JP2001096539A - Preparation method of master with uneven surface - Google Patents

Preparation method of master with uneven surface

Info

Publication number
JP2001096539A
JP2001096539A JP27581399A JP27581399A JP2001096539A JP 2001096539 A JP2001096539 A JP 2001096539A JP 27581399 A JP27581399 A JP 27581399A JP 27581399 A JP27581399 A JP 27581399A JP 2001096539 A JP2001096539 A JP 2001096539A
Authority
JP
Japan
Prior art keywords
resin
ionizing radiation
master
pattern
rectangular pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27581399A
Other languages
Japanese (ja)
Inventor
Mutsuji Watanabe
陸司 渡辺
Katsuya Fujisawa
克也 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27581399A priority Critical patent/JP2001096539A/en
Publication of JP2001096539A publication Critical patent/JP2001096539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently preparing a master with a fine uneven pattern with a special crosssection such as sine wave and parabolic shape and used for preparing various optical films. SOLUTION: The first ionized radiation curable resin is exposed to light and developed to form a rectangular pattern (a) and the first thermoplastic resin is cast into the rectangular pattern consisting of the first ionized radiation curable resin and is cured to prepare an intermediate mold consisting of the thermoplastic resin with a reverse rectangular pattern (b) and the second ionized radiation curable resin is cast into the intermediate mold consisting of the first thermoplastic resin to prepare a resin mold consisting of the second ionized radiation curable resin with a rectangular pattern prepd. by reversing the pattern of the intermediate mold (c) and a metal stamper is prepd. from the resin mold (d) and the second thermoplastic resin is cast into the stamper and is cured to prepare a master of a resin mold with a rectangular pattern (e) and the master of the resin mold is heat-treated (f).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフィルム上に微細凹
凸パターンを有する各種光学フィルムの製造に用いられ
る原盤の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a master used for producing various optical films having a fine uneven pattern on the film.

【0002】[0002]

【従来の技術】従来、回折格子などの微細凹凸パターン
を有する光学フィルムの製造に用いられる原盤は、厚さ
が10〜20mmの銅板あるいはアルミナ合金板に、N
C制御カッティングマシーンを用いて該凹凸パターンの
逆型パターンを切削することによって作製されることが
一般的である。このため、当該逆型パターンを切削する
際のバイトの移動精度を上げれば上げるほど、原盤一台
を切削するために長時間を要する。しかし、逆型パター
ンの精度自体がバイトの形状に影響され、一般的に50
μm以下のピッチのものは作製することができない。微
細凹凸パターンを有する光学フィルム製造用の原盤を、
電離放射線硬化樹脂を利用したレーザービーム描画法に
より作製する方法も開発されている。しかし、この方法
でレーザービーム径を絞って加工精度を上げて、大面積
の微細凹凸パターンを形成しようとすると、10cm角
で数時間というように、機械加工する場合と同様に加工
時間が長くなる。
2. Description of the Related Art Conventionally, a master used for manufacturing an optical film having a fine uneven pattern such as a diffraction grating is made of a copper plate or an alumina alloy plate having a thickness of 10 to 20 mm.
It is generally produced by cutting a reverse pattern of the concavo-convex pattern using a C control cutting machine. For this reason, the higher the moving accuracy of the cutting tool when cutting the reverse pattern, the longer it takes to cut one master. However, the accuracy of the inverted pattern itself is affected by the shape of the cutting tool, and generally 50
Those having a pitch of less than μm cannot be manufactured. A master for optical film production with a fine uneven pattern
A method of fabricating by a laser beam drawing method using an ionizing radiation curing resin has also been developed. However, if the laser beam diameter is narrowed by this method to increase the processing accuracy and to form a large-area fine uneven pattern, the processing time becomes longer as in the case of mechanical processing, such as several hours in a 10 cm square. .

【0003】[0003]

【発明が解決しようとする課題】ところで、市販の電離
放射線硬化樹脂を用いたレーザービーム描画法などによ
り微細凹凸パターンを形成した場合、該凹凸パターンの
形状は一般に矩形状であり、露光条件、現像条件等を調
整することによって、台形状、丸みをもつ台形状などの
特定の断面形状を持つ凹凸パターンを作製することが可
能である。しかしながら、正弦波、放物線状、凸レンズ
状などの断面形状を有する凹凸パターンを通常の露光、
現像処理のみで得ることは困難であり、露光、現像後に
電離放射線硬化樹脂を加熱整形することが多い。しか
し、ネガ型の電離放射線硬化樹脂を加熱処理すると、パ
ターンの凸部の架橋密度が不均一であるため、また、ポ
ジ型の電離放射線硬化樹脂を加熱処理すると、脆く熱変
形が急激に起こるため、いずれの場合でも凹凸パターン
の全面にわたって均一な正弦波等の形状を得ることが難
しく、形状の不均一が生じる。
When a fine uneven pattern is formed by a laser beam drawing method using a commercially available ionizing radiation-curable resin, the shape of the uneven pattern is generally rectangular, and exposure conditions, development By adjusting the conditions and the like, it is possible to produce a concavo-convex pattern having a specific cross-sectional shape such as a trapezoidal shape or a rounded trapezoidal shape. However, sine wave, parabolic, convex-concave pattern having a cross-sectional shape such as convex lens normal exposure,
It is difficult to obtain the resin only by the development treatment, and in many cases, the ionizing radiation-curable resin is heated and shaped after exposure and development. However, when heat-treating a negative ionizing radiation-cured resin, the cross-linking density of the convex portions of the pattern is non-uniform, and when heat-treating a positive ionizing radiation-cured resin, brittle thermal deformation occurs rapidly. In any case, it is difficult to obtain a uniform shape such as a sine wave over the entire surface of the concavo-convex pattern, and the shape becomes uneven.

【0004】本発明は、上述の点に鑑みなされたもの
で、正弦波、放物線状などの特殊な断面の微細凹凸パタ
ーンを有し、各種光学フィルムの製造などに用いられる
原盤を、効率的に作製する方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has an advantage in that a master having a fine uneven pattern having a special cross section such as a sine wave or a parabola can be efficiently used for manufacturing various optical films. It is an object to provide a method for manufacturing.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決する各
請求項に係る表面凹凸原盤の作製方法の発明は、(1)
第1の電離放射線硬化樹脂が塗布された基板に電離放射
線を選択的に照射する露光工程と、該第1の電離放射線
硬化樹脂を現像する現像工程とにより、第1の電離放射
線硬化樹脂からなる矩形パターン(ポジ)を形成する工
程と、当該第1の電離放射線硬化樹脂からなる矩形パタ
ーンに第1の熱可塑性樹脂を注入して硬化させ、該矩形
パターンが反転された矩形パターン(ネガ)を有する第
1の熱可塑性樹脂からなる中間型を作製する工程と、当
該第1の熱可塑性樹脂からなる中間型に第2の電離放射
線硬化樹脂を注入し、該第2の電離放射線硬化樹脂の露
光工程を経て、中間型のパターンが反転された矩形パタ
ーン(ポジ)を有する第2の電離放射線硬化樹脂からな
る樹脂型を作製する工程と、該樹脂型から金属製のスタ
ンパ(ネガ)を作製する工程と、金属製のスタンパに第
2の熱可塑性樹脂を注入して硬化させ、矩形パターン
(ポジ)を持つ樹脂型原盤を作製する工程と、該樹脂型
原盤を加熱処理して、凹凸パターンの断面形状を変形さ
せる工程とを有すること、あるいは、(2)第1の電離
放射線硬化樹脂が塗布された基板に電離放射線を選択的
に照射する露光工程と、該第1の電離放射線硬化樹脂を
現像する現像工程とにより、第1の電離放射線硬化樹脂
からなる矩形パターン(ポジ)を形成する工程と、当該
第1の電離放射線硬化樹脂からなる矩形パターンに第1
の熱可塑性樹脂を注入して硬化させ、該矩形パターンが
反転された矩形パターン(ネガ)を有する第1の熱可塑
性樹脂からなる中間型を作製する工程と、該中間型に第
3の熱可塑性樹脂を注入して硬化させ、矩形パターン
(ポジ)を持つ樹脂型原盤を作製する工程と、該樹脂型
原盤を加熱処理して、凹凸パターンの断面形状を変形さ
せる工程とを有すること、を特徴とするものである。
Means for Solving the Problems The invention of a method for producing a master with an uneven surface according to the claims for solving the above-mentioned problems is described in (1).
An exposure step of selectively irradiating the substrate coated with the first ionizing radiation-curable resin with ionizing radiation, and a developing step of developing the first ionizing radiation-curable resin, the first ionizing radiation-curable resin being composed of the first ionizing radiation-curable resin. Forming a rectangular pattern (positive), injecting and curing a first thermoplastic resin into the rectangular pattern made of the first ionizing radiation-curable resin, and forming a rectangular pattern (negative) in which the rectangular pattern is inverted. Producing an intermediate mold made of the first thermoplastic resin, and injecting the second ionizing radiation-curable resin into the intermediate mold made of the first thermoplastic resin, and exposing the second ionizing radiation-cured resin to light. Through the steps, a step of preparing a resin mold made of a second ionizing radiation curable resin having a rectangular pattern (positive) in which the pattern of the intermediate mold is inverted, and forming a metal stamper (negative) from the resin mold Forming a resin mold master having a rectangular pattern (positive) by injecting and curing a second thermoplastic resin into a metal stamper; and heating the resin mold master to form a concavo-convex pattern. Or (2) an exposure step of selectively irradiating the substrate coated with the first ionizing radiation-curable resin with ionizing radiation, and a step of deforming the first ionizing radiation-curable resin. Developing a rectangular pattern (positive) made of the first ionizing radiation-curable resin, and forming the first pattern into the rectangular pattern made of the first ionizing radiation-curable resin.
Injecting and hardening the thermoplastic resin of the above, and producing an intermediate mold made of a first thermoplastic resin having a rectangular pattern (negative) obtained by inverting the rectangular pattern; and adding a third thermoplastic resin to the intermediate mold. A step of producing a resin mold master having a rectangular pattern (positive) by injecting and curing a resin; and a step of heating the resin mold master to deform the cross-sectional shape of the concave-convex pattern. It is assumed that.

【0006】[0006]

【発明の実施の形態】以下、本件の各発明を図面に従っ
て説明する。まず、図1に示す工程の原盤作製方法につ
いて説明する。電離放射線硬化樹脂を基板に塗布する方
法は、キャスティング法、バーコート法、スピンコート
法などの一般的な方法の中から、所望の膜の厚さ、形態
などに応じて適宜選択される(図1(a))。一般に
は、膜厚が大きい場合はキャスティング法、小さい場合
はバーコート法またはスピンコート法が選ばれる。基板
に電離放射線硬化樹脂を塗布した後、必要に応じて減圧
処理あるいは加熱処理を行い溶剤を除去する。電離放射
線硬化樹脂の露光には、1次元あるいは2次元のパター
ンが形成されたマスクが用いられる。マスクパターンの
ライン/スペース比、ギャップ等は所望の表面凹凸形状
に応じて適宜決められる。露光後の電離放射線硬化樹脂
を溶剤に浸漬し、あるいは減圧または常圧下で加熱処理
することにより、矩形パターンを持つ感光性樹脂原盤を
作製する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, each invention of the present invention will be described with reference to the drawings. First, a method for producing a master in the step shown in FIG. 1 will be described. The method of applying the ionizing radiation-curable resin to the substrate is appropriately selected from general methods such as a casting method, a bar coating method, and a spin coating method according to a desired film thickness and form (see FIG. 1 (a)). Generally, a casting method is selected when the film thickness is large, and a bar coating method or a spin coating method is selected when the film thickness is small. After applying the ionizing radiation-curable resin to the substrate, the solvent is removed by performing a reduced pressure treatment or a heating treatment as necessary. A mask on which a one-dimensional or two-dimensional pattern is formed is used for exposing the ionizing radiation curing resin. The line / space ratio, gap, and the like of the mask pattern are appropriately determined according to the desired surface irregularities. The ionized radiation-curable resin after exposure is immersed in a solvent or subjected to a heat treatment under reduced pressure or normal pressure to prepare a photosensitive resin master having a rectangular pattern.

【0007】この感光性樹脂原盤に第1の熱可塑性樹脂
を注入し、これを硬化させてネガ型矩形パターンの中間
型を作製する(図1(b))。この第1の熱可塑性樹脂
には、離型性、転写性、寸法安定性、鏡面性に優れた付
加重合型のシリコーン樹脂を用いることが好ましい。こ
の中間型に第2の電離放射線硬化樹脂を注入し、その上
に、フィルム状透明基材を中間型の一端から他端方向へ
圧力を加えながら徐々に重ね合わせた後、電離放射線を
フィルム上面から照射するなどして、ポジ型矩形パター
ンを持つ樹脂型を作製する(図1(c))。この樹脂型
を原盤としてNiなどの金属をスパッタし(導電化処
理)、電鋳を行ってスタンパを作製する(図1
(d))。このスタンパに第2の熱可塑性樹脂からなる
シート等を重ね合わせ、真空下で加熱プレスするなどし
て、ポジ型矩形パターンを持つ樹脂型原盤を作製する
(図1(e))。この樹脂型原盤を所定の温度・時間で
加熱処理して(図1(f))、正弦波、放物線、レンズ
状などの所望の断面形状を有する微細表面凹凸原盤を作
製する(図1(g))。
[0007] A first thermoplastic resin is injected into the photosensitive resin master and is cured to produce an intermediate mold having a negative rectangular pattern (FIG. 1B). As the first thermoplastic resin, it is preferable to use an addition polymerization type silicone resin which is excellent in releasability, transferability, dimensional stability, and specularity. A second ionizing radiation-curable resin is injected into the intermediate mold, and a film-shaped transparent substrate is gradually superposed thereon while applying pressure from one end to the other end of the intermediate mold. A resin mold having a positive-type rectangular pattern is produced by irradiating the resin mold (FIG. 1C). Using this resin mold as a master, a metal such as Ni is sputtered (conductive treatment) and electroformed to produce a stamper (FIG. 1).
(D)). A sheet or the like made of a second thermoplastic resin is overlaid on the stamper, and heated and pressed under vacuum to produce a resin mold master having a positive rectangular pattern (FIG. 1 (e)). This resin-type master is heat-treated at a predetermined temperature and time (FIG. 1 (f)) to produce a master with a fine surface unevenness having a desired cross-sectional shape such as a sine wave, a parabola, or a lens (FIG. 1 (g)). )).

【0008】次に、図2に示す工程の原盤作製方法につ
いて説明する。中間型を作製するまでは、図1に示す原
盤作製方法と図2に示す原盤作製方法とは共通する。図
2に示す工程の原盤作製方法では、上記中間型に第3の
熱可塑性樹脂を注入し硬化させて、上記中間型のパター
ンを転写したポジ型矩形パターンを持つ樹脂型原盤を作
製する(図2(c))。この樹脂型原盤を所定の温度・
時間で加熱処理して(図2(d))、正弦波、放物線、
レンズ状などの所望の断面形状を有する微細表面凹凸原
盤を作製する(図2(e))。この第3の熱可塑性樹脂
として、ゾルゲル転移樹脂であるステレオコンプレック
スPMMA系樹脂を使用すれば、ゾル状態でネガ型矩形
パターンを持つ中間型に注入することが可能であり、転
写作業性に優れている。また、正弦波、放物線、レンズ
状などの任意の形状に容易に加熱加工することが可能で
ある。
Next, a method of producing a master in the step shown in FIG. 2 will be described. Until an intermediate mold is manufactured, the master manufacturing method shown in FIG. 1 and the master manufacturing method shown in FIG. 2 are common. In the master production method of the process shown in FIG. 2, a third thermoplastic resin is injected into the intermediate mold and cured to produce a resin mold master having a positive rectangular pattern to which the pattern of the intermediate mold is transferred (FIG. 2 (c)). This resin mold master is heated to a predetermined temperature
Heat treatment in time (Fig. 2 (d)), sine wave, parabola,
A master with a fine surface unevenness having a desired cross-sectional shape such as a lens shape is produced (FIG. 2E). If a stereo complex PMMA-based resin, which is a sol-gel transition resin, is used as the third thermoplastic resin, it can be injected into an intermediate mold having a negative rectangular pattern in a sol state, and excellent transfer workability can be obtained. I have. Further, it is possible to easily heat-process into an arbitrary shape such as a sine wave, a parabola, and a lens.

【0009】[0009]

【実施例】(実施例1)図1に示す工程の原盤作製方法
の実施例を説明する。ポジ型感光性樹脂(たとえば、東
京応化工業(株)製商品名P−AR900、P−LA9
00PM、ジェイエスアール(株)製THB−523等
の厚膜ポジタイプフォトレジスト)を、縦横の寸法が3
00mmで厚さが1.1mmのガラス基板上に膜厚が3
0〜50μmになるようにスピンコート法で製膜した後
に溶剤を除去し、ガラスとの密着力を向上させるため
に、90〜100℃で30〜40分間プリベークした。
次いで、40μmピッチでライン/スペース比が8.5
/1.5のパターンを持つ2次元マスクを上記のポジ型
感光性樹脂上に密着させ、超高圧水銀ランプを具備した
露光装置で300〜600mJ/cm2になるように紫
外線を照射して感光性樹脂を露光した。その後、当該ポ
ジ型感光性樹脂専用の現像液を用いて、紫外線照射部分
を溶解除去した。これにより、段差が20〜50μmの
矩形断面パターンを持つ感光性樹脂原盤を得た。
(Embodiment 1) An embodiment of a method for producing a master in the process shown in FIG. 1 will be described. Positive photosensitive resin (for example, P-AR900, P-LA9 manufactured by Tokyo Ohka Kogyo Co., Ltd.)
00PM, a thick film positive type photoresist such as THB-523 manufactured by JSR Co., Ltd.)
A film thickness of 3 on a glass substrate of 00 mm and 1.1 mm in thickness.
After forming the film by a spin coating method so as to have a thickness of 0 to 50 μm, the solvent was removed and prebaked at 90 to 100 ° C. for 30 to 40 minutes in order to improve the adhesion to glass.
Next, the line / space ratio was 8.5 at a pitch of 40 μm.
A two-dimensional mask having a /1.5 pattern is closely adhered to the above-mentioned positive photosensitive resin, and exposed to ultraviolet light at 300 to 600 mJ / cm 2 by an exposure apparatus equipped with an ultrahigh pressure mercury lamp. The conductive resin was exposed. Thereafter, the ultraviolet-irradiated portion was dissolved and removed using a developing solution dedicated to the positive photosensitive resin. As a result, a photosensitive resin master having a rectangular cross-sectional pattern having a step of 20 to 50 μm was obtained.

【0010】この感光性樹脂原盤にシリコーン樹脂(た
とえば信越化学工業(株)製KE1300T/CAT−
1300)を滴下し、真空下で脱泡した後、室温で24
時間放置して硬化させた。感光性樹脂原盤からシリコー
ン樹脂を剥離させて、ネガ型矩形パターンを持つ中間型
を得た。この中間型上に紫外線硬化樹脂(たとえば東亜
合成(株)製UVX−1826)を滴下し、その上から
PETフィルム(たとえば東洋紡績(株)製A430
0、フィルム厚さ250μm)を圧力を加えながら中間
型の一端から他端方向へ徐々に重ね合せた後、紫外線照
射装置により照射量が800〜1500mJ/cm2
なるようにフィルム上面から紫外線を照射した。硬化し
た紫外線硬化樹脂をPETフィルムとともに剥離するこ
とによってポジ型矩形パターンを持つ紫外線硬化樹脂製
の樹脂型を作製した。この樹脂型を専用治具に貼り付け
たのち、Niスパッタ(導電化処理)、Ni電鋳を行
い、厚さが300μmのNiスタンパを作製した。
A silicone resin (for example, KE1300T / CAT- manufactured by Shin-Etsu Chemical Co., Ltd.) is applied to the photosensitive resin master.
1300) was added dropwise, and the mixture was defoamed under vacuum.
It was left to cure for a period of time. The silicone resin was peeled off from the photosensitive resin master to obtain an intermediate mold having a negative rectangular pattern. An ultraviolet curable resin (for example, UVX-1826 manufactured by Toa Gosei Co., Ltd.) is dropped on this intermediate mold, and a PET film (for example, A430 manufactured by Toyobo Co., Ltd.) is dropped from above.
0, the film thickness of 250 μm) is gradually superimposed from one end of the intermediate mold to the other end while applying pressure, and ultraviolet light is applied from the upper surface of the film by an ultraviolet irradiation device so that the irradiation amount becomes 800 to 1500 mJ / cm 2. Irradiated. The cured UV-curable resin was peeled off together with the PET film to prepare a UV-curable resin mold having a positive rectangular pattern. After attaching this resin mold to a dedicated jig, Ni sputtering (conductivity treatment) and Ni electroforming were performed to produce a Ni stamper having a thickness of 300 μm.

【0011】上記Niスタンパを真空加熱プレス装置に
セットして、PMMAシート(たとえば厚さが2mm)
を重ね合わせ、真空下で加熱・加圧(たとえば140
℃、10kg/cm2)することによりポジ型矩形パタ
ーンを持つPMMA製の樹脂型原盤を作製した。この樹
脂型原盤を加熱(100℃〜140℃で2〜15分間)
することにより、正弦波状断面形状を持つ表面凹凸原盤
が得られた。
The Ni stamper is set on a vacuum heating press, and a PMMA sheet (for example, having a thickness of 2 mm)
Are heated and pressed under vacuum (for example, 140
C., 10 kg / cm 2 ) to produce a resin mold master made of PMMA having a positive rectangular pattern. Heat this resin mold master (100 ° C to 140 ° C for 2 to 15 minutes)
As a result, a master having an uneven surface having a sinusoidal cross section was obtained.

【0012】(実施例2)図2に示す工程の原盤作製方
法の実施例を説明する。実施例1と同様にして作製した
中間型上にゾルゲル転移樹脂(ステレオコンプレックス
PMMA系樹脂)を60℃に加熱してゾル状態で滴下注
入し、加圧脱泡後、冷却することによりゲル化した樹脂
型を剥離して、ポジ型矩形パターンを持つステレオコン
プレックスPMMA製の樹脂型を作製した。この樹脂型
を実施例1と同様に加熱処理し、紫外線照射装置により
紫外線を全面に照射(2000mj/cm2)して、正弦
波状断面形状を持ち、安定性に優れた微細表面凹凸原盤
を得た。
(Embodiment 2) An embodiment of a method for producing a master in the process shown in FIG. 2 will be described. A sol-gel transition resin (stereocomplex PMMA-based resin) was heated to 60 ° C. and dropped in a sol state onto the intermediate mold produced in the same manner as in Example 1, and the mixture was gelled by defoaming under pressure and cooling. The resin mold was peeled off to produce a stereo complex PMMA resin mold having a positive rectangular pattern. This resin mold was subjected to heat treatment in the same manner as in Example 1, and the entire surface was irradiated with ultraviolet rays (2000 mj / cm 2 ) by an ultraviolet irradiation device to obtain a fine surface irregular master having a sinusoidal cross section and excellent stability. Was.

【0013】[0013]

【発明の効果】本発明によれば、正弦波、放物線状など
の特殊な断面の微細凹凸パターンを有し、各種光学フィ
ルムの製造などに用いられる原盤を、効率的に作製する
ことができる。
According to the present invention, it is possible to efficiently manufacture a master having a fine uneven pattern having a special cross section such as a sine wave or a parabola and used for manufacturing various optical films.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による原盤製造方法の工程を示す図であ
る。
FIG. 1 is a diagram showing the steps of a master production method according to the present invention.

【図2】本発明による原盤製造方法の他の工程を示す図
である。
FIG. 2 is a view showing another process of the master manufacturing method according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の電離放射線硬化樹脂が塗布された
基板に電離放射線を選択的に照射する露光工程と、該第
1の電離放射線硬化樹脂を現像する現像工程とにより、
第1の電離放射線硬化樹脂からなる矩形パターンを形成
する工程と、当該第1の電離放射線硬化樹脂からなる矩
形パターンに第1の熱可塑性樹脂を注入して硬化させ、
該矩形パターンが反転された矩形パターンを有する第1
の熱可塑性樹脂からなる中間型を作製する工程と、当該
第1の熱可塑性樹脂からなる中間型に第2の電離放射線
硬化樹脂を注入し、該第2の電離放射線硬化樹脂の露光
工程を経て、中間型のパターンが反転された矩形パター
ンを有する第2の電離放射線硬化樹脂からなる樹脂型を
作製する工程と、該樹脂型から金属製のスタンパを作製
する工程と、金属製のスタンパに第2の熱可塑性樹脂を
注入して硬化させ、矩形パターンを持つ樹脂型原盤を作
製する工程と、該樹脂型原盤を加熱処理して、凹凸パタ
ーンの断面形状を変形させる工程とを有することを特徴
とする表面凹凸原盤の製造方法。
An exposure step of selectively irradiating the substrate coated with the first ionizing radiation-curable resin with ionizing radiation, and a developing step of developing the first ionizing radiation-curable resin.
Forming a rectangular pattern made of the first ionizing radiation-curable resin, and injecting and curing a first thermoplastic resin into the rectangular pattern made of the first ionizing radiation-curable resin;
A first pattern having a rectangular pattern obtained by inverting the rectangular pattern;
A second ionizing radiation-curable resin is injected into the intermediate mold composed of the first thermoplastic resin, and an exposure step of the second ionizing radiation-curable resin is performed. Forming a resin mold made of a second ionizing radiation-curable resin having a rectangular pattern in which the pattern of the intermediate mold is inverted; forming a metal stamper from the resin mold; 2) a step of injecting and curing the thermoplastic resin of No. 2 to produce a resin mold master having a rectangular pattern, and a step of heating the resin mold master to deform the cross-sectional shape of the concavo-convex pattern. Method for producing a master disk having surface irregularities.
【請求項2】 第1の電離放射線硬化樹脂が塗布された
基板に電離放射線を選択的に照射する露光工程と、該第
1の電離放射線硬化樹脂を現像する現像工程とにより、
第1の電離放射線硬化樹脂からなる矩形パターンを形成
する工程と、当該第1の電離放射線硬化樹脂からなる矩
形パターンに第1の熱可塑性樹脂を注入して硬化させ、
該矩形パターンが反転された矩形パターンを有する第1
の熱可塑性樹脂からなる中間型を作製する工程と、該中
間型に第3の熱可塑性樹脂を注入して硬化させ、矩形パ
ターンを持つ樹脂型原盤を作製する工程と、該樹脂型原
盤を加熱処理して、凹凸パターンの断面形状を変形させ
る工程とを有することを特徴とする表面凹凸原盤の製造
方法。
An exposure step of selectively irradiating the substrate coated with the first ionizing radiation-curable resin with ionizing radiation; and a developing step of developing the first ionizing radiation-curable resin.
Forming a rectangular pattern made of the first ionizing radiation-curable resin, and injecting and curing a first thermoplastic resin into the rectangular pattern made of the first ionizing radiation-curable resin;
A first pattern having a rectangular pattern obtained by inverting the rectangular pattern;
A step of producing an intermediate mold made of a thermoplastic resin, a step of injecting and curing a third thermoplastic resin into the intermediate mold, and producing a resin mold master having a rectangular pattern, and heating the resin mold master. Processing to deform the cross-sectional shape of the concavo-convex pattern.
【請求項3】 中間型を構成する第1の熱可塑性樹脂が
付加重合型のシリコーン樹脂である請求項1または2記
載の表面凹凸原盤の作製方法。
3. The method according to claim 1, wherein the first thermoplastic resin constituting the intermediate mold is an addition polymerization type silicone resin.
【請求項4】 樹脂型原盤を構成する第3の熱可塑性樹
脂がステレオコンプレックスPMMA系樹脂である請求
項2記載の表面凹凸原盤の作製方法。
4. The method according to claim 2, wherein the third thermoplastic resin constituting the resin mold master is a stereo complex PMMA resin.
JP27581399A 1999-09-29 1999-09-29 Preparation method of master with uneven surface Pending JP2001096539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27581399A JP2001096539A (en) 1999-09-29 1999-09-29 Preparation method of master with uneven surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27581399A JP2001096539A (en) 1999-09-29 1999-09-29 Preparation method of master with uneven surface

Publications (1)

Publication Number Publication Date
JP2001096539A true JP2001096539A (en) 2001-04-10

Family

ID=17560787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27581399A Pending JP2001096539A (en) 1999-09-29 1999-09-29 Preparation method of master with uneven surface

Country Status (1)

Country Link
JP (1) JP2001096539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220329A (en) * 2008-03-14 2009-10-01 Brother Ind Ltd Manufacturing method of mold for nanoimprint
JP2011151314A (en) * 2010-01-25 2011-08-04 Nissha Printing Co Ltd Organic thin-film solar cell and method of manufacturing imprint type base material (1)
JP2011151315A (en) * 2010-01-25 2011-08-04 Nissha Printing Co Ltd Organic thin-film solar cell and method of manufacturing imprint type base material (2)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220329A (en) * 2008-03-14 2009-10-01 Brother Ind Ltd Manufacturing method of mold for nanoimprint
JP2011151314A (en) * 2010-01-25 2011-08-04 Nissha Printing Co Ltd Organic thin-film solar cell and method of manufacturing imprint type base material (1)
JP2011151315A (en) * 2010-01-25 2011-08-04 Nissha Printing Co Ltd Organic thin-film solar cell and method of manufacturing imprint type base material (2)

Similar Documents

Publication Publication Date Title
TWI290125B (en) Manufacturing structured elements
JPH11326603A (en) Microlens array and its production thereof, and display
US10189203B2 (en) Method for forming micropattern of polyimide using imprinting
JP4307040B2 (en) Method for manufacturing an article having a fine surface structure
US7094520B2 (en) Die for molding optical panel, process for production thereof, and use thereof
JPH05228946A (en) Manufacture of optical part and matrix for duplication of optical part
TW200817834A (en) Manufacturing a replication tool, sub-master or replica
JPH02113456A (en) Disk substrate manufacturing device
JP2007083628A (en) Manufacturing method for mold
JP2001096539A (en) Preparation method of master with uneven surface
KR100537722B1 (en) Method and device for ultraviolet continuous curing method for fabrication of micro patterns using drum-type stamper
JP3619540B2 (en) Optical device materials, optical devices, and optical device manufacturing methods
JP5376930B2 (en) Method for manufacturing liquid discharge head
KR20060118949A (en) Fabrication method of micro lens array and stamper for duplicating micro lens array
JP2003011131A (en) Mold manufacturing method and method for manufacturing optical element
JP2004200577A (en) Method for forming microstructure
WO2020080372A1 (en) Fine pattern molding method, imprint mold manufacturing method, imprint mold, and optical device
JPH04355229A (en) Production of resin stamper and pattern transfer method using this stamper
JP3425055B2 (en) Method of manufacturing hologram element
JP3557267B2 (en) Manufacturing method of reticle master
JP2005349596A (en) Mold manufacturing method and part manufacturing method
JPH03279901A (en) Production of optical element array
TW201936352A (en) Mold formation method and mold
JPH04123002A (en) Production of lens array and apparatus for producing this lens array
JP2004050792A (en) Mold and method for molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819