WO2004046752A1 - Procede et dispositif pour etablir une image radar au moyen d'un radar a ondes entretenues et modulation de frequence - Google Patents

Procede et dispositif pour etablir une image radar au moyen d'un radar a ondes entretenues et modulation de frequence Download PDF

Info

Publication number
WO2004046752A1
WO2004046752A1 PCT/EP2003/012571 EP0312571W WO2004046752A1 WO 2004046752 A1 WO2004046752 A1 WO 2004046752A1 EP 0312571 W EP0312571 W EP 0312571W WO 2004046752 A1 WO2004046752 A1 WO 2004046752A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency
intermediate frequency
signal
continuous wave
Prior art date
Application number
PCT/EP2003/012571
Other languages
German (de)
English (en)
Inventor
Winfried Mayer
Robert Schneider
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2004046752A1 publication Critical patent/WO2004046752A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates generally to a method and a device for generating a radar image with a frequency-modulated continuous wave radar, and in particular to a method and a device for generating a two-dimensional radar image with a frequency-modulated continuous wave radar.
  • the present invention is based on the basic principle of a frequency-modulated continuous wave radar (hereinafter also called F-CW radar).
  • the FM-CW radar generates a transmission signal, the frequency of which is modulated in a ramp or triangular shape.
  • a transmit signal delayed by the transit time of the radar path is received as the received signal. Since the transmission frequency is changed over time, the instantaneous frequencies differ from the transmission and reception signal, which allows the calculation of the signal propagation times and thus the distance of the FM-CW radar to the destination.
  • both signals ie transmit and receive signals, are passed to a mixer and then filtered with a low pass.
  • the result is a so-called video frequency signal or intermediate frequency signal, the frequencies of which are proportional to the signal transit time and thus to the distance of the target under consideration to the FM-CW radar.
  • a proportionality factor between the video frequency and the distance to the target results from the ramp steepness of the frequency change of the transmitted signal.
  • Two-dimensional radar images are generally obtained with FM-CW radars by evaluating the intermediate frequency signals for one modulation period with regard to distance for antenna lobes of an electronically or mechanically pivotable antenna that are set one after the other.
  • the distance evaluation is usually carried out by a fast Fourier transformation (FFT) of the intermediate frequency signal recorded in the time domain, as described by GRIFFITHS, HD in "New Ideas in FM Radar” in Electronics and Communication Engineering Journal 2 (1990), Oct., No. 5, p 185-194.
  • FFT fast Fourier transformation
  • the mechanical pivoting of the antenna lobe is cost-intensive, error-prone and very slow compared to electronic methods due to the required precision in the millimeter wave range.
  • an imaging FM-CW radar with antennas swept over the frequency is known from the prior art, as described by BROKMEIER, A.; SOLBACH, K.; PIRKL, M.; PUCHINGER, J. in the article "Imaging FM-CW radar with high scanning rate in the KA band" in MIOP '95, Sindelfingen, Kongressunterlagen, 1995, pp. 280-284.
  • FM-CW radar devices with various modulation ramps are from CAMIADE, M.; DOMNESQUE, D .; OUARCH, Z. ; SION, A. in the article “Fully MMIC-Based Front End for FMCW Automotive Radar at 77GHz” in EÜMC (EuMW), 2000, by ROHLING, H.; MEINECKE, MM. In the article “Waveform Design Principles for Automotive Radar Systems” in CTE International Conference on Radar, Beijing, China (2001), October, and by AG STOVE in the article “Linear FMCW Radar Techniques "in IEE Proceedings-F 139 (1992), October, No. 5.
  • FM-CW radar devices with switched antenna lobes are also known from the following articles or publications: ASANO, Y. "Millimeter-Wave Holography Radar for Automotive Applications” in EUMC (EuMQ) 2001; ASANO, Y.; OHSHIMAS, US Bl 6,246,359, and ASANO, Y .; HARADA, T., US Bl 6,288,672 Bl.
  • the video frequencies of all targets in the same distance range can be reduced to a selected intermediate frequency within the bandwidth of the band Slide pass filtering.
  • the target distribution over the pivoted angular range in the distance range considered by the respective steepness of the modulation ramp then results directly from the amplitude of the intermediate frequency signal filtered by the bandpass filtering, measured over the ramp duration. With each ramp, all angular positions for a certain distance gate can be measured.
  • Fig. 1 is a schematic representation of the radar method according to the invention
  • FIG. 2 is a block diagram of a first embodiment of the invention that implements the radar method of FIG. 1;
  • FIG. 3 shows a block diagram of a second embodiment of the invention.
  • Fig. 4 is a block diagram of a third embodiment of the invention.
  • the principle of the FM-CW radar is combined with an antenna, the main beam direction of which pivots in the azimuth plane above the frequency ramp of the transmitted transmission signal.
  • intermediate frequency signals of a target are only generated as long as they are in the antenna lobe.
  • their azimuth positions can thus be determined from the temporal presence of their intermediate frequency signals during the frequency ramp.
  • a two-dimensional radar image can in principle be generated with a suitable evaluation of the intermediate frequency signal.
  • the problem of evaluating the intermediate frequency signal is solved in the invention in that several frequency ramps are sent with different ramp steepnesses and only a selected intermediate frequency is observed per modulation period by the introduction of a bandpass filter in the intermediate frequency branch.
  • the video frequencies of all targets in the same distance range can be shifted to a selected intermediate frequency by a suitable choice of the ramp steepness.
  • the target distribution over the swiveled angular range in the distance range considered by the respective steepness of the modulation ramp then results directly from the amplitude of the filtered intermediate frequency signal measured over the ramp duration. With each ramp, all angular positions for a certain distance gate can be measured.
  • the method and the device according to the invention could be used at frequencies in the millimeter-wave range as a vehicle radar for tasks such as intelligent cruise control, obstacle warning and distance warning.
  • WENGER, J. "Automotive MM-Wave Radar, Status and Trends in System Design and Technology", in IEE (Ed.) IEE Colloquium on Automotive Radar and Navigation Techniques, 1998; STOTZ, M.; SCHNEIDER, R .; WENGER, J .; LAUER, W .; ADOMAT, R .: "Status and Trends in Vehicular ICC Systems” in EÜMC, EuMW Workshop Proceedings GM-TuWl, 1999; MEINEL, H.
  • FIG. 1 a schematic representation of the radar method according to the invention is shown.
  • the radar method according to the invention is graphically illustrated using typical time diagrams (A) - (E) for a scenario (F) with two targets (Gi) and (G 2 ) at different distances from an antenna (6).
  • 1 shows the time profile of the transmission frequency for 4 modulation ramps of different steepness. The number of modulation ramps shown in Figure 1 can be varied as is well known to those skilled in the art.
  • ⁇ T1 and ⁇ T2 representing the respective angles of the targets (G x ) and (G 2 ) to the antenna.
  • Time diagram (C) of FIG. 1 shows the idealized temporal course of the intermediate frequencies in the form of rectangular pulses, which are generated by the two targets (Gi) and (G 2 ), and the bandwidth of the bandpass filter in the form of horizontal dashed boundary lines (H) ,
  • the lower limit line determines the lower limit frequency of the bandpass filter and the upper limit line determines the upper limit frequency of the bandpass filter.
  • Diagram (D) of FIG. 1 shows the time course of the intermediate frequency after the bandpass filtering. As can be seen, only those intermediate frequencies remain which are located between the horizontal dashed border lines (H). In other words, all intermediate frequencies outside the pass band of the bandpass filter are suppressed. Obviously, the diagram (D) is also idealized.
  • Diagram (E) of FIG. 1 finally illustrates the temporal course of the modulation slopes and the assignment of the four distance gates (I) to the four frequency ramps.
  • FIG. 2 A typical architecture for implementing the radar method according to the invention according to FIG. 1 in a first embodiment will now be explained with reference to FIG. 2.
  • the transmission signal is generated by a ramp generator (1) and a voltage-controlled oscillator (2). After subsequent amplification in an amplifier (3), the transmission signal is divided in the power divider (4) and at the same time given to the transmission antenna (6) which is swiveled over the frequency and can be designed as a transmission / reception antenna, and the baseband reception mixer (7) , The signal reflected by a target is routed to the second input of the baseband reception mixer (7) through a coupler structure (5) or alternatively a circulator (direction fork).
  • the intermediate frequency signal at the output of the baseband reception mixer (7) is filtered by the bandpass filter (8) and then amplified in an intermediate frequency amplifier (9).
  • the amplitude of the filtered intermediate frequency signal is measured by coherent or simple envelope detection in a detector (10).
  • a detector (10) For optimal control of the detector elements, it is particularly advantageous according to the invention to adapt the intermediate frequency gain for the different ramp gradients to the level relationships of the corresponding distance gates by means of a variable intermediate frequency amplifier.
  • the signal detected by the detector (10) can be transferred to a microcontroller (12) or an via an analog-digital converter Display element (13) are given.
  • the setting of the ramp steepness of the ramp generator and possibly the amplification of the intermediate frequency amplifier (9) is also advantageously carried out by the microcontroller (12).
  • FIG. 3 a second embodiment of the invention is now shown.
  • the electronic components already appearing in FIG. 2 and explained above are designated with the same reference numerals and are therefore not explained again in connection with FIG. 3.
  • the device is expanded by two frequency-swept antennas (21) and (22) (instead of the one antenna (6) of the first embodiment), which are each designed as transmission / reception antennas analogously to FIG. 2 can.
  • the embodiment of FIG. 3 aims to find a satisfactory compromise between distance and angular resolution of the device.
  • electronic switches (23) and (24) and the microcontroller (12) can be used to choose between: a) good range resolution with the antenna (21) with a broad radiation pattern and a narrowband bandpass filter (25) and b) good angular resolution can be switched with the antenna (22) with a narrow radiation lobe and a broadband bandpass filter (26).
  • a) good range resolution with the antenna (21) with a broad radiation pattern and a narrowband bandpass filter (25) and b) good angular resolution can be switched with the antenna (22) with a narrow radiation lobe and a broadband bandpass filter (26).
  • parallel operation of the two antennas would also be possible if the antenna with the broad radiation pattern were used to transmit and receive and the antenna with the narrow radiation pattern was also used for reception.
  • this requires the construction of two parallel reception branches consisting of a mixer, bandpass filter, intermediate frequency amplifier, detector and analog-digital converter.
  • FIG. 4 a third embodiment of the invention is now shown.
  • the electronic components already appearing in FIG. 2 and explained above are designated with the same reference numerals and are therefore not explained again in connection with FIG. 4.
  • the third embodiment according to the invention of FIG. 4 differs from that of FIG. 2 by the provision of a delay line.
  • the delay line (34) is preferably implemented at an intermediate frequency in which both the transmit signal and the receive signal upstream of the baseband receive mixer (7) by two additional mixers (31) and (32) and one fixed-frequency oscillator (33) are implemented.
  • the delay line can be implemented in a particularly simple and advantageous manner. Possible technical implementations of the delay line would be coaxial cables, optical delay lines, SAW delay elements or digital delay elements.
  • the method according to the invention and the device according to the invention fulfill the above objects.
  • the invention encompasses a novel advantageous combination of the principle of the FM-CW radar with an antenna pivoted over the frequency and direct distance evaluation by means of a fixed intermediate frequency and modulation ramps of different steepness.
  • the present invention offers particular advantages in relation to the prior art, which include the following in a non-exhaustive list:
  • the solution according to the invention in the second embodiment of FIG. 3 finds a useful compromise between distance and angular resolution, which is particularly advantageous for the motor vehicle application areas described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

