JP5561722B2 - Manufacturing method of organic thin film solar cell and transfer sheet used therefor - Google Patents

Manufacturing method of organic thin film solar cell and transfer sheet used therefor Download PDF

Info

Publication number
JP5561722B2
JP5561722B2 JP2010013361A JP2010013361A JP5561722B2 JP 5561722 B2 JP5561722 B2 JP 5561722B2 JP 2010013361 A JP2010013361 A JP 2010013361A JP 2010013361 A JP2010013361 A JP 2010013361A JP 5561722 B2 JP5561722 B2 JP 5561722B2
Authority
JP
Japan
Prior art keywords
layer
electrode
island
solar cell
bulk heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010013361A
Other languages
Japanese (ja)
Other versions
JP2011151315A (en
Inventor
富士男 森
達男 石橋
陽一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2010013361A priority Critical patent/JP5561722B2/en
Publication of JP2011151315A publication Critical patent/JP2011151315A/en
Application granted granted Critical
Publication of JP5561722B2 publication Critical patent/JP5561722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本願発明は、有機薄膜太陽電池の変換効率向上などに適用できる発明である。   The present invention is an invention that can be applied to improve the conversion efficiency of organic thin-film solar cells.

従来、有機薄膜太陽電池は、2次元的な平面の接合では接合面積が不足し、光電変換効率が低いことが知られている。そこで、有機薄膜太陽電池の変換効率を向上させる発明として、非特許文献1や非特許文献2のようにドナーとアクセプターの混合物の相分離によるバルクヘテロ接合が形成された層構造を形成し、ドナーとアクセプターの接合界面を増やす工夫により有機薄膜太陽電池の光発生電荷を増加させる試みがなされている。   Conventionally, organic thin-film solar cells are known to have a low photoelectric conversion efficiency due to a lack of a bonding area in a two-dimensional planar bonding. Therefore, as an invention for improving the conversion efficiency of an organic thin film solar cell, a layer structure in which a bulk heterojunction is formed by phase separation of a mixture of a donor and an acceptor as in Non-Patent Document 1 and Non-Patent Document 2, Attempts have been made to increase the photogenerated charge of organic thin-film solar cells by increasing the acceptor interface.

C.J.Brabecら、Advanced Functional Materials,第11巻、15頁C.J.Brabec et al., Advanced Functional Materials, Vol. 11, p. 15. J.Xue,S.Uchida,B.P.Land,S.R.Forrest,Appl.Phys.Lett.,85, p.5757(2004)J.Xue, S.Uchida, B.P.Land, S.R.Forrest, Appl.Phys.Lett., 85, p.5757 (2004)

しかし、このようにドナーとアクセプターの混合物の相分離によるバルクへテロ接合が形成された層構造を膜内に形成し多数の光発生電荷を生じさせたとしても、光発生電荷が消失せずに移動できる距離はせいぜい100nm程度までであるため、ドナーとアクセプターの混合物の膜の厚みが100nmを超えると、電極まで達する前に光発生電荷が消失してしまう傾向にあった。したがって、厚みを100nm以上に厚くすると変換効率が低下し、ドナーとアクセプターの混合物の膜の厚みを厚くすることによる変換効率の向上はできない問題があった。   However, even if a layer structure in which a bulk heterojunction is formed in the film by phase separation of a mixture of a donor and an acceptor as described above and a large number of photogenerated charges are generated, the photogenerated charges are not lost. Since the distance that can be moved is at most about 100 nm, when the thickness of the film of the mixture of the donor and the acceptor exceeds 100 nm, the photogenerated charge tends to disappear before reaching the electrode. Therefore, when the thickness is increased to 100 nm or more, the conversion efficiency is lowered, and there is a problem that the conversion efficiency cannot be improved by increasing the thickness of the donor-acceptor mixture film.

本発明は、離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成し、ナノインプリント加工して該バルクへテロ接合が形成された層を貫通するナノスケール幅の微細な溝またはナノスケールサイズの島状構造の凹部を形成し、該微細な溝または島状構造の凹部に電極を形成した後、前記各層を太陽電池の基材に転写し離型性を有する基体シートを剥離し、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層のいずれかを形成することを特徴とする有機薄膜太陽電池の製造方法である。
The present invention forms a layer in which a bulk heterojunction is formed by a donor and an acceptor on a substrate sheet having releasability, and a nanoscale width penetrating the layer in which the bulk heterojunction is formed by nanoimprint processing After forming a fine groove or a nanoscale sized island-shaped depression and forming an electrode in the fine groove or depression of the island-like structure, each layer is transferred to a substrate of a solar cell for release properties. And a donor layer, an acceptor layer, or a mixture layer of a donor and an acceptor is formed on the outermost surface after transfer .

また本発明の有機薄膜太陽電池の製造方法は、離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成し、ナノインプリント加工して該バルクへテロ接合が形成された層を貫通するナノスケール幅の微細な溝またはナノスケールサイズの島状構造の凹部を形成し、該微細な溝または島状構造の凹部に電極を形成した後、前記各層を太陽電池の基材に転写し離型性を有する基体シートを剥離し、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層のいずれかを形成することを特徴とする。したがって、ナノインプリント加工の精巧な制御がなくとも、電極間の距離を100nm以下でショートさせることなく形成できるので、変換効率の高い有機薄膜太陽電池を生産性よく製造できる効果がある。   In addition, the organic thin film solar cell manufacturing method of the present invention forms a bulk heterojunction layer formed by donor and acceptor on a substrate sheet having releasability, and forms the bulk heterojunction by nanoimprinting. After forming a nanoscale-width fine groove or a nanoscale-sized island-like recess that penetrates the formed layer, and forming an electrode in the fine groove or island-like recess, the respective layers are formed on the solar cell. The substrate sheet having a releasing property is transferred to a substrate, and either a donor layer, an acceptor layer or a mixture layer of a donor and an acceptor is formed on the outermost surface after transfer. Therefore, even if the nanoimprint process is not elaborately controlled, the distance between the electrodes can be formed without being short-circuited at 100 nm or less, so that an organic thin-film solar cell with high conversion efficiency can be manufactured with high productivity.

本発明の有機薄膜太陽電池の製造方法の一実施例を示す模式断面図であり、(a)は、インプリント型を用いてナノインプリント加工することによりドナーとアクセプターによるバルクへテロ接合が形成された層にナノスケール幅の微細な溝を形成する工程を示し、(b)は、該微細な溝に電極を形成する工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows one Example of the manufacturing method of the organic thin-film solar cell of this invention, (a) is a bulk heterojunction by a donor and an acceptor formed by nanoimprinting using an imprint type | mold. A step of forming a fine groove having a nanoscale width in the layer is shown, and (b) shows a step of forming an electrode in the fine groove. (a)は、本発明の有機薄膜太陽電池の製造方法の一実施例によって形成された有機薄膜太陽電池を示す模式断面図であり、(b)は、それに斜めから太陽光が入射され溝に形成された電極で反射して膜内に閉じ込められる様子を示す模式断面図であり、(c)は、太陽光によって発生した電荷が溝に形成された電極を通して移動する様子を示す模式断面図である。(A) is a schematic cross section which shows the organic thin-film solar cell formed by one Example of the manufacturing method of the organic thin-film solar cell of this invention, (b) is sunlight injecting it diagonally to a groove | channel It is a schematic cross section which shows a mode that it reflects with the formed electrode and is confine | sealed in a film | membrane, (c) is a schematic cross section which shows a mode that the electric charge which generate | occur | produced with sunlight moves through the electrode formed in the groove | channel. is there. 本発明の有機薄膜太陽電池の製造方法の一実施例を示す模式断面図であり、(a)は、離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成する工程を示し、(b)は、該バルクへテロ接合が形成された層をナノインプリント加工する工程を示し、(c)は、該バルクへテロ接合が形成された層を貫通するナノスケール幅の微細な溝が形成された工程を示し、(d)は、該微細な溝または島状構造の凹部に電極を形成した工程を示し、(e)は、前記各層を太陽電池の基材に転写し離型性を有する基体シートを剥離する工程を示し、(f)は、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層およびもう片方の電極を形成した工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows one Example of the manufacturing method of the organic thin-film solar cell of this invention, (a) shows the layer by which the bulk heterojunction by the donor and the acceptor was formed on the base sheet which has mold release property. (B) shows a step of nanoimprinting the layer in which the bulk heterojunction is formed, and (c) shows a nanoscale width penetrating the layer in which the bulk heterojunction is formed. (D) shows the step of forming an electrode in the fine groove or the concave portion of the island-like structure, and (e) shows the step of forming each layer on the substrate of the solar cell. (F) shows the step of forming a donor layer, an acceptor layer or a donor-acceptor mixture layer, and the other electrode on the outermost surface after transfer. . 本発明の有機薄膜太陽電池の製造方法に用いるインプリント型母材の製造方法の一実施例を示す模式断面図であり、(a)は、インプリント型母材の基材上に電離放射線可溶化層を形成する工程を示し、(b)は、該電離放射線可溶化層の上に島状構造の金属膜を形成する工程を示し、(c)は、該金属膜をマスクとして電離放射線を照射し、該電離放射線可溶化層の一部を可溶化する工程を示し、(d)は、該可溶化した電離放射線可溶化層の一部を剥離除去することにより、ナノスケール幅の溝の凹部を形成した工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows one Example of the manufacturing method of the imprint type | mold base material used for the manufacturing method of the organic thin-film solar cell of this invention, (a) is ionizing radiation possible on the base material of an imprint type | mold base material. (B) shows a step of forming an island-shaped metal film on the ionizing radiation solubilized layer, and (c) shows ionizing radiation using the metal film as a mask. And (d) shows a step of solubilizing a part of the ionizing radiation solubilized layer by irradiating and removing a part of the solubilized ionizing radiation solubilized layer. The process which formed the recessed part is shown.

本発明の有機薄膜太陽電池の製造方法によって形成される有機薄膜太陽電池5は、インプリント型30を用いてナノインプリント加工することにより、ドナーとアクセプターによるバルクへテロ接合が形成された層7の表面に多数の島状構造9とそれを取り囲むナノスケール幅の微細な溝1を形成し(図1(a)参照)、該微細な溝1に電極21を形成することで製造される(図1(b)参照)。そして、電極21と反対面には対極の電極20が形成される(図1参照)。そして、電極20を透明電極とし、電極21を光を反射する金属などの電極とした場合、この有機薄膜太陽電池5に斜めから太陽光などの光51が入射されると、光51が溝に形成された電極21で反射し、膜内に閉じ込められる(図2(a)、(b)参照)。これにより、電極21付近でより多くの光発生電荷2を発生させることができるため、多くの光発生電荷2を消失させずに電極21を通して移動させることができ、高い起電力を得ることができる効果もある(図2(c)参照)。   The organic thin film solar cell 5 formed by the method of manufacturing an organic thin film solar cell of the present invention has a surface of the layer 7 on which a bulk heterojunction formed by a donor and an acceptor is formed by nanoimprinting using an imprint mold 30 A large number of island-like structures 9 and nanoscale-width fine grooves 1 surrounding them are formed (see FIG. 1A), and an electrode 21 is formed in the fine grooves 1 (FIG. 1). (See (b)). A counter electrode 20 is formed on the surface opposite to the electrode 21 (see FIG. 1). When the electrode 20 is a transparent electrode and the electrode 21 is an electrode such as a metal that reflects light, when light 51 such as sunlight enters the organic thin film solar cell 5 from an oblique direction, the light 51 enters the groove. Reflected by the formed electrode 21 and confined in the film (see FIGS. 2A and 2B). As a result, more photogenerated charges 2 can be generated in the vicinity of the electrode 21, so that a large amount of the photogenerated charges 2 can be moved through the electrode 21 without being lost, and a high electromotive force can be obtained. There is also an effect (see FIG. 2C).

ドナーの材質としては、架橋型ポリチオフェン、ポリ3ヘキシルチオフェン(P3HT)やフタロシアニン誘導体などが挙げられ、アクセプターの材質としては、PCBMやPCPDTBTなどのフラーレン誘導体や酸化亜鉛などが挙げられるが、これらに限定されない。ただし、ドナーとアクセプターが相分離をし、バルクへテロ接合構造を形成し得る材料である必要がある。   Examples of the donor material include cross-linked polythiophene, poly-3-hexylthiophene (P3HT), and phthalocyanine derivatives. Examples of the acceptor material include fullerene derivatives such as PCBM and PCPDTBT, and zinc oxide. Not. However, it is necessary that the donor and the acceptor be phase-separated to form a bulk heterojunction structure.

バルクへテロ接合が形成された層7の形成方法は、スピンコートなどの各種コート法、グラビア印刷などの各種印刷法などが挙げられ、電極20が形成された基材14の上に形成される。厚みは100〜700nm程度の範囲で可能で、とくに300〜500nm程度が好ましい。従来の電極がフラットな有機薄膜太陽電池では、厚みが100nm以上になると光発生電荷2が電極21に到達する前に消失してしまって変換効率が大きく低下させていたが、本発明の構造では、厚みが多少厚くなっても光発生電荷2が電極21に容易に到達することができる。したがって、厚みが厚いほど光発生電荷2が生じる界面を大きくでき変換効率が向上する。ただし、厚みが500nmを超えると電極20の側に移動する光発生電荷2の消失が多くなってくる。   Examples of the method for forming the layer 7 in which the bulk heterojunction is formed include various coating methods such as spin coating, various printing methods such as gravure printing, and the like, which are formed on the substrate 14 on which the electrode 20 is formed. . The thickness can be in the range of about 100 to 700 nm, and is preferably about 300 to 500 nm. In a conventional organic thin-film solar cell with a flat electrode, when the thickness is 100 nm or more, the photogenerated charge 2 disappears before reaching the electrode 21 and the conversion efficiency is greatly reduced. The photogenerated charges 2 can easily reach the electrode 21 even if the thickness is somewhat increased. Therefore, the thicker the thickness, the larger the interface where the photogenerated charges 2 are generated, and the conversion efficiency is improved. However, when the thickness exceeds 500 nm, the disappearance of the photogenerated charges 2 that move to the electrode 20 side increases.

ナノスケールの幅の微細な溝1および該微細な溝1に囲まれた多数の島状構造9を形成する方法は、所望する微細な溝1および多数の島状構造9の形状を反転した形状のインプリント型30を作成し、それをバルクへテロ接合が形成された層7の上にセットし、常温または熱を加えながら一定の圧力で押圧する、所謂常温ナノインプリント法または熱ナノインプリント法により形成する。あるいはバルクへテロ接合が形成された層7を紫外線硬化型にできるのであれば、やや弱めの圧力で押圧して紫外線照射することにより硬化させて所定の形状にする、所謂UVナノインプリント法により形成してもよい。   The method of forming the fine grooves 1 having a nanoscale width and a large number of island structures 9 surrounded by the fine grooves 1 is obtained by reversing the shapes of the desired fine grooves 1 and the large number of island structures 9. Is formed by the so-called room temperature nanoimprint method or thermal nanoimprint method in which the imprint mold 30 is set on the layer 7 on which the bulk heterojunction is formed and pressed at a constant pressure while applying room temperature or heat. To do. Alternatively, if the layer 7 on which the bulk heterojunction is formed can be made into an ultraviolet curable type, it is formed by a so-called UV nanoimprint method in which the layer 7 is cured by being irradiated with ultraviolet rays and pressed to a predetermined shape. May be.

微細な溝1はその幅が1〜500nm程度にし、該微細な溝1に囲まれた多数の島状構造9のバルクへテロ接合が形成された層7の一個あたりの平均面積は10〜10000nm程度になるのが好ましく、その中でも島状構造9の総面積と微細な溝1の総断面積とが同程度、すなわち微細な溝層1の幅が100〜300nm、島状構造9の平均面積が100〜6500nmになるようにするのが最も好ましい。 The fine grooves 1 have a width of about 1 to 500 nm, and the average area per layer 7 in which bulk heterojunctions of a large number of island-like structures 9 surrounded by the fine grooves 1 are formed is 10 to 10,000 nm. It is preferably on the order of 2, the average total area and fine total cross-sectional area and the same degree of grooves 1 of islands 9 among them, i.e. the width of the fine groove layer 1 100 to 300 nm, the island structure 9 Most preferably, the area is 100 to 6500 nm 2 .

微細な溝1の幅を1nm未満にするにはインプリント型30の凸部38の幅を1nm未満にする必要がありインプリント型30の強度・耐性が不足する問題が発生し、微細な溝1の幅を500nmよりも大きくしようとすると、バルクへテロ接合が形成された層7の割合が減り光発生電荷の生じる界面が少なくなって変換効率が低下する。また、島状構造9の一個あたりの平均面積を10nm未満にするには次に述べるインプリント型母材31の島状構造の凸部のサイズを10nm未満にする必要がありインプリント型母材31の強度・耐性が不足する問題が発生し、10000nmを超えると電極21に到達する前に光発生電荷が消失してしまう割合が高くなる。 In order to make the width of the fine groove 1 less than 1 nm, it is necessary to make the width of the convex portion 38 of the imprint mold 30 less than 1 nm, which causes a problem that the strength and durability of the imprint mold 30 are insufficient. If the width of 1 is to be made larger than 500 nm, the ratio of the layer 7 in which the bulk heterojunction is formed is reduced, and the interface where the photogenerated charges are generated is reduced, so that the conversion efficiency is lowered. Further, it is necessary to the size of the convex portion of the island-like structure of the imprint mold base material 31 to be described below to the average area per one of the island structure 9 below 10 nm 2 to less than 10 nm 2 imprint type There arises a problem that the strength and resistance of the base material 31 are insufficient, and when it exceeds 10,000 nm 2 , the rate at which photogenerated charges disappear before reaching the electrode 21 increases.

所望する微細な溝1および多数の島状構造9の形状を反転した形状のインプリント型母材31を作成する方法としては、まずインプリント型母材の基材32を用意して、該インプリント型母材の基材32上に電離放射線可溶化層35を形成し(図4(a)参照)、該電離放射線可溶化層35の上に多数の島状構造9の金属膜3を形成し(図4(b)参照)、該金属膜3をマスクとして電離放射線33を照射して電離放射線可溶化層35の一部を可溶化し(図4(c)参照)、該可溶化した電離放射線可溶化層35の一部を剥離除去することにより、ナノスケール幅の溝の凹部37を形成する(図4(d)参照)方法が挙げられる。得られたインプリント型母材31に対してニッケル電鋳などの方法により、インプリント型母材31の形状を反転した凸部38のあるインプリント型30が得られる。   As a method for producing an imprint base material 31 having a shape obtained by inverting the shapes of desired fine grooves 1 and a large number of island-like structures 9, first, an imprint base material 32 is prepared. An ionizing radiation solubilized layer 35 is formed on the base material 32 of the printing mold base material (see FIG. 4A), and a number of island-shaped metal films 3 are formed on the ionizing radiation solubilized layer 35. (See FIG. 4B), the ionizing radiation 33 is irradiated with the metal film 3 as a mask to solubilize a part of the ionizing radiation solubilized layer 35 (see FIG. 4C) and solubilized. A method of forming a concave portion 37 of a groove having a nanoscale width by peeling and removing a part of the ionizing radiation solubilized layer 35 (see FIG. 4D) can be mentioned. The imprint mold 30 having the convex portions 38 obtained by inverting the shape of the imprint mold base material 31 is obtained by a method such as nickel electroforming with respect to the obtained imprint mold base material 31.

あるいは、電離放射線可溶化層35の代わりに電離放射線硬化層を形成し、電離放射線33を照射して電離放射線硬化層の一部を硬化し、該硬化した箇所以外の未硬化の電離放射線硬化層を剥離除去することにより、ナノスケールサイズの島状構造の凹部を形成する方法などが挙げられる。なお、この場合はニッケル電鋳などの方法を2回繰り返すか、インプリント型母材31自体をそのままインプリント型30として使用するとよい。   Alternatively, an ionizing radiation cured layer is formed instead of the ionizing radiation solubilized layer 35, and the ionizing radiation cured layer is cured by irradiating the ionizing radiation 33, and the uncured ionizing radiation cured layer other than the cured portion is cured. The method of forming the recessed part of an island-like structure of nanoscale size by peeling and removing is mentioned. In this case, a method such as nickel electroforming may be repeated twice, or the imprint mold base material 31 itself may be used as it is as the imprint mold 30.

あるいは、電離放射線可溶化層35の代わりに被エッチング層を形成し、島状構造の金属膜をマスクとして後述する異方性エッチングなどをすることにより、ナノスケール幅の溝の凹部を形成する方法などが挙げられる。なおインプリント型母材の基材32自体が、電離放射線可溶化、電離放射線硬化あるいは被エッチングの特性を持っている場合は、電離放射線可溶化層35等を省略してインプリント型母材の基材32に直接島状構造の金属膜3を形成して加工してもよい。   Alternatively, a method of forming a recess of a nanoscale width groove by forming a layer to be etched instead of the ionizing radiation solubilizing layer 35 and performing anisotropic etching described later using a metal film having an island-like structure as a mask Etc. If the base material 32 of the imprint base material itself has ionizing radiation solubilization, ionizing radiation curing or etching characteristics, the ionizing radiation solubilization layer 35 and the like are omitted, and The metal film 3 having an island structure may be directly formed on the base material 32 and processed.

島状構造の金属膜3は、スズ、インジウム、ビスマス、鉛およびそれらの合金などからなる層が挙げられ、真空蒸着法、スパッタリング法、イオンプレーティング法などで形成するとよい。厚みは3〜80nm程度で形成し、光線透過率を測定すれば4%〜15%程度の値を示す厚みにすることが好ましい。上記の金属材料および適切な形成手段で、上記の光線透過率を示す値で島状構造の金属膜3を形成し、該島状構造の金属膜3をマスクとして電離放射線可溶化層、電離放射線硬化層、被エッチング層などをパターン化すれば、前述のナノスケールの幅の微細な溝の凹部またはナノスケールサイズの島状構造の凹部が形成される。なお、マスクの機能を果たした島状構造の金属膜3は剥離やエッチング後もそのまま残存させてもよいし、剥離やエッチングで消失させるよう設定してもよい。   The island-shaped metal film 3 includes a layer made of tin, indium, bismuth, lead, and alloys thereof, and may be formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like. The thickness is preferably about 3 to 80 nm, and when the light transmittance is measured, the thickness is preferably about 4% to 15%. The island-shaped metal film 3 is formed with the above metal material and an appropriate forming means with the value indicating the light transmittance, and the island-shaped metal film 3 is used as a mask to ionize radiation-solubilizing layer and ionizing radiation. If the hardened layer, the layer to be etched, etc. are patterned, the above-described fine groove recesses having a nanoscale width or nanoscale island-shaped recesses are formed. The island-shaped metal film 3 having the function of a mask may be left as it is after peeling or etching, or may be set to disappear by peeling or etching.

電離放射線可溶化層35としては、アクリル系、ピリミジン系、ノボラック系などのレジストが挙げられる。電離放射線可溶化層35の形成方法としてはグラビア印刷などの汎用印刷方式や、ディピング、コーター、塗装が挙げられ、厚みとしては0.02〜2μm程度が好ましい。電離放射線可溶化層35の剥離はトルエンなどの有機溶剤が挙げられる。   Examples of the ionizing radiation solubilizing layer 35 include acrylic, pyrimidine, and novolak resists. Examples of the method for forming the ionizing radiation solubilizing layer 35 include general-purpose printing methods such as gravure printing, dipping, coater, and coating. The thickness is preferably about 0.02 to 2 μm. For the peeling of the ionizing radiation solubilized layer 35, an organic solvent such as toluene is used.

電離放射線硬化層としては、カリックスアレーンなどのレジストが挙げられる。電離放射線硬化層の形成方法や厚みは電離放射線可溶化層35と同様の方法で構わない。未硬化の電離放射線硬化層の剥離はトルエンなどの有機溶剤が挙げられる。電離放射線の例としては、可視光線、紫外線、赤外線、電子線、X線、ガンマ線などが挙げられる。   Examples of the ionizing radiation-cured layer include resists such as calixarene. The formation method and thickness of the ionizing radiation cured layer may be the same method as the ionizing radiation solubilized layer 35. For removing the uncured ionizing radiation-cured layer, an organic solvent such as toluene can be used. Examples of ionizing radiation include visible light, ultraviolet light, infrared light, electron beam, X-ray, and gamma ray.

被エッチング層としては、アクリル系、ビニル系、ポリエステル系、ポリアミド系、ウレタン系などのポリマーが挙げられる。被エッチング層の形成方法や厚みは電離放射線可溶化層35と同様の方法で構わない。エッチングは、島状構造の金属膜3よりも被エッチング層の方がエッチングされやすい方式であればよく、とくに異方性エッチング方式が好ましい。   Examples of the layer to be etched include acrylic, vinyl, polyester, polyamide, and urethane polymers. The formation method and thickness of the layer to be etched may be the same as that of the ionizing radiation solubilized layer 35. Etching may be performed by any method that allows the etched layer to be etched more easily than the metal film 3 having an island-like structure, and an anisotropic etching method is particularly preferable.

異方性エッチングとは、膜面方向の方位に対してはエッチングが抑制される性質のエッチングのことであり、これにより細く深い(高アスペクト比の)微細な溝1を掘ることができるからである。具体的には、酸素、アルゴン、フッ素系ガスなどのプラズマを用いたドライエッチング方式などが挙げられる。   Anisotropic etching is etching having a property that etching is suppressed with respect to the orientation in the film surface direction, and this makes it possible to dig a fine groove 1 that is thin and deep (high aspect ratio). is there. Specifically, a dry etching method using plasma of oxygen, argon, fluorine gas or the like can be used.

微細な溝1に電極21を形成する方式および電極20を形成する方式としては、前記金属材料を蒸着・スパッタリング・メッキなどの方法により形成するだけでなく、前記金属材料やそれらのナノワイヤを含むインキ等をスピンコートなどの各種コート法、グラビア印刷などの各種印刷法で充填する方式が挙げられる。電極21の形成は微細な溝1を丁度埋め尽くす程度にするのが最もよく、一部は多数の島状構造9の部分まで被覆してしまっても良い。   The method of forming the electrode 21 in the fine groove 1 and the method of forming the electrode 20 include not only forming the metal material by a method such as vapor deposition, sputtering, and plating, but also ink containing the metal material and their nanowires. And the like by various coating methods such as spin coating and various printing methods such as gravure printing. It is best to form the electrode 21 so as to completely fill the fine groove 1, and a part of the electrode 21 may be covered up to many island-like structures 9.

電極20および電極21の材質は、太陽光が入射してくる側の電極はインジウムスズ酸化物、酸化亜鉛、あるいは銀ナノワイヤやカーボンナノチュ―ブを含ませた透明導電膜で形成し、その対極の電極はアルミニウム、金、銀、銅などの材質で形成するとよい。また、電極20とドナーとの間にはポリスチレンスルホン酸をドーパントに用いたポリ3, 4―エチレンジオキシチオフェン(PEDOT/PSS)、電極21とアクセプターの層8との間には酸化チタンなどのバッファー層を設けてもよく、これらの層の追加により変換効率がさらに向上する。   The electrode 20 and the electrode 21 are made of indium tin oxide, zinc oxide, or a transparent conductive film containing silver nanowires or carbon nanotubes on the side on which sunlight is incident. These electrodes may be formed of a material such as aluminum, gold, silver, or copper. Further, between the electrode 20 and the donor, poly 3,4-ethylenedioxythiophene (PEDOT / PSS) using polystyrene sulfonic acid as a dopant, and between the electrode 21 and the acceptor layer 8 such as titanium oxide A buffer layer may be provided, and the conversion efficiency is further improved by adding these layers.

なお、前記微細な溝1はバルクへテロ接合が形成された層7を完全に貫通させてもよいし、層の途中までであっても構わない。ただし、前述の構成で完全に貫通させようとすると、ナノインプリント加工の際にインプリント型30の凸部38を、バルクへテロ接合が形成された層7だけでなく電極20の一部までくいこむようにしなければならず、電極20が傷む問題がある。したがってバルクへテロ接合が形成された層7を完全に貫通する微細な溝1を形成する場合には、離型性を有する基体シート12上にバルクへテロ接合が形成された層7を形成し(図3(a)参照)、該バルクへテロ接合が形成された層7をナノインプリント加工し(図3(b)参照)、該バルクへテロ接合が形成された層7を貫通するナノスケール幅の微細な溝を形成し(図3(c)参照)、該微細な溝または島状構造の凹部に電極21を形成し(図3(d)参照)、前記各層を太陽電池の基材14に転写し離型性を有する基体シート12を剥離した後(図3(e)参照)、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層(バルクへテロ接合が形成されていても、されていなくともよい)50を形成し、その上から電極20を形成する(図3(f)参照)方法によって形成するのが好ましい。   The fine groove 1 may completely penetrate the layer 7 in which the bulk heterojunction is formed, or may be up to the middle of the layer. However, if it is attempted to penetrate completely with the above-described configuration, the convex portion 38 of the imprint mold 30 is inserted not only into the layer 7 where the bulk heterojunction is formed but also to a part of the electrode 20 during the nanoimprint processing. There is a problem that the electrode 20 is damaged. Therefore, when forming the fine groove | channel 1 completely penetrating the layer 7 in which the bulk heterojunction was formed, the layer 7 in which the bulk heterojunction was formed was formed on the base sheet 12 having releasability. (See FIG. 3A), nanoimprinting the layer 7 in which the bulk heterojunction is formed (see FIG. 3B), and the nanoscale width penetrating the layer 7 in which the bulk heterojunction is formed Are formed (see FIG. 3C), electrodes 21 are formed in the fine grooves or the recesses of the island structure (see FIG. 3D), and the layers are formed on the substrate 14 of the solar cell. After releasing the substrate sheet 12 having releasability (see FIG. 3E), a donor layer, an acceptor layer, or a mixture layer of a donor and an acceptor (a bulk heterojunction is formed on the outermost surface after the transfer. 50 may or may not be formed) Moreover from the electrode 20 is formed (see FIG. 3 (f)) is preferably formed by the method.

この方法では、インプリント型30の凸部38がバルクへテロ接合が形成された層7だけでなく離型性を有する基体シート12の一部までくいこんでも、そのときには電極20は形成されておらず、転写した後に電極20を形成するので電極20が傷む問題は発生しない。そしてこのようにして得られた構造は理想的な直立超格子構造に近く、高い変換効率を呈することができる。なお、離型性を有する基体シート12としては、ポリエステルフィルム上に離型性および熱成形性を有するフッ素アクリル系の樹脂をコートしたものや、フッ素アクリル系の共押出しフィルムなどが挙げられる。   In this method, even if the convex portion 38 of the imprint mold 30 is inserted not only into the layer 7 in which the bulk heterojunction is formed but also to a part of the base sheet 12 having releasability, the electrode 20 is formed at that time. In addition, since the electrode 20 is formed after the transfer, the problem that the electrode 20 is damaged does not occur. The structure thus obtained is close to an ideal upright superlattice structure and can exhibit high conversion efficiency. Examples of the base sheet 12 having releasability include a polyester film coated with a fluoroacrylic resin having releasability and thermoformability, and a fluoroacrylic coextruded film.

インプリント型母材の基材として厚さ25μmのポリエチレンテレフタレートフィルムを用意し、該インプリント型母材の基材上に2,4-ジクロロピリミジン誘導体を主成分とする電離放射線可溶化層をグラビア印刷法により0.2μmの厚みで形成し、該電離放射線可溶化層の上に真空蒸着法を用いてスズからなる厚み8nmの多数の島状の金属膜を形成した。次いで、該金属膜をマスクとして電子線を照射して電離放射線可溶化層の一部を可溶化し、トルエンを主成分とする有機溶剤でもって該可溶化した箇所を剥離除去した。   A polyethylene terephthalate film having a thickness of 25 μm is prepared as a base material for an imprint base material, and an ionizing radiation solubilized layer mainly composed of a 2,4-dichloropyrimidine derivative is gravured on the base material for the imprint base material. A number of island-like metal films having a thickness of 8 nm made of tin were formed on the ionizing radiation-solubilized layer by a vacuum evaporation method on the ionizing radiation solubilized layer. Next, an electron beam was irradiated using the metal film as a mask to solubilize a part of the ionizing radiation solubilized layer, and the solubilized portion was peeled and removed with an organic solvent containing toluene as a main component.

上記得られたインプリント型母材には幅100nm程度の微細な溝の凹部が形成され、凸部は平均面積が400nm程度の多数の島状構造となっていた、次いで該インプリント型母材に対して全面に銅を真空蒸着し、次いでニッケル電鋳により、前記インプリント型母材の形状を反転した平均面積が400nm程度の多数の島状構造の凹部とそれを取り囲む幅100nm程度で高さが150nm程度の凸部とがあるシート状のインプリント型が得られた。 The imprint base material thus obtained was formed with concave portions having fine grooves with a width of about 100 nm, and the convex portions had a large number of island structures with an average area of about 400 nm 2. the copper was vacuum-deposited on the entire surface against the timber, followed by nickel electroforming, the recess and the width 100nm approximately surrounding the said imprint basic material a number of islands average area of about 400 nm 2 of the shape obtained by inverting the Thus, a sheet-like imprint mold having a convex portion with a height of about 150 nm was obtained.

一方、離型性を有する基体シートとして表面にフッ素アクリル系の樹脂を1μm程度の厚みでグラビア印刷された厚さ100μmのポリエチレンテレフタレートフィルムを用い、その印刷表面にドナー層としてポリ3ヘキシルチオフェン(P3HT)、アクセプター層としてフラーレン60を含む混合物をコーターで200nmの厚みで形成した。形成された層はバルクへテロ構造になっていた。次いで、該バルクへテロ接合が形成された層に前記シート状のインプリント型を載置し、80℃に加熱しながら2気圧の圧力で押圧し、シート状のインプリント型を積層した。放置冷却後、シート状のインプリント型を剥離したところ、バルクへテロ接合が形成された層を貫通し、フッ素アクリル系の樹脂層まで達する幅100nm程度の多数の微細な溝が形成されていた。   On the other hand, a polyethylene terephthalate film having a thickness of about 100 μm obtained by gravure printing on the surface with a fluoroacrylic resin having a thickness of about 1 μm is used as a substrate sheet having releasability, and poly-3-hexylthiophene (P3HT) is used as a donor layer on the printed surface. ) A mixture containing fullerene 60 as an acceptor layer was formed with a coater to a thickness of 200 nm. The formed layer had a bulk heterostructure. Next, the sheet-like imprint mold was placed on the layer where the bulk heterojunction was formed, and pressed at a pressure of 2 atm while being heated to 80 ° C., and the sheet-like imprint mold was laminated. After leaving to cool, the sheet-like imprint mold was peeled off, and a large number of fine grooves with a width of about 100 nm reaching the fluoroacrylic resin layer through the layer in which the bulk heterojunction was formed. .

次いで、該形成された多数の微細な溝に電極として金膜を真空蒸着法で形成し、その上に塩化ビニル系の接着層をグラビア印刷で全面に形成し、アクリル板に載置し、熱と圧力を加えて前記各層をアクリル板状に転写させた。   Next, a gold film is formed as an electrode in the formed many fine grooves by a vacuum deposition method, and a vinyl chloride adhesive layer is formed on the entire surface by gravure printing, placed on an acrylic plate, and heated. And the pressure was applied to transfer each layer into an acrylic plate.

次いで、前記離型性を有する基体シートを剥離除去し、露出した最表面にPEDOT/PSSの水分散液をコーターで形成し、乾燥後、その上に透明電極としてインジウムスズ酸化物膜をスパッタリング法で200nmの厚みで形成し、有機薄膜太陽電池を得た。この有機薄膜太陽電池の断面は、ドナー層とアクセプター層が両電極を完全に貫通した直立超格子構造でほぼ理想に近いナノ構造になっており、従来の不均一なバルクへテロジャンクション接合構造と異なり、変換効率も格段に向上していた。また、大面積にしてもこの構造はほぼ維持されていた。   Next, the substrate sheet having releasability is peeled and removed, an aqueous dispersion of PEDOT / PSS is formed on the exposed outermost surface with a coater, and after drying, an indium tin oxide film is sputtered thereon as a transparent electrode With a thickness of 200 nm, an organic thin film solar cell was obtained. The cross section of this organic thin-film solar cell is an almost super-ideal nanostructure with an upright superlattice structure in which the donor layer and the acceptor layer completely penetrate both electrodes, and the conventional non-uniform bulk heterojunction junction structure Unlikely, the conversion efficiency was also greatly improved. In addition, this structure was almost maintained even in a large area.

インプリント型母材の基材として厚さ25μmのポリエチレンテレフタレートフィルムを用意し、該インプリント型母材の基材上にクロルメチル化カリックスアレーンを主成分とする電離放射線硬化層をグラビア印刷法により0.2μmの厚みで形成し、該電離放射線硬化層の上に真空蒸着法を用いてインジウムからなる厚み3nmの多数の島状の金属膜を形成した。次いで、該金属膜をマスクとして電子線を照射して電離放射線硬化層の一部を硬化させ、トルエンを主成分とする有機溶剤でもって未効果の箇所を剥離除去した。   A polyethylene terephthalate film having a thickness of 25 μm is prepared as a base material for an imprint base material, and an ionizing radiation cured layer mainly composed of chloromethylated calixarene is formed on the base material of the imprint base material by a gravure printing method. A plurality of island-shaped metal films made of indium and having a thickness of 3 nm were formed on the ionizing radiation-cured layer using a vacuum deposition method. Next, an electron beam was irradiated using the metal film as a mask to cure a part of the ionizing radiation-cured layer, and an ineffective portion was peeled and removed with an organic solvent containing toluene as a main component.

上記得られたインプリント型母材には幅300nm程度の微細な溝の凹部が形成され、凸部は平均面積が200nm程度の多数の島状構造となっていた、次いで該インプリント型母材に対して全面に銅を真空蒸着し、次いでニッケル電鋳により、前記インプリント型母材の形状を反転した平均面積が200nm程度の多数の島状構造の凹部とそれを取り囲む幅300nm程度で高さが170nm程度の凸部とがあるシート状のインプリント型が得られた。 The imprint base material thus obtained was formed with concave portions having fine grooves with a width of about 300 nm, and the convex portions had a large number of island structures with an average area of about 200 nm 2. the copper was vacuum-deposited on the entire surface against the timber, followed by nickel electroforming, the recess and the width 300nm approximately surrounding the said imprint basic material a number of islands average area of about 200 nm 2 of the shape obtained by inverting the Thus, a sheet-like imprint mold having a convex portion with a height of about 170 nm was obtained.

一方、離型性を有する基体シートとして厚さ100μmのフッ素アクリル系フィルムを用い、その表面にドナーとしてポリ3ヘキシルチオフェン(P3HT)、アクセプターとしてC60フェニルブチル酸メチルエステル(PC60BM)が1:1の重量比で含有された塗布液をコーターで500nmの厚みで形成した。形成された層はバルクへテロ構造になっていた。次いで、該バルクへテロ接合が形成された層に前記シート状のインプリント型を載置し、50℃に加熱しながら5気圧の圧力で押圧し、シート状のインプリント型を積層した。放置冷却後、シート状のインプリント型を剥離したところ、アクセプター層を貫通し、フッ素アクリル系フィルムまで達する幅300nm程度の多数の微細な溝が形成されていた。   On the other hand, a fluoroacrylic film having a thickness of 100 μm is used as a base sheet having releasability, and poly (hexylthiophene) (P3HT) is used as a donor on its surface, and C60 phenylbutyric acid methyl ester (PC60BM) is used as an acceptor. The coating solution contained at a weight ratio was formed with a coater to a thickness of 500 nm. The formed layer had a bulk heterostructure. Next, the sheet-like imprint mold was placed on the layer where the bulk heterojunction was formed, and pressed at a pressure of 5 atm while being heated to 50 ° C., thereby laminating the sheet-like imprint mold. When the sheet-like imprint mold was peeled off after being allowed to cool, a large number of fine grooves having a width of about 300 nm reaching the fluoroacrylic film through the acceptor layer were formed.

次いで、このバルクへテロ接合が形成された層の微細な溝に透明電極として銀ナノワイヤを含有した透明導電インキをグラビア印刷で500nmの厚みで形成し、その上に塩化ビニル系の接着層をグラビア印刷で全面に形成し、アクリル板に載置し、熱と圧力を加えて前記各層をアクリル板状に転写させた。次いで、前記離型性を有する基体シートを剥離除去し、露出した最表面に離型性を有する基体シートを剥離除去し、露出した最表面にポリ3ヘキシルチオフェン(P3HT)とC70フェニルブチル酸メチルエステル(PC70BM)とが1:1の重量比の混合物を30nmの厚みで真空蒸着法により形成した。   Next, a transparent conductive ink containing silver nanowires as a transparent electrode is formed in a fine groove of the layer in which the bulk heterojunction is formed with a thickness of 500 nm by gravure printing, and a vinyl chloride adhesive layer is formed thereon. It was formed on the entire surface by printing, placed on an acrylic plate, and heat and pressure were applied to transfer each layer into an acrylic plate. Subsequently, the base sheet having releasability is peeled and removed, and the base sheet having releasability is peeled and removed on the exposed outermost surface, and poly-3hexylthiophene (P3HT) and C70 phenylbutyrate methyl are exposed on the exposed outermost surface. A mixture of ester (PC70BM) at a weight ratio of 1: 1 was formed by vacuum deposition with a thickness of 30 nm.

次いでその上にバッファー層として酸化チタンからなる膜をスパッタリング法で500nmの厚みで形成し、その上に電極としてアルミニウム膜を真空蒸着法で800nmの厚みで形成して、有機薄膜太陽電池を得た。この有機薄膜太陽電池の断面は、バルクへテロ接合層が両電極を完全に貫通した直立超格子構造でほぼ理想に近いナノ構造になっており、従来の不均一なバルクへテロジャンクション接合構造と異なり、変換効率も格段に向上していた。また、大面積にしてもこの構造はほぼ維持されていた。   Next, a film made of titanium oxide as a buffer layer was formed thereon with a thickness of 500 nm by a sputtering method, and an aluminum film was formed thereon as an electrode with a thickness of 800 nm by a vacuum evaporation method to obtain an organic thin film solar cell. . The cross section of this organic thin-film solar cell has an almost super-ideal nanostructure with an upright superlattice structure in which the bulk heterojunction layer completely penetrates both electrodes, and the conventional heterogeneous bulk heterojunction junction structure. Unlikely, the conversion efficiency was also greatly improved. In addition, this structure was almost maintained even in a large area.

インプリント型母材の基材として厚さ25μmのポリエチレンテレフタレートフィルムを用意し、該インプリント型母材の基材上に塩化ビニル酢酸ビニル共重合樹脂を主成分とする被エッチング層をグラビア印刷法により0.1μmの厚みで形成し、該被エッチング層の上に真空蒸着法を用いてスズからなる厚み5nmの多数の島状の金属膜を形成した。次いで、該金属膜をマスクとしてアルゴンプラズマによる反応性エッチングを施した。   A 25 μm-thick polyethylene terephthalate film is prepared as a base material for an imprint base material, and an etching target layer mainly composed of a vinyl chloride vinyl acetate copolymer resin is formed on the base material for the imprint base material. A plurality of island-shaped metal films made of tin and having a thickness of 5 nm were formed on the layer to be etched using a vacuum deposition method. Next, reactive etching using argon plasma was performed using the metal film as a mask.

上記得られたインプリント型母材には幅300nm程度の微細な溝の凹部が形成され、凸部は平均面積が6500nm程度の多数の島状構造となっていた、次いで該インプリント型母材に対して全面に銅を真空蒸着し、次いでニッケル電鋳により、前記インプリント型母材の形状を反転した平均面積が6500nm程度の多数の島状構造の凹部とそれを取り囲む幅300nm程度で高さが80nm程度の凸部とがあるシート状のインプリント型が得られた。 The imprint base material thus obtained was formed with concave portions of fine grooves having a width of about 300 nm, and the convex portions had a number of island structures with an average area of about 6500 nm 2. Copper is vacuum-deposited on the entire surface of the material, then nickel electroforming is used to invert the shape of the imprint base material, and the average area is about 6500 nm 2 and a large number of island-shaped recesses and the width surrounding it is about 300 nm. Thus, a sheet-like imprint mold having a convex portion having a height of about 80 nm was obtained.

一方、アクリル板に、その表面に電極としてアルミニウム膜を真空蒸着法で800nmの厚みで形成し、次いでその上にバッファー層として酸化チタンからなる膜をスパッタリング法で500nmの厚みで形成し、その上にドナー層として亜鉛ドープフタロシアニン、アクセプター層としてC70フェニルブチル酸メチルエステル(PC70BM)を含む混合物の塗布膜をコーターで120nmの厚みで形成した。形成した層はバルクへテロ構造になっていた。次いで、該バルクへテロ接合が形成された層に前記シート状のインプリント型を載置し、60℃に加熱しながら3気圧の圧力で押圧し、シート状のインプリント型を積層した。放置冷却後、シート状のインプリント型を剥離したところ、バルクへテロ接合が形成された層には、深さが60nm程度で幅300nm程度の多数の微細な溝が形成されていた。   On the other hand, on the acrylic plate, an aluminum film is formed as an electrode on the surface with a thickness of 800 nm by a vacuum deposition method, and then a film made of titanium oxide is formed thereon with a thickness of 500 nm by a sputtering method as a buffer layer. A coating film of a mixture containing zinc-doped phthalocyanine as a donor layer and C70 phenylbutyric acid methyl ester (PC70BM) as an acceptor layer was formed with a coater to a thickness of 120 nm. The formed layer had a bulk heterostructure. Next, the sheet-like imprint mold was placed on the layer where the bulk heterojunction was formed, and pressed at a pressure of 3 atm while being heated to 60 ° C., thereby laminating the sheet-like imprint mold. When the sheet-like imprint mold was peeled off after standing cooling, many fine grooves having a depth of about 60 nm and a width of about 300 nm were formed in the layer in which the bulk heterojunction was formed.

次いで、該形成された多数の微細な溝に電極とし銀ナノワイヤを含む透明導電インキをグラビア印刷法で形成し、有機薄膜太陽電池を得た。この有機薄膜太陽電池の断面は、従来のフラットな電極構造と異なり、銀ナノワイヤを含む透明導電インキの電極がバルクへテロ接合が形成された層の奥深くまでくいこむ構造になっており、変換効率も格段に向上していた。また、大面積にしてもこの構造はほぼ維持されていた。   Next, a transparent conductive ink containing silver nanowires as electrodes was formed in the formed numerous fine grooves by a gravure printing method to obtain an organic thin film solar cell. Unlike the conventional flat electrode structure, this organic thin-film solar cell has a structure in which a transparent conductive ink electrode containing silver nanowires is embedded deep into the layer where the bulk heterojunction is formed, and the conversion efficiency is also high. It was much improved. In addition, this structure was almost maintained even in a large area.

1 微細な溝
2 光発生電荷
3 金属膜
5 有機薄膜太陽電池
7 バルクへテロ接合が形成された層
9 多数の島状構造
12 離型性を有する基体シート
14 太陽電池の基材
20、21 電極
30 インプリント型
31 インプリント型母材
32 インプリント型母材の基材
33 電離放射線
35 電離放射線可溶化層
37 ナノスケール幅の溝の凹部
38 インプリント型の凸部
51 光
DESCRIPTION OF SYMBOLS 1 Fine groove | channel 2 Photogenerated electric charge 3 Metal film 5 Organic thin film solar cell 7 Layer in which the bulk heterojunction was formed 9 Many island-like structures 12 Base sheet | seat which has releasability 14 Base material 20 of a solar cell 20, 21 Electrode 30 imprint mold 31 imprint mold base material 32 base material of imprint mold base material 33 ionizing radiation 35 ionizing radiation solubilized layer 37 concave portion of nanoscale width groove 38 imprint type convex portion 51 light

Claims (2)

離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成し、ナノインプリント加工して該バルクへテロ接合が形成された層を貫通するナノスケール幅の微細な溝またはナノスケールサイズの島状構造の凹部を形成し、該微細な溝または島状構造の凹部に電極を形成した後、前記各層を太陽電池の基材に転写し離型性を有する基体シートを剥離し、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層のいずれかを形成する有機薄膜太陽電池の製造方法。   A layer having a bulk heterojunction formed by a donor and an acceptor is formed on a substrate sheet having releasability, and a nano-scale fine groove penetrating the layer having the bulk heterojunction formed by nanoimprint processing. Alternatively, a nanoscale sized island-shaped recess is formed, and an electrode is formed in the fine groove or the island-shaped recess, and then the respective layers are transferred to a solar cell substrate to provide a release sheet. A method for producing an organic thin-film solar cell, comprising peeling and forming either a donor layer, an acceptor layer, or a mixture layer of a donor and an acceptor on the outermost surface after transfer. 離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層が形成され、ナノインプリント加工して該バルクへテロ接合が形成された層を貫通するナノスケール幅の微細な溝またはナノスケールサイズの島状構造の凹部が形成され、該微細な溝または島状構造の凹部に電極が形成された転写シート。 A layer having a bulk heterojunction formed by a donor and an acceptor is formed on a substrate sheet having releasability, and a nano-scale fine groove penetrating the layer in which the bulk heterojunction is formed by nanoimprint processing Alternatively, a transfer sheet in which a recess having an island-like structure of nanoscale size is formed, and an electrode is formed in the minute groove or the recess having an island-like structure.
JP2010013361A 2010-01-25 2010-01-25 Manufacturing method of organic thin film solar cell and transfer sheet used therefor Expired - Fee Related JP5561722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013361A JP5561722B2 (en) 2010-01-25 2010-01-25 Manufacturing method of organic thin film solar cell and transfer sheet used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013361A JP5561722B2 (en) 2010-01-25 2010-01-25 Manufacturing method of organic thin film solar cell and transfer sheet used therefor

Publications (2)

Publication Number Publication Date
JP2011151315A JP2011151315A (en) 2011-08-04
JP5561722B2 true JP5561722B2 (en) 2014-07-30

Family

ID=44538015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013361A Expired - Fee Related JP5561722B2 (en) 2010-01-25 2010-01-25 Manufacturing method of organic thin film solar cell and transfer sheet used therefor

Country Status (1)

Country Link
JP (1) JP5561722B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210632A (en) * 1989-02-09 1990-08-22 Toppan Printing Co Ltd Production of stamper for optical card
JP2679454B2 (en) * 1991-05-31 1997-11-19 日本電気株式会社 Resin stamper manufacturing method and pattern transfer method using the resin stamper
JPH0590623A (en) * 1991-09-28 1993-04-09 Nissha Printing Co Ltd Transfer material for solar battery
JP3360919B2 (en) * 1993-06-11 2003-01-07 三菱電機株式会社 Method of manufacturing thin-film solar cell and thin-film solar cell
JP2001096539A (en) * 1999-09-29 2001-04-10 Kuraray Co Ltd Preparation method of master with uneven surface
JP2001119043A (en) * 1999-10-14 2001-04-27 Sony Corp Equipment for manufacturing semiconductor element
JP2002219715A (en) * 2001-01-25 2002-08-06 Tanazawa Hakkosha:Kk Method for forming molding surface of mold, and the mold
GB0229653D0 (en) * 2002-12-20 2003-01-22 Cambridge Display Tech Ltd Electrical connection of optoelectronic devices
JP4578065B2 (en) * 2003-05-07 2010-11-10 大日本印刷株式会社 Organic thin film solar cell manufacturing method and transfer sheet
JP5364999B2 (en) * 2007-12-28 2013-12-11 大日本印刷株式会社 Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2009224758A (en) * 2008-02-19 2009-10-01 Sharp Corp Composite semiconductor substrate and method of manufacturing the same
KR100999377B1 (en) * 2008-06-18 2010-12-09 한국과학기술원 Organic Solar Cells and Method for Preparing the Same

Also Published As

Publication number Publication date
JP2011151315A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US20100089443A1 (en) Photon processing with nanopatterned materials
US20090133751A1 (en) Nanostructured Organic Solar Cells
US20110180127A1 (en) Solar cell fabrication by nanoimprint lithography
TW201638259A (en) Film for transparent conductive layer lamination, method for manufacturing same, and transparent conductive film
JP2007005620A (en) Organic thin film solar cell
US20110030770A1 (en) Nanostructured organic solar cells
Choi et al. Enhancement of organic solar cell efficiency by patterning the PEDOT: PSS hole transport layer using nanoimprint lithography
JP2020047604A (en) Nanostructured material laminate transfer method and device
Youn et al. Printed nanostructures for organic photovoltaic cells and solution‐processed polymer light‐emitting diodes
JP5961094B2 (en) Organic thin film solar cell
JP5774566B2 (en) Organic thin film solar cell
JP2007073717A (en) Organic thin film solar cell
CN109037454A (en) A kind of organic photoelectric multiplication detector based on surface plasmons
JP5515658B2 (en) Organic solar cell element and method for producing organic solar cell element
Nakamura et al. High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination
JP2008141103A (en) Production method of photoelectric conversion device
JP2012174921A (en) Method of manufacturing organic thin-film solar cell
JP2005032917A (en) Method for manufacturing organic thin film solar cell and transfer sheet
Wang et al. Effect of the ordered 2D-dot nano-patterned anode for polymer solar cells
JP5561722B2 (en) Manufacturing method of organic thin film solar cell and transfer sheet used therefor
KR101353888B1 (en) Method of manufacturing flexible organic solar cell including nano-patterned hole extraction layer and flexible organic solar cell manufactured by them
JP5561721B2 (en) Manufacturing method of organic thin film solar cell and transfer sheet used therefor
KR20100010407A (en) Method for fabricating of organic solar cells by patterning nanoscale transparent conducting oxide electrode
JP5517640B2 (en) Organic thin film solar cell and manufacturing method thereof (2)
JP5517639B2 (en) Organic thin film solar cell and manufacturing method thereof (1)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5561722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees