelectronic component |
JP2016195175A (en) * | 2015-03-31 | 2016-11-17 | 株式会社東芝 | Photovoltaic module |
FR3043359B1 (en) * | 2015-11-05 | 2017-12-29 | Commissariat Energie Atomique | SUBSTRATE FOR CONDUCTIVE INK |
KR102122847B1 (en) * | 2019-02-11 | 2020-06-15 | 서울바이오시스 주식회사 | Light emitting diode array on wafer level |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623751A (en) * | 1982-12-03 | 1986-11-18 | Sanyo Electric Co., Ltd. | Photovoltaic device and its manufacturing method |
US5953585A (en) * | 1996-04-26 | 1999-09-14 | Pioneer Electric Corporation | Method for manufacturing an organic electroluminescent display device |
EP0986112A2 (en) * | 1998-09-11 | 2000-03-15 | Hewlett-Packard Company | An efficient method for fabricating organic light emitting diodes |
WO2002101838A1 (en) * | 2001-06-11 | 2002-12-19 | The Trustees Of Princeton University | Organic photovoltaic devices |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8909011D0 (en) | 1989-04-20 | 1989-06-07 | Friend Richard H | Electroluminescent devices |
US5294869A (en) | 1991-12-30 | 1994-03-15 | Eastman Kodak Company | Organic electroluminescent multicolor image display device |
GB9423692D0 (en) | 1994-11-23 | 1995-01-11 | Philips Electronics Uk Ltd | A photoresponsive device |
FR2730995B1 (en) | 1995-02-23 | 1997-04-04 | Cird Galderma | BI-AROMATIC COMPOUNDS DERIVED FROM AMIDE, PHARMACEUTICAL AND COSMETIC COMPOSITIONS CONTAINING THEM AND USES THEREOF |
GB9609282D0 (en) | 1996-05-03 | 1996-07-10 | Cambridge Display Tech Ltd | Protective thin oxide layer |
KR100806701B1 (en) | 1997-10-23 | 2008-02-27 | 아이시스이노베이션리미티드 | Light-emitting dendrimers ? deivices |
GB9806066D0 (en) | 1998-03-20 | 1998-05-20 | Cambridge Display Tech Ltd | Multilayer photovoltaic or photoconductive devices |
GB2335884A (en) | 1998-04-02 | 1999-10-06 | Cambridge Display Tech Ltd | Flexible substrates for electronic or optoelectronic devices |
DE60031729T2 (en) | 1999-05-13 | 2007-09-06 | The Trustees Of Princeton University | LIGHT-EMITTING, ORGANIC, ELECTROPHOSPHORESCENCE-BASED ARRANGEMENT WITH VERY HIGH QUANTITY LOSSES |
JP3357030B2 (en) * | 2000-09-01 | 2002-12-16 | 科学技術振興事業団 | Multiplier using resin-dispersed organic semiconductor film |
AU2000275768A1 (en) | 2000-09-12 | 2002-03-26 | Ceravision Limited | Electronic device |
JP2002313572A (en) * | 2001-04-13 | 2002-10-25 | Toyota Motor Corp | Organic el display device |
-
2002
- 2002-12-20 GB GBGB0229653.1A patent/GB0229653D0/en not_active Ceased
-
2003
- 2003-12-18 US US10/540,007 patent/US7510885B2/en not_active Expired - Fee Related
- 2003-12-18 WO PCT/GB2003/005571 patent/WO2004057674A2/en active Application Filing
- 2003-12-18 AU AU2003298447A patent/AU2003298447A1/en not_active Abandoned
- 2003-12-18 EP EP03796194A patent/EP1573816B1/en not_active Expired - Lifetime
- 2003-12-18 AT AT03796194T patent/ATE519230T1/en not_active IP Right Cessation
- 2003-12-18 KR KR1020057011638A patent/KR100726061B1/en active IP Right Grant
- 2003-12-18 CN CNB2003801069593A patent/CN100470797C/en not_active Expired - Fee Related
- 2003-12-18 JP JP2004561651A patent/JP2006511073A/en active Pending
-
2006
- 2006-06-21 HK HK06107030.1A patent/HK1087245A1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623751A (en) * | 1982-12-03 | 1986-11-18 | Sanyo Electric Co., Ltd. | Photovoltaic device and its manufacturing method |
US5953585A (en) * | 1996-04-26 | 1999-09-14 | Pioneer Electric Corporation | Method for manufacturing an organic electroluminescent display device |
EP0986112A2 (en) * | 1998-09-11 | 2000-03-15 | Hewlett-Packard Company | An efficient method for fabricating organic light emitting diodes |
WO2002101838A1 (en) * | 2001-06-11 | 2002-12-19 | The Trustees Of Princeton University | Organic photovoltaic devices |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 02, 5 February 2003 (2003-02-05) & JP 2002 313572 A (TOYOTA MOTOR CORP), 25 October 2002 (2002-10-25) * |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8907323B2 (en) * | 2002-04-23 | 2014-12-09 | Philip D. Freedman | Microprocessor assembly |
US7800194B2 (en) | 2002-04-23 | 2010-09-21 | Freedman Philip D | Thin film photodetector, method and system |
JP2006013456A (en) * | 2004-05-14 | 2006-01-12 | Konarka Technologies Inc | Apparatus and method for manufacturing electronic component having at least one active organic layer |
JP2013084968A (en) * | 2004-05-14 | 2013-05-09 | Merck Patent Gmbh | Device and method for manufacturing electronic component with at least one active organic layer |
JP2008508673A (en) * | 2004-07-27 | 2008-03-21 | ケンブリッジ ディスプレイ テクノロジー リミテッド | Stacked interconnects for organic opto-electronic devices |
WO2006010911A2 (en) * | 2004-07-27 | 2006-02-02 | Cambridge Display Technology Limited | Laminated interconnects for organic opto-electronic device modules |
GB2430806B (en) * | 2004-07-27 | 2009-04-01 | Cambridge Display Tech Ltd | Laminated interconnects for organic opto-electronic device modules |
WO2006010911A3 (en) * | 2004-07-27 | 2006-09-21 | Cambridge Display Tech Ltd | Laminated interconnects for organic opto-electronic device modules |
GB2430806A (en) * | 2004-07-27 | 2007-04-04 | Cambridge Display Tech Ltd | Laminated interconnects for organic opto-electronic device modules |
GB2416621A (en) * | 2004-07-27 | 2006-02-01 | Cambridge Display Tech Ltd | Laminated interconnects for opto-electronic device modules |
US8425272B2 (en) | 2004-07-27 | 2013-04-23 | Cambridge Display Technology Limited | Laminated interconnects for organic opto-electronic device modules and method |
WO2006061589A1 (en) * | 2004-12-06 | 2006-06-15 | Plastic Logic Limited | Electronic devices |
US9985207B2 (en) | 2004-12-06 | 2018-05-29 | Flexenable Limited | Electronic devices |
KR101261638B1 (en) * | 2004-12-22 | 2013-05-06 | 제너럴 일렉트릭 캄파니 | vertical interconnect for organic electronic devices |
EP1684354A3 (en) * | 2004-12-22 | 2010-10-06 | General Electric Company | Vertical interconnect for organic electronic devices |
KR100756286B1 (en) * | 2005-03-16 | 2007-09-06 | 한국과학기술원 | Integrated thin-film solar cells and method of manufacturing thereof |
EP1717876A1 (en) * | 2005-04-27 | 2006-11-02 | C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa | Interconnect in polymer light-emitting or light-detecting devices or solar cells |
JP2006351721A (en) * | 2005-06-14 | 2006-12-28 | Matsushita Electric Works Ltd | Stacked organic solar cell and its manufacturing method |
JP2009506554A (en) * | 2005-08-26 | 2009-02-12 | ザ トラスティーズ オブ プリンストン ユニヴァシティ | Encapsulated electrodes for organic devices |
WO2007025188A1 (en) * | 2005-08-26 | 2007-03-01 | The Trustees Of Princeton University | Encapsulating electrode for organic device |
US8058093B2 (en) | 2005-08-26 | 2011-11-15 | Global Photonic Energy Corp. | Method of forming an encapsulating electrode |
US7378781B2 (en) | 2005-09-07 | 2008-05-27 | Nokia Corporation | Acoustic wave resonator with integrated temperature control for oscillator purposes |
JP2007115849A (en) * | 2005-10-19 | 2007-05-10 | Matsushita Electric Works Ltd | Laminated organic solar cell |
US8339031B2 (en) | 2006-09-07 | 2012-12-25 | Saint-Gobain Glass France | Substrate for an organic light-emitting device, use and process for manufacturing this substrate, and organic light-emitting device |
US9099673B2 (en) | 2006-11-17 | 2015-08-04 | Saint-Gobain Glass France | Electrode for an organic light-emitting device, acid etching thereof and also organic light-emitting device incorporating it |
JP2010519699A (en) * | 2007-02-23 | 2010-06-03 | サン−ゴバン グラス フランス | Substrate holding discontinuous electrodes, organic electroluminescent device including the same, and fabrication thereof |
WO2008119899A3 (en) * | 2007-02-23 | 2009-03-26 | Saint Gobain | Substrate bearing a discontinuous electrode, organic electroluminescent device including same and manufacture thereof |
WO2008119899A2 (en) * | 2007-02-23 | 2008-10-09 | Saint-Gobain Glass France | Substrate bearing a discontinuous electrode, organic electroluminescent device including same and manufacture thereof |
FR2913146A1 (en) * | 2007-02-23 | 2008-08-29 | Saint Gobain | Discontinuous electrode e.g. indium oxide based transparent layer, for organic LED device, has electrode zones each having specific length in direction of row of zones, where zones of each row are separated by distance |
US8593055B2 (en) | 2007-11-22 | 2013-11-26 | Saint-Gobain Glass France | Substrate bearing an electrode, organic light-emitting device incorporating it, and its manufacture |
US8786176B2 (en) | 2007-12-27 | 2014-07-22 | Saint-Gobain Glass France | Substrate for organic light-emitting device, and also organic light-emitting device incorporating it |
EP2245684B1 (en) * | 2008-01-24 | 2013-12-25 | Global OLED Technology LLC | Electroluminescent device having improved brightness uniformity |
WO2009130164A2 (en) * | 2008-04-21 | 2009-10-29 | The Technical University Of Denmark | Photovoltaic device |
WO2009130164A3 (en) * | 2008-04-21 | 2010-05-27 | The Technical University Of Denmark | Photovoltaic device |
US8729387B2 (en) | 2008-08-22 | 2014-05-20 | Konica Minolta Holdings, Inc. | Organic photoelectric conversion element, solar cell and optical sensor array |
WO2010021374A1 (en) * | 2008-08-22 | 2010-02-25 | コニカミノルタホールディングス株式会社 | Organic photoelectric conversion element, solar cell and optical sensor array |
JP5566890B2 (en) * | 2008-08-22 | 2014-08-06 | コニカミノルタ株式会社 | Organic photoelectric conversion element, solar cell, and optical sensor array |
US9114425B2 (en) | 2008-09-24 | 2015-08-25 | Saint-Gobain Glass France | Method for manufacturing a mask having submillimetric apertures for a submillimetric electrically conductive grid, mask having submillimetric apertures and submillimetric electrically conductive grid |
US8808790B2 (en) | 2008-09-25 | 2014-08-19 | Saint-Gobain Glass France | Method for manufacturing a submillimetric electrically conductive grid coated with an overgrid |
US8766286B2 (en) | 2008-09-26 | 2014-07-01 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Organic opto-electric device and a method for manufacturing an organic opto-electric device |
WO2010034431A3 (en) * | 2008-09-26 | 2010-11-18 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Organic opto-electric component and method for producing an organic opto-electric component |
DE102008049057B4 (en) * | 2008-09-26 | 2019-01-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Organic opto-electrical component and a method for producing an organic opto-electrical component |
US8753906B2 (en) | 2009-04-02 | 2014-06-17 | Saint-Gobain Glass France | Method for manufacturing a structure with a textured surface for an organic light-emitting diode device, and structure with a textured surface |
US8421347B2 (en) | 2009-08-27 | 2013-04-16 | Kaneka Corporation | Integrated organic light-emitting device, method for producing organic light-emitting device and organic light-emitting device produced by the method |
US9108881B2 (en) | 2010-01-22 | 2015-08-18 | Saint-Gobain Glass France | Glass substrate coated with a high-index layer under an electrode coating, and organic light-emitting device comprising such a substrate |
Also Published As
Publication number | Publication date |
---|---|
KR20050085851A (en) | 2005-08-29 |
HK1087245A1 (en) | 2006-10-06 |
AU2003298447A1 (en) | 2004-07-14 |
EP1573816A2 (en) | 2005-09-14 |
KR100726061B1 (en) | 2007-06-08 |
WO2004057674A3 (en) | 2004-12-29 |
US7510885B2 (en) | 2009-03-31 |
CN1729571A (en) | 2006-02-01 |
CN100470797C (en) | 2009-03-18 |
GB0229653D0 (en) | 2003-01-22 |
EP1573816B1 (en) | 2011-08-03 |
JP2006511073A (en) | 2006-03-30 |
ATE519230T1 (en) | 2011-08-15 |
US20060152833A1 (en) | 2006-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1573816B1 (en) | Method of preparing electrically connected optoelectronic devices | |
EP1432050B1 (en) | Large organic devices and methods of fabricating large organic devices | |
KR101295988B1 (en) | Stacked organic electroluminescent devices | |
Dennler et al. | Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration | |
Yim et al. | Efficient conjugated‐polymer optoelectronic devices fabricated by thin‐film transfer‐printing technique | |
US7180110B2 (en) | Organic photoelectric conversion element | |
KR100973018B1 (en) | Photovoltaic component and production method therefor | |
US7317210B2 (en) | Organic light emitting diode, method for the production thereof and uses thereof | |
KR100986159B1 (en) | Organic solar cell enhancing energy conversion efficiency and method for preparing the same | |
EP1717876A1 (en) | Interconnect in polymer light-emitting or light-detecting devices or solar cells | |
KR20070110049A (en) | Multilayer organic solar cell | |
US20060231844A1 (en) | Organic optoelectronic device | |
JP2004158661A (en) | Organic light to electricity transducing device and its manufacturing method | |
KR101742114B1 (en) | A method for forming an electrical interconnection in an organic opto-electronic device, a method for producing an organic opto-electronic device, and an organic light emitting device | |
KR20130086545A (en) | Optoelectronic device having an embedded electrode | |
CN106133939A (en) | Organic light emitting apparatus | |
KR101033304B1 (en) | Light emitting organic photovoltaic cells and mathod of manufacturing the same | |
Shoda et al. | Semitransparent Organic Solar Cells with Polyethylenimine Ethoxylated Interfacial Layer Using Lamination Process | |
KR101682714B1 (en) | Organic display for power - recycling and manufacturing method thereof | |
Oh et al. | Improving Performance of Organic Solar Cells Using Ytterbium as Buffer Layer on Cathodes | |
WO2004018063A1 (en) | Interconnectable building blocks | |
WO2004017441A1 (en) | Organic optoelectronic device encapsulation package | |
JP2010251235A (en) | Electronic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003796194 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004561651 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038A69593 Country of ref document: CN Ref document number: 1020057011638 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057011638 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003796194 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006152833 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10540007 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10540007 Country of ref document: US |