La présente invention concerne un procédé pour établir une image radar au moyen d'un radar à ondes entretenues et modulation de fréquence, le procédé comprenant les étapes suivantes: production d'un signal d'émission comprenant au moins deux paliers de fréquences ayant différentes déclivités de palier respectives; alimentation d'au moins une antenne orientable selon la fréquence (6, 21, 22) appartenant au radar à ondes entretenues, avec le signal d'émission, et diffusion du signal d'émission; réception au niveau de l'antenne (6, 21, 22) du signal d'émission réfléchi par une ou plusieurs cibles (G1, G2); détection d'au moins un signal de fréquence intermédiaire à partir du signal de réception de l'antenne (6, 21, 22); et évaluation directe de la position des cibles (G1, G2) par rapport au radar à ondes entretenues, au moyen d'une fréquence intermédiaire qui peut être sélectionnée, à partir du signal de fréquence intermédiaire et des différentes déclivités de palier. L'invention a également pour objet un dispositif qui permet la mise en oeuvre du procédé décrit ci-dessus.
PCT/EP2003/012571 2002-11-18 2003-11-11 Procede et dispositif pour etablir une image radar au moyen d'un radar a ondes entretenues et modulation de frequence WO2004046752A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10253808A DE10253808A1 (de) 2002-11-18 2002-11-18 Verfahren und Vorrichtung zur Erstellung eines Radarbildes mit einem frequenzmodulierten Dauerstrichradar
DE10253808.5 2002-11-18

Publications (1)

Publication Number Publication Date
WO2004046752A1 true WO2004046752A1 (fr) 2004-06-03

Family

ID=32318528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012571 WO2004046752A1 (fr) 2002-11-18 2003-11-11 Procede et dispositif pour etablir une image radar au moyen d'un radar a ondes entretenues et modulation de frequence

Country Status (2)

Country Link
DE (1) DE10253808A1 (fr)
WO (1) WO2004046752A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117297A2 (fr) * 2005-05-04 2006-11-09 Endress+Hauser Gmbh+Co.Kg Procede de mesure d'une duree pour la determination de la distance
WO2007057474A1 (fr) * 2005-11-21 2007-05-24 Plextek Limited Systeme radar
WO2007057476A1 (fr) 2005-11-21 2007-05-24 Plextek Limited Antenne a balayage de frequence
US7567202B2 (en) 2005-11-21 2009-07-28 Plextek Limited Radar system
LU92331B1 (en) * 2013-12-10 2015-06-11 Iee Sarl Radar sensor with frequency dependent beam steering
WO2019211923A1 (fr) * 2018-05-01 2019-11-07 Mitsubishi Electric Corporation Système à base d'ondes continues à modulation de fréquence (fmcw) et procédé d'estimation de portée de fmcw
CN111033309A (zh) * 2017-09-29 2020-04-17 三美电机株式会社 雷达装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054466A1 (de) 2004-11-11 2006-06-08 Robert Bosch Gmbh Radarsystem insbesondere zur Entfernungs- und/oder Geschwindigkeitsmessung
WO2007057475A2 (fr) * 2005-11-21 2007-05-24 Plextek Limited Améliorations apportées à des systèmes radar doppler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473162A (en) * 1966-11-09 1969-10-14 Siemens Ag Radio observation apparatus utilizing a return beam
DE2907122A1 (de) * 1978-02-24 1979-08-30 Hawker Siddeley Dynamics Eng Verfahren und vorrichtung zum messen des inhaltes von bunkern
US4306236A (en) * 1979-12-19 1981-12-15 Rca Corporation Ranging radar including a modulating reflector
US4825214A (en) * 1986-08-27 1989-04-25 U.S. Philips Corporation Frequency-modulated continuous wave radar for range measuring
US4912474A (en) * 1987-11-24 1990-03-27 U.S. Philips Corporation Radar apparatus for realizing a radio map of a site
US5546088A (en) * 1993-10-06 1996-08-13 Deutsche Aerospace Ag High-precision radar range finder
DE19533379A1 (de) * 1995-09-09 1997-03-13 Daimler Benz Aerospace Ag Verfahren zur Steuerung der Empfindlichkeit eines Radargerätes und Anordnung zur Durchführung des Verfahrens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473162A (en) * 1966-11-09 1969-10-14 Siemens Ag Radio observation apparatus utilizing a return beam
DE2907122A1 (de) * 1978-02-24 1979-08-30 Hawker Siddeley Dynamics Eng Verfahren und vorrichtung zum messen des inhaltes von bunkern
US4306236A (en) * 1979-12-19 1981-12-15 Rca Corporation Ranging radar including a modulating reflector
US4825214A (en) * 1986-08-27 1989-04-25 U.S. Philips Corporation Frequency-modulated continuous wave radar for range measuring
US4912474A (en) * 1987-11-24 1990-03-27 U.S. Philips Corporation Radar apparatus for realizing a radio map of a site
US5546088A (en) * 1993-10-06 1996-08-13 Deutsche Aerospace Ag High-precision radar range finder
DE19533379A1 (de) * 1995-09-09 1997-03-13 Daimler Benz Aerospace Ag Verfahren zur Steuerung der Empfindlichkeit eines Radargerätes und Anordnung zur Durchführung des Verfahrens

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117297A2 (fr) * 2005-05-04 2006-11-09 Endress+Hauser Gmbh+Co.Kg Procede de mesure d'une duree pour la determination de la distance
WO2006117297A3 (fr) * 2005-05-04 2007-03-22 Endress & Hauser Gmbh & Co Kg Procede de mesure d'une duree pour la determination de la distance
AP2554A (en) * 2005-11-21 2013-01-09 Plextek Ltd Radar system
KR101233884B1 (ko) 2005-11-21 2013-02-18 플랙스텍 리미티드 레이더 시스템
US7567202B2 (en) 2005-11-21 2009-07-28 Plextek Limited Radar system
US7659849B2 (en) 2005-11-21 2010-02-09 Plextek Limited Frequency scanning antenna
EP2187477A1 (fr) * 2005-11-21 2010-05-19 Plextek Limited Antenne a balayage de frequence
US7782245B2 (en) 2005-11-21 2010-08-24 Plextek Limited Radar system
AU2006314461B2 (en) * 2005-11-21 2011-03-31 Plextek Limited Radar system
AU2006314463B2 (en) * 2005-11-21 2011-04-14 Plextek Limited Frequency scanning antenna
WO2007057474A1 (fr) * 2005-11-21 2007-05-24 Plextek Limited Systeme radar
WO2007057476A1 (fr) 2005-11-21 2007-05-24 Plextek Limited Antenne a balayage de frequence
KR101310562B1 (ko) * 2005-11-21 2013-09-23 플랙스텍 리미티드 주파수 스캐닝 안테나
LU92331B1 (en) * 2013-12-10 2015-06-11 Iee Sarl Radar sensor with frequency dependent beam steering
WO2015086346A1 (fr) * 2013-12-10 2015-06-18 Iee International Electronics & Engineering S.A. Capteur radar à orientation de faisceau dépendant de la fréquence
US10227054B2 (en) 2013-12-10 2019-03-12 Iee International Electronics & Engineering S.A Radar sensor with frequency dependent beam steering
CN111033309A (zh) * 2017-09-29 2020-04-17 三美电机株式会社 雷达装置
WO2019211923A1 (fr) * 2018-05-01 2019-11-07 Mitsubishi Electric Corporation Système à base d'ondes continues à modulation de fréquence (fmcw) et procédé d'estimation de portée de fmcw
CN112105954A (zh) * 2018-05-01 2020-12-18 三菱电机株式会社 基于频率调制连续波(fmcw)的系统及用于fmcw范围估计的方法
US10969465B2 (en) 2018-05-01 2021-04-06 Mitsubishi Electric Research Laboratories, Inc. Reference-free nonlinearity correction for FMCW-based sensing systems
CN112105954B (zh) * 2018-05-01 2024-04-09 三菱电机株式会社 基于频率调制连续波(fmcw)的系统及用于fmcw范围估计的方法

Also Published As

Publication number Publication date
DE10253808A1 (de) 2004-07-29

Similar Documents

Publication Publication Date Title
EP1792203B1 (fr) Capteur radar multifaisceaux planaire monostatique
EP2753950B1 (fr) Capteur de radar imageur à grossissement synthétique de l'ouverture d'antenne et à balayage bidimensionnel du faisceau
DE602004002145T2 (de) Radaranordnung mit Schaltermatrix zur adaptiven Strahlformung im Empfangszweig und Umschalten des Sendezweigs
DE19648203C2 (de) Mehrstrahliges Kraftfahrzeug-Radarsystem
EP2534730B1 (fr) Détecteur radar
DE69809372T2 (de) Radar mit frequenzmodulierten, kontinuierlichen Wellen
DE69218305T2 (de) Ultrabreitband-Radar mit kurzen, synthetisierten Pulsen
DE69433113T2 (de) Monopulse azimutradarsystem zur kraftfahrzeugortung
DE69325504T2 (de) Time-Sharing-Radarsystem
DE602004002713T2 (de) Radarvorrichtung
DE102004059915A1 (de) Radarsystem
DE102011083756A1 (de) Radar-Vorrichtung und Verfahren zum Erzeugen einer Gruppencharakteristik eines Radars
DE19650544A1 (de) Ebene Antennengruppe und Phasenvergleichs-Monopulsradarsystem
DE69902064T2 (de) Fahrzeug-Radargerät zum Verwalten von Informationen über Reflektoren
DE102012201282A1 (de) Antennenvorrichtung, Radarvorrichtung und Fahrzeugradarsystem
EP3673292A1 (fr) Système radar imageur pourvu d'un réseau récepteur et permettant la détermination angulaire d'objets bidimensionnels par l'intermédiaire d'un dispositif à spectre étalé des antennes réceptrices d'une dimension
DE102010020022A1 (de) Fahrerassistenzeinrichtung für ein Fahrzeug, Fahrzeug und Verfahren zum Betreiben eines Radargeräts
DE2542628C2 (de) Korrelationsradar zur Entfernungsmessung
DE69116347T2 (de) Pulsradar
WO2011101225A1 (fr) Dispositif et procédé de mesure de distance et de vitesse
WO2006069924A1 (fr) Systeme de radar pour la surveillance de cibles dans differentes zones de distance
DE102018118863A1 (de) Radarvorrichtung und Verfahren zum Erzeugen unterschiedlicher Richtcharakteristika
DE112020001356T5 (de) Radar-Vorrichtigung und Sende-/Empfangsgruppenantenne
WO2004046752A1 (fr) Procede et dispositif pour etablir une image radar au moyen d'un radar a ondes entretenues et modulation de frequence
DE102004034429B4 (de) Radar Front-End

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP