WO2012098876A1 - Photoelectric conversion element and method of manufacturing the same, and solar battery - Google Patents

Photoelectric conversion element and method of manufacturing the same, and solar battery Download PDF

Info

Publication number
WO2012098876A1
WO2012098876A1 PCT/JP2012/000282 JP2012000282W WO2012098876A1 WO 2012098876 A1 WO2012098876 A1 WO 2012098876A1 JP 2012000282 W JP2012000282 W JP 2012000282W WO 2012098876 A1 WO2012098876 A1 WO 2012098876A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron
electron donating
accepting
photoelectric conversion
Prior art date
Application number
PCT/JP2012/000282
Other languages
French (fr)
Japanese (ja)
Inventor
剛 田崎
一平 畑
福田 始弘
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2012553623A priority Critical patent/JPWO2012098876A1/en
Publication of WO2012098876A1 publication Critical patent/WO2012098876A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element including an electron donating / accepting junction layer in which an electron donating layer and an electron accepting layer are joined between a pair of electrodes arranged such that electrode principal surfaces are opposed to each other, and production thereof
  • the present invention relates to a method and a solar cell using the same.
  • photoelectric conversion elements that are put to practical use for photovoltaic power generation are inorganic semiconductor types typified by crystalline silicon and amorphous silicon.
  • these photoelectric conversion elements have enormous energy and cost. For this reason, research and development of photoelectric conversion elements using organic materials that can be manufactured with lower energy and lower costs are being conducted.
  • an organic photoelectric conversion element As an organic photoelectric conversion element, an electron donating layer and an electron accepting layer are formed separately, and a plane-coupled photoelectric conversion element (Example 1 of Patent Document 1) in which these are plane-coupled, and an electron-donating material
  • a plane-coupled photoelectric conversion element Example 1 of Patent Document 1
  • an electron-donating material A bulk hetero-coupled photoelectric conversion element (Example 2 of Patent Document 1) coated with a coating agent in which an electron-accepting material is mixed, and a bulk hetero-evaporated electron-donating material and an electron-accepting material
  • a combined photoelectric conversion element Patent Document 2, etc.
  • JP 2006-245073 A Japanese Patent No. 3369154
  • the contact state such as the interfacial area and adhesion between the electron donating layer and the electron accepting layer greatly contributes to the charge separation efficiency and greatly affects the performance of the photoelectric conversion element.
  • the interface area between the electron donating layer and the electron accepting layer cannot be larger than the area of these layers.
  • the electron donating layer and the electron accepting layer are separately formed and laminated, their adhesion is not good. Therefore, it is difficult to improve the photoelectric conversion efficiency in the conventional planar coupling type photoelectric conversion element.
  • the present invention has been made in view of the above circumstances, and has good adhesion between an electron donating layer and an electron accepting layer, and can improve charge separation efficiency and photoelectric conversion efficiency.
  • An object of the present invention is to provide a conversion element.
  • the present invention can also increase the interfacial area between the electron donating layer and the electron accepting layer, provide good adhesion between the electron donating layer and the electron accepting layer, and improve the charge separation efficiency and the photoelectric conversion efficiency.
  • An object is to provide a possible non-bulk heterojunction photoelectric conversion element.
  • the photoelectric conversion element of the present invention is A photoelectric conversion element comprising an electron donating / accepting junction layer in which an electron donating layer and an electron accepting layer are joined between a pair of electrodes arranged such that electrode principal surfaces face each other, A mixed layer in which the material of the electron donating layer and the material of the electron accepting layer are mixed is formed in the electron donating / accepting bonding layer.
  • the electron donating layer includes a cross-sectional stripe-like portion in which a plurality of cross-sectional strip-like portions extending in a crossing direction with respect to the electrode main surface are periodically formed, and one electrode side of the cross-sectional stripe-like portion A cross-sectional view comb-like structure comprising a base part connecting the plurality of cross-sectional view strip-like parts
  • the electron-accepting layer includes a cross-sectional stripe-like portion in which a plurality of cross-sectional strip-like portions extending in a crossing direction with respect to the electrode main surface are periodically formed, and the other electrode side of the cross-sectional stripe-like portion A cross-sectional view comb-like structure comprising a base part connecting the plurality of cross-sectional view strip-like parts, It is preferable that the mixed layer is formed along a comb-teeth shape in a sectional view of the electron donating layer and the electron accepting layer.
  • the first method for producing a photoelectric conversion element of the present invention is as follows.
  • a method for producing the photoelectric conversion element of the present invention Forming one of the electron donating layer and the electron accepting layer; On the one layer, a coating agent containing at least one solvent including a constituent component of the other layer of the electron donating layer and the electron accepting layer and a solvent in which the one layer is dissolved was applied. And removing the at least one solvent to form the other layer.
  • the second method for producing a photoelectric conversion element of the present invention is as follows.
  • the method for producing the photoelectric conversion element of the present invention wherein the electron donating layer and the electron accepting layer have a comb-like structure in sectional view, A flat film made of a constituent material of one of the electron donating layer and the electron accepting layer is formed, and the flat film corresponds to the comb-like pattern in cross-sectional view of the one layer.
  • the mold having the reverse pattern is pressed within a temperature range of T m ⁇ 100 (° C.) or more and less than T m (° C.), Forming into a comb-like pattern in cross-sectional view and forming the one layer;
  • a coating agent containing at least one solvent including a constituent component of the other layer of the electron donating layer and the electron accepting layer and a solvent in which the one layer is dissolved was applied. And removing the at least one solvent to form the other layer.
  • the solar cell of the present invention includes the above-described photoelectric conversion element of the present invention.
  • the adhesion between the electron donating layer and the electron accepting layer is improved. It is possible to provide a non-bulk heterojunction photoelectric conversion element that can improve the charge separation efficiency and the photoelectric conversion efficiency.
  • the interface area between the electron donating layer and the electron accepting layer can be increased, It is possible to provide a non-bulk heterojunction photoelectric conversion element that has good adhesion between the electron donating layer and the electron accepting layer and can improve charge separation efficiency and photoelectric conversion efficiency.
  • FIG. 1 is a schematic cross-sectional view of the photoelectric conversion element of this embodiment.
  • FIG. 2 is a partially enlarged cross-sectional view of the photoelectric conversion element of FIG. 3A to 3C are diagrams (sectional views taken along the line III-III in FIG. 1) showing examples of planar patterns of the active layer having a comb-like structure in cross-sectional view.
  • the photoelectric conversion element 101 includes a pair of electrodes 30 and 40 that are arranged so that the electrode main surfaces face each other, and a comb-like cross-sectional view formed therebetween.
  • An electron donating layer 10 (p layer) and a comb-like electron accepting layer 20 (n layer) in cross section are provided.
  • the comb-like electron donor layer 10 in cross-sectional view and the electron-accepting layer 20 in cross-sectional comb shape are joined so that their comb teeth mesh with each other.
  • the electron donating / accepting junction layer 1 is a layer in which the comb-like electron donating layer 10 in cross-section and the electron accepting layer 20 in cross-section are engaged with each other and joined.
  • the electrode main surface of one electrode (lower electrode in the figure) 30 is denoted by reference numeral 30A
  • the electrode main surface of the other electrode (the upper electrode in the figure) 40 is denoted by reference numeral 40A.
  • one electrode 30 is formed on a substrate (not shown).
  • the photoelectric conversion element 101 according to this embodiment has an electron donor / acceptor bonding layer 1 formed on an electrode substrate having one electrode 30 formed on the substrate, and the other electrode 40 formed thereon. is there. On the substrate, the other electrode 40, the electron donating / accepting bonding layer 1, and the one electrode 30 may be formed in this order.
  • the electrode main surfaces 30A and 40A of the electrodes 30 and 40 are surfaces parallel to the substrate surface. Any substrate can be used as the substrate. In order to manufacture the photoelectric conversion element 101, it is preferable to use a substrate, but the substrate is not essential.
  • the electron donor layer 10 includes a cross-sectional stripe-like portion 12 in which a plurality of cross-sectional strip-like portions 12A extending in a direction intersecting, preferably substantially perpendicular to the electrode main surface 30A, are formed at a predetermined pitch, and a cross-sectional stripe
  • the base portion 11 is formed on the one electrode 30 side of the shape portion 12 and connects the plurality of cross-sectional strip-like portions 12A.
  • the electron-accepting layer 20 includes a cross-sectional stripe-like portion 22 in which a plurality of cross-sectional strip-like portions 22A extending in a crossing direction, preferably substantially perpendicular to the electrode main surface 40A, are formed at a predetermined pitch, and a cross-sectional stripe
  • the base portion 21 is formed on the other electrode 40 side of the shape portion 22 and connects the plurality of cross-sectional strip-like portions 22A.
  • the plurality of cross-sectional strip-shaped portions 12A of the electron donating layer 10 and the plurality of cross-sectional strip-shaped portions 22A of the electron accepting layer 20 extend in a substantially vertical direction with respect to the electrode main surfaces 30A and 40A.
  • substantially vertical direction means a completely vertical direction and an angular direction of ⁇ 5 ° from the completely vertical direction.
  • the comb-like electron donor layer 10 in cross-section and the electron-accepting layer 20 in cross-section are joined so that their comb teeth mesh with each other.
  • the short strip portions 12A and the plurality of cross sectional strip portions 22A of the electron accepting layer 20 are joined alternately.
  • a mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1.
  • the mixed layer 1M is formed along a comb-teeth shape in a sectional view of the electron donating layer 10 and the electron accepting layer 20.
  • the mixed layer 1M includes a boundary portion between the cross-sectional strip portion 12A of the electron donating layer 10 adjacent to each other and the cross-sectional strip portion 22A of the electron accepting layer 20, and the cross-sectional strip portion 12A of the electron donating layer 10 and the electron accepting portion.
  • the layer 20 is formed at a boundary portion with the base portion 21 and at a boundary portion between the strip-like portion 22 ⁇ / b> A in the electron accepting layer 20 and the base portion 11 of the electron donating layer 10.
  • the mixed layer 1M and the non-mixed layer in which the material of the electron donating layer and the material of the electron accepting layer are not mixed clearly form an interface. In practice, these interfaces may not be clear.
  • the interface (p / n interface) between the electron donating layer (p layer) 10 and the electron accepting layer (n layer) 20 contributing to charge separation is included in the mixed layer 1M.
  • the adhesion between the electron donating layer 10 and the electron accepting layer 20 is improved. Can be improved.
  • the layer thickness c of the mixed layer 1M is not particularly limited.
  • the layer thickness c of the mixed layer 1M may not be clearly measured.
  • the layer thickness of the mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is, for example, an ultrathin section prepared by cross-sectional processing, and observed with an electron microscope. Thickness can be determined.
  • the layer thickness c of the mixed layer 1M is 0. The thickness is preferably 5 to 50 nm, more preferably 1 to 25 nm.
  • the layer thickness c of the mixed layer 1M is less than 0.5 nm, there may be a portion where the mixed layer 1M is not formed between the electron donating layer 10 and the electron accepting layer 20, and a portion where the adhesion of these layers is lowered may occur. There is. If the layer thickness c of the mixed layer 1M is more than 50 nm, the carrier moving path that moves in the electron donating / accepting junction layer 1 becomes difficult to communicate, and the carrier collection efficiency at the electrodes 30 and 40 may be reduced.
  • the stripe width “a” of the cross-sectional stripe portion 12 of the electron donating layer 10 and the stripe width “b” of the cross-sectional stripe portion 22 of the electron accepting layer 20 are not particularly limited.
  • the bonding interface between the electron donating layer 10 and the electron accepting layer 20 is not clear, and the layer thickness of these layers is clear. It may not be.
  • the mixed layer 1M has half of the layer thickness belonging to the electron donating layer 10 and the other half belonging to the electron accepting layer 20. I reckon.
  • the organic photoelectric conversion element only the excitons that have reached the interface between the electron donating layer and the electron accepting layer are involved in charge separation among the generated excitons (excitons).
  • the distance that the exciton reaches the charge separation interface (hereinafter referred to as “exciton diffusion length”) is considered to be 50 nm or less, although it varies depending on the chemical structure and purity of the material. Therefore, the interface between the electron donating layer and the electron accepting layer periodically exists at a distance of about twice the exciton diffusion length, and if the electrode is arranged in the direction perpendicular to the interface direction, the number of excitons that separate charges increases. Conversion efficiency is expected to improve.
  • the stripe width a of the stripe-like section 12 of the electron donor layer 10 and the stripe width b of the stripe-like section 22 of the electron accepting layer 20 are both exciton diffusion in order to increase excitons contributing to charge separation.
  • the length is preferably not more than twice the length. In general, the exciton diffusion length of an organic semiconductor is considered to be 50 nm or less.
  • the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are both preferably 5 to 100 nm.
  • both the pitch of the stripe-like portion 12 in cross section of the electron donating layer 10 and the pitch of the stripe-like portion 22 in cross section of the electron accepting layer 20 are 10 to 200 nm.
  • the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 may be the same or non-identical.
  • the layer thickness d of the active layer 1 ⁇ / b> A composed of the cross-sectional stripe portion 12 of the electron donating layer 10 and the cross-sectional stripe portion 22 of the electron accepting layer 20 is not particularly limited.
  • half of the layer thickness of the mixed layer 1M belongs to the active layer 1A, and half is the base 11 Alternatively, it is regarded as belonging to the base 21.
  • the layer thickness d of the active layer 1A is preferably 2 to 40 times the stripe widths a and b, more preferably 5 ⁇ 20 times.
  • the thickness d of the active layer 1A is such that when the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are not the same, the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are the same. Of these, it is preferably 40 times or less, more preferably 2 times or more of the smaller one, and more preferably 20 times or less of 5 or more times the smaller one. If the layer thickness d of the active layer 1A is less than the lower limit, the light absorption effect and the effect of increasing the charge separation interface area may not be sufficiently obtained, and if it exceeds the upper limit, the production may be difficult.
  • the layer thickness e of the base 11 of the electron donating layer 10 is not particularly limited. When the bonding interface between the base 11 and the electron-accepting layer 20 is not clear, it is considered that half of the layer thickness of the mixed layer 1M belongs to the base 11.
  • the layer thickness e of the base 11 is preferably 5 to 100 nm, more preferably 5 to 50 nm, as is the stripe width a of the electron donating layer 10. Since the base 11 of the electron donating layer 10 has a bonding interface with the electron accepting layer 20, it is preferable that the thickness be close to the exciton diffusion length.
  • the base 11 of the electron donating layer 10 has a sufficient thickness ( Specifically, it is preferably 5 nm or more. If the thickness of the base 11 of the electron donating layer 10 is insufficient in the configuration of the present embodiment in which the base 11 of the electron donating layer 10 and the one electrode 30 are joined, the electron accepting layer 20 and the one electrode 30 If they are too close together, there is a risk of rectification deterioration or short circuit. It is difficult to manufacture the base 11 with a layer thickness e of less than 5 nm. On the other hand, when the layer thickness e of the base 11 is larger than 100 nm, the resistance to carrier movement after charge separation increases, and the carrier collection efficiency at the electrode may be reduced.
  • a (semi) conductor layer 50 is interposed between the base portion 11 of the electron donating layer 10 and the one electrode 30, and the layer thickness e of the base portion 11 of the electron donating layer 10 is thin.
  • the thickness e of the base 11 of the electron donating layer 10 is preferably 1 to 100 nm.
  • the layer thickness f of the base 21 of the electron accepting layer 20 is not particularly limited, and is the same as the layer thickness e of the base 11 of the electron donating layer 10. When the bonding interface between the base 21 and the electron donating layer 10 is not clear, it is considered that half of the layer thickness of the mixed layer 1M belongs to the base 21.
  • the layer thickness f of the base 21 is preferably 5 to 100 nm, more preferably 5 to 50 nm, like the stripe width b of the electron accepting layer 20. Since the base 21 of the electron-accepting layer 20 has a bonding interface with the electron-donating layer 10, the thickness is preferably close to the exciton diffusion length.
  • the base 21 of the electron-accepting layer 20 has a sufficient thickness (in order to avoid adverse effects on rectification and short-circuiting). Specifically, it is preferably 5 nm or more. If the base 21 of the electron accepting layer 20 is insufficient in thickness in the configuration of the present embodiment in which the base 21 of the electron accepting layer 20 and the other electrode 40 are joined, the electron donating layer 10 and the other electrode 40 If they are too close together, there is a risk of rectification deterioration or short circuit. It is also difficult to make the layer thickness f less than 5 nm.
  • the layer thickness f is larger than 100 nm, the resistance to the movement of carriers after charge separation increases, and the carrier collection efficiency at the electrode may be reduced.
  • the layer thickness f of the base 21 of the electron accepting layer 20 is thin.
  • the thickness e of the base 11 of the electron donating layer 10 is preferably 1 to 100 nm.
  • FIGS. 3A to 3C are sectional views taken along line III-III in FIG.
  • the planar pattern of the active layer 1A shown in FIG. 3A is an example in which the electron donating layer 10 and the electron accepting layer 20 are both formed in a stripe shape in plan view.
  • the planar pattern of the active layer 1A shown in FIG. 3B is an example in which the electron-accepting layer 20 is patterned in a planar view lattice shape, and the electron-donating layer 10 is formed in a planar view matrix shape.
  • the planar shape of each sectional view strip-shaped portion 12 ⁇ / b> A of the electron donating layer 10 is rectangular.
  • the planar shape of each sectional view strip portion 12A of the electron donating layer 10 is arbitrary, such as a perfect circle or an ellipse.
  • the planar pattern of the active layer 1A shown in FIG. 3C is an example in which the electron donor layer 10 is formed in a pattern in a planar view and the electron accepting layer 20 is formed in a matrix in a plan view.
  • the planar shape of each cross-sectional view strip portion 22A of the electron-accepting layer 20 is rectangular.
  • the planar shape of each cross-sectional strip-shaped portion 22A of the electron accepting layer 20 is arbitrary such as a perfect circle or an ellipse.
  • the material of the electrodes 30 and 40 is not particularly limited as long as it is a conductor, and examples thereof include metals, alloys, metalloids, metal compounds, and organic conductors. These may contain a dopant. At least one of the electrodes needs to be a translucent electrode. Examples of the material of the electrodes 30 and 40 include metals such as gold, silver, platinum, and aluminum and alloys thereof, indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). Metal oxides, carbon nanotubes, and semimetals such as graphene.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • Metal oxides, carbon nanotubes, and semimetals such as graphene.
  • the film thickness of the electrodes 30 and 40 is not particularly limited and is preferably 5 to 200 nm. If the film thickness of the electrodes 3 and 40 is too thin, the sheet resistance increases, and the generated carriers cannot be sufficiently transmitted to the external circuit. If the film thickness of the electrodes 30 and 40 is too thick, it is difficult to manufacture and the cost is increased.
  • the method for forming the electrodes 30 and 40 is not particularly limited.
  • a vapor deposition method such as a vacuum deposition method, a sputtering method, and a CVD method, or a spin coating method, a dip coating method, and a screen printing method.
  • liquid phase film forming methods for example, a vapor deposition method such as a vacuum deposition method, a sputtering method, and a CVD method, or a spin coating method, a dip coating method, and a screen printing method.
  • the material of the electron donor layer 10 is not particularly limited, and an organic semiconductor is preferable, and a crystalline organic polymer is more preferable.
  • Examples of the material of the electron donating layer 10 include polymer compounds such as polythiophene derivatives, polyfluorene derivatives, and polyphenylene vinylene derivatives and copolymers thereof, phthalocyanine derivatives and metal complexes thereof, porphyrin derivatives and metal complexes thereof, pentacene, and the like. And low molecular weight compounds such as acene derivatives and diamine derivatives.
  • the electron donor layer 10 can contain an inorganic semiconductor in accordance with the organic semiconductor as long as there is no particular problem.
  • the electron donor layer 10 can contain inevitable impurities.
  • the material of the electron accepting layer 20 is not particularly limited, and an organic semiconductor is preferable.
  • Examples of the material of the electron accepting layer 20 include fullerene derivatives, perylene derivatives, and naphthalene derivatives. Phenyl C61 butyric acid methyl ester and phenyl C71 butyric acid methyl ester are preferred.
  • the electron-accepting layer 20 can contain an inorganic semiconductor in accordance with the organic semiconductor as long as there is no particular problem.
  • the electron accepting layer 20 can contain inevitable impurities.
  • the manufacturing method of the photoelectric conversion element 101 of this embodiment is not particularly limited.
  • the photoelectric conversion element 101 can be manufactured using a nanoimprint method as follows, for example.
  • the photoelectric conversion element 101 of this embodiment is A flat film made of a constituent material of one of the electron donating layer 10 and the electron accepting layer 20 is formed, and the inversion corresponding to the comb-like pattern in cross-sectional view of the one layer is formed on the flat film.
  • the photoelectric conversion element 101 of this embodiment can be manufactured as follows.
  • a flat film made of the constituent material of the electron donating layer 10 is formed on the substrate on which one electrode 30 is formed.
  • a mold having a comb-like pattern in cross section of the electron donating layer 10 and a reversal pattern corresponding to the planar pattern as shown in FIGS. 3A to 3C is used as a constituent material of the electron donating layer 10.
  • T m melting point
  • pressing is performed within a temperature range of T m ⁇ 100 (° C.) or more and less than T m (° C.) to transfer the mold pattern. By doing so, the flat film can be formed into a comb-like pattern in sectional view.
  • the electron donating layer 10 After the temperature of the electron donating layer 10 is lowered and solidified, a solvent in which the constituent components of the electron accepting layer 20 and the electron donating layer 10 previously formed are dissolved on the condition that the comb-like structure in cross-sectional view is not broken. A coating agent containing at least one kind of solvent is applied, and at least one kind of solvent is removed to form the electron-accepting layer 20.
  • the coating agent when the coating agent is applied onto the electron-donating layer 10, a part of the electron-donating layer 10 is dissolved, and a part of the electron-donating layer 10 previously formed and its A mixed layer 1M in which a part of the electron accepting layer 20 formed thereon is mixed is formed.
  • the electron donating / accepting bonding layer 1 having a comb-teeth structure in cross section can be formed.
  • the other electrode 40 is formed on the electron donating / accepting bonding layer 1 to manufacture the photoelectric conversion element 101.
  • the method for forming the flat film to be the electron donating layer 10 is not particularly limited, and vapor phase film formation methods such as vacuum deposition and sputtering, or liquid phase formation such as spin coating, dip coating, and spray coating. Examples thereof include a membrane method.
  • the film forming method of the electron accepting layer 20 is not particularly limited as long as it is a liquid phase film forming method, and examples thereof include a spin coat method, a dip coat method, and a spray coat method.
  • the flat film and the electron accepting layer 20 to be the electron donating layer 10 may be formed in a plurality of stages by changing the film forming conditions and the film forming method.
  • the mold used for the nanoimprint method is a mold made of silicon, glass, metal, or the like, and having a concavo-convex pattern corresponding to the cross-sectional comb-teeth structure of the electron donor layer 10 on the surface thereof.
  • a method for producing such a mold is not particularly limited.
  • a resist pattern is formed by electron beam drawing on a thermally oxidized silicon substrate, and the substrate is dry-etched using the resist pattern as a mask.
  • a resist pattern is formed by electron beam drawing and the substrate is dry-etched using the resist pattern as a mask, and a resist pattern is formed on the silicon substrate by electron beam drawing and the substrate is wet-etched using the resist pattern as a mask. Etc.
  • the photoelectric conversion element 101 which has the favorable pattern precision of the electron donor and acceptance
  • the mixed layer 1M is formed at the same time when the electron-accepting layer 20 is formed.
  • the non-mixed layer of the electron donating layer 10, the mixed layer 1M, and the non-mixed layer of the electron accepting layer 20 may be formed in separate steps. For example, after forming the electron donating layer 10 having a comb-like pattern in cross section, a coating agent for a mixed layer including an electron donating material and an electron accepting material is applied, the solvent is removed, and the mixed layer 1M is formed. After film formation, an electron-accepting layer can be formed.
  • the mixed layer may be formed by vapor deposition such as co-evaporation.
  • the electron accepting layer may also be formed by vapor deposition such as vapor deposition.
  • the mixed layer 1M containing the electron donating material and the electron accepting material is interposed.
  • the adhesion between the electron donating layer 10 and the electron accepting layer 20 can be enhanced.
  • the mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1, and the electron donating layer 10, the electron accepting layer 20,
  • the interface area between the electron donating layer 10 and the electron accepting layer 20 can be increased, and the electron donating layer 10 and the electron accepting layer 20 are in close contact with each other.
  • FIG. 4 is a schematic cross-sectional view of the photoelectric conversion element of this embodiment.
  • the basic configuration of the present embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the photoelectric conversion element 102 includes a pair of electrodes 30 and 40 that are disposed so that the electrode principal surfaces face each other, and a comb-like shape in cross-sectional view formed therebetween. And an electron donating / accepting bonding layer 1 comprising a comb-like electron accepting layer 20 (n layer) in cross section. Also in this embodiment, a mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1. The mixed layer 1M is formed along a comb-teeth shape in a sectional view of the electron donating layer 10 and the electron accepting layer 20.
  • An example of a planar pattern (III-III sectional view) of the active layer having a comb-like structure in cross section is the same as that shown in FIGS. 3A to 3C in the first embodiment.
  • a semiconductor layer and / or a conductor layer is further formed between the base 11 of the electron donating layer 10 and one electrode 30 and / or the base 21 of the electron accepting layer 20 and the other electrode 40.
  • the “semiconductor layer and / or conductor layer” is referred to as a (semi) conductor layer.
  • a (semi) conductor layer 50 is formed between the base 11 of the electron donating layer 10 and the one electrode 30, and (half) between the base 21 of the electron accepting layer 20 and the other electrode 40.
  • a conductor layer 60 is formed.
  • the material of the (semi) conductor layers 50 and 60 is not particularly limited, and examples thereof include polymer compounds such as poly-3,4-ethylenedioxythiophene, polystyrene sulfonic acid, and polyaniline, and semimetals such as carbon nanotubes. And metal compounds such as titanium oxide, molybdenum oxide, and lithium fluoride, and alloys such as aluminum alloy and magnesium alloy.
  • the method of forming the (semi) conductor layers 50 and 60 is not particularly limited.
  • vapor deposition methods such as vacuum deposition, sputtering, and CVD, spin coating, dip coating, And liquid phase film forming methods such as a screen printing method.
  • the photoelectric conversion element 102 of this embodiment includes the electron donating / accepting bonding layer 1 having the same structure as that of the first embodiment, and the same effects as those of the first embodiment can be obtained.
  • the photoelectric conversion element 102 of the present embodiment can be manufactured in the same manner as in the first embodiment, except that the number of (semi) conductor layers 50 and 60 is increased.
  • a mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1, and the electron donating layer 10 and the electron accepting layer 20 have a comb-teeth shape in cross section.
  • the interface area between the electron donating layer 10 and the electron accepting layer 20 can be increased, the adhesion between the electron donating layer 10 and the electron accepting layer 20 is good, and charge separation is performed.
  • a non-bulk heterojunction photoelectric conversion element 102 that can improve efficiency and photoelectric conversion efficiency can be provided.
  • FIG. 5 is a schematic cross-sectional view of the photoelectric conversion element of this embodiment.
  • the basic configuration of the present embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the photoelectric conversion element 103 includes a pair of electrodes 30 and 40 that are disposed so that the electrode main surfaces face each other, and an electron donating layer 70 (p layer) and an electron accepting layer 80 that are formed therebetween. And an electron donating / accepting bonding layer 2 made of (n layer).
  • the photoelectric conversion element 103 of the present embodiment is a flat-coupled photoelectric conversion element in which the electron donating layer 70 and the electron accepting layer 80 are both solid films.
  • a mixed layer 2M in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are mixed is formed in the electron donating / accepting bonding layer 2.
  • the mixed layer 2M and a non-mixed layer in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are not mixed clearly form an interface. In practice, these interfaces may not be clear.
  • the interface (p / n interface) between the electron donating layer (p layer) 70 and the electron accepting layer (n layer) 80 contributing to charge separation is included in the mixed layer 2M.
  • the electron donating layer 2M in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are mixed is formed in the electron donating / accepting bonding layer 2. Adhesiveness between 70 and the electron-accepting layer 80 can be improved.
  • the layer thickness of the mixed layer 2M is not particularly limited. The layer thickness of the mixed layer 2M may not be clearly measured. As in the first embodiment, the electron donating layer 70 and the electron accepting layer 80 are in good contact with each other, the effect of increasing the charge separation interface area is obtained, and the movement path of carriers generated at the charge separation interface is well communicated. In order to obtain a stable structure, the layer thickness of the mixed layer 2M is preferably 0.5 to 50 nm.
  • the layer thickness of the mixed layer 2M is less than 0.5 nm, there may be a portion where the mixed layer 2M is not formed between the electron donating layer 70 and the electron accepting layer 80, and there may be a portion where the adhesion of these layers is lowered. In addition, there is a case where the effect of increasing the charge separation interface area cannot be sufficiently obtained. If the layer thickness of the mixed layer 2M exceeds 50 nm, the carrier moving path that moves in the electron donating / accepting junction layer 2 becomes difficult to communicate, and the carrier collection efficiency at the electrodes 30 and 40 may be reduced.
  • the layer thickness of the electron donating layer 10 and the layer thickness of the electron accepting layer 20 are not particularly limited.
  • the bonding interface between the electron donating layer 70 and the electron accepting layer 80 is not clear, and the layer thickness of these layers is clear. It may not be.
  • the mixed layer 2M has half of the layer thickness belonging to the electron donating layer 70 and the other half is the electron accepting layer. Consider belonging to layer 80.
  • Both the thickness of the electron donating layer 70 and the thickness of the electron accepting layer 80 are preferably 50 to 250 nm. If the layer thickness of the electron donating layer 70 and the electron accepting layer 80 is less than 50 nm, sufficient light absorption may not be performed and the photoelectric conversion efficiency may be reduced. If the layer thickness of the electron donating layer 70 and the electron accepting layer 80 exceeds 250 nm, the resistance to carrier movement after charge separation increases, and the carrier collection efficiency at the electrode may be reduced.
  • the thickness of the electron donating / accepting bonding layer 2 which is an active layer composed of the electron donating layer 70 and the electron accepting layer 80 is preferably 50.5 to 300 nm. The layer thickness of the electron donating layer 70 and the layer thickness of the electron accepting layer 80 may be the same or different.
  • the photoelectric conversion element 103 of this embodiment is Forming one of the electron donating layer 70 and the electron accepting layer 80; On the one layer, a coating agent including at least one solvent including a constituent component of the other of the electron donating layer 70 and the electron accepting layer 80 and a solvent in which the one layer is dissolved was applied. Then, it can manufacture by the manufacturing method which removes a solvent and has the process of forming said other layer.
  • the mixed layer 2M in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are mixed is formed in the electron donating / accepting bonding layer 2, the electron donating layer 70 and the electron accepting layer are formed. It is possible to provide a planar coupling type photoelectric conversion element 103 that has good adhesion to the layer 80 and can improve charge separation efficiency and photoelectric conversion efficiency.
  • the photoelectric conversion elements 101 to 103 of the first to third embodiments can be used as solar cells with a cover glass and a protective film attached thereto.
  • Examples 1 to 3 the photoelectric conversion elements 101 to 103 of the above embodiment were produced.
  • the planar pattern of the active layer was the stripe pattern shown in FIG. 3A.
  • Comparative Examples 1 to 3 were obtained in the same manner as Examples 1 to 3, except that the mixed layer was not formed.
  • the mold used for pattern formation of the electron donating layer 10 has a plurality of trenches having a width of 100 nm, a length of 6 mm, a depth of 500 nm, and a pitch of 200 nm.
  • the area in plan view of the portion where the mold structure was formed was 6 mm ⁇ 6 mm.
  • the conversion efficiency of the photoelectric conversion element was measured using a solar simulator.
  • the conversion efficiency was calculated by irradiating simulated sunlight with a xenon lamp (500 W) (AM1.5G, 1 kW / m 2 ) and measuring an IV curve.
  • the photoelectric conversion element 103 having the structure shown in FIG. 5 was produced as follows. Poly (3-hexylthiophene) (hereinafter abbreviated as “P3HT”) is spin-coated on an electrode substrate having a thickness of 0.7 mm on which an ITO transparent electrode having a thickness of 100 nm is formed, and heat treatment at 150 ° C. for 30 minutes. And an electron donating layer having a layer thickness of 100 nm was formed.
  • P3HT Poly (3-hexylthiophene)
  • PCBM phenyl C61 butyric acid methyl ester
  • the upper layer portion of the electron donating layer is dissolved, and the upper layer portion of the electron donating layer previously formed and the upper layer portion are formed thereon.
  • a mixed layer in which the lower layer portion of the filmed electron accepting layer was mixed was formed.
  • the layer thickness c of the mixed layer was 20 nm.
  • the layer thicknesses of the non-mixed layer of the electron donating layer and the non-mixed layer of the electron accepting layer were both 80 nm. That is, among the electron donating layers having a layer thickness of 100 nm, 10 nm ⁇ 2 was a mixed layer and the remaining 80 nm was a non-mixed layer.
  • P3HT was spin-coated on an electrode substrate having a thickness of 0.7 mm on which an ITO transparent electrode having a thickness of 100 nm was formed, and a heat treatment at 150 ° C. for 30 minutes was performed to form a P3HT layer having a thickness of 300 nm.
  • an electron donating / accepting junction layer composed of an electron donating layer and an electron accepting layer was formed.
  • a part of the electron donating layer is dissolved when the PCBM solution is applied on the electron donating layer having a comb-tooth structure in a cross-sectional view.
  • a mixed layer was formed in which a portion of the electron-accepting layer formed thereon was mixed with a part of the electron-accepting layer.
  • the mixed layer was formed along the surface shape of the electron donor layer having a comb-tooth structure in cross-sectional view formed in advance.
  • the layer thickness c of the mixed layer was 20 nm.
  • the stripe width of the non-mixed layer of the electron donating layer and the stripe width of the non-mixed layer of the electron accepting layer were both 80 nm. That is, of the stripe width of 100 nm of the electron donating layer, 10 nm ⁇ 2 was the mixed layer, and the remaining 80 nm was the non-mixed layer.
  • Example 3 Spin coat an aqueous solution of poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS) onto a 0.7 mm thick electrode substrate with a 100 nm thick ITO transparent electrode formed on the surface. And dried at 110 ° C. for 1 hr to form a (semi) conductor layer having a thickness of 30 nm.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • Example 2 in the process of forming the electron donating / accepting bonding layer, when the PCBM solution was applied onto the electron donating layer, part of the electron donating layer was dissolved, and the electron donating layer formed earlier was dissolved. A mixed layer in which a part and a part of the electron-accepting layer formed thereon was mixed was formed. The dimensions a to f of the electron donating / accepting bonding layer were the same as those in Example 2. Next, a titanium propoxide solution was spin-coated and dried at 110 ° C. for 1 hr to form a (semi) conductor layer having a thickness of 10 nm. Finally, Al was vacuum-deposited with a film thickness of 100 nm to obtain a device. As a result of measuring the conversion efficiency, it was 3.9%.
  • Example 1 A comparative photoelectric conversion device was obtained in the same manner as in Example 1 except that a solution in which PCBM was dissolved only in a dichloromethane solvent was used instead of the PCBM-dichloromethane / chloroform solution. A mixed layer was not formed. The conversion efficiency was 0.8%.
  • Example 2 A comparative photoelectric conversion device was obtained in the same manner as in Example 2 except that a solution in which PCBM was dissolved only in a dichloromethane solvent was used instead of the PCBM-dichloromethane / chloroform solution. A mixed layer was not formed.
  • Example 3 A comparative photoelectric conversion device was obtained in the same manner as in Example 3 except that a solution in which PCBM was dissolved only in a dichloromethane solvent was used instead of the PCBM-dichloromethane / chloroform solution. A mixed layer was not formed.
  • the photoelectric conversion element of the present invention can be preferably applied to solar cells, light emitting elements, light receiving elements, and other various sensors.
  • Photoelectric conversion elements 1 1 Electron donating / accepting bonding layer 1A Active layer 1M, 2M Mixed layer 10, 70 Electron donating layer 11 Base 12 Striped portion 12A in cross section Striped portion 20, 80 Electron accepting layer 21 Base portion 22 Striped portion 22A in cross section Striped portion 30, 40 Electrode 30A, 40A Electrode main surface 50, 60 (Semi) conductor layer 70 Electron donating layer 80 Electron accepting layer

Abstract

The present invention provides a non bulk-heterojunction type photoelectric conversion element, which ensures good adhesion between an electron-donating layer and an electron-accepting layer and allows for the improvement of charge separation efficiency and photoelectric conversion efficiency. The photoelectric conversion element (101) includes between a pair of electrodes (30, 40) with the main surfaces of the respective electrodes being oppositely arranged an electron donating-accepting junction layer (1) in which an electron-donating layer (10) and an electron-accepting layer (20) are jointed, and a mixed layer (1M) having mixed materials of the electron-donating layer (10) and the electron-accepting layer (20) is formed in the electron donating-accepting junction layer (1).

Description

光電変換素子とその製造方法、及び太陽電池Photoelectric conversion element, method for producing the same, and solar cell
 本発明は、電極主面同士が互いに対向して配置された一対の電極の間に、電子供与層と電子受容層とが接合された電子供与・受容接合層を備えた光電変換素子とその製造方法、及びこれを用いた太陽電池に関するものである。 The present invention relates to a photoelectric conversion element including an electron donating / accepting junction layer in which an electron donating layer and an electron accepting layer are joined between a pair of electrodes arranged such that electrode principal surfaces are opposed to each other, and production thereof The present invention relates to a method and a solar cell using the same.
 地球温暖化を発端として昨今は環境問題への意識が高まっており、石油代替エネルギーとしての太陽光発電、及びそれに用いられる光電変換素子が注目されている。
 現在、太陽光発電用に実用化されている光電変換素子は、結晶シリコンやアモルファスシリコンに代表される無機半導体型であるが、これらの光電変換素子は製造に掛かるエネルギー及びコストが莫大である。そのため、より低エネルギー及び低コストで製造できる有機材料を使用した光電変換素子の研究開発が行われている。
Recently, awareness of environmental issues has been increasing due to global warming, and solar power generation as an alternative to petroleum and photoelectric conversion elements used therefor have attracted attention.
At present, photoelectric conversion elements that are put to practical use for photovoltaic power generation are inorganic semiconductor types typified by crystalline silicon and amorphous silicon. However, these photoelectric conversion elements have enormous energy and cost. For this reason, research and development of photoelectric conversion elements using organic materials that can be manufactured with lower energy and lower costs are being conducted.
 有機材料は材料自体が安価であり、また大気圧での製造方法が可能なことから大面積化や連続プロセス化が容易であるため、低エネルギー及び低コストで光電変換素子を製造できると考えられている。 Since organic materials are inexpensive and can be manufactured at atmospheric pressure, it is easy to make large areas and continuous processes, so it is thought that photoelectric conversion elements can be manufactured with low energy and low cost. ing.
 有機光電変換素子としては、電子供与層と電子受容層とがそれぞれ別に成膜され、これらが平面結合した平面結合型の光電変換素子(特許文献1の実施例1等)、及び、電子供与材料と電子受容材料とを混合した塗布剤を塗工したバルクへテロ結合型の光電変換素子(特許文献1の実施例2等)、及び電子供与材料と電子受容材料とを共蒸着したバルクへテロ結合型の光電変換素子(特許文献2等)が提案されている。 As an organic photoelectric conversion element, an electron donating layer and an electron accepting layer are formed separately, and a plane-coupled photoelectric conversion element (Example 1 of Patent Document 1) in which these are plane-coupled, and an electron-donating material A bulk hetero-coupled photoelectric conversion element (Example 2 of Patent Document 1) coated with a coating agent in which an electron-accepting material is mixed, and a bulk hetero-evaporated electron-donating material and an electron-accepting material A combined photoelectric conversion element (Patent Document 2, etc.) has been proposed.
特開2006-245073号公報JP 2006-245073 A 特許第3369154号公報Japanese Patent No. 3369154
 電子供与層と電子受容層との界面積及び密着性等の接触状態は、電荷分離効率に大きく寄与し、光電変換素子の性能に大きく影響する。
 従来の平面結合型の光電変換素子では、電子供与層と電子受容層との界面積はこれらの層面積以上に大きくは取れない。また、電子供与層と電子受容層とを別々に成膜して積層するため、これらの密着性が良くない。そのため、従来の平面結合型の光電変換素子では、光電変換効率を向上することが難しい。
 従来のバルクヘテロ結合型の光電変換素子は、電子供与材料と電子受容材料との相分離構造を精密に制御することが困難であり、光電変換効率を向上することが難しい。
The contact state such as the interfacial area and adhesion between the electron donating layer and the electron accepting layer greatly contributes to the charge separation efficiency and greatly affects the performance of the photoelectric conversion element.
In the conventional planar coupling type photoelectric conversion element, the interface area between the electron donating layer and the electron accepting layer cannot be larger than the area of these layers. Further, since the electron donating layer and the electron accepting layer are separately formed and laminated, their adhesion is not good. Therefore, it is difficult to improve the photoelectric conversion efficiency in the conventional planar coupling type photoelectric conversion element.
In conventional bulk heterojunction photoelectric conversion elements, it is difficult to precisely control the phase separation structure between the electron donating material and the electron accepting material, and it is difficult to improve the photoelectric conversion efficiency.
 本発明は上記事情に鑑みてなされたものであり、電子供与層と電子受容層との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、非バルクヘテロ結合型の光電変換素子を提供することを目的とするものである。
 本発明はまた、電子供与層と電子受容層との界面積を大きくすることができ、電子供与層と電子受容層との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、非バルクヘテロ結合型の光電変換素子を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and has good adhesion between an electron donating layer and an electron accepting layer, and can improve charge separation efficiency and photoelectric conversion efficiency. An object of the present invention is to provide a conversion element.
The present invention can also increase the interfacial area between the electron donating layer and the electron accepting layer, provide good adhesion between the electron donating layer and the electron accepting layer, and improve the charge separation efficiency and the photoelectric conversion efficiency. An object is to provide a possible non-bulk heterojunction photoelectric conversion element.
 本発明の光電変換素子は、
 電極主面同士が互いに対向して配置された一対の電極の間に、電子供与層と電子受容層とが接合された電子供与・受容接合層を備えた光電変換素子であって、
 前記電子供与・受容接合層内に、電子供与層の材料と前記電子受容層の材料とが混在した混在層が形成されたものである。
The photoelectric conversion element of the present invention is
A photoelectric conversion element comprising an electron donating / accepting junction layer in which an electron donating layer and an electron accepting layer are joined between a pair of electrodes arranged such that electrode principal surfaces face each other,
A mixed layer in which the material of the electron donating layer and the material of the electron accepting layer are mixed is formed in the electron donating / accepting bonding layer.
 本発明の光電変換素子において、
 前記電子供与層は、前記電極主面に対して交差方向に延びる複数の断面視短冊状部が周期的に形成された断面視ストライプ状部と、当該断面視ストライプ状部の一方の前記電極側に形成され、前記複数の断面視短冊状部を繋ぐ基部とからなる断面視櫛歯状構造を有し、
 前記電子受容層は、前記電極主面に対して交差方向に延びる複数の断面視短冊状部が周期的に形成された断面視ストライプ状部と、当該断面視ストライプ状部の他方の前記電極側に形成され、前記複数の断面視短冊状部を繋ぐ基部とからなる断面視櫛歯状構造を有し、
 前記混在層が、前記電子供与層と前記電子受容層の断面視櫛歯状に沿って形成されたことが好ましい。
In the photoelectric conversion element of the present invention,
The electron donating layer includes a cross-sectional stripe-like portion in which a plurality of cross-sectional strip-like portions extending in a crossing direction with respect to the electrode main surface are periodically formed, and one electrode side of the cross-sectional stripe-like portion A cross-sectional view comb-like structure comprising a base part connecting the plurality of cross-sectional view strip-like parts,
The electron-accepting layer includes a cross-sectional stripe-like portion in which a plurality of cross-sectional strip-like portions extending in a crossing direction with respect to the electrode main surface are periodically formed, and the other electrode side of the cross-sectional stripe-like portion A cross-sectional view comb-like structure comprising a base part connecting the plurality of cross-sectional view strip-like parts,
It is preferable that the mixed layer is formed along a comb-teeth shape in a sectional view of the electron donating layer and the electron accepting layer.
 本発明の第1の光電変換素子の製造方法は、
 上記の本発明の光電変換素子の製造方法であって、
 前記電子供与層と前記電子受容層とのうち一方の層を形成する工程と、
 前記一方の層の上に、前記電子供与層と前記電子受容層とのうち他方の層の構成成分と前記一方の層が溶解する溶媒を含む少なくとも1種の溶媒とを含む塗布剤を塗布した後、前記少なくとも1種の溶媒を除去して、前記他方の層を形成する工程とを有するものである。
The first method for producing a photoelectric conversion element of the present invention is as follows.
A method for producing the photoelectric conversion element of the present invention,
Forming one of the electron donating layer and the electron accepting layer;
On the one layer, a coating agent containing at least one solvent including a constituent component of the other layer of the electron donating layer and the electron accepting layer and a solvent in which the one layer is dissolved was applied. And removing the at least one solvent to form the other layer.
 本発明の第2の光電変換素子の製造方法は、
 前記電子供与層及び前記電子受容層が断面視櫛歯状構造を有する上記の本発明の光電変換素子の製造方法であって、
 前記電子供与層と前記電子受容層とのうち一方の層の構成材料からなる平坦膜を成膜し、当該平坦膜に対して、前記一方の層の前記断面視櫛歯状のパターンに対応した反転パターンを有するモールドを、前記一方の層の構成材料の融点をT(℃)としたとき、T-100(℃)以上T(℃)未満の温度範囲内で押圧して、前記断面視櫛歯状のパターンに成形して、前記一方の層を形成する工程と、
 前記一方の層の上に、前記電子供与層と前記電子受容層とのうち他方の層の構成成分と前記一方の層が溶解する溶媒を含む少なくとも1種の溶媒とを含む塗布剤を塗布した後、前記少なくとも1種の溶媒を除去して、前記他方の層を形成する工程とを有するものである。
The second method for producing a photoelectric conversion element of the present invention is as follows.
The method for producing the photoelectric conversion element of the present invention, wherein the electron donating layer and the electron accepting layer have a comb-like structure in sectional view,
A flat film made of a constituent material of one of the electron donating layer and the electron accepting layer is formed, and the flat film corresponds to the comb-like pattern in cross-sectional view of the one layer. When the melting point of the constituent material of the one layer is T m (° C.), the mold having the reverse pattern is pressed within a temperature range of T m −100 (° C.) or more and less than T m (° C.), Forming into a comb-like pattern in cross-sectional view and forming the one layer;
On the one layer, a coating agent containing at least one solvent including a constituent component of the other layer of the electron donating layer and the electron accepting layer and a solvent in which the one layer is dissolved was applied. And removing the at least one solvent to form the other layer.
 本発明の太陽電池は、上記の本発明の光電変換素子を備えたものである。 The solar cell of the present invention includes the above-described photoelectric conversion element of the present invention.
 電子供与・受容接合層内に、電子供与層の材料と電子受容層の材料とが混在した混在層が形成された構成の本発明によれば、電子供与層と電子受容層との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、非バルクヘテロ結合型の光電変換素子を提供することができる。
 上記構成に合わせて、さらに電子供与層と電子受容層とが断面視櫛歯状構造を有する構成の本発明によれば、電子供与層と電子受容層との界面積を大きくすることができ、電子供与層と電子受容層との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、非バルクヘテロ結合型の光電変換素子を提供することができる。
According to the present invention in which a mixed layer in which the material of the electron donating layer and the material of the electron accepting layer are mixed is formed in the electron donating / accepting bonding layer, the adhesion between the electron donating layer and the electron accepting layer is improved. It is possible to provide a non-bulk heterojunction photoelectric conversion element that can improve the charge separation efficiency and the photoelectric conversion efficiency.
According to the present invention in which the electron donating layer and the electron accepting layer have a comb-like structure in cross-sectional view in accordance with the above configuration, the interface area between the electron donating layer and the electron accepting layer can be increased, It is possible to provide a non-bulk heterojunction photoelectric conversion element that has good adhesion between the electron donating layer and the electron accepting layer and can improve charge separation efficiency and photoelectric conversion efficiency.
本発明に係る第1実施形態の光電変換素子の模式断面図である。It is a schematic cross section of the photoelectric conversion element of 1st Embodiment which concerns on this invention. 図1の光電変換素子の部分拡大断面図である。It is a partial expanded sectional view of the photoelectric conversion element of FIG. 断面視櫛歯型構造の活性層の平面パターン例を示す図である。It is a figure which shows the example of a plane pattern of the active layer of a cross-sectional view comb-tooth type structure. 断面視櫛歯型構造のその他の活性層の平面パターン例を示す図である。It is a figure which shows the example of a plane pattern of the other active layer of a cross-sectional view comb-tooth type structure. 断面視櫛歯型構造の活性層のその他の平面パターン例を示す図である。It is a figure which shows the other plane pattern example of the active layer of a cross-sectional view comb-tooth type structure. 本発明に係る第2実施形態の光電変換素子の模式断面図である。It is a schematic cross section of the photoelectric conversion element of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態の光電変換素子の模式断面図である。It is a schematic cross section of the photoelectric conversion element of 3rd Embodiment which concerns on this invention.
「第1実施形態」
 図面を参照して、本発明に係る第1実施形態の光電変換素子とその製造方法について説明する。
 図1は本実施形態の光電変換素子の模式断面図である。図2は図1の光電変換素子の部分拡大断面図である。図3A~図3Cは、断面視櫛歯型構造の活性層の平面パターン例を示す図(図1のIII-III断面図)である。
“First Embodiment”
With reference to drawings, the photoelectric conversion element of 1st Embodiment which concerns on this invention, and its manufacturing method are demonstrated.
FIG. 1 is a schematic cross-sectional view of the photoelectric conversion element of this embodiment. FIG. 2 is a partially enlarged cross-sectional view of the photoelectric conversion element of FIG. 3A to 3C are diagrams (sectional views taken along the line III-III in FIG. 1) showing examples of planar patterns of the active layer having a comb-like structure in cross-sectional view.
 図1に示すように、本実施形態の光電変換素子101は、電極主面同士が互いに対向して配置された一対の電極30、40と、これらの間に形成された断面視櫛歯状の電子供与層10(p層)及び断面視櫛歯状の電子受容層20(n層)とを備えている。
 断面視櫛歯状の電子供与層10と断面視櫛歯状の電子受容層20とは、互いの櫛歯が噛み合うように接合されている。断面視櫛歯状の電子供与層10と断面視櫛歯状の電子受容層20とが互いに噛み合って接合された層が、電子供与・受容接合層1である。
As shown in FIG. 1, the photoelectric conversion element 101 according to the present embodiment includes a pair of electrodes 30 and 40 that are arranged so that the electrode main surfaces face each other, and a comb-like cross-sectional view formed therebetween. An electron donating layer 10 (p layer) and a comb-like electron accepting layer 20 (n layer) in cross section are provided.
The comb-like electron donor layer 10 in cross-sectional view and the electron-accepting layer 20 in cross-sectional comb shape are joined so that their comb teeth mesh with each other. The electron donating / accepting junction layer 1 is a layer in which the comb-like electron donating layer 10 in cross-section and the electron accepting layer 20 in cross-section are engaged with each other and joined.
 図中、一方の電極(図示下側の電極)30の電極主面に符号30A、他方の電極(図示上側の電極)40の電極主面に符号40Aを付してある。
 本実施形態において、一方の電極30は図示しない基板上に成膜されている。本実施形態の光電変換素子101は、基板に一方の電極30が成膜された電極基板上に、電子供与・受容接合層1が形成され、その上に他方の電極40が形成されたものである。
 基板には、他方の電極40、電子供与・受容接合層1、及び一方の電極30の順に形成してもよい。
 電極30、40の電極主面30A、40Aは、基板面に平行な面である。
 基板としては、任意の基板を使用できる。光電変換素子101の製造上、基板を用いることは好適であるが、基板は必須なものではない。
In the figure, the electrode main surface of one electrode (lower electrode in the figure) 30 is denoted by reference numeral 30A, and the electrode main surface of the other electrode (the upper electrode in the figure) 40 is denoted by reference numeral 40A.
In the present embodiment, one electrode 30 is formed on a substrate (not shown). The photoelectric conversion element 101 according to this embodiment has an electron donor / acceptor bonding layer 1 formed on an electrode substrate having one electrode 30 formed on the substrate, and the other electrode 40 formed thereon. is there.
On the substrate, the other electrode 40, the electron donating / accepting bonding layer 1, and the one electrode 30 may be formed in this order.
The electrode main surfaces 30A and 40A of the electrodes 30 and 40 are surfaces parallel to the substrate surface.
Any substrate can be used as the substrate. In order to manufacture the photoelectric conversion element 101, it is preferable to use a substrate, but the substrate is not essential.
 電子供与層10は、電極主面30Aに対して交差方向、好ましくは略垂直方向に延びる複数の断面視短冊状部12Aが所定のピッチで形成された断面視ストライプ状部12と、断面視ストライプ状部12の一方の電極30側に形成され、複数の断面視短冊状部12Aを繋ぐ基部11とから構成されている。
 電子受容層20は、電極主面40Aに対して交差方向、好ましくは略垂直方向に延びる複数の断面視短冊状部22Aが所定のピッチで形成された断面視ストライプ状部22と、断面視ストライプ状部22の他方の電極40側に形成され、複数の断面視短冊状部22Aを繋ぐ基部21とから構成されている。
The electron donor layer 10 includes a cross-sectional stripe-like portion 12 in which a plurality of cross-sectional strip-like portions 12A extending in a direction intersecting, preferably substantially perpendicular to the electrode main surface 30A, are formed at a predetermined pitch, and a cross-sectional stripe The base portion 11 is formed on the one electrode 30 side of the shape portion 12 and connects the plurality of cross-sectional strip-like portions 12A.
The electron-accepting layer 20 includes a cross-sectional stripe-like portion 22 in which a plurality of cross-sectional strip-like portions 22A extending in a crossing direction, preferably substantially perpendicular to the electrode main surface 40A, are formed at a predetermined pitch, and a cross-sectional stripe The base portion 21 is formed on the other electrode 40 side of the shape portion 22 and connects the plurality of cross-sectional strip-like portions 22A.
 本実施形態において、電子供与層10の複数の断面視短冊状部12A及び電子受容層20の複数の断面視短冊状部22Aは、電極主面30A、40Aに対して略垂直方向に延びている。
 本明細書において、「略垂直方向」は、完全垂直方向、及び完全垂直方向から±5°の角度方向を意味する。
In the present embodiment, the plurality of cross-sectional strip-shaped portions 12A of the electron donating layer 10 and the plurality of cross-sectional strip-shaped portions 22A of the electron accepting layer 20 extend in a substantially vertical direction with respect to the electrode main surfaces 30A and 40A. .
In the present specification, “substantially vertical direction” means a completely vertical direction and an angular direction of ± 5 ° from the completely vertical direction.
 上記のように、断面視櫛歯状の電子供与層10と断面視櫛歯状の電子受容層20とは、互いの櫛歯が噛み合うように接合されており、電子供与層10の複数の断面視短冊状部12Aと電子受容層20の複数の断面視短冊状部22Aとが交互に接合されている。 As described above, the comb-like electron donor layer 10 in cross-section and the electron-accepting layer 20 in cross-section are joined so that their comb teeth mesh with each other. The short strip portions 12A and the plurality of cross sectional strip portions 22A of the electron accepting layer 20 are joined alternately.
 本実施形態において、電子供与・受容接合層1内には、電子供与層10の材料と電子受容層20の材料とが混在した混在層1Mが形成されている。この混在層1Mは、電子供与層10と電子受容層20の断面視櫛歯状に沿って形成されている。
 混在層1Mは、互いに隣接する電子供与層10の断面視短冊状部12Aと電子受容層20の断面視短冊状部22Aとの境界部分、電子供与層10の断面視短冊状部12Aと電子受容層20の基部21との境界部分、及び、電子受容層20の断面視短冊状部22Aと電子供与層10の基部11との境界部分に形成されている。
 図面上は、電子供与・受容接合層1において、上記の混在層1Mと、電子供与層の材料と電子受容層の材料とが混在していない非混在層とが明確に界面を形成しているように図示されているが、実際にはこれらの界面は明確でない場合がある。
 本実施形態において、電荷分離に寄与している電子供与層(p層)10と電子受容層(n層)20との界面(p/n界面)は、混在層1M内に含まれている。
In the present embodiment, a mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1. The mixed layer 1M is formed along a comb-teeth shape in a sectional view of the electron donating layer 10 and the electron accepting layer 20.
The mixed layer 1M includes a boundary portion between the cross-sectional strip portion 12A of the electron donating layer 10 adjacent to each other and the cross-sectional strip portion 22A of the electron accepting layer 20, and the cross-sectional strip portion 12A of the electron donating layer 10 and the electron accepting portion. The layer 20 is formed at a boundary portion with the base portion 21 and at a boundary portion between the strip-like portion 22 </ b> A in the electron accepting layer 20 and the base portion 11 of the electron donating layer 10.
In the drawing, in the electron donating / accepting bonding layer 1, the mixed layer 1M and the non-mixed layer in which the material of the electron donating layer and the material of the electron accepting layer are not mixed clearly form an interface. In practice, these interfaces may not be clear.
In the present embodiment, the interface (p / n interface) between the electron donating layer (p layer) 10 and the electron accepting layer (n layer) 20 contributing to charge separation is included in the mixed layer 1M.
 電子供与・受容接合層1内に、電子供与層10の材料と電子受容層20の材料とが混在した混在層1Mを形成することで、電子供与層10と電子受容層20との密着性を向上させることができる。 By forming a mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed in the electron donating / accepting bonding layer 1, the adhesion between the electron donating layer 10 and the electron accepting layer 20 is improved. Can be improved.
 混在層1Mの層厚cは特に制限されない。
 混在層1Mの層厚cは明確に測定できない場合がある。
 電子供与層10の材料と電子受容層20の材料とが混在した混在層1Mの層厚は例えば、断面加工で超薄切片を作製し、これを電子顕微鏡にて観察して、平均的な層厚を求めることができる。
The layer thickness c of the mixed layer 1M is not particularly limited.
The layer thickness c of the mixed layer 1M may not be clearly measured.
The layer thickness of the mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is, for example, an ultrathin section prepared by cross-sectional processing, and observed with an electron microscope. Thickness can be determined.
 電子供与・受容接合層1においては、電荷分離界面で発生した電子及び正孔(以下、両者を合わせて「キャリア」と表記。)の移動経路が通じている必要がある。
 電子供与層10と電子受容層20とが良好に密着し、電荷分離界面で発生したキャリアの移動経路が良好に通じた構造が安定的に得られることから、混在層1Mの層厚cは0.5~50nmであるのが好ましく、1~25nmであるのがより好ましい。
 混在層1Mの層厚cが0.5nm未満では、電子供与層10と電子受容層20との間に混在層1Mが形成されない箇所が生じてこれらの層の密着性が低下する部分が生じる恐れがある。
 混在層1Mの層厚cが50nm超では、電子供与・受容接合層1内を移動するキャリアの移動経路が通じ難くなり、電極30、40でのキャリア収集効率が低減する恐れがある。
In the electron donor / acceptor bonding layer 1, it is necessary that the movement path of electrons and holes generated at the charge separation interface (hereinafter referred to as “carrier” together) is communicated.
Since the electron donating layer 10 and the electron accepting layer 20 are in good contact with each other and a structure in which the carrier moving path generated at the charge separation interface is satisfactorily obtained is obtained, the layer thickness c of the mixed layer 1M is 0. The thickness is preferably 5 to 50 nm, more preferably 1 to 25 nm.
If the layer thickness c of the mixed layer 1M is less than 0.5 nm, there may be a portion where the mixed layer 1M is not formed between the electron donating layer 10 and the electron accepting layer 20, and a portion where the adhesion of these layers is lowered may occur. There is.
If the layer thickness c of the mixed layer 1M is more than 50 nm, the carrier moving path that moves in the electron donating / accepting junction layer 1 becomes difficult to communicate, and the carrier collection efficiency at the electrodes 30 and 40 may be reduced.
 電子供与層10の断面視ストライプ状部12のストライプ幅aと、電子受容層20の断面視ストライプ状部22のストライプ幅bは特に制限されない。
 本実施形態では、電子供与・受容接合層1内に混在層1Mが形成されているので、電子供与層10と電子受容層20との接合界面が明確ではなく、これらの層の層厚が明確でない場合がある。
 電子供与層10と電子受容層20との接合界面が明確でない場合には、混在層1Mは、層厚の半分が電子供与層10に属し、残りの半分が電子受容層20に属しているとみなす。
The stripe width “a” of the cross-sectional stripe portion 12 of the electron donating layer 10 and the stripe width “b” of the cross-sectional stripe portion 22 of the electron accepting layer 20 are not particularly limited.
In this embodiment, since the mixed layer 1M is formed in the electron donating / accepting bonding layer 1, the bonding interface between the electron donating layer 10 and the electron accepting layer 20 is not clear, and the layer thickness of these layers is clear. It may not be.
When the bonding interface between the electron donating layer 10 and the electron accepting layer 20 is not clear, the mixed layer 1M has half of the layer thickness belonging to the electron donating layer 10 and the other half belonging to the electron accepting layer 20. I reckon.
 有機光電変換素子では、生成した励起子(エキシトン)のうち電荷分離に関与しているのは、電子供与層と電子受容層との界面に到達した励起子のみである。励起子がその電荷分離界面までに到達する距離(以下、「励起子拡散長」と称す。)は、材料の化学構造や純度によって異なるものの50nm以下であると考えられている。従って、励起子拡散長の約2倍の距離毎に電子供与層と電子受容層の界面が周期的に存在し、界面方向と垂直方向に電極を配置すれば電荷分離する励起子は増大し光電変換効率は向上すると考えられる。 In the organic photoelectric conversion element, only the excitons that have reached the interface between the electron donating layer and the electron accepting layer are involved in charge separation among the generated excitons (excitons). The distance that the exciton reaches the charge separation interface (hereinafter referred to as “exciton diffusion length”) is considered to be 50 nm or less, although it varies depending on the chemical structure and purity of the material. Therefore, the interface between the electron donating layer and the electron accepting layer periodically exists at a distance of about twice the exciton diffusion length, and if the electrode is arranged in the direction perpendicular to the interface direction, the number of excitons that separate charges increases. Conversion efficiency is expected to improve.
 電子供与層10の断面視ストライプ状部12のストライプ幅aと電子受容層20の断面視ストライプ状部22のストライプ幅bはいずれも、電荷分離に寄与する励起子を増大させるために励起子拡散長の2倍以下であるのが好ましい。一般的に有機半導体の励起子拡散長は50nm以下と考えられている。また、電子供与層10のストライプ幅aと電子受容層20のストライプ幅bを5nm未満とすることは作製上困難である。
 以上の理由から、電子供与層10のストライプ幅aと電子受容層20のストライプ幅bはいずれも5~100nmが好ましい。
 換言すれば、電子供与層10の断面視ストライプ状部12のピッチと、電子受容層20の断面視ストライプ状部22のピッチはいずれも、10~200nmであることが好ましい。
 電子供与層10のストライプ幅aと電子受容層20のストライプ幅bとは同一でも非同一でもよい。
The stripe width a of the stripe-like section 12 of the electron donor layer 10 and the stripe width b of the stripe-like section 22 of the electron accepting layer 20 are both exciton diffusion in order to increase excitons contributing to charge separation. The length is preferably not more than twice the length. In general, the exciton diffusion length of an organic semiconductor is considered to be 50 nm or less. In addition, it is difficult to make the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 less than 5 nm.
For the above reasons, the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are both preferably 5 to 100 nm.
In other words, it is preferable that both the pitch of the stripe-like portion 12 in cross section of the electron donating layer 10 and the pitch of the stripe-like portion 22 in cross section of the electron accepting layer 20 are 10 to 200 nm.
The stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 may be the same or non-identical.
 電子供与層10の断面視ストライプ状部12と電子受容層20の断面視ストライプ状部22とからなる活性層1Aの層厚dは、特に制限されない。
 基部11と電子受容層20との接合界面、あるいは基部21と電子受容層10との接合界面が明確でない場合には、混在層1Mの層厚の半分が活性層1Aに属し、半分が基部11あるいは基部21に属しているとみなす。
 活性層1Aの層厚dは、電子供与層10のストライプ幅aと電子受容層20のストライプ幅bとが同一のとき、これらストライプ幅a、bの2~40倍が好ましく、より好ましくは5~20倍である。
 活性層1Aの層厚dは、電子供与層10のストライプ幅aと電子受容層20のストライプ幅bとが非同一のとき、電子供与層10のストライプ幅aと電子受容層20のストライプ幅bのうち、小さい方の2倍以上大きい方の40倍以下が好ましく、より好ましくは小さい方の5倍以上大きい方の20倍以下である。
 活性層1Aの層厚dが、上記下限未満では光吸収効果と電荷分離界面積の増大効果が充分に得られなくなる恐れがあり、上記上限超では作製が困難な場合がある。
The layer thickness d of the active layer 1 </ b> A composed of the cross-sectional stripe portion 12 of the electron donating layer 10 and the cross-sectional stripe portion 22 of the electron accepting layer 20 is not particularly limited.
When the bonding interface between the base 11 and the electron-accepting layer 20 or the bonding interface between the base 21 and the electron-accepting layer 10 is not clear, half of the layer thickness of the mixed layer 1M belongs to the active layer 1A, and half is the base 11 Alternatively, it is regarded as belonging to the base 21.
When the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are the same, the layer thickness d of the active layer 1A is preferably 2 to 40 times the stripe widths a and b, more preferably 5 ~ 20 times.
The thickness d of the active layer 1A is such that when the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are not the same, the stripe width a of the electron donating layer 10 and the stripe width b of the electron accepting layer 20 are the same. Of these, it is preferably 40 times or less, more preferably 2 times or more of the smaller one, and more preferably 20 times or less of 5 or more times the smaller one.
If the layer thickness d of the active layer 1A is less than the lower limit, the light absorption effect and the effect of increasing the charge separation interface area may not be sufficiently obtained, and if it exceeds the upper limit, the production may be difficult.
 電子供与層10の基部11の層厚eは特に制限されない。
 基部11と電子受容層20との接合界面が明確でない場合には、混在層1Mの層厚の半分が基部11に属しているとみなす。
 基部11の層厚eは、電子供与層10のストライプ幅aと同じく5~100nmであるのが好ましく、より好ましくは5~50nmである。
 電子供与層10の基部11は、電子受容層20と接合界面を有しているため、励起子拡散長に近い厚さであることが好ましい。
 電子供与層10の基部11と一方の電極30とが接合された本実施形態の構成では、整流性への悪影響や短絡を回避するために、電子供与層10の基部11は充分な層厚(具体的には5nm以上)を有することが好ましい。
 電子供与層10の基部11と一方の電極30とが接合された本実施形態の構成で電子供与層10の基部11の層厚が不充分であると、電子受容層20が一方の電極30と近接しすぎて、整流性の悪化や短絡を招く恐れがある。基部11の層厚eを5nm未満とすることは作製上困難でもある。
 また、基部11の層厚eが100nmより大きいと、電荷分離後のキャリアの移動に対する抵抗が大きくなり、電極でのキャリア収集効率が低下する恐れがある。
The layer thickness e of the base 11 of the electron donating layer 10 is not particularly limited.
When the bonding interface between the base 11 and the electron-accepting layer 20 is not clear, it is considered that half of the layer thickness of the mixed layer 1M belongs to the base 11.
The layer thickness e of the base 11 is preferably 5 to 100 nm, more preferably 5 to 50 nm, as is the stripe width a of the electron donating layer 10.
Since the base 11 of the electron donating layer 10 has a bonding interface with the electron accepting layer 20, it is preferable that the thickness be close to the exciton diffusion length.
In the configuration of the present embodiment in which the base 11 of the electron donating layer 10 and one electrode 30 are joined, the base 11 of the electron donating layer 10 has a sufficient thickness ( Specifically, it is preferably 5 nm or more.
If the thickness of the base 11 of the electron donating layer 10 is insufficient in the configuration of the present embodiment in which the base 11 of the electron donating layer 10 and the one electrode 30 are joined, the electron accepting layer 20 and the one electrode 30 If they are too close together, there is a risk of rectification deterioration or short circuit. It is difficult to manufacture the base 11 with a layer thickness e of less than 5 nm.
On the other hand, when the layer thickness e of the base 11 is larger than 100 nm, the resistance to carrier movement after charge separation increases, and the carrier collection efficiency at the electrode may be reduced.
 電子供与層10の基部11と一方の電極30との間に、(半)導体層50を介在させた後記の第2実施形態においては、電子供与層10の基部11の層厚eが薄くても、整流性の悪化や短絡は起こりにくい。したがって、この場合、電子供与層10の基部11の厚さeは1~100nmが好ましい。 In the second embodiment to be described later, a (semi) conductor layer 50 is interposed between the base portion 11 of the electron donating layer 10 and the one electrode 30, and the layer thickness e of the base portion 11 of the electron donating layer 10 is thin. However, deterioration of rectification and short circuit are unlikely to occur. Therefore, in this case, the thickness e of the base 11 of the electron donating layer 10 is preferably 1 to 100 nm.
 電子受容層20の基部21の層厚fは特に制限されず、電子供与層10の基部11の層厚eと同様である。
 基部21と電子供与層10との接合界面が明確でない場合には、混在層1Mの層厚の半分が基部21に属しているとみなす。
 基部21の層厚fは、電子受容層20のストライプ幅bと同じく5~100nmであるのが好ましく、より好ましくは5~50nmである。
 電子受容層20の基部21は、電子供与層10と接合界面を有しているため、励起子拡散長に近い厚さであることが好ましい。
 電子受容層20の基部21と他方の電極40とが接合された本実施形態の構成では、整流性への悪影響や短絡を回避するために、電子受容層20の基部21は充分な層厚(具体的には5nm以上)を有することが好ましい。
 電子受容層20の基部21と他方の電極40とが接合された本実施形態の構成で電子受容層20の基部21の層厚が不充分であると、電子供与層10が他方の電極40と近接しすぎて、整流性の悪化や短絡を招く恐れがある。層厚fを5nm未満とすることは作製上困難でもある。
 また、層厚fが100nmより大きいと、電荷分離後のキャリアの移動に対する抵抗が大きくなり、電極でのキャリア収集効率が低下する恐れがある。
 電子受容層20の基部21と他方の電極40との間に、(半)導体層60を介在させた後記の第2実施形態においては、電子受容層20の基部21の層厚fが薄くても、整流性の悪化や短絡は起こりにくい。したがって、この場合、電子供与層10の基部11の厚さeは1~100nmが好ましい。
The layer thickness f of the base 21 of the electron accepting layer 20 is not particularly limited, and is the same as the layer thickness e of the base 11 of the electron donating layer 10.
When the bonding interface between the base 21 and the electron donating layer 10 is not clear, it is considered that half of the layer thickness of the mixed layer 1M belongs to the base 21.
The layer thickness f of the base 21 is preferably 5 to 100 nm, more preferably 5 to 50 nm, like the stripe width b of the electron accepting layer 20.
Since the base 21 of the electron-accepting layer 20 has a bonding interface with the electron-donating layer 10, the thickness is preferably close to the exciton diffusion length.
In the configuration of the present embodiment in which the base 21 of the electron-accepting layer 20 and the other electrode 40 are joined, the base 21 of the electron-accepting layer 20 has a sufficient thickness (in order to avoid adverse effects on rectification and short-circuiting). Specifically, it is preferably 5 nm or more.
If the base 21 of the electron accepting layer 20 is insufficient in thickness in the configuration of the present embodiment in which the base 21 of the electron accepting layer 20 and the other electrode 40 are joined, the electron donating layer 10 and the other electrode 40 If they are too close together, there is a risk of rectification deterioration or short circuit. It is also difficult to make the layer thickness f less than 5 nm.
On the other hand, if the layer thickness f is larger than 100 nm, the resistance to the movement of carriers after charge separation increases, and the carrier collection efficiency at the electrode may be reduced.
In the second embodiment described later in which a (semi) conductor layer 60 is interposed between the base 21 of the electron accepting layer 20 and the other electrode 40, the layer thickness f of the base 21 of the electron accepting layer 20 is thin. However, deterioration of rectification and short circuit are unlikely to occur. Therefore, in this case, the thickness e of the base 11 of the electron donating layer 10 is preferably 1 to 100 nm.
 電子供与・受容接合層1の層厚(=活性層1A、電子供与層10の基部11、及び電子受容層20の基部21の総膜厚)は特に制限されず、20~4400nmの範囲内であるのが好ましく、100~1000nmの範囲内であるのが特に好ましい。電子供与・受容接合層1の層厚が100nm未満であると吸光量が不充分となる場合があり、1000nmを超えると電子供与・受容接合層1の作製が困難となる場合がある。 The layer thickness of the electron donating / accepting bonding layer 1 (= total thickness of the active layer 1A, the base 11 of the electron donating layer 10 and the base 21 of the electron accepting layer 20) is not particularly limited, and is within a range of 20 to 4400 nm. It is preferred that it is in the range of 100 to 1000 nm. If the thickness of the electron donating / accepting bonding layer 1 is less than 100 nm, the amount of light absorption may be insufficient, and if it exceeds 1000 nm, it may be difficult to produce the electron donating / accepting bonding layer 1.
 図3A~図3Cを参照して、活性層1Aの平面パターン例について説明する。図3A~図3Cは図1のIII-III断面図である。 An example of a planar pattern of the active layer 1A will be described with reference to FIGS. 3A to 3C. 3A to 3C are sectional views taken along line III-III in FIG.
 図3Aに示す活性層1Aの平面パターンは、電子供与層10と電子受容層20とがいずれも、平面視ストライプ状にパターン形成された例である。 The planar pattern of the active layer 1A shown in FIG. 3A is an example in which the electron donating layer 10 and the electron accepting layer 20 are both formed in a stripe shape in plan view.
 図3Bに示す活性層1Aの平面パターンは、電子受容層20が平面視格子状にパターン形成され、電子供与層10が平面視マトリクス状に形成された例である。
 図3Bに示す例では、電子供与層10の個々の断面視短冊状部12Aの平面形状は矩形状である。電子供与層10の個々の断面視短冊状部12Aの平面形状は、正円状あるいは楕円状など任意である。
The planar pattern of the active layer 1A shown in FIG. 3B is an example in which the electron-accepting layer 20 is patterned in a planar view lattice shape, and the electron-donating layer 10 is formed in a planar view matrix shape.
In the example shown in FIG. 3B, the planar shape of each sectional view strip-shaped portion 12 </ b> A of the electron donating layer 10 is rectangular. The planar shape of each sectional view strip portion 12A of the electron donating layer 10 is arbitrary, such as a perfect circle or an ellipse.
 図3Cに示す活性層1Aの平面パターンは、電子供与層10が平面視格子状にパターン形成され、電子受容層20が平面視マトリクス状に形成された例である。
 図3Cに示す例では、電子受容層20の個々の断面視短冊状部22Aの平面形状は矩形状である。電子受容層20の個々の断面視短冊状部22Aの平面形状は、正円状あるいは楕円状など任意である。
The planar pattern of the active layer 1A shown in FIG. 3C is an example in which the electron donor layer 10 is formed in a pattern in a planar view and the electron accepting layer 20 is formed in a matrix in a plan view.
In the example shown in FIG. 3C, the planar shape of each cross-sectional view strip portion 22A of the electron-accepting layer 20 is rectangular. The planar shape of each cross-sectional strip-shaped portion 22A of the electron accepting layer 20 is arbitrary such as a perfect circle or an ellipse.
 光電変換素子101において、電極30、40の材質は導電体であれば特に限定されるものではなく、金属、合金、半金属、金属化合物、及び有機導体などが挙げられる。これらはドーパントを含んでいてもよい。少なくとも一方の電極は透光性電極である必要がある。
 電極30、40の材質としては例えば、金、銀、白金、及びアルミニウムなどの金属及びこれらの合金、酸化インジウムスズ(ITO)、フッ素ドープ酸化スズ(FTO)、及びアルミニウムドープ酸化亜鉛(AZO)などの金属酸化物、カーボンナノチューブ、及びグラフェンなどの半金属などが挙げられる。
In the photoelectric conversion element 101, the material of the electrodes 30 and 40 is not particularly limited as long as it is a conductor, and examples thereof include metals, alloys, metalloids, metal compounds, and organic conductors. These may contain a dopant. At least one of the electrodes needs to be a translucent electrode.
Examples of the material of the electrodes 30 and 40 include metals such as gold, silver, platinum, and aluminum and alloys thereof, indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). Metal oxides, carbon nanotubes, and semimetals such as graphene.
 電極30、40の膜厚は特に制限されず、5~200nmであるのが好ましい。電極3、40の膜厚は薄すぎるとシート抵抗が大きくなり、発生したキャリアを充分に外部回路へ伝達できなくなる。電極30、40の膜厚は厚すぎると作製上困難であったり、コストが高くなったりする。 The film thickness of the electrodes 30 and 40 is not particularly limited and is preferably 5 to 200 nm. If the film thickness of the electrodes 3 and 40 is too thin, the sheet resistance increases, and the generated carriers cannot be sufficiently transmitted to the external circuit. If the film thickness of the electrodes 30 and 40 is too thick, it is difficult to manufacture and the cost is increased.
 電極30、40を形成させる方法は特に限定されるものではなく、例えば、真空蒸着法、スパッタリング法、及びCVD法などの気相成膜法、あるいはスピンコート法、ディップコート法、及びスクリーン印刷法などの液相成膜法等が挙げられる。 The method for forming the electrodes 30 and 40 is not particularly limited. For example, a vapor deposition method such as a vacuum deposition method, a sputtering method, and a CVD method, or a spin coating method, a dip coating method, and a screen printing method. And liquid phase film forming methods.
 電子供与層10の材質は特に限定されるものではなく、有機半導体が好ましく、結晶性有機高分子がより好ましい。
 電子供与層10の材質としては例えば、ポリチオフェン誘導体、ポリフルオレン誘導体、及びポリフェニレンビニレン誘導体などの高分子化合物及びそれらの共重合体、あるいはフタロシアニン誘導体及びその金属錯体、ポルフィリン誘導体及びその金属錯体、ペンタセンなどのアセン誘導体、ジアミン誘導体などの低分子化合物が挙げられる。ポリ(3-ヘキシルチオフェン)、ポリ(3-(2-メチルへキサン)オキシカルボニルジチオフェン)、及び3-(6-ブロモヘキシル)チオフェン・3-ヘキシルチオフェン共重合体などが好ましい。
 電子供与層10は特に支障のない限りにおいて、有機半導体に合わせて無機半導体を含むことができる。電子供与層10は不可避不純物を含むことができる。
The material of the electron donor layer 10 is not particularly limited, and an organic semiconductor is preferable, and a crystalline organic polymer is more preferable.
Examples of the material of the electron donating layer 10 include polymer compounds such as polythiophene derivatives, polyfluorene derivatives, and polyphenylene vinylene derivatives and copolymers thereof, phthalocyanine derivatives and metal complexes thereof, porphyrin derivatives and metal complexes thereof, pentacene, and the like. And low molecular weight compounds such as acene derivatives and diamine derivatives. Poly (3-hexylthiophene), poly (3- (2-methylhexane) oxycarbonyldithiophene), 3- (6-bromohexyl) thiophene.3-hexylthiophene copolymer, and the like are preferable.
The electron donor layer 10 can contain an inorganic semiconductor in accordance with the organic semiconductor as long as there is no particular problem. The electron donor layer 10 can contain inevitable impurities.
 電子受容層20の材質は特に限定されるものではなく、有機半導体が好ましい。
 電子受容層20の材質としては例えば、フラーレン誘導体、ペリレン誘導体、及びナフタレン誘導体などが挙げられる。フェニルC61酪酸メチルエステル、及びフェニルC71酪酸メチルエステルなどが好ましい。
 電子受容層20は特に支障のない限りにおいて、有機半導体に合わせて無機半導体を含むことができる。電子受容層20は不可避不純物を含むことができる。
The material of the electron accepting layer 20 is not particularly limited, and an organic semiconductor is preferable.
Examples of the material of the electron accepting layer 20 include fullerene derivatives, perylene derivatives, and naphthalene derivatives. Phenyl C61 butyric acid methyl ester and phenyl C71 butyric acid methyl ester are preferred.
The electron-accepting layer 20 can contain an inorganic semiconductor in accordance with the organic semiconductor as long as there is no particular problem. The electron accepting layer 20 can contain inevitable impurities.
 本実施形態の光電変換素子101の製造方法は特に制限されない。
 電子供与層10及び/又は電子受容層20が有機半導体からなる場合、光電変換素子101は例えば、以下のようにナノインプリント法を用いて製造できる。
The manufacturing method of the photoelectric conversion element 101 of this embodiment is not particularly limited.
When the electron donating layer 10 and / or the electron accepting layer 20 is made of an organic semiconductor, the photoelectric conversion element 101 can be manufactured using a nanoimprint method as follows, for example.
 本実施形態の光電変換素子101は、
 電子供与層10と電子受容層20とのうち一方の層の構成材料からなる平坦膜を成膜し、この平坦膜に対して、上記一方の層の断面視櫛歯状のパターンに対応した反転パターンを有するモールドを、上記一方の層の構成材料の融点をT(℃)としたとき、T-100(℃)以上T(℃)未満の温度範囲内で押圧して、断面視櫛歯状のパターンに成形して、上記一方の層を形成する工程と、
 上記一方の層の上に、電子供与層10と電子受容層20とのうち他方の層の構成成分と上記一方の層が溶解する溶媒を含む少なくとも1種の溶媒とを含む塗布剤を塗布した後、少なくとも1種の溶媒を除去して、上記他方の層を形成する工程とを有する製造方法によって、製造できる。
The photoelectric conversion element 101 of this embodiment is
A flat film made of a constituent material of one of the electron donating layer 10 and the electron accepting layer 20 is formed, and the inversion corresponding to the comb-like pattern in cross-sectional view of the one layer is formed on the flat film. When the mold having the pattern is pressed within a temperature range of T m -100 (° C.) or higher and lower than T m (° C.) when the melting point of the constituent material of the one layer is T m (° C.), Forming a comb-like pattern to form the one layer;
On the one layer, a coating agent containing at least one solvent including a constituent component of the other layer of the electron donating layer 10 and the electron accepting layer 20 and a solvent in which the one layer is dissolved was applied. Then, it can manufacture by the manufacturing method which removes at least 1 sort (s) of solvent and has the process of forming said other layer.
 例えば、電子供与層10と電子受容層20とのうち電子供与層10を先に形成する場合、本実施形態の光電変換素子101は以下のようにして製造できる。 For example, when the electron donor layer 10 is formed first out of the electron donor layer 10 and the electron acceptor layer 20, the photoelectric conversion element 101 of this embodiment can be manufactured as follows.
 一方の電極30が形成された基板上に、電子供与層10の構成材料からなる平坦膜を成膜する。この平坦膜に対して、電子供与層10の断面視櫛歯状のパターンと図3A~図3Cに示したような平面パターンに対応した反転パターンを有するモールドを、電子供与層10の構成材料の融点をT(℃)としたとき、T-100(℃)以上T(℃)未満の温度範囲内で押圧して、モールドのパターンを転写する。こうすることで、平坦膜を断面視櫛歯状のパターンに成形することができる。 A flat film made of the constituent material of the electron donating layer 10 is formed on the substrate on which one electrode 30 is formed. For this flat film, a mold having a comb-like pattern in cross section of the electron donating layer 10 and a reversal pattern corresponding to the planar pattern as shown in FIGS. 3A to 3C is used as a constituent material of the electron donating layer 10. When the melting point is T m (° C.), pressing is performed within a temperature range of T m −100 (° C.) or more and less than T m (° C.) to transfer the mold pattern. By doing so, the flat film can be formed into a comb-like pattern in sectional view.
 電子供与層10の温度が下がり固化した後、この上に、その断面視櫛歯型構造が崩れない条件で、電子受容層20の構成成分と先に形成した電子供与層10が溶解する溶媒を含む少なくとも1種の溶媒とを含む塗布剤を塗布し、少なくとも1種の溶媒を除去して、電子受容層20を形成する。
 電子受容層20成膜の過程において、電子供与層10上に上記塗布剤を塗布する際に電子供与層10の一部が溶解して、先に成膜した電子供与層10の一部とその上に成膜された電子受容層20の一部が混在した混在層1Mが形成される。
 以上のようにして、断面視櫛歯型構造の電子供与・受容接合層1を形成することができる。
 その後、電子供与・受容接合層1上に他方の電極40を形成することで、光電変換素子101が製造される。
After the temperature of the electron donating layer 10 is lowered and solidified, a solvent in which the constituent components of the electron accepting layer 20 and the electron donating layer 10 previously formed are dissolved on the condition that the comb-like structure in cross-sectional view is not broken. A coating agent containing at least one kind of solvent is applied, and at least one kind of solvent is removed to form the electron-accepting layer 20.
In the process of forming the electron-accepting layer 20, when the coating agent is applied onto the electron-donating layer 10, a part of the electron-donating layer 10 is dissolved, and a part of the electron-donating layer 10 previously formed and its A mixed layer 1M in which a part of the electron accepting layer 20 formed thereon is mixed is formed.
As described above, the electron donating / accepting bonding layer 1 having a comb-teeth structure in cross section can be formed.
Thereafter, the other electrode 40 is formed on the electron donating / accepting bonding layer 1 to manufacture the photoelectric conversion element 101.
 電子供与層10となる平坦膜の成膜法は特に制限されず、真空蒸着法及びスパッタリング法などの気相成膜法、あるいはスピンコート法、ディップコート法、及びスプレーコート法などの液相成膜法等が挙げられる。
 電子受容層20の成膜法は液相成膜法であれば特に制限されず、スピンコート法、ディップコート法、及びスプレーコート法等が挙げられる。
 電子供与層10となる平坦膜および電子受容層20は、成膜条件や成膜方法を変えて、複数段階で成膜を実施してもよい。
The method for forming the flat film to be the electron donating layer 10 is not particularly limited, and vapor phase film formation methods such as vacuum deposition and sputtering, or liquid phase formation such as spin coating, dip coating, and spray coating. Examples thereof include a membrane method.
The film forming method of the electron accepting layer 20 is not particularly limited as long as it is a liquid phase film forming method, and examples thereof include a spin coat method, a dip coat method, and a spray coat method.
The flat film and the electron accepting layer 20 to be the electron donating layer 10 may be formed in a plurality of stages by changing the film forming conditions and the film forming method.
 ナノインプリント法に用いられるモールドは、シリコン、ガラス、及び金属などからなり、その表面に電子供与層10の断面視櫛歯型構造に対応する凹凸パターンを有する型である。かかるモールドの作製方法は特に限定されるものではなく、例えば、熱酸化シリコン基板に対して電子線描画によりレジストパターンを形成し、これをマスクとして基板をドライエッチングする方法、Crスパッタ石英ガラス基板に対して電子線描画によりレジストパターンを形成し、これをマスクとして基板をドライエッチングする方法、及び、シリコン基板に対して電子線描画によりレジストパターンを形成し、これをマスクとして基板をウェットエッチングする方法等が挙げられる。 The mold used for the nanoimprint method is a mold made of silicon, glass, metal, or the like, and having a concavo-convex pattern corresponding to the cross-sectional comb-teeth structure of the electron donor layer 10 on the surface thereof. A method for producing such a mold is not particularly limited. For example, a resist pattern is formed by electron beam drawing on a thermally oxidized silicon substrate, and the substrate is dry-etched using the resist pattern as a mask. On the other hand, a resist pattern is formed by electron beam drawing and the substrate is dry-etched using the resist pattern as a mask, and a resist pattern is formed on the silicon substrate by electron beam drawing and the substrate is wet-etched using the resist pattern as a mask. Etc.
 上記の製造方法によれば、電子供与・受容接合層1のパターン精度が良好で均一性が高く、良好な電荷分離と良好な光電変換効率を示す光電変換素子101を製造することができる。
 また、上記の製造方法では、電子受容層20を成膜する際に同時に混在層1Mを形成しているので、工程数が少なく、好ましい。
According to said manufacturing method, the photoelectric conversion element 101 which has the favorable pattern precision of the electron donor and acceptance | joining joining layer 1, high uniformity, and shows favorable charge separation and favorable photoelectric conversion efficiency can be manufactured.
In the manufacturing method described above, the mixed layer 1M is formed at the same time when the electron-accepting layer 20 is formed.
 電子供与層10の非混在層と、混在層1Mと、電子受容層20の非混在層とを別工程で形成しても構わない。
 例えば、断面視櫛歯状のパターンを有する電子供与層10を形成した後、電子供与材料と電子受容材料とを含む混在層用の塗布剤を塗布し、溶媒を除去して、混在層1Mを成膜し、その後、電子受容層を成膜することができる。この場合、混在層は共蒸着等の気相成膜によって成膜してもよい。電子受容層についても蒸着等の気相成膜によって成膜してもよい。
 電子供与層10の非混在層と、混在層1Mと、電子受容層20の非混在層とを別工程で形成しても、電子供与材料と電子受容材料とを含む混在層1Mを介在させることで、電子供与層10と電子受容層20との密着性を高めることができる。
The non-mixed layer of the electron donating layer 10, the mixed layer 1M, and the non-mixed layer of the electron accepting layer 20 may be formed in separate steps.
For example, after forming the electron donating layer 10 having a comb-like pattern in cross section, a coating agent for a mixed layer including an electron donating material and an electron accepting material is applied, the solvent is removed, and the mixed layer 1M is formed. After film formation, an electron-accepting layer can be formed. In this case, the mixed layer may be formed by vapor deposition such as co-evaporation. The electron accepting layer may also be formed by vapor deposition such as vapor deposition.
Even if the non-mixed layer of the electron donating layer 10, the mixed layer 1M, and the non-mixed layer of the electron accepting layer 20 are formed in separate steps, the mixed layer 1M containing the electron donating material and the electron accepting material is interposed. Thus, the adhesion between the electron donating layer 10 and the electron accepting layer 20 can be enhanced.
 以上説明したように、電子供与・受容接合層1内に、電子供与層10の材料と電子受容層20の材料とが混在した混在層1Mが形成され、電子供与層10と電子受容層20とが断面視櫛歯状構造を有する構成の本実施形態によれば、電子供与層10と電子受容層20との界面積を大きくすることができ、電子供与層10と電子受容層20との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、非バルクヘテロ結合型の光電変換素子101を提供することができる。 As described above, the mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1, and the electron donating layer 10, the electron accepting layer 20, According to the present embodiment having a comb-like structure in cross section, the interface area between the electron donating layer 10 and the electron accepting layer 20 can be increased, and the electron donating layer 10 and the electron accepting layer 20 are in close contact with each other. Thus, it is possible to provide a non-bulk heterojunction photoelectric conversion element 101 that has good characteristics and can improve charge separation efficiency and photoelectric conversion efficiency.
「第2実施形態」
 図面を参照して、本発明に係る第2実施形態の光電変換素子について説明する。
 図4は本実施形態の光電変換素子の模式断面図である。
 本実施形態の基本構成は第1実施形態と同様であり、同じ構成要素には同じ参照符号を付して、説明を省略する。
“Second Embodiment”
A photoelectric conversion element according to a second embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a schematic cross-sectional view of the photoelectric conversion element of this embodiment.
The basic configuration of the present embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 本実施形態の光電変換素子102は、第1実施形態と同様に、電極主面同士が互いに対向して配置された一対の電極30、40と、これらの間に形成された断面視櫛歯状の電子供与層10(p層)及び断面視櫛歯状の電子受容層20(n層)からなる電子供与・受容接合層1とを備えている。
 本実施形態においても、電子供与・受容接合層1内には、電子供与層10の材料と電子受容層20の材料とが混在した混在層1Mが形成されている。この混在層1Mは、電子供与層10と電子受容層20の断面視櫛歯状に沿って形成されている。
 断面視櫛歯型構造の活性層の平面パターン例(III-III断面図)は、第1実施形態において図3A~図3Cに示したのと同様である。
As in the first embodiment, the photoelectric conversion element 102 according to this embodiment includes a pair of electrodes 30 and 40 that are disposed so that the electrode principal surfaces face each other, and a comb-like shape in cross-sectional view formed therebetween. And an electron donating / accepting bonding layer 1 comprising a comb-like electron accepting layer 20 (n layer) in cross section.
Also in this embodiment, a mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1. The mixed layer 1M is formed along a comb-teeth shape in a sectional view of the electron donating layer 10 and the electron accepting layer 20.
An example of a planar pattern (III-III sectional view) of the active layer having a comb-like structure in cross section is the same as that shown in FIGS. 3A to 3C in the first embodiment.
 本実施形態ではさらに、電子供与層10の基部11と一方の電極30、及び/又は、電子受容層20の基部21と他方の電極40との間に、半導体層及び/または導体層が形成されている。以下、「半導体層及び/または導体層」を(半)導体層と表記する。
 本実施形態では、電子供与層10の基部11と一方の電極30との間に(半)導体層50が形成され、電子受容層20の基部21と他方の電極40との間に(半)導体層60が形成されている。
In the present embodiment, a semiconductor layer and / or a conductor layer is further formed between the base 11 of the electron donating layer 10 and one electrode 30 and / or the base 21 of the electron accepting layer 20 and the other electrode 40. ing. Hereinafter, the “semiconductor layer and / or conductor layer” is referred to as a (semi) conductor layer.
In the present embodiment, a (semi) conductor layer 50 is formed between the base 11 of the electron donating layer 10 and the one electrode 30, and (half) between the base 21 of the electron accepting layer 20 and the other electrode 40. A conductor layer 60 is formed.
 (半)導体層50、60の材質は特に限定されるものではなく、例えば、ポリ-3,4-エチレンジオキシチオフェン、ポリスチレンスルホン酸、及びポリアニリンなどの高分子化合物、カーボンナノチューブなどの半金属、酸化チタン、酸化モリブデン、及びフッ化リチウムなどの金属化合物、あるいはアルミニウム合金及びマグネシウム合金などの合金などが挙げられる。 The material of the (semi) conductor layers 50 and 60 is not particularly limited, and examples thereof include polymer compounds such as poly-3,4-ethylenedioxythiophene, polystyrene sulfonic acid, and polyaniline, and semimetals such as carbon nanotubes. And metal compounds such as titanium oxide, molybdenum oxide, and lithium fluoride, and alloys such as aluminum alloy and magnesium alloy.
 (半)導体層50、60を形成させる方法は特に限定されるものではなく、例えば、真空蒸着法、スパッタリング法、及びCVD法などの気相成膜法、あるいはスピンコート法、ディップコート法、及びスクリーン印刷法などの液相成膜法等が挙げられる。 The method of forming the (semi) conductor layers 50 and 60 is not particularly limited. For example, vapor deposition methods such as vacuum deposition, sputtering, and CVD, spin coating, dip coating, And liquid phase film forming methods such as a screen printing method.
 本実施形態の光電変換素子102は、第1実施形態と同様の構造の電子供与・受容接合層1を備えており、第1実施形態と同様の効果が得られる。
 本実施形態の光電変換素子102は、(半)導体層50、60の成膜工程が増えることを除けば、第1実施形態と同様に製造できる。
 電子供与・受容接合層1内に、電子供与層10の材料と電子受容層20の材料とが混在した混在層1Mが形成され、電子供与層10と電子受容層20とが断面視櫛歯状構造を有する構成の本実施形態によれば、電子供与層10と電子受容層20との界面積を大きくすることができ、電子供与層10と電子受容層20との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、非バルクヘテロ結合型の光電変換素子102を提供することができる。
The photoelectric conversion element 102 of this embodiment includes the electron donating / accepting bonding layer 1 having the same structure as that of the first embodiment, and the same effects as those of the first embodiment can be obtained.
The photoelectric conversion element 102 of the present embodiment can be manufactured in the same manner as in the first embodiment, except that the number of (semi) conductor layers 50 and 60 is increased.
A mixed layer 1M in which the material of the electron donating layer 10 and the material of the electron accepting layer 20 are mixed is formed in the electron donating / accepting bonding layer 1, and the electron donating layer 10 and the electron accepting layer 20 have a comb-teeth shape in cross section. According to this embodiment having a structure, the interface area between the electron donating layer 10 and the electron accepting layer 20 can be increased, the adhesion between the electron donating layer 10 and the electron accepting layer 20 is good, and charge separation is performed. A non-bulk heterojunction photoelectric conversion element 102 that can improve efficiency and photoelectric conversion efficiency can be provided.
「第3実施形態」
 図面を参照して、本発明に係る第3実施形態の光電変換素子について説明する。
 図5は本実施形態の光電変換素子の模式断面図である。
 本実施形態の基本構成は第1実施形態と同様であり、同じ構成要素には同じ参照符号を付して、説明を省略する。
“Third Embodiment”
A photoelectric conversion element according to a third embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a schematic cross-sectional view of the photoelectric conversion element of this embodiment.
The basic configuration of the present embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 本実施形態の光電変換素子103は、電極主面同士が互いに対向して配置された一対の電極30、40と、これらの間に形成された電子供与層70(p層)及び電子受容層80(n層)からなる電子供与・受容接合層2とを備えている。本実施形態の光電変換素子103は、電子供与層70及び電子受容層80がいずれもベタ膜である平面結合型の光電変換素子である。
 本実施形態において、電子供与・受容接合層2内には、電子供与層70の材料と電子受容層80の材料とが混在した混在層2Mが形成されている。
The photoelectric conversion element 103 according to this embodiment includes a pair of electrodes 30 and 40 that are disposed so that the electrode main surfaces face each other, and an electron donating layer 70 (p layer) and an electron accepting layer 80 that are formed therebetween. And an electron donating / accepting bonding layer 2 made of (n layer). The photoelectric conversion element 103 of the present embodiment is a flat-coupled photoelectric conversion element in which the electron donating layer 70 and the electron accepting layer 80 are both solid films.
In the present embodiment, a mixed layer 2M in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are mixed is formed in the electron donating / accepting bonding layer 2.
 図面上は、電子供与・受容接合層2において、上記の混在層2Mと、電子供与層70の材料と電子受容層80の材料とが混在していない非混在層とが明確に界面を形成しているように図示しているが、実際にはこれらの界面は明確でない場合がある。
 本実施形態において、電荷分離に寄与している電子供与層(p層)70と電子受容層(n層)80との界面(p/n界面)は、混在層2M内に含まれている。
In the drawing, in the electron donating / accepting bonding layer 2, the mixed layer 2M and a non-mixed layer in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are not mixed clearly form an interface. In practice, these interfaces may not be clear.
In the present embodiment, the interface (p / n interface) between the electron donating layer (p layer) 70 and the electron accepting layer (n layer) 80 contributing to charge separation is included in the mixed layer 2M.
 平面結合型の光電変換素子103においても、電子供与・受容接合層2内に、電子供与層70の材料と電子受容層80の材料とが混在した混在層2Mを形成することで、電子供与層70と電子受容層80との密着性を向上させることができる。
 混在層2Mの層厚は特に制限されない。
 混在層2Mの層厚は明確に測定できない場合もある。
 第1実施形態と同様、電子供与層70と電子受容層80とが良好に密着し、電荷分離界面積の増大効果が得られ、かつ電荷分離界面で発生したキャリアの移動経路が良好に通じた構造が安定的に得られることから、混在層2Mの層厚は0.5~50nmであるのが好ましい。
 混在層2Mの層厚が0.5nm未満では、電子供与層70と電子受容層80との間に混在層2Mが形成されない箇所が生じてこれらの層の密着性が低下する部分が生じる恐れがあり、また電荷分離界面積の増大効果が充分に得られない場合がある。
 混在層2Mの層厚が50nm超では、電子供与・受容接合層2内を移動するキャリアの移動経路が通じ難くなり、電極30、40でのキャリア収集効率が低減する恐れがある。
Also in the flat-coupled photoelectric conversion element 103, the electron donating layer 2M in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are mixed is formed in the electron donating / accepting bonding layer 2. Adhesiveness between 70 and the electron-accepting layer 80 can be improved.
The layer thickness of the mixed layer 2M is not particularly limited.
The layer thickness of the mixed layer 2M may not be clearly measured.
As in the first embodiment, the electron donating layer 70 and the electron accepting layer 80 are in good contact with each other, the effect of increasing the charge separation interface area is obtained, and the movement path of carriers generated at the charge separation interface is well communicated. In order to obtain a stable structure, the layer thickness of the mixed layer 2M is preferably 0.5 to 50 nm.
If the layer thickness of the mixed layer 2M is less than 0.5 nm, there may be a portion where the mixed layer 2M is not formed between the electron donating layer 70 and the electron accepting layer 80, and there may be a portion where the adhesion of these layers is lowered. In addition, there is a case where the effect of increasing the charge separation interface area cannot be sufficiently obtained.
If the layer thickness of the mixed layer 2M exceeds 50 nm, the carrier moving path that moves in the electron donating / accepting junction layer 2 becomes difficult to communicate, and the carrier collection efficiency at the electrodes 30 and 40 may be reduced.
 電子供与層10の層厚と電子受容層20の層厚は特に制限されない。
 本実施形態では、電子供与・受容接合層2内に混在層2Mが形成されているので、電子供与層70と電子受容層80との接合界面が明確ではなく、これらの層の層厚が明確でない場合がある。
 第1実施形態と同様、電子供与層70と電子受容層80との接合界面が明確でない場合には、混在層2Mは、層厚の半分が電子供与層70に属し、残りの半分が電子受容層80に属しているとみなす。
The layer thickness of the electron donating layer 10 and the layer thickness of the electron accepting layer 20 are not particularly limited.
In this embodiment, since the mixed layer 2M is formed in the electron donating / accepting bonding layer 2, the bonding interface between the electron donating layer 70 and the electron accepting layer 80 is not clear, and the layer thickness of these layers is clear. It may not be.
As in the first embodiment, when the bonding interface between the electron donating layer 70 and the electron accepting layer 80 is not clear, the mixed layer 2M has half of the layer thickness belonging to the electron donating layer 70 and the other half is the electron accepting layer. Consider belonging to layer 80.
 電子供与層70の層厚と電子受容層80の層厚はいずれも、50~250nmが好ましい。
 電子供与層70および電子受容層80の層厚が50nm未満では、充分な光吸収がなされず光電変換効率が低下する恐れがある。電子供与層70および電子受容層80の層厚が250nm超では、電荷分離後のキャリアの移動に対する抵抗が大きくなり、電極でのキャリア収集効率が低下する恐れがある。
 電子供与層70の層厚と電子受容層80とからなる活性層である電子供与・受容接合層2の層厚は50.5~300nmが好ましい。
 電子供与層70の層厚と電子受容層80の層厚とは同一でも非同一でもよい。
Both the thickness of the electron donating layer 70 and the thickness of the electron accepting layer 80 are preferably 50 to 250 nm.
If the layer thickness of the electron donating layer 70 and the electron accepting layer 80 is less than 50 nm, sufficient light absorption may not be performed and the photoelectric conversion efficiency may be reduced. If the layer thickness of the electron donating layer 70 and the electron accepting layer 80 exceeds 250 nm, the resistance to carrier movement after charge separation increases, and the carrier collection efficiency at the electrode may be reduced.
The thickness of the electron donating / accepting bonding layer 2 which is an active layer composed of the electron donating layer 70 and the electron accepting layer 80 is preferably 50.5 to 300 nm.
The layer thickness of the electron donating layer 70 and the layer thickness of the electron accepting layer 80 may be the same or different.
 本実施形態の光電変換素子103は、
 電子供与層70と電子受容層80とのうち一方の層を形成する工程と、
 上記一方の層の上に、電子供与層70と電子受容層80とのうち他方の層の構成成分と上記一方の層が溶解する溶媒を含む少なくとも1種の溶媒とを含む塗布剤を塗布した後、溶媒を除去して、上記他方の層を形成する工程とを有する製造方法によって、製造できる。
The photoelectric conversion element 103 of this embodiment is
Forming one of the electron donating layer 70 and the electron accepting layer 80;
On the one layer, a coating agent including at least one solvent including a constituent component of the other of the electron donating layer 70 and the electron accepting layer 80 and a solvent in which the one layer is dissolved was applied. Then, it can manufacture by the manufacturing method which removes a solvent and has the process of forming said other layer.
 電子供与・受容接合層2内に、電子供与層70の材料と電子受容層80の材料とが混在した混在層2Mが形成された構成の本実施形態によれば、電子供与層70と電子受容層80との密着性が良く、電荷分離効率と光電変換効率の向上を図ることが可能な、平面結合型の光電変換素子103を提供することができる。 According to the present embodiment in which the mixed layer 2M in which the material of the electron donating layer 70 and the material of the electron accepting layer 80 are mixed is formed in the electron donating / accepting bonding layer 2, the electron donating layer 70 and the electron accepting layer are formed. It is possible to provide a planar coupling type photoelectric conversion element 103 that has good adhesion to the layer 80 and can improve charge separation efficiency and photoelectric conversion efficiency.
「太陽電池」
 上記第1~第3実施形態の光電変換素子101~103は、カバーガラス及び保護フィルム等を付けて、太陽電池として利用することができる。
"Solar cell"
The photoelectric conversion elements 101 to 103 of the first to third embodiments can be used as solar cells with a cover glass and a protective film attached thereto.
 本発明に係る実施例及び比較例について説明する。 Examples and comparative examples according to the present invention will be described.
 以下の実施例1~3では、上記実施形態の光電変換素子101~103を作製した。活性層の平面パターンは、図3Aに示したストライプ状パターンとした。
 比較例1~3は混在層が形成されない条件とした以外は、実施例1~3と同様にして、比較用の光電変換素子を得た。
In the following Examples 1 to 3, the photoelectric conversion elements 101 to 103 of the above embodiment were produced. The planar pattern of the active layer was the stripe pattern shown in FIG. 3A.
Comparative Examples 1 to 3 were obtained in the same manner as Examples 1 to 3, except that the mixed layer was not formed.
<断面視櫛歯構造の寸法、モールドの寸法>
 実施例2、3における断面視櫛歯構造の寸法は以下の通りとした。
 電子供与層10のストライプ幅a(混在層1Mの半分の厚みを含む)=100nm、電子受容層20のストライプ幅b(混在層1Mの半分の厚みを含む)=100nm、活性層1Aの層厚d=500nm、電子供与層10の基部11の厚さe(混在層1Mの半分の厚みを含む)=50nm、電子受容層20の基部21の厚さf(混在層1Mの半分の厚みを含む)=50nm。
 実施例2、3において、電子供与層10のパターン形成に用いたモールドは、幅100nm、長さ6mm、深さ500nm、ピッチ200nmの複数のトレンチを有しており、このモールドの断面視櫛歯型構造が形成された部分の平面視面積は6mm×6mmであった。
<Dimensions of comb-tooth structure in cross-sectional view, dimensions of mold>
The dimensions of the cross-sectional comb structure in Examples 2 and 3 were as follows.
Stripe width a of the electron donating layer 10 (including half the thickness of the mixed layer 1M) = 100 nm, stripe width b of the electron accepting layer 20 (including the half thickness of the mixed layer 1M) = 100 nm, layer thickness of the active layer 1A d = 500 nm, thickness e of the base portion 11 of the electron donating layer 10 (including half the thickness of the mixed layer 1M) = 50 nm, thickness f of the base portion 21 of the electron accepting layer 20 (including half the thickness of the mixed layer 1M) ) = 50 nm.
In Examples 2 and 3, the mold used for pattern formation of the electron donating layer 10 has a plurality of trenches having a width of 100 nm, a length of 6 mm, a depth of 500 nm, and a pitch of 200 nm. The area in plan view of the portion where the mold structure was formed was 6 mm × 6 mm.
<変換効率>
 下記各例において、光電変換素子の変換効率測定は、ソーラーシミュレーターを用いて行った。変換効率は、キセノンランプ(500W)により擬似太陽光を照射し(AM1.5G、1kW/m)、I-V曲線を測定して、算出した。
<Conversion efficiency>
In the following examples, the conversion efficiency of the photoelectric conversion element was measured using a solar simulator. The conversion efficiency was calculated by irradiating simulated sunlight with a xenon lamp (500 W) (AM1.5G, 1 kW / m 2 ) and measuring an IV curve.
<実施例1>
 以下のようにして、図5に示した構造の光電変換素子103を作製した。
 表面に膜厚100nmのITO透明電極が形成された層厚0.7mmの電極基板に、ポリ(3-ヘキシルチオフェン)(以下、「P3HT」と略記。)をスピンコートし、150℃30minの熱処理を行って、層厚100nmの電子供与層を形成した。
 次に、上記電子供与層上にフェニルC61酪酸メチルエステル(以下、「PCBM」と略記。)をジクロロメタン/クロロホルム混合溶媒に溶解した溶液をスピンコートし、150℃30minの熱処理を行って、層厚100nmの電子受容層を形成した。
 以上のようにして、電子供与層と電子受容層とからなる電子供与・受容接合層を形成した。
 電子供与・受容接合層形成の過程において、電子供与層上にPCBM溶液を塗布する際に電子供与層の上層部が溶解して、先に成膜した電子供与層の上層部とその上に成膜された電子受容層の下層部が混在した混在層が形成された。混在層の層厚cは20nmであった。電子供与層の非混在層と電子受容層の非混在層の層厚はいずれも80nmであった。
 すなわち、層厚100nmの電子供与層のうち、10nm×2が混在層、残りの80nmが非混在層であった。同様に、層厚100nmの電子受容層のうち、10nm×2が混在層、残りの80nmが非混在層であった。
 最後に、Alを膜厚100nmで真空蒸着して、光電変換素子を得た。変換効率を測定した結果、1.5%であった。
<Example 1>
The photoelectric conversion element 103 having the structure shown in FIG. 5 was produced as follows.
Poly (3-hexylthiophene) (hereinafter abbreviated as “P3HT”) is spin-coated on an electrode substrate having a thickness of 0.7 mm on which an ITO transparent electrode having a thickness of 100 nm is formed, and heat treatment at 150 ° C. for 30 minutes. And an electron donating layer having a layer thickness of 100 nm was formed.
Next, a solution in which phenyl C61 butyric acid methyl ester (hereinafter abbreviated as “PCBM”) is dissolved in a dichloromethane / chloroform mixed solvent is spin-coated on the electron donor layer, and heat treatment is performed at 150 ° C. for 30 minutes to obtain a layer thickness. A 100 nm electron-accepting layer was formed.
As described above, an electron donating / accepting junction layer composed of an electron donating layer and an electron accepting layer was formed.
In the process of forming the electron donating / accepting bonding layer, when the PCBM solution is applied onto the electron donating layer, the upper layer portion of the electron donating layer is dissolved, and the upper layer portion of the electron donating layer previously formed and the upper layer portion are formed thereon. A mixed layer in which the lower layer portion of the filmed electron accepting layer was mixed was formed. The layer thickness c of the mixed layer was 20 nm. The layer thicknesses of the non-mixed layer of the electron donating layer and the non-mixed layer of the electron accepting layer were both 80 nm.
That is, among the electron donating layers having a layer thickness of 100 nm, 10 nm × 2 was a mixed layer and the remaining 80 nm was a non-mixed layer. Similarly, of the electron-accepting layer having a layer thickness of 100 nm, 10 nm × 2 was a mixed layer and the remaining 80 nm was a non-mixed layer.
Finally, Al was vacuum-deposited with a film thickness of 100 nm to obtain a photoelectric conversion element. As a result of measuring the conversion efficiency, it was 1.5%.
<実施例2>
 表面に膜厚100nmのITO透明電極が形成された層厚0.7mmの電極基板に、P3HTをスピンコートし、150℃30minの熱処理を行って、層厚300nmのP3HT層を形成した。
 次に、上記モールドを用い、180℃40MPaで上記P3HT層を加熱加圧して、モールドのパターンを転写し、その後、150℃30minの熱処理を行って、a=100nm、d=500nm、e=50nmの断面視櫛歯構造の電子供与層を形成した。
 次に、上記断面視櫛歯構造の電子供与層上に、PCBM-ジクロロメタン/クロロホルム溶液をスピンコートし、150℃30minの熱処理を行って、b=100nm、f=50nmの電子受容層を形成した。
 以上のようにして、電子供与層と電子受容層とからなる電子供与・受容接合層を形成した。
 電子供与・受容接合層形成の過程において、断面視櫛歯構造の電子供与層上にPCBM溶液を塗布する際に電子供与層の一部が溶解して、先に成膜した電子供与層の一部とその上に成膜された電子受容層の一部が混在した混在層が形成された。混在層は、先に成膜された断面視櫛歯構造の電子供与層の表面形状に沿って形成された。
 混在層の層厚cは20nmであった。電子供与層の非混在層のストライプ幅と電子受容層の非混在層のストライプ幅はいずれも80nmであった。
 すなわち、電子供与層のストライプ幅100nmのうち、10nm×2が混在層、残りの80nmが非混在層のストライプ幅であった。同様に、電子受容層のストライプ幅100nmのうち、10nm×2が混在層、残りの80nmが非混在層のストライプ幅であった。
 最後に、Alを膜厚100nmで真空蒸着して、素子を得た。変換効率を測定した結果、3.5%であった。
<Example 2>
P3HT was spin-coated on an electrode substrate having a thickness of 0.7 mm on which an ITO transparent electrode having a thickness of 100 nm was formed, and a heat treatment at 150 ° C. for 30 minutes was performed to form a P3HT layer having a thickness of 300 nm.
Next, using the above mold, the P3HT layer is heated and pressurized at 180 ° C. and 40 MPa to transfer the pattern of the mold, and then subjected to heat treatment at 150 ° C. for 30 minutes, a = 100 nm, d = 500 nm, e = 50 nm An electron donor layer having a comb-tooth structure in cross section was formed.
Next, a PCBM-dichloromethane / chloroform solution was spin-coated on the electron donating layer having a comb-tooth structure in cross-sectional view, and heat treatment was performed at 150 ° C. for 30 minutes to form an electron-accepting layer having b = 100 nm and f = 50 nm. .
As described above, an electron donating / accepting junction layer composed of an electron donating layer and an electron accepting layer was formed.
In the process of forming the electron donating / accepting bonding layer, a part of the electron donating layer is dissolved when the PCBM solution is applied on the electron donating layer having a comb-tooth structure in a cross-sectional view. A mixed layer was formed in which a portion of the electron-accepting layer formed thereon was mixed with a part of the electron-accepting layer. The mixed layer was formed along the surface shape of the electron donor layer having a comb-tooth structure in cross-sectional view formed in advance.
The layer thickness c of the mixed layer was 20 nm. The stripe width of the non-mixed layer of the electron donating layer and the stripe width of the non-mixed layer of the electron accepting layer were both 80 nm.
That is, of the stripe width of 100 nm of the electron donating layer, 10 nm × 2 was the mixed layer, and the remaining 80 nm was the non-mixed layer. Similarly, of the stripe width of 100 nm of the electron-accepting layer, 10 nm × 2 was the mixed layer, and the remaining 80 nm was the non-mixed layer.
Finally, Al was vacuum-deposited with a film thickness of 100 nm to obtain a device. As a result of measuring the conversion efficiency, it was 3.5%.
<実施例3>
 表面に膜厚100nmのITO透明電極が形成された層厚0.7mmの電極基板に、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)との水溶液をスピンコートし、110℃1hr乾燥させて、膜厚30nmの(半)導体層を形成した。
 実施例2と同様に、断面視櫛歯構造の電子供与・受容接合層を形成した。実施例2と同様に、電子供与・受容接合層形成の過程において、電子供与層上にPCBM溶液を塗布する際に電子供与層の一部が溶解して、先に成膜した電子供与層の一部とその上に成膜された電子受容層の一部が混在した混在層が形成された。電子供与・受容接合層の寸法a~fは実施例2と同様であった。
 次に、チタンプロポキシド溶液をスピンコートし、110℃1hr乾燥させて、膜厚10nmの(半)導体層を形成した。
 最後に、Alを膜厚100nmで真空蒸着して、素子を得た。変換効率を測定した結果、3.9%であった。
<Example 3>
Spin coat an aqueous solution of poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS) onto a 0.7 mm thick electrode substrate with a 100 nm thick ITO transparent electrode formed on the surface. And dried at 110 ° C. for 1 hr to form a (semi) conductor layer having a thickness of 30 nm.
Similarly to Example 2, an electron donating / accepting bonding layer having a comb-tooth structure in cross-sectional view was formed. As in Example 2, in the process of forming the electron donating / accepting bonding layer, when the PCBM solution was applied onto the electron donating layer, part of the electron donating layer was dissolved, and the electron donating layer formed earlier was dissolved. A mixed layer in which a part and a part of the electron-accepting layer formed thereon was mixed was formed. The dimensions a to f of the electron donating / accepting bonding layer were the same as those in Example 2.
Next, a titanium propoxide solution was spin-coated and dried at 110 ° C. for 1 hr to form a (semi) conductor layer having a thickness of 10 nm.
Finally, Al was vacuum-deposited with a film thickness of 100 nm to obtain a device. As a result of measuring the conversion efficiency, it was 3.9%.
<比較例1>
 PCBM-ジクロロメタン/クロロホルム溶液の代わりに、PCBMをジクロロメタン溶媒にのみ溶解した溶液を用いた以外は実施例1と同様にして、比較用の光電変換素子を得た。混在層は形成されなかった。変換効率は、0.8%であった。
<Comparative Example 1>
A comparative photoelectric conversion device was obtained in the same manner as in Example 1 except that a solution in which PCBM was dissolved only in a dichloromethane solvent was used instead of the PCBM-dichloromethane / chloroform solution. A mixed layer was not formed. The conversion efficiency was 0.8%.
<比較例2>
 PCBM-ジクロロメタン/クロロホルム溶液の代わりに、PCBMをジクロロメタン溶媒にのみ溶解した溶液を用いた以外は実施例2と同様にして、比較用の光電変換素子を得た。混在層は形成されなかった。
 電子供与・受容接合層の寸法a~fは以下の通りであった。
 a=100nm、d=500nm、e=50nm、b=100nm、f=50nm、c=0nm。
 変換効率は、1.3%であった。
<Comparative Example 2>
A comparative photoelectric conversion device was obtained in the same manner as in Example 2 except that a solution in which PCBM was dissolved only in a dichloromethane solvent was used instead of the PCBM-dichloromethane / chloroform solution. A mixed layer was not formed.
The dimensions a to f of the electron donating / accepting bonding layer were as follows.
a = 100 nm, d = 500 nm, e = 50 nm, b = 100 nm, f = 50 nm, c = 0 nm.
The conversion efficiency was 1.3%.
<比較例3>
 PCBM-ジクロロメタン/クロロホルム溶液の代わりに、PCBMをジクロロメタン溶媒にのみ溶解した溶液を用いた以外は実施例3と同様にして、比較用の光電変換素子を得た。混在層は形成されなかった。
 電子供与・受容接合層の寸法a~fは以下の通りであった。
 a=100nm、d=500nm、e=50nm、b=100nm、f=50nm、c=0nm。
 変換効率は、1.7%であった。
<Comparative Example 3>
A comparative photoelectric conversion device was obtained in the same manner as in Example 3 except that a solution in which PCBM was dissolved only in a dichloromethane solvent was used instead of the PCBM-dichloromethane / chloroform solution. A mixed layer was not formed.
The dimensions a to f of the electron donating / accepting bonding layer were as follows.
a = 100 nm, d = 500 nm, e = 50 nm, b = 100 nm, f = 50 nm, c = 0 nm.
The conversion efficiency was 1.7%.
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above-described embodiment, and design changes can be made as appropriate without departing from the spirit of the present invention.
 本発明の光電変換素子は、太陽電池、発光素子、受光素子、及びその他各種センサなどに好ましく適用できる。 The photoelectric conversion element of the present invention can be preferably applied to solar cells, light emitting elements, light receiving elements, and other various sensors.
 この出願は、2011年1月21日に出願された日本出願特願2011-010611号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-010611 filed on Jan. 21, 2011, the entire disclosure of which is incorporated herein.
101~103 光電変換素子
1、2 電子供与・受容接合層
1A 活性層
1M、2M 混在層
10、70 電子供与層
11 基部
12 断面視ストライプ状部
12A 断面視短冊状部
20、80 電子受容層
21 基部
22 断面視ストライプ状部
22A 断面視短冊状部
30、40 電極
30A、40A 電極主面
50、60 (半)導体層
70 電子供与層
80 電子受容層
101 to 103 Photoelectric conversion elements 1, 2 Electron donating / accepting bonding layer 1A Active layer 1M, 2M Mixed layer 10, 70 Electron donating layer 11 Base 12 Striped portion 12A in cross section Striped portion 20, 80 Electron accepting layer 21 Base portion 22 Striped portion 22A in cross section Striped portion 30, 40 Electrode 30A, 40A Electrode main surface 50, 60 (Semi) conductor layer 70 Electron donating layer 80 Electron accepting layer

Claims (11)

  1.  電極主面同士が互いに対向して配置された一対の電極の間に、電子供与層と電子受容層とが接合された電子供与・受容接合層を備えた光電変換素子であって、
     前記電子供与・受容接合層内に、電子供与層の材料と前記電子受容層の材料とが混在した混在層が形成された光電変換素子。
    A photoelectric conversion element comprising an electron donating / accepting junction layer in which an electron donating layer and an electron accepting layer are joined between a pair of electrodes arranged such that electrode principal surfaces face each other,
    A photoelectric conversion element in which a mixed layer in which a material for an electron donating layer and a material for the electron accepting layer are mixed is formed in the electron donating / accepting bonding layer.
  2.  前記混在層の層厚が0.5~50nmである請求項1に記載の光電変換素子。 2. The photoelectric conversion element according to claim 1, wherein the mixed layer has a thickness of 0.5 to 50 nm.
  3.  前記電子供与層は、前記電極主面に対して交差方向に延びる複数の断面視短冊状部が周期的に形成された断面視ストライプ状部と、当該断面視ストライプ状部の一方の前記電極側に形成され、前記複数の断面視短冊状部を繋ぐ基部とからなる断面視櫛歯状構造を有し、
     前記電子受容層は、前記電極主面に対して交差方向に延びる複数の断面視短冊状部が周期的に形成された断面視ストライプ状部と、当該断面視ストライプ状部の他方の前記電極側に形成され、前記複数の断面視短冊状部を繋ぐ基部とからなる断面視櫛歯状構造を有し、
     前記混在層が、前記電子供与層と前記電子受容層の断面視櫛歯状に沿って形成された請求項1又は2に記載の光電変換素子。
    The electron donating layer includes a cross-sectional stripe-like portion in which a plurality of cross-sectional strip-like portions extending in a crossing direction with respect to the electrode main surface are periodically formed, and one electrode side of the cross-sectional stripe-like portion A cross-sectional view comb-like structure comprising a base part connecting the plurality of cross-sectional view strip-like parts,
    The electron-accepting layer includes a cross-sectional stripe-like portion in which a plurality of cross-sectional strip-like portions extending in a crossing direction with respect to the electrode main surface are periodically formed, and the other electrode side of the cross-sectional stripe-like portion A cross-sectional view comb-like structure comprising a base part connecting the plurality of cross-sectional view strip-like parts,
    3. The photoelectric conversion element according to claim 1, wherein the mixed layer is formed along a comb-like shape in sectional view of the electron donating layer and the electron accepting layer.
  4.  前記電子供与層の前記断面視ストライプ状部のストライプ幅及び前記電子受容層の前記断面視ストライプ状部のストライプ幅がいずれも5~100nmであり、
     かつ、
     前記電子供与層の前記断面視ストライプ状部と前記電子受容層の前記断面視ストライプ状部とからなる活性層の層厚が、
     前記電子供与層の前記ストライプ幅と前記電子受容層の前記ストライプ幅とが同一のとき、当該ストライプ幅の2倍以上40倍以下であり、
     前記電子供与層の前記ストライプ幅と前記電子受容層の前記ストライプ幅とが非同一のとき、前記電子供与層の前記ストライプ幅と前記電子受容層の前記ストライプ幅のうち、小さい方の2倍以上大きい方の40倍以下である請求項3に記載の光電変換素子。
    The stripe width of the stripe portion in cross section of the electron donating layer and the stripe width of the stripe portion in cross section of the electron accepting layer are both 5 to 100 nm,
    And,
    The layer thickness of the active layer composed of the cross-sectional stripe part of the electron donating layer and the cross-sectional stripe part of the electron accepting layer is:
    When the stripe width of the electron donating layer and the stripe width of the electron accepting layer are the same, the stripe width is not less than 2 times and not more than 40 times,
    When the stripe width of the electron donating layer and the stripe width of the electron accepting layer are not the same, the stripe width of the electron donating layer and the stripe width of the electron accepting layer are more than twice the smaller one The photoelectric conversion element according to claim 3, which is 40 times or less of the larger one.
  5.  前記電子供与層の前記基部及び前記電子受容層の前記基部の厚さがいずれも1~100nmである請求項3又は4に記載の光電変換素子。 5. The photoelectric conversion device according to claim 3, wherein the thickness of the base of the electron donating layer and the thickness of the base of the electron accepting layer are both 1 to 100 nm.
  6.  前記電子供与層と前記一方の電極との間、及び/又は、前記電子受容層と前記他方の電極との間に、半導体層及び/又は導体層を有する請求項1~5のいずれかに記載の光電変換素子。 The semiconductor layer and / or the conductor layer is provided between the electron donating layer and the one electrode and / or between the electron accepting layer and the other electrode. Photoelectric conversion element.
  7.  前記電子供与層及び/又は前記電子受容層が有機半導体からなる請求項1~6のいずれかに記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, wherein the electron donating layer and / or the electron accepting layer comprises an organic semiconductor.
  8.  前記有機半導体が結晶性有機高分子である請求項7に記載の光電変換素子。 The photoelectric conversion element according to claim 7, wherein the organic semiconductor is a crystalline organic polymer.
  9.  請求項1~8のいずれかに記載の光電変換素子の製造方法であって、
     前記電子供与層と前記電子受容層とのうち一方の層を形成する工程と、
     前記一方の層の上に、前記電子供与層と前記電子受容層とのうち他方の層の構成成分と前記一方の層が溶解する溶媒を含む少なくとも1種の溶媒とを含む溶液を塗布した後、前記少なくとも1種の溶媒を除去して、前記他方の層を形成する工程とを有する光電変換素子の製造方法。
    A method for producing a photoelectric conversion element according to any one of claims 1 to 8,
    Forming one of the electron donating layer and the electron accepting layer;
    After applying a solution containing a component of the other layer of the electron donating layer and the electron accepting layer and at least one solvent containing a solvent in which the one layer dissolves on the one layer. And a step of removing the at least one solvent to form the other layer.
  10.  請求項3~5のいずれかに記載の光電変換素子の製造方法であって、
     前記電子供与層と前記電子受容層とのうち一方の層の構成材料からなる平坦膜を成膜し、当該平坦膜に対して、前記一方の層の前記断面視櫛歯状のパターンに対応した反転パターンを有するモールドを、前記一方の層の構成材料の融点をT(℃)としたとき、T-100(℃)以上T(℃)未満の温度範囲内で押圧して、前記断面視櫛歯状のパターンに成形して、前記一方の層を形成する工程と、
     前記一方の層の上に、前記電子供与層と前記電子受容層とのうち他方の層の構成成分と前記一方の層が溶解する溶媒を含む少なくとも1種の溶媒とを含む塗布剤を塗布した後、前記少なくとも1種の溶媒を除去して、前記他方の層を形成する工程とを有する光電変換素子の製造方法。
    A method for producing a photoelectric conversion element according to any one of claims 3 to 5,
    A flat film made of a constituent material of one of the electron donating layer and the electron accepting layer is formed, and the flat film corresponds to the comb-like pattern in cross-sectional view of the one layer. When the melting point of the constituent material of the one layer is T m (° C.), the mold having the reverse pattern is pressed within a temperature range of T m −100 (° C.) or more and less than T m (° C.), Forming into a comb-like pattern in cross-sectional view and forming the one layer;
    On the one layer, a coating agent containing at least one solvent including a constituent component of the other layer of the electron donating layer and the electron accepting layer and a solvent in which the one layer is dissolved was applied. And a step of forming the other layer by removing the at least one solvent.
  11.  請求項1~8のいずれかに記載の光電変換素子を備えた太陽電池。 A solar cell comprising the photoelectric conversion element according to any one of claims 1 to 8.
PCT/JP2012/000282 2011-01-21 2012-01-18 Photoelectric conversion element and method of manufacturing the same, and solar battery WO2012098876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553623A JPWO2012098876A1 (en) 2011-01-21 2012-01-18 Photoelectric conversion element, method for producing the same, and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-010611 2011-01-21
JP2011010611 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012098876A1 true WO2012098876A1 (en) 2012-07-26

Family

ID=46515511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000282 WO2012098876A1 (en) 2011-01-21 2012-01-18 Photoelectric conversion element and method of manufacturing the same, and solar battery

Country Status (3)

Country Link
JP (1) JPWO2012098876A1 (en)
TW (1) TW201251059A (en)
WO (1) WO2012098876A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029848A1 (en) * 2013-08-26 2015-03-05 独立行政法人科学技術振興機構 Electrically conductive structure and method for producing same
KR20150091102A (en) * 2012-11-28 2015-08-07 더 리젠츠 오브 더 유니버시티 오브 미시간 Hybrid planar-graded heterojunction for organic photovoltaics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318725A (en) * 1993-05-10 1994-11-15 Ricoh Co Ltd Photovoltaic element and its manufacture
JP2005244159A (en) * 2003-08-22 2005-09-08 Kanazawa Univ Organic solar cell and its manufacturing method
JP2008141103A (en) * 2006-12-05 2008-06-19 Oji Paper Co Ltd Production method of photoelectric conversion device
JP2009054907A (en) * 2007-08-29 2009-03-12 Mitsubishi Electric Corp Hetero-junction element
JP2009514184A (en) * 2003-07-01 2009-04-02 コナルカ テクノロジーズ インコーポレイテッド Manufacturing method of organic solar cell or photodetector.
WO2010038721A1 (en) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318725A (en) * 1993-05-10 1994-11-15 Ricoh Co Ltd Photovoltaic element and its manufacture
JP2009514184A (en) * 2003-07-01 2009-04-02 コナルカ テクノロジーズ インコーポレイテッド Manufacturing method of organic solar cell or photodetector.
JP2005244159A (en) * 2003-08-22 2005-09-08 Kanazawa Univ Organic solar cell and its manufacturing method
JP2008141103A (en) * 2006-12-05 2008-06-19 Oji Paper Co Ltd Production method of photoelectric conversion device
JP2009054907A (en) * 2007-08-29 2009-03-12 Mitsubishi Electric Corp Hetero-junction element
WO2010038721A1 (en) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. KIM ET AL.: "Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nano", APPLIED PHYSICS LETTERS, vol. 90, no. 12, 22 March 2007 (2007-03-22), pages 123113-1 - 123113-3, XP012093749, DOI: doi:10.1063/1.2715036 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150091102A (en) * 2012-11-28 2015-08-07 더 리젠츠 오브 더 유니버시티 오브 미시간 Hybrid planar-graded heterojunction for organic photovoltaics
JP2015536577A (en) * 2012-11-28 2015-12-21 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Hybrid planar graded heterojunction for organic solar cells
US10141531B2 (en) 2012-11-28 2018-11-27 The Regents Of The University Of Michigan Hybrid planar-graded heterojunction for organic photovoltaics
KR102170583B1 (en) * 2012-11-28 2020-10-27 더 리젠츠 오브 더 유니버시티 오브 미시간 Hybrid planar-graded heterojunction for organic photovoltaics
WO2015029848A1 (en) * 2013-08-26 2015-03-05 独立行政法人科学技術振興機構 Electrically conductive structure and method for producing same

Also Published As

Publication number Publication date
TW201251059A (en) 2012-12-16
JPWO2012098876A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
Zhang et al. Critical review of recent progress of flexible perovskite solar cells
Liu et al. Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis
JP5225305B2 (en) Organic thin film solar cell and method for producing the same
JP5655568B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5692228B2 (en) Organic photoelectric conversion device and solar cell using the same
JP2013222750A (en) Photoelectric conversion element, method for manufacturing the same, and solar cell
Lewis et al. Over 30% transparency large area inverted organic solar array by spray
Kadam et al. Optimization of ZnO: PEIE as an electron transport layer for flexible organic solar cells
JP2012124336A (en) Manufacturing method of organic thin-film solar cell
Asim et al. Novel nanomaterials for solar cell devices
JP2013089807A (en) Organic thin-film solar cell, organic thin film solar cell module, manufacturing method of organic thin-film solar cell
CA2812559A1 (en) All spray see-through organic solar array with encapsulation
WO2012098876A1 (en) Photoelectric conversion element and method of manufacturing the same, and solar battery
WO2011018884A1 (en) Photoelectric conversion element and manufacturing method therefor
JP5304448B2 (en) Organic photoelectric conversion element
KR101364461B1 (en) Organic solar cell module and Method for preparing the same
Maniarasu et al. Flexible Perovskite Solar Cells
JP5691449B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5310230B2 (en) Organic photoelectric conversion element
KR20090069947A (en) Flexible organic solar cell and fabrication method thereof
Wan et al. The design and realization of large-scale patterned organic solar cells in series and parallel configurations
JP5445086B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP6034429B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
Ma Printed Organic Thin Film Solar Cells
KR20110093044A (en) Organic solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737093

Country of ref document: EP

Kind code of ref document: A1