WO2004057191A1 - Volumenstromvariable innenzahnradpumpe - Google Patents

Volumenstromvariable innenzahnradpumpe Download PDF

Info

Publication number
WO2004057191A1
WO2004057191A1 PCT/EP2003/013057 EP0313057W WO2004057191A1 WO 2004057191 A1 WO2004057191 A1 WO 2004057191A1 EP 0313057 W EP0313057 W EP 0313057W WO 2004057191 A1 WO2004057191 A1 WO 2004057191A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
slide
pump according
connection
rotor pump
Prior art date
Application number
PCT/EP2003/013057
Other languages
English (en)
French (fr)
Inventor
Willi Schneider
Original Assignee
Joma-Hydromechanic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10305585A external-priority patent/DE10305585B3/de
Application filed by Joma-Hydromechanic Gmbh filed Critical Joma-Hydromechanic Gmbh
Priority to EP03780019A priority Critical patent/EP1509698A1/de
Priority to US10/501,550 priority patent/US7153110B2/en
Priority to AU2003288139A priority patent/AU2003288139A1/en
Publication of WO2004057191A1 publication Critical patent/WO2004057191A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/10Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes

Definitions

  • the invention relates to a volume-flow-variable rotor pump with a pump housing having a suction connection and a pressure connection, an internally toothed outer rotor which is rotatably mounted inside the housing, and an externally toothed inner rotor which is eccentrically mounted therein and which is drivable by a drive shaft mounted axially parallel to the outer rotor in the pump housing
  • a rotatable adjusting ring mounted coaxially to the drive shaft is provided, in which the outer rotor is mounted eccentrically and rotatably.
  • Rotor pumps in which the theoretical demand volume can be changed by moving the center of the outer rotor along a circle, in that the outer rotor is mounted eccentrically and rotatably in a collar rotatably mounted on the drive shaft in the pump housing, and thereby the relative position of both rotors to the Suction and pressure connections can be changed accordingly are known from DE 102 07 348 AI. To avoid repetition, reference is made in full to this document, and the content of this document is hereby made the disclosure content of this application.
  • the suction stroke begins before the suction chamber with the suction connection communicates. This leads to a negative pressure being generated in the suction chamber, for which drive energy is required and a drive torque must be made available. This negative pressure does not break down until the suction chamber is connected to the suction connection. Depending on the position of the adjusting ring, this takes place at a relatively early or late point in time of the suction stroke. The later the point in time, the greater the torque that must be applied to build up the negative pressure. It has also been shown that the suction stroke may already start when the suction chamber is still connected to the pressure connection. The suction chamber may then already be connected to the suction connection, so that a hydraulic short circuit occurs.
  • the invention has for its object to provide a rotor pump of the type mentioned, in which the drive torque is reduced when the volume flow is reduced.
  • This configuration of the pump has the essential advantage that the required drive torque is proportional to the required volume flow.
  • the size of the pressure connection and / or the suction connection is changed in such a way that the suction stroke only begins when the suction chamber is no longer connected to the pressure connection but instead to the suction connection.
  • the suction chamber is in communication with the suction chamber when the suction stroke begins. This is done by moving the start of the suction connection towards the start of the suction stroke.
  • the pressure connection and the suction connection are formed at least in sections as a part-circular groove.
  • Such a groove can be produced relatively easily and inexpensively.
  • both the pressure connection and the suction connection can be formed by the same groove. There is only a wall separating the connections between the connections.
  • the slide is preferably slidably mounted in the groove.
  • the wall separating the connections is formed by the slide, which is displaceably mounted in the groove. It goes without saying that the slide is fitted in the groove in a fluid-tight manner, for which purpose either a suitable fit is used or suitable seals are used.
  • the wall separating the pressure connection from the suction connection and thus the end of the pressure connection viewed in the direction of rotation of the rotor and the start of the suction connection viewed in the direction of rotation are thus defined by the slide, the slide being the end of the pressure connection and thus also the beginning when displaced within the groove of the suction port moves.
  • the slide therefore separates the pressure connection from the suction connection and determines its size. The size of one connection is reduced by the amount that the size of the other connection is increased.
  • the slide is designed as a sliding block and is fitted exactly into the groove. Neither a seal nor lubrication of the slide is required.
  • the slide is preferably driven via the adjusting ring. If the adjusting ring is turned to regulate the output, the slide is also moved together with the adjusting ring. The slide can be moved by the same amount of angle if the slide is connected directly to the collar. In another embodiment, the slide is connected to the adjusting ring via a gear, so that either a reduction or a translation takes place and the slide is displaced less or further than the adjusting ring.
  • FIG. 1 shows a cross section through a rotor of a first exemplary embodiment of a volume flow-variable rotor pump in its basic position at maximum volume flow;
  • FIG. 2 shows a cross section through the rotor of the volume-flow-variable rotor pump in its basic position with reduced volume flow, with the adjusting ring rotated by 30 °; 3 shows a cross section through the rotor of Figure 2 at the end of the pressure stroke;
  • FIG. 4 shows a cross section through the rotor of the volume-flow-variable rotor pump in its basic position with reduced volume flow, with the adjusting ring rotated by 90 °;
  • FIG. 5 shows a cross section through the rotor according to FIG. 4 at the end of the pressure stroke
  • FIG. 6 shows an exploded view of a second exemplary embodiment of the rotor pump
  • FIG. 7 shows a perspective view of the assembled rotor pump according to FIG. 6;
  • FIG. 8 shows a side view of the rotor pump according to FIG. 6;
  • Figure 9 is a perspective view of a
  • FIG. 10 shows a side view of the slide plate according to FIG.
  • FIG. 11 shows a perspective illustration of the rotor ring of the third exemplary embodiment of the rotor pump
  • Figure 12 is an exploded view of another
  • FIG. 13 shows an exploded view of a further exemplary embodiment of the rotor pump.
  • the rotor, designated overall by 10, of a rotor pump has an adjusting ring 22 which is rotatably and fixably mounted on a drive shaft 26.
  • An outer rotor 30 meshing with an inner rotor 28 is rotatably and eccentrically mounted in the adjusting ring 22.
  • a delivery space 42 is formed, in which the fluid sucked in via a suction connection 44 is demanded and pressurized.
  • a connection 48 is established at 46 between the delivery space 42 and a pressure connection 46, the fluid located in the delivery space 42 is displaced into the pressure connection 46.
  • FIG. 1 The position of the adjusting ring 22 is shown in FIG. 1, in which the greatest delivery capacity (V t heorma ⁇ ) of the rotor pump 10 is given.
  • Figures 2 to 5 show the position of the collar 22 at a reduced volume flow.
  • the suction connection 44 and the pressure connection 46 are formed by a part-circular groove 50 which has groove walls 52 and 54.
  • This groove 50 is located in a disk which lies behind the plane of the inner rotor 28 and the outer rotor 30.
  • the pressure connection 46 also has an outlet opening 56 which leads to the outside and from which the pressurized fluid is discharged.
  • a slide, generally designated 58 is displaceably guided in the direction of the groove profile.
  • the slide 58 which is formed, for example, by a sliding member 60, bears with its outer surfaces 62 and 64 in a fluid-tight manner against the groove walls 52 and 54.
  • the slide 58 separates the pressure connection 46 from the suction connection 44 and also determines its size.
  • a connection of the slide 58 to the adjusting ring 22 is indicated by the reference number 66. Via this connection 66, when the adjusting ring 22 is rotated in the housing (not shown) surrounding the adjusting ring 22, the slide 58 is rotated by the same angular amount, which is shown in FIGS. 2 to 5.
  • FIG. 2 shows an adjusting ring 22 rotated by 30 °, the slide 58 also being displaced by this 30 ° in the clockwise direction within the groove 50.
  • the pressure connection 46 is reduced, whereas the suction connection 44 is increased.
  • FIG. 2 shows the position of the inner rotor 28 within the outer rotor 30 at the start of the suction stroke, in which the delivery space 42 lying between the teeth 32 and 34 is enlarged. This delivery space 42 is connected to the suction connection 44, so that fluid can flow into the delivery space 42.
  • the inner rotor 28 is rotated further by approximately 30 ° in the direction of the arrow 70 and it becomes clear that the front space 42 has increased.
  • the subsequent delivery space 42 ' is also connected to the suction port 44 via a bypass groove 68, so that no negative pressure is generated in this subsequent delivery space 42'.
  • the demand space 42 ′′ to be recognized in the upper area is reduced compared to FIG. 1, which follows that the adjusting ring 22 has been rotated in the direction of a reduced volume flow to be demanded.
  • the connection 48 between this delivery space 42 ′′ and the pressure connection 46 has been established, the fluid located in the delivery space 42 ′′ is pressed into the pressure connection 46.
  • the adjusting ring 22 is rotated 90 ° in the clockwise direction and the slide 58 is in a position displaced by 90 ° within the groove 50.
  • the delivery space 42 is due to the enlarged suction connection 44 is directly connected to the suction connection 44, so that no negative pressure is created in the delivery space 42 or this delivery space 42 is not connected to the pressure connection 46. This would be the case if the slider 58 in FIG. 4 would assume a position as it occupies in FIG. 1. Then the delivery space 42 would be connected to the pressure connection 46 and would suck in fluid from the pressure connection.
  • the delivery space 42 ′′ has decreased further, which results from the larger adjustment of the adjusting ring 22 in the direction of a reduced volume flow.
  • the delivery space 42 continues to suck in from the suction connection 44, the downstream delivery space 42 ′ already being connected to the suction connection 44 via the bypass groove 68.
  • FIG. 6 shows an exploded view of an embodiment of the rotor pump, which is made up of several disk-shaped individual parts.
  • the adjusting ring 22 with its flat pistons 12 is rotatably received in the centrally arranged rotor ring 70.
  • This adjusting ring 22 can be rotated in the direction of the double arrow 14 within the rotor ring 70.
  • On the face of the collar 22 are two slide plates 16 placed and rotatably connected to the collar 22 by suitable means such as pins, bolts or the like, which engage in hole 72 ,.
  • the slide plate 16 has a groove 50 ′ corresponding to the groove 50, in which the slide 58 is arranged.
  • the slide 58 thus extends between an outer circular ring 74 and an inner circular ring 76 surrounding the drive shaft 26.
  • a separating piece 78 also engages in the groove 50 'and is provided on a cover 80 which receives the slide plate 70.
  • the thickness of the slide plate 16 is exaggerated. It is only 0.5 mm to 2 mm and has only the task of holding the slide 58 at the desired location.
  • the separating piece 78 is thus also made correspondingly thick.
  • the slide plate 16 Since the slide plate 16 is rotatably connected to the adjusting ring 22 by means of pins, bolts or the like arranged in the holes 72, the slide plate 16 is likewise adjusted in the direction of the double arrow 82 when the adjusting ring 22 is rotated in the direction of the double arrow 14.
  • the two covers 80 are connected to the rotor ring 70 by bolts arranged in through holes 84.
  • FIGS. 6 and 7 also show connections 86 for supplying and discharging a fluid for actuating the flat pistons 12.
  • the adjusting ring 22 is formed in one piece with the slide plate 16, as a result of which the number of individual parts is reduced. In addition, there is no need for a connection between the slide plate 16 and the adjusting ring 22.
  • FIG. 12 essentially corresponds to the exemplary embodiment of FIGS. 6 to 8, with the slide plate 16 also Flat piston lugs 88 is provided.
  • This has the significant advantage that the connection of the slide plate and the collar 22 can be shifted radially further outwards, that is to say into the flat piston 12, as a result of which higher actuating forces can be transmitted.
  • the inner circular ring 76 is attached to the cover 80 and forms a circular ring 76 'which continues radially into the separating piece 78. Accordingly, only the outer circular ring 74 and the slide 58 remain on the slide plate 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

Volumenstromvariable Rotorpumpe, mit einem einen Sauganschluss (44) und einen Druckanschluss (46) aufweisenden Pumpengehäuse (20), einem im Gehäuseinnern drehbar gelagerten, innenverzahnten Aussenrotor (30) und einem in diesem exzentrisch gelagerten, aussenverzahnten Innenrotor (28), der von einer im Pumpengehäuse achsparallel zum Aussenrotor gelagerten Antriebswelle antreibbar ist, wobei zur Änderung des Volumenstromes im Pumpengehäuse ein koaxial zur Antriebswelle gelagerter, verdrehbarer Stellring (22) vorgesehen ist, in dem der Aussenrotor exzentrisch und verdrehbar gelagert ist, wobei in Drehrichtung gesehen zwischen dem Druckanschluss und dem Sauganschluss ein die Grösse zumindest einer der Anschlüsse veränderbarer Schieber (58) vorgesehen ist.

Description

VOLUMENSTROMVARIABLE INNENZAHNRAD PUMPE
Beschreibung
Die Erfindung betrifft eine volumenstromvanable Rotorpumpe, mit einem einen Sauganschluss und einem Druckanschluss aufweisenden Pumpengehause, einem im Gehauseinneren drehbar gelagerten, innenverzahnten Außenrotor und einem in diesem exzentrisch gelagerten, außenverzahnten Innenrotor, der von einer im Pumpengehause achsparallel zum Außenrotor gelagerten Antriebswelle antreibbar ist, wobei zur Änderung des Volumenstromes im Pumpengehause ein koaxial zur Antriebswelle gelagerter, verdrehbarer Stellring vorgesehen ist, m dem der Außenrotor exzentrisch und verdrehbar gelagert ist.
Rotorpumpen, bei denen das theoretische Fordervolumen dadurch veränderbar ist, dass das Zentrum des Außenrotors entlang eines Kreises verlagert wird, indem der Außenrotor in einem im Pumpengehause auf der Antriebswelle verdrehbar gelagerten Stellring exzentrisch und verdrehbar gelagert ist, und dadurch die relative Lage beider Rotoren zu den Saug- und Druckanschlussen entsprechend veränderbar ist, sind aus der DE 102 07 348 AI bekannt. Auf dieses Dokuments wird zur Vermeidung von Wiederholungen vollinhaltlich Bezug genommen und der Inhalt dieses Dokuments wird hiermit zum Offenbarungsgehalt dieser Anmeldung gemacht.
Es hat sich gezeigt, dass sich bei einer Verringerung des Volumenstroms, was durch eine Verdrehung des Stellringes erfolgt, sich das erforderliche Antriebsdrehmoment für die Rotorpumpe nicht oder kaum verändert.
Als nachteilig hat sich auch herausgestellt, dass der Saughub bereits beginnt, bevor die Saugkammer mit dem Sauganschluss in Verbindung steht. Dies fuhrt dazu, dass in der Saugkammer ein Unterdruck erzeugt wird, wofür Antriebsenergie benotigt wird und ein Antriebsmoment zur Verfugung gestellt werden muss. Dieser Unterdruck bricht erst zusammen, wenn die Saugkammer mit dem Sauganschluss verbunden wird. Dies erfolgt, abhangig von der Stellung des Stellringes, zu einem relativ frühen oder spaten Zeitpunkt des Saughubes. Je spater der Zeitpunkt, um so großer ist das zum Aufbau des Unterdruck aufzubringende Drehmoment. Außerdem hat sich gezeigt, dass unter Umstanden der Saughub bereits dann schon beginnt, wenn die Saugkammer noch mit dem Druckanschluss verbunden ist. Eventuell ist die Saugkammer dann auch schon mit dem Sauganschluss verbunden, so dass ein hydraulischer Kurzschluss entsteht.
Der Erfindung liegt die Aufgabe zugrunde, eine Rotorpumpe der eingangs genannten Art bereit zu stellen, bei der sich das Antriebsdrehmoment verringert, wenn der Volumenstrom verringert wird.
Diese Aufgabe wird bei einer Rotorpumpe der eingangs genannten Art erfindungsgemaß dadurch gelost, dass in Drehrichtung gesehen zwischen dem Druckanschluss und dem Sauganschluss ein die Große zumindest einer der Anschlüsse veränderbarer Schieber vorgesehen ist. Vorteilhaft wird die Große beider Anschlüsse verändert.
Diese Ausgestaltung der Pumpe hat den wesentlichen Vorteil, dass das erforderliche Antriebsdrehmoment proportional zum geforderten Volumenstrom ist. Bei der erfindungsgemaßen Rotorpumpe wird die Große des Druckanschlusses und/oder des Sauganschlusses derart verändert, dass der Saughub erst dann beginnt, wenn die Saugkammer zum einen nicht mehr mit dem Druckanschluss aber dafür mit dem Sauganschluss in Verbindung steht. Mit anderen Worten, steht die Saugkammer bereits dann mit der Saugkammer in Verbindung, wenn der Saughub beginnt. Dies erfolgt durch eine Verlagerung des Anfangs des Sauganschlusses in Richtung des Beginns des Saughubes.
Dadurch wird die Erzeugung eines Unterdrucks in der Saugkammer verhindert, wodurch sich das erforderliche Drehmoment verringert. Hieraus folgt, dass das Antriebsdrehmoment zum geforderten Volumenstrom proportional ist.
Bei einer Weiterbildung ist vorgesehen, dass der Druckanschluss und der Sauganschluss zumindest abschnittsweise als teilkreisformige Nut ausgebildet sind. Eine derartige Nut kann relativ einfach und preiswert hergestellt werden. Zum anderen können sowohl der Druckanschluss als auch der Sauganschluss von der gleichen Nut gebildet werden. Zwischen den Anschlüssen befindet sich lediglich eine die Anschlüsse trennende Wand.
Mit Vorzug ist der Schieber in der Nut verschieblich gelagert. Die die Anschlüsse trennende Wand wird durch den Schieber gebildet, der in der Nut verschieblich gelagert ist. Es versteht sich von selbst, dass der Schieber fluiddicht in die Nut eingepasst ist, wofür entweder eine geeignete Passung verwendet wird, oder geeignete Dichtungen eingesetzt werden. Die den Druckanschluss vom Sauganschluss trennende Wand und somit das in Drehrichtung des Rotors gesehene Ende des Druckanschlusses und der in Drehrichtung gesehene Anfang des Sauganschlusses werden also vom Schieber definiert, wobei der Schieber bei einer Verlagerung innerhalb der Nut das Ende des Druckanschlusses und somit auch den Anfang des Sauganschlusses verschiebt. Der Schieber trennt also den Druckanschluss vom Sauganschluss und bestimmt deren Große. Dabei wird die Große des einen Anschlusses um den Betrag verkleinert, wie die Große des anderen Anschlusses vergrößert wird. Erfindungsgemaß ist der Schieber als Gleitstein ausgebildet und exakt m d e Nut eingepasst. Es bedarf weder eine Dichtung noch einer Schmierung des Schiebers.
Mit Vorzug wird der Schieber über den Stellring angetrieben. Wird der Stellring zur Leistungsregulierung gedreht, dann wird zusammen mit dem Stellring auch der Schieber verlagert. Dabei kann der Schieber um den gleichen Winkelbetrag verlagert werden, wenn der Schieber direkt mit dem Stellring verbunden ist. Bei einer anderen Ausfuhrungsform ist der Schieber über ein Getriebe mit dem Stellring verbunden, so dass entweder eine Untersetzung oder eine Übersetzung erfolgt und der Schieber weniger weit beziehungsweise weiter als der Stellring verschoben wird.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteranspruchen sowie der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung besonders bevorzugte Ausfuhrungsbeispiele im Einzelnen beschrieben sind. Dabei können die in der Zeichnung dargestellten sowie in der Beschreibung und in den Ansprüchen erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.
In der Zeichnung zeigen:
Figur 1 einen Querschnitt durch einen Rotor eines ersten Ausfuhrungsbeispiels einer volumenstromvanablen Rotorpumpe in seiner Grundstellung bei maximalem Volumenstrom;
Figur 2 einen Querschnitt durch den Rotor der volumenstromvanablen Rotorpumpe in seiner Grundstellung bei reduziertem Volumenstrom, mit um 30° gedrehtem Stellring; Figur 3 einen Querschnitt durch den Rotor gemäß Figur 2 am Ende des Druckhubes;
Figur 4 einen Querschnitt durch den Rotor der volumenstromvanablen Rotorpumpe m seiner Grundstellung bei reduziertem Volumenstrom, mit um 90° gedrehtem Stellring;
Figur 5 einen Querschnitt durch den Rotor gemäß Figur 4 am Ende des Druckhubes;
Figur 6 eine Explosionsdarstellung eines zweiten Ausfuhrungsbeispiels der Rotorpumpe;
Figur 7 eine perspektivische Ansicht der zusammengebauten Rotorpumpe gemäß Figur 6;
Figur 8 eine Seitenansicht der Rotorpumpe gemäß Figur 6;
Figur 9 eine perspektivische Darstellung einer
Schieberplatte eines dritten Ausfuhrungsbeispiels der Rotorpumpe;
Figur 10 eine Seitenansicht der Schieberplatte gemäß Figur
Figur 11 eine perspektivische Darstellung des Rotorrings des dritten Ausfuhrungsbeispiels der Rotorpumpe;
Figur 12 eine Explosionsdarstellung eines weiteren
Ausfuhrungsbeispiels der Rotorpumpe ohne Deckel; und
Figur 13 eine Explosionsdarstellung eines weiteren Ausfuhrungsbeispiels der Rotorpumpe. Der insgesamt mit 10 bezeichnete Rotor einer Rotorpumpe weist einen Stellring 22 auf, der auf einer Antriebswelle 26 verdrehbar und feststellbar gelagert ist. Im Stellring 22 ist ein mit einem Innenrotor 28 kämmender Außenrotor 30 verdrehbar und exzentrisch gelagert.
Zwischen zwei Zahnen 32 und 34 des Innenrotors 28 und der zwischen zwei Zahnen 38 und 40 gelegenen Innenumfangsflache 36 des Außenrotors 30 wird ein Forderraum 42 gebildet, in welchem das über einen Sauganschluss 44 angesaugte Fluid gefordert und mit Druck beaufschlagt wird. Sobald bei 46 eine Verbindung 48 zwischen dem Forderraum 42 und einem Druckanschluss 46 hergestellt ist, wird das im Forderraum 42 sich befindende Fluid in den Druckanschluss 46 verdrangt.
Aus Figur 1 ist die Stellung des Stellringes 22 gezeigt, in der die größte Förderleistung (Vtheormaχ) der Rotorpumpe 10 gegeben ist. Die Figuren 2 bis 5 zeigen die Stellung des Stellringes 22 bei verringertem Volumenstrom.
Aus Figur 1 ist noch deutlich erkennbar, dass der Sauganschluss 44 und der Druckanschluss 46 von einer teilkreisformigen Nut 50 gebildet werden, die Nutwande 52 und 54 aufweist. Diese Nut 50 befindet sich in einer Scheibe, die hinter der Ebene des Innenrotors 28 und des Außenrotors 30 liegt. Der Druckanschluss 46 weist noch eine Auslassoffnung 56 auf, die ins Freie fuhrt, und aus der das unter Druck stehende Fluid ausgegeben wird. In der Nut 50 ist ein insgesamt mit 58 bezeichneter Schieber in Richtung des Nutverlaufes verschieblich gefuhrt. Der Schieber 58, der zum Beispiel von einem Gleitstem 60 gebildet wird, liegt mit seinen Außenflachen 62 und 64 fluiddicht an den Nutwanden 52 und 54 an. Der Schieber 58 trennt den Druckanschluss 46 vom Sauganschluss 44 und bestimmt zudem deren Große. Wird der Schieber 58 in Richtung des Uhrzeigersinns in der Nut 50 verschoben, dann verkleinert sich der Druckanschluss 46, wohingegen sich der Sauganschluss 44 vergrößert. Außerdem ist mit dem Bezugszeichen 66 eine Verbindung des Schiebers 58 mit dem Stellring 22 angedeutet. Über diese Verbindung 66 wird bei einer Verdrehung des Stellringes 22 im den Stellring 22 umgebenden Gehäuse (nicht dargestellt) der Schieber 58 um den gleichen Winkelbetrag verdreht, was in den Figuren 2 bis 5 dargestellt ist.
Die Figur 2 zeigt einen um 30° gedrehten Stellring 22, wobei der Schieber 58 ebenfalls um diese 30° in Richtung des Uhrzeigersinns innerhalb der Nut 50 verschoben ist. Hierdurch wird der Druckanschluss 46 verkleinert, wohingegen der Sauganschluss 44 vergrößert wird. Die Figur 2 zeigt die Stellung des Innenrotors 28 innerhalb des Außenrotors 30 beim Beginn des Saughubes, bei dem der zwischen den Zahnen 32 und 34 liegende Forderraum 42 vergrößert wird. Dieser Forderraum 42 ist mit dem Sauganschluss 44 verbunden, so dass Fluid in den Forderraum 42 einströmen kann.
In der Figur 3 ist der Innenrotor 28 um etwa 30° in Richtung des Pfeiles 70 weiter gedreht und es wird deutlich, dass sich der Forderraum 42 vergrößert hat. Der nachfolgende Forderraum 42 ' ist ber eine Bypassnut 68 ebenfalls mit dem Sauganschluss 44 verbunden, so dass in diesem nachfolgenden Forderraum 42' kein Unterdruck erzeugt wird. Der im oberen Bereich zu erkennende Forderraum 42 ' ' ist gegenüber der Figur 1 reduziert, was daraus folgt, dass der Stellring 22 in Richtung eines verminderten zu fordernden Volumenstroms verdreht worden ist. Sobald die Verbindung 48 zwischen diesem Forderraum 42"' und dem Druckanschluss 46 hergestellt worden ist, wird das im Forderraum 42'' sich befindende Fluid in den Druckanschluss 46 gepresst.
Aus den Figuren 2 und 3 ist deutlich erkennbar, dass weder im Forderraum 42 noch im Forderraum 42' ein Unterdruck erzeugt wird, da beide Forderraume 42 und 42' direkt beziehungsweise über die Bypassnut 68 mit dem Sauganschluss 44 verbunden sind. Dies resultiert aus der Verlagerung des Schiebers 58 in Richtung der Verstellung des Stellrings 22.
In den Figuren 4 und 5 ist der Stellring 22 um 90° in Richtung des Uhrzeigersinns gedreht und der Schieber 58 befindet s ch in einer um 90° verschobenen Position innerhalb der Nut 50. Es ist deutlich erkennbar, dass der Forderraum 42 aufgrund des vergrößerten Sauganschlusses 44 unmittelbar mit dem Sauganschluss 44 verbunden ist, so dass im Forderraum 42 kein Unterdruck entsteht beziehungsweise dieser Forderraum 42 nicht mit dem Druckanschluss 46 verbunden ist. Dies wäre dann der Fall, wenn der Schieber 58 in der Figur 4 eine Position einnehmen wurde, wie er sie in der Figur 1 einnimmt. Dann wäre der Forderraum 42 mit dem Druckanschluss 46 verbunden und wurde aus dem Druckanschluss Fluid ansaugen.
Aus der Figur 5 ist erkennbar, dass sich der Forderraum 42 ' ' weiter verringert hat, was aus der größeren Verstellung des Stellringes 22 in Richtung eines verminderten Volumenstromes resultiert. Außerdem saugt der Forderraum 42 weiter aus dem Sauganschluss 44 an, wobei der nachfolgende Forderraum 42' bereits über die Bypassnut 68 mit dem Sauganschluss 44 verbunden ist.
Trotz Verstellung des Stellringes 22 wird im Forderraum 42 kein Unterdruck aufgebaut, woraus ein vermindertes Antriebsdrehmoment resultiert.
Die Figur 6 zeigt in Explosionsdarstellung eine Ausfuhrungsform der Rotorpumpe, die aus mehreren scheibenförmigen Einzelteilen aufgebaut ist. Im zentral angeordneten Rotorring 70 ist der Stellring 22 mit seinen Flachkolben 12 verdrehbar aufgenommen. Dieser Stellring 22 kann in Richtung des Doppelpfeils 14 innerhalb des Rotorrings 70 verdreht werden. Auf die Stirnseiten des Stellrings 22 sind zwei Schieberplatten 16 aufgesetzt und über geeignete Mittel, wie Stifte, Bolzen oder dergleichen, die in Locher 72 eingreifen, mit dem Stellring 22 drehfest verbunden. Die Schieberplatte 16 weist eine der Nut 50 entsprechende Nut 50' auf, in welcher der Schieber 58 angeordnet ist. Der Schieber 58 erstreckt sich also zwischen einem äußeren Kreisring 74 und einem inneren, die Antriebswelle 26 umgebenden Kreisring 76. In die Nut 50' greift außerdem ein Trennstuck 78 ein, welches an einem die Schieberplatte 70 aufnehmenden Deckel 80 vorgesehen ist. In der Zeichnung ist die Dicke der Schieberplatte 16 übertrieben dargestellt. Sie betragt lediglich 0,5 mm bis 2 mm und hat nur die Aufgabe, den Schieber 58 am gewünschten Ort zu halten. Entsprechend dick ist somit auch das Trennstuck 78 ausgeführt.
Da die Schieberplatte 16 über in den Lochern 72 angeordnete Stifte, Bolzen oder dergleichen mit dem Stellring 22 drehverbunden ist, wird die Schieberplatte 16 gleichfalls in Richtung des Doppelpfeils 82 verstellt, wenn der Stellring 22 in Richtung des Doppelpfeils 14 gedreht wird. Die beiden Deckel 80 sind mit dem Rotorring 70 über in Durchgangslocher 84 angeordnete Bolzen miteinander verbunden.
In den Figuren 6 und 7 sind noch Anschlüsse 86 zum Zu- und Ableiten eines Fluids zum Ansteuern der Flachkolben 12 erkennbar .
Beim Ausfuhrungsbeispiel der Figuren 9 bis 11 ist der Stellring 22 emstuckig mit der Schieberplatte 16 ausgebildet, wodurch die Anzahl der Einzelteile verringert wird. Außerdem bedarf es keiner Verbindung zwischen der Schieberplatte 16 und dem Stellring 22.
Das in der Figur 12 dargestellte Ausfuhrungsbeispiel entspricht im Wesentlichen dem Ausfuhrungsbeispiel der Figuren 6 bis 8, wobei die Schieberplatte 16 mit Flachkolbenansatzen 88 versehen ist. Dies hat den wesentlichen Vorteil, dass die Verbindung von Schieberplatte und Stellring 22 radial weiter nach außen, das heißt in den Flachkolben 12 verlagert werden kann, wodurch höhere Stellkrafte übertragen werden können.
Beim Ausfuhrungsbeispiel der Figur 13 ist der innere Kreisring 76 an den Deckel 80 angesetzt und bildet einen Kreisring 76', der sich radial in das Trennstuck 78 fortsetzt. An der Schieberplatte 16 verbleibt demnach lediglich der äußere Kreisring 74 und der Schieber 58.

Claims

Patentansprüche
1. Volumenstromvariable Rotorpumpe (10), mit einem einen Sauganschluss (44) und einen Druckanschluss (46) aufweisenden Pumpengehause (20) , einem im Gehauseinnern drehbar gelagerten, innenverzahnten Außenrotor (30) und einem in diesem exzentrisch gelagerten, außenverzahnten Innenrotor (28) , der von einer im Pumpengehause (20) achsparallel zum Außenrotor (30) gelagerten Antriebswelle (26) antreibbar ist, wobei zur Änderung des Volumenstromes im Pumpengehause (20) ein koaxial zur Antriebswelle (26) gelagerter, verdrehbarer Stellring
(22) vorgesehen ist, in dem der Außenrotor (30) exzentrisch und verdrehbar gelagert ist, dadurch gekennzeichnet, dass in Drehrichtung zwischen dem Druckanschluss (46) und dem Sauganschluss (44) ein die Große wenigstens einer der Anschlüsse (44 und 46) veränderbarer Schieber (58) vorgesehen ist.
2. Rotorpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Große beider Anschlüsse (44 und 46) verändert wird.
3. Rotorpumpe nach Anspruch 2, dadurch gekennzeichnet, dass die Größe des einen Anschlusses (44 oder 46) in dem Maße vergrößert wird, wie der andere Anschluss (46 oder 44) verkleinert wird.
4. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Druckanschluss (46) und der Sauganschluss zumindest abschnittsweise als keilkreisformige Nut (50) ausgebildet sind.
5. Rotorpumpe nach Anspruch 4, dadurch gekennzeichnet, dass der Schieber (58) in der Nut (50) verschieblich gelagert ist.
6. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schieber (58) den Druckanschluss (56) vom Sauganschluss (54) trennt.
7. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schieber (58) als Gleitstem (60) ausgebildet ist.
8. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schieber (58) über den Stellring (22) angetrieben wird.
9. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schieber (58) direkt mit dem Stellring (22) verbunden ist.
10. Rotorpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Schieber (58) über ein Getriebe mit dem Stellring (22) verbunden ist.
11. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schieber (58) am Stellring (22) angeformt ist.
12. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schieber (58) an einer Schieberplatte (16) vorgesehen ist, die an der Stirnseite des Stellringes (22) anliegt.
13. Rotorpumpe nach Anspruch 12, dadurch gekennzeichnet, dass die Schieberplatte (16) von einem Deckel (80) übergriffen ist.
14. Rotorpumpe nach Anspruch 13, dadurch gekennzeichnet, dass der Druckanschluss (46) und der Sauganschluss (44) im Deckel (80) vorgesehen sind.
15. Rotorpumpe nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Schieberplatte (16) und der Stellring (22) einstuckig ausgebildet sind.
16. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie modular aufgebaut ist.
PCT/EP2003/013057 2002-12-19 2003-11-21 Volumenstromvariable innenzahnradpumpe WO2004057191A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03780019A EP1509698A1 (de) 2002-12-19 2003-11-21 Volumenstromvariable innenzahnradpumpe
US10/501,550 US7153110B2 (en) 2002-12-19 2003-11-21 Variable volume flow internal gear pump
AU2003288139A AU2003288139A1 (en) 2002-12-19 2003-11-21 Variable volume flow internal gear pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10261779.1 2002-12-19
DE10261779 2002-12-19
DE10305585A DE10305585B3 (de) 2002-12-19 2003-02-04 Rotorpumpe
DE10305585.1 2003-02-04

Publications (1)

Publication Number Publication Date
WO2004057191A1 true WO2004057191A1 (de) 2004-07-08

Family

ID=32683497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013057 WO2004057191A1 (de) 2002-12-19 2003-11-21 Volumenstromvariable innenzahnradpumpe

Country Status (4)

Country Link
US (1) US7153110B2 (de)
EP (1) EP1509698A1 (de)
AU (1) AU2003288139A1 (de)
WO (1) WO2004057191A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066403A1 (en) * 2004-12-22 2006-06-29 Magna Powertrain Inc. Variable capacity gerotor pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811328B2 (en) * 2005-04-29 2010-10-12 Warsaw Orthopedic, Inc. System, device and methods for replacing the intervertebral disc with a magnetic or electromagnetic prosthesis
US20080019846A1 (en) * 2006-03-31 2008-01-24 White Stephen L Variable displacement gerotor pump
DE202009000690U1 (de) * 2009-01-16 2009-04-09 Gather Industrie Gmbh Rotationsverdrängerpumpe
BRPI1001768A2 (pt) * 2010-05-24 2012-01-24 Jose Luiz Bertazzolli transmissão continuamente variável

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148561A (en) * 1937-01-13 1939-02-28 Tuthill Pump Co Pump structure
DE2135861A1 (de) * 1971-07-17 1973-02-08 Maschf Augsburg Nuernberg Ag Drehkolbenpumpe
EP0258797A2 (de) * 1986-08-27 1988-03-09 Sumitomo Electric Industries Limited Zahnradpumpe mit veränderlichen Auslassvolumen
JPS6466482A (en) * 1987-09-08 1989-03-13 Tohoku Mikuni Kogyo Co Ltd Variable type oil pump
DE10207348A1 (de) * 2001-02-23 2002-09-12 Joma Hydromechanic Gmbh Volumenstromvariable Rotorpumpe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1426223A (en) * 1973-05-15 1976-02-25 Concentric Pumps Ltd Rotary positive-idsplacement pumps
US4492539A (en) * 1981-04-02 1985-01-08 Specht Victor J Variable displacement gerotor pump
DE4231690A1 (de) * 1992-09-22 1994-03-24 Walter Schopf Innenzahnradpumpe mit variierbarer Förderleistung
CA2219062C (en) * 1996-12-04 2001-12-25 Siegfried A. Eisenmann Infinitely variable ring gear pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148561A (en) * 1937-01-13 1939-02-28 Tuthill Pump Co Pump structure
DE2135861A1 (de) * 1971-07-17 1973-02-08 Maschf Augsburg Nuernberg Ag Drehkolbenpumpe
EP0258797A2 (de) * 1986-08-27 1988-03-09 Sumitomo Electric Industries Limited Zahnradpumpe mit veränderlichen Auslassvolumen
JPS6466482A (en) * 1987-09-08 1989-03-13 Tohoku Mikuni Kogyo Co Ltd Variable type oil pump
DE10207348A1 (de) * 2001-02-23 2002-09-12 Joma Hydromechanic Gmbh Volumenstromvariable Rotorpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0132, no. 65 (M - 839) 19 June 1989 (1989-06-19) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066403A1 (en) * 2004-12-22 2006-06-29 Magna Powertrain Inc. Variable capacity gerotor pump
US7832997B2 (en) 2004-12-22 2010-11-16 Magna Powertrain, Inc. Variable capacity gerotor pump

Also Published As

Publication number Publication date
AU2003288139A1 (en) 2004-07-14
EP1509698A1 (de) 2005-03-02
US20050069447A1 (en) 2005-03-31
US7153110B2 (en) 2006-12-26

Similar Documents

Publication Publication Date Title
DE2529331C2 (de) Schraubenkompressor
EP1780420B1 (de) Hydraulische Druckversorgungseinheit und elektrohydraulische Arbeitseinheit
EP0712997B1 (de) Sauggeregelte Zahnring-/Innenzahnradpumpe
EP0362906B1 (de) Innenzahnradpumpe
EP0619430B1 (de) Innenzahnradpumpe für grossen Drehzahlbereich
DE3800324A1 (de) Fluegelzellenverdichter
WO1994023209A1 (de) Zahnradpumpe zum fördern eines fliessfähigen mediums
DE4308506A1 (de) Ölpumpensystem
EP0561304B1 (de) Sauggeregelte Zahnringpumpe
DE10305585B3 (de) Rotorpumpe
EP1406015B1 (de) Innenzahnradpumpe mit verbesserter Füllung
WO2004057191A1 (de) Volumenstromvariable innenzahnradpumpe
DE10248473A1 (de) Zahnradpumpe
EP0846861B1 (de) Stufenlos verstellbare Zahnringpumpe
EP1400313B1 (de) Hydraulik-Ratschenschrauber mit einem doppeltwirkenden Hydraulik-Zylinder-Kolben-Antrieb
EP0607497B1 (de) Sichellose Innenzahnradpumpe mit in die Zahnköpfe eingesetzten Dichtelementen
EP1925822A1 (de) Umlaufverdrängermaschine
DE102004030473B4 (de) Pumpe
EP2412979A2 (de) Verdrängerpumpe mit Absaugnut
EP0816680A2 (de) Flügelzellenpumpe
DE102019127388A1 (de) Fluidversorgung von Unterflügelkammern einer Flügelzellenpumpe
DE4440782C2 (de) Innenzahnradpumpe mit Verdrängervorsprüngen
DE19523533A1 (de) Sauggeregelte Innenzahnradpumpe
DE3737961A1 (de) Innenzahnradpumpe
DE19537674C1 (de) Drehkolbenmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003780019

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10501550

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003780019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A34077

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP