JP5517640B2 - Organic thin film solar cell and manufacturing method thereof (2) - Google Patents

Organic thin film solar cell and manufacturing method thereof (2) Download PDF

Info

Publication number
JP5517640B2
JP5517640B2 JP2010013359A JP2010013359A JP5517640B2 JP 5517640 B2 JP5517640 B2 JP 5517640B2 JP 2010013359 A JP2010013359 A JP 2010013359A JP 2010013359 A JP2010013359 A JP 2010013359A JP 5517640 B2 JP5517640 B2 JP 5517640B2
Authority
JP
Japan
Prior art keywords
layer
bulk heterojunction
island
acceptor
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010013359A
Other languages
Japanese (ja)
Other versions
JP2011151313A (en
Inventor
富士男 森
達男 石橋
陽一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2010013359A priority Critical patent/JP5517640B2/en
Publication of JP2011151313A publication Critical patent/JP2011151313A/en
Application granted granted Critical
Publication of JP5517640B2 publication Critical patent/JP5517640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本願発明は、有機薄膜太陽電池の変換効率向上などに適用できる発明である。   The present invention is an invention that can be applied to improve the conversion efficiency of organic thin-film solar cells.

従来、有機薄膜太陽電池は、2次元的な平面の接合では接合面積が不足し、光電変換効率が低いことが知られている。そこで、有機薄膜太陽電池の変換効率を向上させる発明として、非特許文献1や非特許文献2のようにドナーとアクセプターの混合物の相分離によるバルクヘテロ接合が形成された層構造を形成し、ドナーとアクセプターの接合界面を増やす工夫により有機薄膜太陽電池の光発生電荷を増加させる試みがなされている。   Conventionally, organic thin-film solar cells are known to have a low photoelectric conversion efficiency due to a lack of a bonding area in a two-dimensional planar bonding. Therefore, as an invention for improving the conversion efficiency of an organic thin film solar cell, a layer structure in which a bulk heterojunction is formed by phase separation of a mixture of a donor and an acceptor as in Non-Patent Document 1 and Non-Patent Document 2, Attempts have been made to increase the photogenerated charge of organic thin-film solar cells by increasing the acceptor interface.

C.J.Brabecら、Advanced Functional Materials,第11巻、15頁C.J.Brabec et al., Advanced Functional Materials, Vol. 11, p. 15. J.Xue,S.Uchida,B.P.Land,S.R.Forrest,Appl.Phys.Lett.,85, p.5757(2004)J.Xue, S.Uchida, B.P.Land, S.R.Forrest, Appl.Phys.Lett., 85, p.5757 (2004)

しかし、このようにドナーとアクセプターの混合物の相分離によるバルクへテロ接合が形成された層構造を膜内に形成し多数の光発生電荷を生じさせたとしても、光発生電荷が消失せずに移動できる距離はせいぜい100nm程度までであるため、ドナーとアクセプターの混合物の膜の厚みが100nmを超えると、電極まで達する前に光発生電荷が消失してしまう傾向にあった。したがって、厚みを100nm以上に厚くすると変換効率が低下し、ドナーとアクセプターの混合物の膜の厚みを厚くすることによる変換効率の向上はできない問題があった。   However, even if a layer structure in which a bulk heterojunction is formed in the film by phase separation of a mixture of a donor and an acceptor as described above and a large number of photogenerated charges are generated, the photogenerated charges are not lost. Since the distance that can be moved is at most about 100 nm, when the thickness of the film of the mixture of the donor and the acceptor exceeds 100 nm, the photogenerated charge tends to disappear before reaching the electrode. Therefore, when the thickness is increased to 100 nm or more, the conversion efficiency is lowered, and there is a problem that the conversion efficiency cannot be improved by increasing the thickness of the donor-acceptor mixture film.

本発明は、離型型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成し、該バルクへテロ接合が形成された層の上に島状構造の金属膜を形成し、該金属膜をマスクとしてバルクへテロ接合が形成された層をエッチングすることによりナノスケール幅の貫通する微細な溝を形成し、該微細な溝に電極を形成した後、前記各層を基材に転写し離型性を有する基体シートを剥離し、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層のいずれかを形成することを特徴とする有機薄膜太陽電池の製造方法である。 The present invention forms a layer in which a bulk heterojunction by a donor and an acceptor is formed on a substrate sheet having releasability, and an island-shaped metal film on the layer in which the bulk heterojunction is formed And etching the layer in which the bulk heterojunction is formed using the metal film as a mask to form a fine groove penetrating the nanoscale width, forming an electrode in the fine groove, An organic thin film solar cell characterized in that a substrate sheet having releasability is peeled off by transferring the substrate to a substrate, and a donor layer, an acceptor layer, or a mixture layer of a donor and an acceptor is formed on the outermost surface after transfer It is a manufacturing method.

本発明の有機薄膜太陽電池の製造方法は、ドナーとアクセプターによるバルクへ
テロ接合が形成された層の上に島状構造の金属膜を形成し、該金属膜をマスクとしてドナーとアクセプターによるバルクへテロ接合が形成された層をエッチングすることによりナノスケール幅の微細な溝を形成し、該微細な溝に電極を形成することを特徴とする。したがって、島状構造の金属膜が生産性よく大面積で形成できるので、ナノスケール幅の微細な溝を生産性よく形成できる効果がある
In the method for producing an organic thin-film solar cell of the present invention , an island-shaped metal film is formed on a layer in which a bulk heterojunction is formed by a donor and an acceptor, and the metal film is used as a mask to form a bulk by the donor and the acceptor. By etching the layer in which the terror junction is formed, a fine groove having a nanoscale width is formed, and an electrode is formed in the fine groove. Accordingly, the metal film having an island-like structure can be formed with a large area with high productivity, and thus there is an effect that a fine groove having a nanoscale width can be formed with high productivity .

(a)は、本発明の有機薄膜太陽電池の一実施例を示す模式断面図であり、(b)は、それに斜めから太陽光が入射され溝に形成された電極で反射して膜内に閉じ込められる様子を示す模式断面図であり、(c)は、太陽光によって発生した電荷が溝に形成された電極を通して移動する様子を示す模式断面図である。(A) is a schematic cross-sectional view showing an embodiment of the organic thin-film solar cell of the present invention, and (b) is reflected from an electrode formed in a groove obliquely to sunlight and reflected in the film. It is a schematic cross section which shows a mode that it is confined, (c) is a schematic cross section which shows a mode that the electric charge which generate | occur | produced with sunlight moves through the electrode formed in the groove | channel. 本発明の有機薄膜太陽電池の製造方法の一実施例を示す模式断面図であり、(a)は、ドナーとアクセプターによるバルクへテロ接合が形成された層の上に島状構造の金属膜が形成された工程を示し、(b)は、該金属膜をマスクとしてドナーとアクセプターによるバルクへテロ接合が形成された層をエッチングしてナノスケール幅の微細な溝が形成された工程を示し、(c)は、該微細な溝に電極が形成された工程を示す。It is a schematic cross section which shows one Example of the manufacturing method of the organic thin-film solar cell of this invention, (a) is a metal film of an island-like structure on the layer in which the bulk heterojunction by a donor and an acceptor was formed. (B) shows a process in which a minute heterojunction having a nanoscale width is formed by etching a layer in which a bulk heterojunction is formed by a donor and an acceptor using the metal film as a mask. (C) shows a process in which an electrode is formed in the fine groove. 本発明の有機薄膜太陽電池の製造方法の一実施例を示す模式断面図であり、(a)は、離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成する工程を示し、(b)は、該バルクへテロ接合が形成された層の上に島状構造の金属膜を形成する工程を示し、(c)は、該金属膜をマスクとしてバルクへテロ接合が形成された層をエッチングすることによりナノスケール幅の貫通する微細な溝を形成する工程を示し、(d)は、該微細な溝に電極を形成する工程を示し、(e)は、前記各層を基材に転写し離型性を有する基体シートを剥離する工程を示し、(f)は、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層のいずれかを形成する工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows one Example of the manufacturing method of the organic thin-film solar cell of this invention, (a) shows the layer by which the bulk heterojunction by the donor and the acceptor was formed on the base sheet which has mold release property. (B) shows the step of forming an island-shaped metal film on the layer in which the bulk heterojunction is formed, and (c) shows the step of forming the bulk into the bulk using the metal film as a mask. (D) shows the step of forming a fine groove penetrating the nanoscale width by etching the layer in which the terror junction is formed, (d) shows the step of forming an electrode in the fine groove, (e) And (f) shows a step of transferring each of the above layers to a base material and peeling off a substrate sheet having releasability, and (f) shows any one of a donor layer, an acceptor layer, or a mixture layer of a donor and an acceptor on the outermost surface after transfer. The process to form is shown.

本発明の有機薄膜太陽電池5は、ドナーとアクセプターによるバルクへテロ接合が形成された層7の表面がナノスケールの幅の微細な溝1に囲まれた多数の島状構造9に形成され、該微細な溝1に光発生電荷2を効率的に採りだすための電極21が形成された構造を有することを特徴とする。そして、電極21と反対面には対極の電極20が形成されている(図1(a)参照)。そして、電極20を透明電極とし、電極21を光を反射する金属などの電極とした場合、この有機薄膜太陽電池5に斜めから太陽光などの光51が入射されると、光51が溝に形成された電極21で反射し、膜内に閉じ込められる(図1(b)参照)。これにより、電極21付近でより多くの光発生電荷2を発生させることができるため、多くの光発生電荷2を消失させずに電極21を通して移動させることができ、高い起電力を得ることができる効果もある(図1(c)参照)。   The organic thin film solar cell 5 of the present invention is formed in a number of island-like structures 9 in which the surface of the layer 7 in which the bulk heterojunction formed by the donor and the acceptor is formed is surrounded by the fine grooves 1 having a nanoscale width, It has a structure in which an electrode 21 for efficiently taking out the photogenerated charge 2 is formed in the fine groove 1. A counter electrode 20 is formed on the surface opposite to the electrode 21 (see FIG. 1A). When the electrode 20 is a transparent electrode and the electrode 21 is an electrode such as a metal that reflects light, when light 51 such as sunlight enters the organic thin film solar cell 5 from an oblique direction, the light 51 enters the groove. The light is reflected by the formed electrode 21 and confined in the film (see FIG. 1B). As a result, more photogenerated charges 2 can be generated in the vicinity of the electrode 21, so that a large amount of the photogenerated charges 2 can be moved through the electrode 21 without being lost, and a high electromotive force can be obtained. There is also an effect (see FIG. 1C).

ドナーの材質としては、架橋型ポリチオフェン、ポリ3ヘキシルチオフェン(P3HT)やフタロシアニン誘導体などが挙げられ、アクセプターの材質としては、PCBMやPCPDTBTなどのフラーレン誘導体や酸化亜鉛などが挙げられるが、これらに限定されない。ただし、ドナーとアクセプターが相分離をし、バルクへテロ接合構造を形成し得る材料である必要がある。   Examples of the donor material include cross-linked polythiophene, poly-3-hexylthiophene (P3HT), and phthalocyanine derivatives. Examples of the acceptor material include fullerene derivatives such as PCBM and PCPDTBT, and zinc oxide. Not. However, it is necessary that the donor and the acceptor be phase-separated to form a bulk heterojunction structure.

バルクへテロ接合が形成された層7の形成方法は、スピンコートなどの各種コート法、グラビア印刷などの各種印刷法などが挙げられ、電極20が形成された基材14の上に形成される。厚みは100〜700nm程度の範囲で可能で、とくに300〜500nm程度が好ましい。従来の電極がフラットな有機薄膜太陽電池では、厚みが100nm以上になると光発生電荷2が電極21に到達する前に消失してしまって変換効率が大きく低下させていたが、本発明の構造では、厚みが多少厚くなっても光発生電荷2が電極21に容易に到達することができる。したがって、厚みが厚いほど光発生電荷2が生じる界面を大きくでき変換効率が向上する。ただし、厚みが500nmを超えると電極20の側に移動する光発生電荷2の消失が多くなってくる。   Examples of the method for forming the layer 7 in which the bulk heterojunction is formed include various coating methods such as spin coating, various printing methods such as gravure printing, and the like, which are formed on the substrate 14 on which the electrode 20 is formed. . The thickness can be in the range of about 100 to 700 nm, and is preferably about 300 to 500 nm. In a conventional organic thin-film solar cell with a flat electrode, when the thickness is 100 nm or more, the photogenerated charge 2 disappears before reaching the electrode 21 and the conversion efficiency is greatly reduced. The photogenerated charges 2 can easily reach the electrode 21 even if the thickness is somewhat increased. Therefore, the thicker the thickness, the larger the interface where the photogenerated charges 2 are generated, and the conversion efficiency is improved. However, when the thickness exceeds 500 nm, the disappearance of the photogenerated charges 2 that move to the electrode 20 side increases.

微細な溝1はその幅が1〜500nm程度にし、該微細な溝1に囲まれた多数の島状構造9のバルクへテロ接合が形成された層7の一個あたりの平均面積はであり、該微細な溝に囲まれた多数の島状構造の一個あたりの平均面積は10〜10000nm程度になるのが好ましく、その中でも島状構造9の総面積と微細な溝1の総断面積とが同程度、すなわち微細な溝1の幅が100〜300nm、島状構造9の平均面積が100〜6500nmになるようにするのが最も好ましい。 The fine groove 1 has a width of about 1 to 500 nm, and the average area per layer 7 in which bulk heterojunctions of a number of island-like structures 9 surrounded by the fine groove 1 are formed is It is preferable that the average area per one of the many island-like structures surrounded by the fine grooves is about 10 to 10,000 nm 2 , and among them, the total area of the island-like structures 9 and the total cross-sectional area of the fine grooves 1 However, it is most preferable that the width of the fine groove 1 is 100 to 300 nm and the average area of the island-like structure 9 is 100 to 6500 nm 2 .

微細な溝1の幅を1nm未満や500nmよりも大きい島状構造9は形成が困難であり、かつ1nm未満では電極21の電気抵抗が高くなり、500nmよりも大きいとバルクへテロ接合が形成された層7の割合が減り、光発生電荷2が生じる界面が少なくなって変換効率が低下する。また、島状構造9の一個あたりの平均面積を10nm未満にすることは技術的に困難であり、10000nmを超えると電極21に到達する前に光発生電荷2が消失してしまう割合が高くなる。 It is difficult to form an island-like structure 9 in which the width of the fine groove 1 is less than 1 nm or greater than 500 nm, and if it is less than 1 nm, the electric resistance of the electrode 21 is high, and if it is greater than 500 nm, a bulk heterojunction is formed. Further, the ratio of the layer 7 is reduced, the interface where the photogenerated charges 2 are generated is reduced, and the conversion efficiency is lowered. Further, it is technically difficult to make the average area per one of the island structure 9 below 10 nm 2, the proportion of photo-generated charges 2 disappears before reaching the electrode 21 exceeds 10000 nm 2 Get higher.

このようなナノスケールの幅の微細な溝1および該微細な溝1に囲まれた多数の島状構造9を形成する方法としては、まずバルクへテロ接合が形成された層7の表面に、島状構造の金属膜3を形成した後(図2(a)参照)、該島状構造の金属膜3をマスクとしてバルクへテロ接合が形成された層7をエッチングしてナノスケール幅の微細な溝を形成する方法が挙げられる(図2(b)参照)。   As a method of forming such a fine groove 1 having a nanoscale width and a large number of island-like structures 9 surrounded by the fine groove 1, first, on the surface of the layer 7 where the bulk heterojunction is formed, After the island-shaped metal film 3 is formed (see FIG. 2A), the layer 7 in which the bulk heterojunction is formed is etched using the metal film 3 with the island-shaped structure as a mask to make a fine nanoscale width. There is a method of forming a simple groove (see FIG. 2B).

島状構造の金属膜3は、スズ、インジウム、ビスマス、鉛およびそれらの合金などからなる層が挙げられ、真空蒸着法、スパッタリング法、イオンプレーティング法などで形成するとよい。厚みは10〜80nm程度で形成し、光線透過率を測定すれば4%〜15%程度の値を示す厚みにすることが好ましい。上記の金属材料および適切な形成手段で、上記の光線透過率を示す値で島状構造の金属膜3を形成し、該島状構造の金属膜3をマスクとしてバルクへテロ接合が形成された層7をエッチングすれば、前述のナノスケールの幅の微細な溝1および該微細な溝1に囲まれた多数の島状構造9が形成される。   The island-shaped metal film 3 includes a layer made of tin, indium, bismuth, lead, and alloys thereof, and may be formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like. The thickness is preferably about 10 to 80 nm, and if the light transmittance is measured, the thickness is preferably about 4% to 15%. With the above metal material and appropriate forming means, the island-shaped metal film 3 was formed with the value indicating the light transmittance, and a bulk heterojunction was formed using the island-shaped metal film 3 as a mask. When the layer 7 is etched, the above-described nanoscale-width fine grooves 1 and a large number of island-like structures 9 surrounded by the fine grooves 1 are formed.

エッチングは、島状構造の金属膜3よりもバルクへテロ接合が形成された層7の方がエッチングされやすい方式であればよく、とくに異方性エッチング方式が好ましい。異方性エッチングとは、膜面方向の方位に対してはエッチングが抑制される性質のエッチングのことであり、これにより細く深い(高アスペクト比の)微細な溝1を掘ることができるからである。具体的には、酸素、アルゴン、フッ素系ガスなどのプラズマを用いたドライエッチング方式などが挙げられる。   Etching may be performed by any method as long as the layer 7 in which the bulk heterojunction is formed is more easily etched than the metal film 3 having an island-like structure, and an anisotropic etching method is particularly preferable. Anisotropic etching is etching having a property that etching is suppressed with respect to the orientation in the film surface direction, and this makes it possible to dig a fine groove 1 that is thin and deep (high aspect ratio). is there. Specifically, a dry etching method using plasma of oxygen, argon, fluorine gas or the like can be used.

なお、マスクの機能を果たした島状構造の金属膜3はそのまま残存させてもよいし、エッチングで若干エッチングされ得る材料の選択や厚みを薄く設定することなどで、島状構造の金属膜3も少しずつエッチングされるようにし、微細な溝1が形成されると同時に島状構造の金属膜3も消失させるよう設定してもよい。   Note that the island-shaped metal film 3 having the function of a mask may be left as it is, or by selecting a material that can be slightly etched by etching or setting the thickness to be thin, the island-shaped metal film 3 Alternatively, the etching may be performed little by little so that the island-shaped metal film 3 disappears simultaneously with the formation of the fine groove 1.

次いで、上記形成された微細な溝1に対して、電極21を形成する(図2(c)参照)。電極20および電極21の材質は、太陽光が入射してくる側の電極はインジウムスズ酸化物、酸化亜鉛、あるいは銀ナノワイヤやカーボンナノチュ―ブを含ませた透明導電膜で形成し、その対極の電極はアルミニウム、金、銀、銅などの金属材料やその金属材料を含むインキ等で形成するとよい。   Next, an electrode 21 is formed in the formed fine groove 1 (see FIG. 2C). The electrode 20 and the electrode 21 are made of indium tin oxide, zinc oxide, or a transparent conductive film containing silver nanowires or carbon nanotubes on the side on which sunlight is incident. These electrodes may be formed of a metal material such as aluminum, gold, silver, or copper, or an ink containing the metal material.

微細な溝1に電極21を形成する方式および電極20を形成する方式としては、前記金属材料を蒸着・スパッタリング・メッキなどの方法により形成するだけでなく、前記金属材料やそれらのナノワイヤを含むインキ等をスピンコートなどの各種コート法、グラビア印刷などの各種印刷法で充填する方式が挙げられる。電極21の形成は微細な溝1を丁度埋め尽くす程度にするのが最もよく、一部は多数の島状構造9の部分まで被覆してしまっても良い。   The method of forming the electrode 21 in the fine groove 1 and the method of forming the electrode 20 include not only forming the metal material by a method such as vapor deposition, sputtering, and plating, but also ink containing the metal material and their nanowires. And the like by various coating methods such as spin coating and various printing methods such as gravure printing. It is best to form the electrode 21 so as to completely fill the fine groove 1, and a part of the electrode 21 may be covered up to many island-like structures 9.

また、電極20とバルクへテロ接合が形成された層7との間にはポリスチレンスルホン酸をドーパントに用いたポリ3, 4―エチレンジオキシチオフェン(PEDOT/PSS)、や酸化チタンなどのバッファー層を設けてもよく、これらの層の追加により変換効率がさらに向上する。また、微細な溝1に電極21を形成する前に、微細な溝1にポリスチレンスルホン酸をドーパントに用いたポリ3, 4―エチレンジオキシチオフェン(PEDOT/PSS)、や酸化チタンなどのバッファー層をごく薄く形成してもよい。   Between the electrode 20 and the layer 7 where the bulk heterojunction is formed, a buffer layer such as poly 3,4-ethylenedioxythiophene (PEDOT / PSS) using titanium sulfonic acid as a dopant or titanium oxide. The conversion efficiency can be further improved by adding these layers. Before forming the electrode 21 in the fine groove 1, a buffer layer such as poly 3,4-ethylenedioxythiophene (PEDOT / PSS) using polystyrene sulfonic acid as a dopant in the fine groove 1 or titanium oxide. May be formed very thin.

なお、前記微細な溝1はバルクへテロ接合が形成された層7を完全に貫通させる手前1〜100nmの範囲内まで形成するようにしなければならない。微細な溝1が完全に貫通すれば電極20と電極21とがショートしてしまい、また、貫通させる手前100nmまで達しなければ、電極21に到達する前に光発生電荷2が消失してしまう割合が高くなり、変換効率が低下する。   The fine groove 1 must be formed within a range of 1 to 100 nm before completely penetrating the layer 7 in which the bulk heterojunction is formed. If the fine groove 1 is completely penetrated, the electrode 20 and the electrode 21 are short-circuited, and if not reaching 100 nm before penetration, the photogenerated charge 2 is lost before reaching the electrode 21 Becomes higher and the conversion efficiency decreases.

このような微細な溝1のエッチングの制御が難しい場合には、離型性を有する基体シート12上にバルクへテロ接合が形成された層7を形成し(図3(a)参照)、該バルクへテロ接合が形成された層7の上に島状構造の金属膜3を形成し(図3(b)参照)、エッチングによりナノスケール幅の貫通する微細な溝1を形成し(図3(c)参照)、該微細な溝1に電極21を形成し(図3(d)参照)、前記各層を基材15に転写し離型性を有する基体シート12を剥離した後(図3(e)参照)、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層(バルクへテロ接合が形成されていても、されていなくともよい)50を形成し、その上から電極20を形成する工程(図3(f)参照)により形成してもよい。   When it is difficult to control the etching of such fine grooves 1, a layer 7 in which bulk heterojunction is formed is formed on a substrate sheet 12 having releasability (see FIG. 3A). A metal film 3 having an island-like structure is formed on the layer 7 where the bulk heterojunction is formed (see FIG. 3B), and a fine groove 1 having a nanoscale width is formed by etching (FIG. 3). (See (c)), electrodes 21 are formed in the fine grooves 1 (see FIG. 3 (d)), and after the respective layers are transferred to the substrate 15 and the base sheet 12 having releasability is peeled off (see FIG. 3) (See (e)), a donor layer, an acceptor layer or a mixture layer of donor and acceptor (whether or not a bulk heterojunction may be formed) 50 is formed on the outermost surface after transfer, and from above You may form by the process (refer FIG.3 (f)) which forms the electrode 20. FIG. .

基材として厚さ100μmのポリエチレンテレフタレートフィルムを用い、その表面に透明電極としてインジウムスズ酸化物膜をスパッタリング法で200nmの厚みで形成し、その上にPEDOT/PSSの水分散液をコーターで形成し、乾燥後、その上にドナー層としてポリ3ヘキシルチオフェン(P3HT)、アクセプター層としてフラーレン60を含む混合物をコーターで200nmの厚みで形成した。形成した層はバルクへテロ構造になっていた。   A polyethylene terephthalate film with a thickness of 100 μm is used as a base material, an indium tin oxide film is formed as a transparent electrode with a thickness of 200 nm on the surface by sputtering, and an aqueous dispersion of PEDOT / PSS is formed thereon with a coater. After drying, a mixture containing poly-3hexylthiophene (P3HT) as a donor layer and fullerene 60 as an acceptor layer was formed thereon with a coater to a thickness of 200 nm. The formed layer had a bulk heterostructure.

次いで真空蒸着法を用いてスズからなる厚み30nmの多数の島状の金属膜を形成した。島状の金属膜は光線透過率が10%で、各島の一個あたりの平均面積は1200nm程度で、島と島との間には10〜40nm程度の隙間が形成されていた。次いで、上記多数の島状の金属膜をマスクとして、四フッ化炭素ガスを用いたプラズマエッチングにより微細な溝を形成し、微細な溝がバルクへテロ接合が形成された層を完全に貫通させる手前50nmの範囲内までエッチングを行った。その結果、側壁の角度がほぼ垂直で細く深いアスペクト比10の程度の微細な溝をバルクへテロ接合が形成された層に多数形成することができた。 Next, a large number of island-like metal films made of tin and having a thickness of 30 nm were formed by vacuum deposition. The island-shaped metal film had a light transmittance of 10%, the average area of each island was about 1200 nm 2 , and a gap of about 10 to 40 nm was formed between the islands. Next, a fine groove is formed by plasma etching using carbon tetrafluoride gas using the above-mentioned many island-like metal films as a mask, and the fine groove completely penetrates the layer in which the bulk heterojunction is formed. Etching was performed up to a range of 50 nm in front. As a result, it was possible to form a large number of fine grooves having a side wall angle of almost vertical, thin, and having a deep aspect ratio of 10 in the layer where the bulk heterojunction was formed.

次いで、この形成された多数の微細な溝に電極として金膜を真空蒸着法で形成し、有機薄膜太陽電池を得た。この有機薄膜太陽電池の断面は、従来のフラットな電極構造と異なり、金電極がバルクへテロ接合が形成された層の奥深くまでくいこむ構造になっており、変換効率も格段に向上していた。また、大面積にしてもこの構造はほぼ維持されていた。   Next, a gold film was formed as an electrode in the formed many fine grooves by a vacuum vapor deposition method to obtain an organic thin film solar cell. Unlike the conventional flat electrode structure, the cross section of the organic thin film solar cell has a structure in which the gold electrode is inserted deep into the layer in which the bulk heterojunction is formed, and the conversion efficiency has been remarkably improved. In addition, this structure was almost maintained even in a large area.

基材として厚さ100μmのポリエチレンテレフタレートフィルムを用い、その表面に電極としてアルミニウム膜を真空蒸着法で800nmの厚みで形成し、次いでその上にバッファー層として酸化チタンからなる膜をスパッタリング法で500nmの厚みで形成し、その上にドナー層として亜鉛ドープフタロシアニン、アクセプター層としてC70フェニルブチル酸メチルエステル(PC70BM)を含む混合物の塗布膜をコーターで150nmの厚みで形成した。形成した層はバルクへテロ構造になっていた。   A polyethylene terephthalate film having a thickness of 100 μm was used as a substrate, an aluminum film was formed as an electrode on the surface with a thickness of 800 nm by vacuum vapor deposition, and then a film made of titanium oxide was formed thereon as a buffer layer with a thickness of 500 nm by sputtering. A coating film of a mixture containing zinc-doped phthalocyanine as a donor layer and C70 phenylbutyric acid methyl ester (PC70BM) as an acceptor layer was formed thereon with a coater at a thickness of 150 nm. The formed layer had a bulk heterostructure.

次いで真空蒸着法を用いてインジウムからなる厚み20nmの多数の島状の金属膜を形成した。島状の金属膜は光線透過率が13%で、各島の一個あたりの平均面積は500nm程度で、島と島との間には5〜25nm程度の隙間が形成されていた。 Next, a large number of island-shaped metal films made of indium and having a thickness of 20 nm were formed by vacuum deposition. The island-shaped metal film had a light transmittance of 13%, the average area of each island was about 500 nm 2 , and a gap of about 5 to 25 nm was formed between the islands.

次いで、上記多数の島状の金属膜をマスクとして酸素ガスを用いたプラズマエッチングにより微細な溝を形成し、微細な溝がバルクへテロ接合が形成された層を完全に貫通させる手前30nmの範囲内までエッチングを行った。その結果、側壁の角度がほぼ垂直で細く深いアスペクト比8の程度の微細な溝をバルクへテロ接合が形成された層に多数形成することができた。   Next, a fine groove is formed by plasma etching using oxygen gas using the above-described many island-like metal films as a mask, and the fine groove completely reaches the layer in which the bulk heterojunction is formed 30 nm before Etching was performed inward. As a result, it was possible to form a large number of fine grooves with a side wall angle of approximately vertical and thin and having a deep aspect ratio of 8 in the layer where the bulk heterojunction was formed.

次いで、この形成された多数の微細な溝に電極とし銀ナノワイヤを含む透明導電インキをグラビア印刷法で形成し、有機薄膜太陽電池を得た。この有機薄膜太陽電池の断面は、従来のフラットな電極構造と異なり、銀ナノワイヤを含む透明導電インキの電極がバルクへテロ接合が形成された層の奥深くまでくいこむ構造になっており、変換効率も格段に向上していた。また、大面積にしてもこの構造はほぼ維持されていた。   Next, a transparent conductive ink containing silver nanowires as electrodes was formed in the formed many fine grooves by a gravure printing method to obtain an organic thin film solar cell. Unlike the conventional flat electrode structure, this organic thin-film solar cell has a structure in which a transparent conductive ink electrode containing silver nanowires is embedded deep into the layer where the bulk heterojunction is formed, and the conversion efficiency is also high. It was much improved. In addition, this structure was almost maintained even in a large area.

離型性を有する基体シートとして、メラミン樹脂をコートした厚さ25μmのポリエチレンテレフタレートフィルムを用意し、その表面にドナーとしてポリ3ヘキシルチオフェン(P3HT)、アクセプターとしてC60フェニルブチル酸メチルエステル(PC60BM)が1:1の重量比で含有された塗布液をコーターで500nmの厚みで形成した。形成した層はバルクへテロ構造になっていた。   A 25 μm-thick polyethylene terephthalate film coated with a melamine resin is prepared as a substrate sheet having releasability, and poly 3-hexylthiophene (P3HT) is used as a donor on the surface, and C60 phenylbutyric acid methyl ester (PC60BM) is used as an acceptor. A coating solution contained at a weight ratio of 1: 1 was formed with a coater to a thickness of 500 nm. The formed layer had a bulk heterostructure.

次いで真空蒸着法を用いてスズからなる厚み50nmの多数の島状の金属膜を形成した。島状の金属膜は光線透過率が6%で、各島の一個あたりの平均面積は8000nm程度で、島と島との間には15〜60nm程度の隙間が形成されていた。 Next, a large number of island-shaped metal films made of tin and having a thickness of 50 nm were formed by vacuum evaporation. The island-shaped metal film had a light transmittance of 6%, the average area of each island was about 8000 nm 2 , and a gap of about 15 to 60 nm was formed between the islands.

次いで、上記多数の島状の金属膜をマスクとしてアルゴンガスを用いてプラズマエッチングをし、微細な溝がドナー層を貫通しメラミン樹脂層に達するまで、この処理を行った。その結果、側壁の角度がほぼ垂直で細く深いアスペクト比10の程度の微細な溝をバルクへテロ接合が形成された層に多数形成することができた。   Next, plasma etching was performed using argon gas using the above-described many island-shaped metal films as a mask, and this treatment was performed until the fine groove penetrated the donor layer and reached the melamine resin layer. As a result, it was possible to form a large number of fine grooves having a side wall angle of almost vertical, thin, and having a deep aspect ratio of 10 in the layer where the bulk heterojunction was formed.

次いで、このバルクへテロ接合層の微細な溝に透明電極としてインジウムスズ酸化物膜をスパッタリング法で200nmの厚みで形成し、その上に塩化ビニル系の接着層をグラビア印刷で全面に形成し、アクリル板に載置して熱と圧力を加えて前記各層をアクリル板状に転写させた。   Next, an indium tin oxide film is formed as a transparent electrode in a fine groove of this bulk heterojunction layer with a thickness of 200 nm by a sputtering method, and a vinyl chloride adhesive layer is formed on the entire surface by gravure printing thereon, The layers were placed on an acrylic plate and heat and pressure were applied to transfer each layer into an acrylic plate shape.

次いで、離型性を有する基体シートを剥離除去し、露出した最表面にポリ3ヘキシルチオフェン(P3HT)とC70フェニルブチル酸メチルエステル(PC70BM)とが1:1の重量比の混合物を30nmの厚みで真空蒸着法により形成し、その上にバッファー層として酸化チタンからなる膜をスパッタリング法で200nmの厚みで形成し、その上に電極としてアルミニウム膜を真空蒸着法で800nmの厚みで形成し有機薄膜太陽電池を得た。   Next, the substrate sheet having releasability is peeled and removed, and a mixture of poly (3 hexylthiophene) (P3HT) and C70 phenylbutyric acid methyl ester (PC70BM) in a weight ratio of 1: 1 is formed on the exposed outermost surface to a thickness of 30 nm. A film made of titanium oxide as a buffer layer is formed thereon with a thickness of 200 nm by sputtering, and an aluminum film is formed thereon as an electrode with a thickness of 800 nm by vacuum evaporation. A solar cell was obtained.

この有機薄膜太陽電池の断面は、従来の不均一なバルクへテロジャンクション接合構造と異なり、インジウムスズ酸化物膜の電極がバルクへテロ接合が形成された層の奥深くまでくいこむ構造になっており、変換効率も格段に向上していた。また、大面積にしてもこの構造はほぼ維持されていた。   Unlike the conventional heterogeneous bulk heterojunction junction structure, the organic thin film solar cell has a structure in which the electrode of the indium tin oxide film is deeply embedded in the layer where the bulk heterojunction is formed, The conversion efficiency was also greatly improved. In addition, this structure was almost maintained even in a large area.

1 微細な溝
2 光発生電荷
3 金属膜
5 有機薄膜太陽電池
7 バルクへテロ接合が形成された層
9 多数の島状構造
12 離型性を有する基体シート
14,15 基材
20、21 電極
50 ドナー層、アクセプター層またはドナーとアクセプターの混合物層(バルクへテロ接合が形成されていても、されていなくともよい)
51 光
DESCRIPTION OF SYMBOLS 1 Fine groove | channel 2 Photogenerated electric charge 3 Metal film 5 Organic thin-film solar cell 7 Layer in which the bulk heterojunction was formed 9 Numerous island-like structure 12 Base sheet 14 with a releasability 14, 15 Base material 20, 21 Electrode 50 Donor layer, acceptor layer or donor-acceptor mixture layer (with or without a bulk heterojunction formed)
51 light

Claims (4)

離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層を形成し、該バルクへテロ接合が形成された層の上に島状構造の金属膜を形成し、該金属膜をマスクとしてバルクへテロ接合が形成された層をエッチングすることによりナノスケール幅の貫通する微細な溝を形成し、該微細な溝に電極を形成した後、前記各層を基材に転写し離型性を有する基体シートを剥離し、転写後の最表面にドナー層、アクセプター層またはドナーとアクセプターの混合物層のいずれかを形成する有機薄膜太陽電池の製造方法。   Forming a layer having a bulk heterojunction formed by a donor and an acceptor on a substrate sheet having releasability, and forming an island-shaped metal film on the layer having the bulk heterojunction formed; Etching the layer where the bulk heterojunction is formed using the metal film as a mask to form a fine groove penetrating the nanoscale width, forming an electrode in the fine groove, and then transferring each layer to the substrate A method for producing an organic thin-film solar cell, comprising peeling off a substrate sheet having releasability and forming any of a donor layer, an acceptor layer, or a mixture layer of a donor and an acceptor on the outermost surface after transfer. 前記島状構造の金属膜がスズ、インジウム、ビスマス、鉛およびそれらの合金のいずれかからなる請求項1に記載の有機薄膜太陽電池の製造方法。   The method for producing an organic thin-film solar cell according to claim 1, wherein the island-shaped metal film is made of any one of tin, indium, bismuth, lead, and alloys thereof. 前記微細な溝の幅が1〜500nmであり、該微細な溝に囲まれた多数の島状構造の一個あたりの平均面積が10〜10000nmである請求項1ないし請求項2に記載の有機薄膜太陽電池の製造方法。 The width of the fine grooves is 1 to 500 nm, an organic according to claim 1 or claim 2 average area per one of the plurality of islands surrounded by the fine grooves is 10 to 10,000 nm 2 Manufacturing method of thin film solar cell. 離型性を有する基体シート上にドナーとアクセプターによるバルクへテロ接合が形成された層が形成され、該ドナーとアクセプターによるバルクへテロ接合が形成された層の上に島状構造の金属膜が形成され、該金属膜をマスクとして該バルクへテロ接合が形成された層がエッチングされてナノスケール幅の貫通する微細な溝が形成され、該微細な溝に電極を形成した転写シート。 A layer in which a bulk heterojunction by a donor and an acceptor is formed is formed on a substrate sheet having releasability, and an island-shaped metal film is formed on the layer in which the bulk heterojunction by a donor and an acceptor is formed. A transfer sheet formed by etching the layer on which the bulk heterojunction is formed using the metal film as a mask to form fine grooves penetrating the nanoscale width, and forming electrodes in the fine grooves .
JP2010013359A 2010-01-25 2010-01-25 Organic thin film solar cell and manufacturing method thereof (2) Expired - Fee Related JP5517640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013359A JP5517640B2 (en) 2010-01-25 2010-01-25 Organic thin film solar cell and manufacturing method thereof (2)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013359A JP5517640B2 (en) 2010-01-25 2010-01-25 Organic thin film solar cell and manufacturing method thereof (2)

Publications (2)

Publication Number Publication Date
JP2011151313A JP2011151313A (en) 2011-08-04
JP5517640B2 true JP5517640B2 (en) 2014-06-11

Family

ID=44538013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013359A Expired - Fee Related JP5517640B2 (en) 2010-01-25 2010-01-25 Organic thin film solar cell and manufacturing method thereof (2)

Country Status (1)

Country Link
JP (1) JP5517640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402184B (en) * 2016-05-20 2020-01-03 清华大学 Method for measuring surface charge distribution of nano structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360919B2 (en) * 1993-06-11 2003-01-07 三菱電機株式会社 Method of manufacturing thin-film solar cell and thin-film solar cell
JPH0778807A (en) * 1993-09-08 1995-03-20 Sony Corp Mask and its forming method and etching method using same
JP2001119043A (en) * 1999-10-14 2001-04-27 Sony Corp Equipment for manufacturing semiconductor element
GB0229653D0 (en) * 2002-12-20 2003-01-22 Cambridge Display Tech Ltd Electrical connection of optoelectronic devices
JP2005032917A (en) * 2003-07-10 2005-02-03 Dainippon Printing Co Ltd Method for manufacturing organic thin film solar cell and transfer sheet
JP5162578B2 (en) * 2006-05-09 2013-03-13 ザ ユニバーシティー オブ ノースカロライナ アット チャペル ヒル High fidelity nanostructures and arrays for photovoltaic technology and methods of making them
US20100087032A1 (en) * 2007-03-13 2010-04-08 Pioneer Corporation Method for patterning of organic film
WO2009004560A2 (en) * 2007-07-04 2009-01-08 Koninklijke Philips Electronics N.V. A method for forming a patterned layer on a substrate
JP2009054907A (en) * 2007-08-29 2009-03-12 Mitsubishi Electric Corp Hetero-junction element
JP5364999B2 (en) * 2007-12-28 2013-12-11 大日本印刷株式会社 Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2009224758A (en) * 2008-02-19 2009-10-01 Sharp Corp Composite semiconductor substrate and method of manufacturing the same
KR100999377B1 (en) * 2008-06-18 2010-12-09 한국과학기술원 Organic Solar Cells and Method for Preparing the Same

Also Published As

Publication number Publication date
JP2011151313A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
Ryu et al. Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic
US20110180127A1 (en) Solar cell fabrication by nanoimprint lithography
US20110008926A1 (en) Solar cell with conductive material embedded substrate
JP2007005620A (en) Organic thin film solar cell
WO2010036805A2 (en) Photon processing with nanopatterned materials
TW201108485A (en) Organic solar cell and method forming the same
JP5023457B2 (en) Organic thin film solar cell
JP2013222750A (en) Photoelectric conversion element, method for manufacturing the same, and solar cell
US20120214272A1 (en) Method of manufacturing organic thin film solar cell
Nakamura et al. High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination
JP2008141103A (en) Production method of photoelectric conversion device
Chen et al. Enhanced performance of polymer solar cells with imprinted nanostructures on the active layer
EP2254172A2 (en) Solar cell with enhanced efficiency
JP5517640B2 (en) Organic thin film solar cell and manufacturing method thereof (2)
JP5517639B2 (en) Organic thin film solar cell and manufacturing method thereof (1)
JP5310230B2 (en) Organic photoelectric conversion element
JP2014103199A (en) Organic thin-film solar battery module and manufacturing method thereof
TW201251035A (en) Method for forming an electrode layer with a low work function, and electrode layer
KR20120058542A (en) Photoelectric conversion element and manufacturing method therefor
JP5561722B2 (en) Manufacturing method of organic thin film solar cell and transfer sheet used therefor
KR20110096406A (en) A manufacturing method of high efficient organic solar cell using zno nano material
JP5561721B2 (en) Manufacturing method of organic thin film solar cell and transfer sheet used therefor
JP2017147257A (en) Photoelectric conversion element, manufacturing method for the same and solar battery
KR101976918B1 (en) Lossless Photovoltaic System using Patterned Array and Method of Manufacturing thereof
WO2012098876A1 (en) Photoelectric conversion element and method of manufacturing the same, and solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5517640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees