WO2004046528A1 - Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung - Google Patents

Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung Download PDF

Info

Publication number
WO2004046528A1
WO2004046528A1 PCT/DE2003/003809 DE0303809W WO2004046528A1 WO 2004046528 A1 WO2004046528 A1 WO 2004046528A1 DE 0303809 W DE0303809 W DE 0303809W WO 2004046528 A1 WO2004046528 A1 WO 2004046528A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalytic converter
internal combustion
combustion engine
test
Prior art date
Application number
PCT/DE2003/003809
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Rabl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE50304004T priority Critical patent/DE50304004D1/de
Priority to EP03767429A priority patent/EP1576270B1/de
Publication of WO2004046528A1 publication Critical patent/WO2004046528A1/de
Priority to US10/923,649 priority patent/US6877366B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a test method for an exhaust gas catalytic converter according to claim 1 and a test device according to claim 7.
  • a disadvantage of this known test method is the fact that a separate temperature sensor. is required to measure the catalyst temperature.
  • Another disadvantage of the known test method results from the thermal inertia of the catalytic converter.
  • the catalyst temperature in the known test method only increases gradually due to the heat capacity of the exhaust gas catalytic converter, so that meaningful measurement of the catalyst temperature is only possible after a delay time of up to 30 seconds. During this delay time, an additional fuel injection is required during the engine's extension stroke, which increases the average fuel consumption in the MVEG test cycle by up to 1%.
  • a similar test method for an exhaust gas catalytic converter of an internal combustion engine is also known from DE 41 00 397 C2.
  • DE 43 02 779 C2 discloses a test method for an exhaust gas catalytic converter, in which fuel injection is also carried out during overrun operation, so that an unburned fuel / air mixture gets into the exhaust gas catalytic converter.
  • the functionality of the catalytic converter is determined either by measuring the temperature increase or by measuring the oxygen concentration using a ⁇ probe.
  • the invention is therefore based on the object of determining the functionality of an exhaust gas catalytic converter without a separate temperature sensor without significantly increasing fuel consumption.
  • the invention encompasses the general technical teaching that
  • test injection of fuel takes place during the expansion stroke and / or during the push-out stroke of the internal combustion engine, so that the injected fuel reaches the exhaust gas catalytic converter unburned.
  • the test injection is preferably carried out at a crankshaft angle in the range from 90 ° to 180 ° after top dead center (TDC) in order to avoid combustion of the injected fuel.
  • Part of the unburned fuel is converted in the exhaust gas catalytic converter in accordance with the functionality of the exhaust gas catalytic converter, while the remaining part of the unburned fuel leaves the exhaust gas catalytic converter again.
  • the amount of fuel contained in the exhaust gas stream downstream after the exhaust gas catalytic converter thus reflects the functionality of the exhaust gas catalytic converter.
  • the amount of fuel is therefore determined which is not converted in the exhaust gas catalytic converter and which therefore exits the exhaust gas catalytic converter again.
  • the functionality of the exhaust gas catalytic converter is then determined as a function of this fuel quantity.
  • a small amount of unconverted fuel is a sign of a well-functioning catalytic converter with a high conversion rate, whereas a large amount of unconverted fuel that has passed through the exhaust catalytic converter speaks for a poorly functioning exhaust gas catalytic converter.
  • exhaust gas recirculation is preferably carried out in order to increase the fuel quantity determine which was not converted by the exhaust gas catalytic converter.
  • exhaust gas with unburned and unconverted fuel is taken from the exhaust gas stream of the internal combustion engine downstream after the exhaust gas catalytic converter and returned to the intake tract of the internal combustion engine.
  • This exhaust gas recirculation of unburned fuel causes an increase in output of the internal combustion engine due to the additional fuel supply and thus indirectly enables a determination of the fuel quantity let through by the exhaust gas catalytic converter.
  • the rotational acceleration of the crankshaft is preferably determined, from which the torque of the internal combustion engine can be derived.
  • the rotational acceleration of the crankshaft can be determined in the context of the invention by deriving the crankshaft speed twice over time, wherein the crankshaft speed can be determined, for example, by a speed sensor.
  • the rotational acceleration of the crankshaft can also be measured directly by an acceleration sensor, so that no time derivative is required to determine the rotational acceleration.
  • the increase in performance of the internal combustion engine caused by the test injection is determined not only by the amount of unburned fuel that leaves the exhaust gas catalytic converter, but also by the exhaust gas recirculation rate. If, for example, only a small proportion of the exhaust gas with the unburned fuel is returned to the intake tract of the internal combustion engine, a poor conversion rate of the exhaust gas catalytic converter with a correspondingly large amount of unburned fuel in the exhaust gas flow only causes a slight increase in the performance of the internal combustion engine. To take this effect into account, the exhaust gas recirculation rate is therefore preferably also set or determined and taken into account when determining the functionality of the exhaust gas catalytic converter.
  • the test method according to the invention also enables the so-called light-off temperature of the exhaust gas catalytic converter to be determined, that is to say the catalytic converter temperature at which it reaches 50% of its nominal conversion rate.
  • the test method described above is carried out at different temperatures, the conversion rate of the exhaust gas catalytic converter in each case being ascertained and compared with the predetermined nominal conversion rate.
  • the current temperature value is recorded as a light-off temperature and saved, for example, in the electronic engine control.
  • the light-off temperature of the exhaust gas catalytic converter is preferably determined when the internal combustion engine is cold started, when the catalytic converter temperature passes through a large temperature range starting from the relatively low ambient temperature.
  • the determination of the respective catalyst temperature required here can be carried out, for example, by a temperature sensor which measures the catalyst temperature directly.
  • the catalyst temperature is alternatively also possible for the catalyst temperature to be derived from other known variables of the drive system in accordance with a predetermined physical model, so that a separate temperature sensor for measuring the catalyst temperature can be dispensed with.
  • Knowing the light-off temperature enables the normal initiation of active catalyst heating measures in normal operation of the internal combustion engine in order to bring the exhaust gas catalytic converter up to operating temperature as quickly as possible.
  • the light-off temperature of the exhaust gas catalytic converter can be used to draw conclusions about the aging condition and possible damage to the exhaust gas catalytic converter, since the light-off temperature of an exhaust gas catalytic converter can shift during operation due to aging effects.
  • test method according to the invention is only carried out for one combustion chamber of the internal combustion engine, so that interfering interactions with exhaust gas recirculation from other combustion chambers are excluded.
  • test injection takes place in several combustion chambers of the internal combustion engine.
  • the assignment of a test injection in a specific combustion chamber of the internal combustion engine to the resulting increase in output is then made taking into account the running time of the exhaust gas in the exhaust gas recirculation.
  • all exhaust gas catalysts of the internal combustion engine that are connected in parallel can be checked within a few crankshaft revolutions.
  • the method according to the invention can be used, inter alia, in gasoline engines and diesel engines, but the invention is not restricted to these types of internal combustion engines. However, the method according to the invention is preferably used in a common rail injection system of a diesel engine.
  • the invention also includes a corresponding test device for carrying out the test method according to the invention.
  • FIG. 1 shows a drive system for a motor vehicle with an internal combustion engine and an exhaust gas catalytic converter
  • FIGS. 2a and 2b show a test method for the exhaust gas catalytic converter in FIG
  • Figure 3 shows a variant of the test method according to the invention for determining the light-off temperature of the exhaust gas catalytic converter
  • FIG. 1 shows an internal combustion engine 1 with an injection system, the internal combustion engine 1 being constructed in a conventional manner and therefore being shown only schematically.
  • the internal combustion engine 1 is controlled by an electronic control unit 2, the control unit 2 specifying, for example, the injection timing and the injection duration of the injection system.
  • the control unit 2 evaluates the measurement signals of an air mass sensor 3 and a lambda probe 4 as input signals.
  • the air mass sensor 3 being arranged in an intake tract 5 of the internal combustion engine 1, while the lambda probe 4 is located on the exhaust side of the internal combustion engine 1 in an exhaust gas duct 6.
  • a throttle valve 7 is arranged in the intake tract 5 of the internal combustion engine 1, which controls the air mass flow drawn in by the internal combustion engine 1 and is set by the control unit 2.
  • an exhaust gas catalytic converter 8 is arranged in the exhaust gas duct 6, which catalytic converter is designed as a conventional three-way catalytic converter.
  • a fuel tank 9 is provided for the fuel supply and is connected to the internal combustion engine 1 via a fuel line 10 which is only shown schematically.
  • the fuel tank 9 has a ventilation line 11 which opens into an activated carbon filter 12, the activated carbon filter 12 being able to temporarily store the fuel which is emitted from the fuel tank 9. This prevents outgassing fuel from escaping from the fuel tank 9, which would lead to environmental pollution.
  • the activated carbon filter 12 has only a limited storage capacity and therefore has to be occasionally flushed with ambient air in order to flush out the stored fuel from the active carbon filter 12.
  • the activated carbon filter 12 is therefore connected to the environment via a controllable valve 13, the valve 13 being controlled by the control unit 2.
  • the activated carbon filter 12 is connected to the intake tract 5 of the internal combustion engine 1 via a controllable valve 14. In the open state of the valves 13 and 14, the internal combustion engine 1 therefore sucks in ambient air via the activated carbon filter 12, the fuel outgassing stored in the activated carbon filter 12 being flushed out and thereby enriching the mixture in the intake tract 5 of the internal combustion engine 1, which is caused by the lambda Probe 4 is measured.
  • the two valves 13 and 14 are thus opened until the lambda probe 4 no longer measures any enrichment of the mixture in the intake tract 5, since then the entire fuel outgassings from the activated carbon filter 12 are flushed out and the storage capacity of the Activated carbon filter 12 is thus restored.
  • the control unit 2 compensates for this disruptive influence of the regeneration of the activated carbon filter 12 by adjusting the throttle valve 7 and changing the ignition angle.
  • the control unit 2 takes into account the air ratio ⁇ measured by the lambda probe 4 in accordance with a predetermined physical model, which also includes the valve characteristic of the valve 14 stored in a characteristic element.
  • the fuel tank 9 has a pressure sensor 15, which measures the pressure in the fuel tank 9 and is connected to the control unit 2 for evaluating the measurement signal.
  • a temperature sensor 16 is arranged in the fuel tank 9, which measures the fuel temperature and forwards it to the control unit 2. This advantageously enables the fuel temperature to be taken into account when determining the fuel quality from the outgassing behavior, as a result of which temperature-related measurement errors are avoided.
  • the drive system has a speed sensor 17, which measures the speed n of the crankshaft of the internal combustion engine 1 and passes it on to the control unit 2. The control unit 2 then calculates the rotational acceleration a of the crankshaft from the measured speed n of the crankshaft by differentiating twice in time.
  • the drive system has an exhaust gas recirculation system, which takes exhaust gas downstream downstream of the exhaust gas catalytic converter 8 and returns it via a controllable exhaust gas recirculation valve 18 into the intake tract 5 of the internal combustion engine 1 upstream in front of the air mass sensor 3.
  • the exhaust gas recirculation valve 18 is controlled by the control unit 2, which enables the exhaust gas recirculation rate EGR to be set.
  • the control unit 2 enables the catalyst temperature T Ka t to be determined in accordance with a predetermined physical model from known operating variables of the drive system.
  • the drive system has a temperature sensor 19 which measures the catalyst temperature T Ka t directly, which is much more precise.
  • test method according to the invention it is first examined whether a test of the functionality of the exhaust gas catalytic converter 8 is necessary. This can be the case, for example, after certain time intervals have elapsed, or in each case after a predetermined route. If no test of the exhaust gas catalytic converter 8 is required, the test method according to the invention is ended. Otherwise, a next step is to check whether the operating conditions are suitable for carrying out the test method according to the invention. For example, the test method according to the invention requires a predetermined injection pressure.
  • the operating conditions are adjusted in a further step until finally operating conditions are present which are suitable for the test method according to the invention.
  • the exhaust gas recirculation rate EGR is then set to a predetermined value, for example 50%, by the control unit 2 actuating the exhaust gas recirculation valve 18 accordingly.
  • a predetermined value for example 50%
  • An exhaust gas recirculation rate EGR of 50% means that the percentage volumetric proportion of the exhaust gas in the fresh mixture is 50.
  • a predetermined throttle valve position DR is then set in that the control unit 2 controls the throttle valve 7 accordingly.
  • a normal injection operation of the internal combustion engine 1 then takes place, with a predetermined amount of fuel m N0 RM_- being injected in each case.
  • crankshaft acceleration a N0 R_- A _ is derived from the measured speed n of the crankshaft.
  • the torque M N Q RMA is then calculated from the crankshaft acceleration a N0 R MAL , which is applied in normal injection operation and acts on the crankshaft of the internal combustion engine 1.
  • a test injection then takes place during the exhaust stroke of the internal combustion engine 1.
  • a predetermined amount of fuel m TES is injected, which reaches the exhaust gas catalytic converter 8 unburned due to the very late injection timing and is partially reduced there with a conversion rate KR.
  • a part KR "m TEST of the injected fuel is thus converted in the exhaust gas catalytic converter 8, while the other part (1- KR)" m TE s ⁇ passes through the exhaust gas catalytic converter 8, so that the exhaust gas stream downstream of the exhaust gas catalytic converter 8 still contains unburned fuel.
  • the control unit 2 therefore derives the crankshaft acceleration aEs ⁇ that occurs during the test injection from the speed of the crankshaft measured by the speed sensor 17.
  • the corresponding torque M TE s ⁇ that the internal combustion engine 1 applies to the crankshaft is then calculated from the crankshaft acceleration a TEST .
  • the conversion rate KR of the exhaust gas catalytic converter 8 then results from the exhaust gas recirculation rate EGR, the torque M NORMAL and the injection quantity m N0 RMAL i ⁇ i normal operation as well as the torque M TEST and the additional injection quantity m TEST in the test mode according to the following formula: KR - 1- ⁇ TEST 1 m NORMAL
  • the flow chart in FIG. 3 shows a variant of the test method according to the invention, in which the so-called light-off temperature T L ight-o_f of the exhaust gas catalytic converter is determined. This is the catalytic converter temperature at which the conversion rate KR of the exhaust gas catalytic converter 8 has reached 50% of the nominal conversion rate KR NENN .
  • the catalyst temperature T Ka t is measured at a cold start at regular intervals, the conversion rate KR being determined in each case in accordance with the test method described above.
  • the conversion rate KR is then mixed with a predetermined nominal value KR Ne nn conversion rate compared ight-off to light-off temperature T L to determine the exhaust gas catalyst.
  • a predetermined nominal value KR Ne nn conversion rate compared ight-off to light-off temperature T L to determine the exhaust gas catalyst.
  • 50% of the predetermined nominal value KR nominal current catalyst temperature T cat as a light-off temperature Tught-off is stored in the control unit. 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Prüfverfahren für einen Abgaskatalysator (8) einer Brennkraftmaschine (1) mit den folgenden Schritten: Testeinspritzung von Kraftstoff während des Expansionstakts und/oder während des Auslasstakts der Brennkraftmaschine (1), Konvertierung mindestens eines Teils des im Abgas der Brennkraftmaschine enthaltenen unverbrannten Kraftstoffs in dem Abgaskatalysator (8), Ermittlung der von dem Abgaskatalysator (8) nicht konvertierten Kraftstoffmenge sowie Bestimmung der Funktionsfähigkeit des Abgaskatalysators (8) aus der nicht konvertierten Kraftstoffmenge. Weiterhin umfasst die Erfindung eine entsprechend Prüfeinrichtung zur Durchführung des Verfahrens.

Description

Beschreibung
Prüfverfahren für einen Abgaskatalysator und eine entsprechende Prüfeinrichtung
Die Erfindung betrifft ein Prüfverfahren für einen Abgaskatalysator gemäß Anspruch 1 sowie eine Prüfeinrichtung gemäß Anspruch 7.
Bei einem bekannten Prüfverfahren für einen Abgaskatalysator einer Brennkraftmaschine wird während des späten Expansionstakts der Brennkraftmaschine Kraftstoff eingespritzt, wobei der Kraftstoff aufgrund des späten Einspritzzeitpunkts unverbrannt in den Abgaskatalysator gelangt und dort in einer exo- thermen chemisch-katalytischen Reaktion teilweise abgebaut wird. Diese Reaktion führt zu einer Erwärmung des Abgaskatalysators, wobei die freigesetzte Wärmemenge die Funktionsfähigkeit des Abgaskatalysators widerspiegelt. Bei dem bekannten Prüfverfahren wird deshalb durch einen separaten Tempera- tursensor die Katalysatortemperatur gemessen, um daraus die Funktionsfähigkeit des Abgaskatalysators zu bestimmen.
Nachteilig an diesem bekannten Prüfverfahren ist zunächst die Tatsache, dass ein separater Temperatursensor . zur Messung der Katalysatortemperatur erforderlich ist.
Ein weiterer Nachteil des bekannten Prüfverfahrens resultiert aus der thermischen Trägheit des Abgaskatalysators. So nimmt die Katalysatortemperatur bei dem bekannten Prüfverfahren aufgrund der Wärmekapazität des Abgaskatalysators nur allmählich zu, so dass eine aussagekräftige Messung der Katalysatortemperatur erst nach einer Verzögerungszeit von bis zu 30 Sekunden möglich ist. Während dieser Verzögerungszeit ist eine zusätzliche Kraftstoffeinspritzung während des Ausschiebe- takts der Brennkraftmaschine erforderlich, wodurch der mittlere Kraftstoffverbrauch im MVEG-Testzyklus um bis zu 1% erhöht wird. Ein .ähnliches Prüfverfahren für einen Abgaskatalysator einer Brennkraftmaschine ist auch aus DE 41 00 397 C2 bekannt. Hierbei wird während des Schubbetriebs der Brennkraftmaschine Kraftstoff eingespritzt, der unverbrannt in den Abgaskataly- sator gelangt und dort zu einer entsprechenden Erwärmung führt, wobei die Erwärmung des Abgaskatalysators die Funktionsfähigkeit des Abgaskatalysators wiedergibt und deshalb von einem Temperatursensor gemessen wird.
Nachteilig an diesem bekannten Prüfverfahren ist also ebenfalls die Tatsache, dass ein separater Temperatursensor zur Messung der Katalysatortemperatur erforderlich ist.
Ferner ist aus DE 43 02 779 C2 ein Prüfverfahren zu einem Ab- gaskatalysator bekannt, bei dem ebenfalls während des Schubbetriebs eine Kraftstoffeinspritzung erfolgt, so dass unverbranntes Kraftstoff/Luft-Gemisch in den Abgaskatalysator gelangt. Die Funktionsfähigkeit des Abgaskatalysators wird hierbei wahlweise durch eine Messung der Temperaturerhöhung oder durch eine Messung der Sauerstoffkonzentration mittels einer λ-Sonde bestimmt.
Auch bei diesem Prüfverfahren wird also zur Bestimmung der Funktionsfähigkeit des Abgaskatalysators ein separater Sensor benötigt.
Der Erfindung liegt also die Aufgabe zugrunde, die Funktionsfähigkeit eines Abgaskatalysators ohne einen separaten Temperatursensor zu ermitteln, ohne den Kraftstoffverbrauch we- sentlich zu erhöhen.
Diese Aufgabe wird durch ein Prüfverfahren gemäß Anspruch 1 und durch eine Prüfeinrichtung gemäß Anspruch 7 gelöst.
Die Erfindung umfasst die allgemeine technische Lehre, die
Funktionsfähigkeit des Abgaskatalysators außerhalb des norma- len Betriebs der Brennkraftmaschine in einem Diagnose- oder Prüfbetrieb zu ermitteln.
Dabei erfolgt eine Testeinspritzung von Kraftstoff während des Expansionstaktes und/oder während des Ausschiebetakts der Brennkraftmaschine, so dass der eingespritzte Kraftstoff unverbrannt in den Abgaskatalysator gelangt. Bei einer Testeinspritzung während des Expansionstaktes der Brennkraftmaschine erfolgt die Testeinspritzung vorzugsweise bei einem Kurbel- wellenwinkel im Bereich von 90° bis 180° nach dem oberen Totpunkt (OT) , um eine Verbrennung des eingespritzten Kraftstoffs zu vermeiden.
Hierbei wird ein Teil des unverbrannten Kraftstoffs entspre- chend der Funktionsfähigkeit des Abgaskatalysators in dem Abgaskatalysator umgewandelt, während der restliche Teil des unverbrannten Kraftstoffs den Abgaskatalysator wieder ver- lässt. Die in dem Abgasstrom stromabwärts nach dem Abgaskatalysator enthaltene Kraftstoffmenge spiegelt also die Funkti- onsfähigkeit des Abgaskatalysators wieder.
Im Rahmen des erfindungsgemäßen Prüfverfahrens wird deshalb die Kraftstoffmenge ermittelt, die in dem Abgaskatalysator nicht umgewandelt wird und deshalb wieder aus dem Abgaskata- lysator austritt.
In Abhängigkeit von dieser Kraftstoffmenge wird dann die Funktionsfähigkeit des Abgaskatalysators ermittelt. Eine geringe Menge von nicht konvertiertem Kraftstoff ist hierbei ein Zeichen für einen gut funktionierenden Abgaskatalysator mit einer hohen Konvertierungsrate, wohingegen eine große Menge an nicht konvertiertem und von dem Abgaskatalysator durchgelassenen Kraftstoff für einen schlecht funktionierenden Abgaskatalysator spricht.
Im Rahmen des erfindungsgemäßen Prüfverfahrens erfolgt vorzugsweise eine Abgasrückführung, um die Kraftstoffmenge zu ermitteln, die von dem Abgaskatalysator nicht konvertiert wurde. Hierbei wird aus dem Abgasstrom der Brennkraftmaschine stromabwärts nach dem Abgaskatalysator Abgas mit unverbranntem und nicht konvertiertem Kraftstoff entnommen und in den Ansaugtrakt der Brennkraftmaschine zurückgeführt. Diese Abgasrückführung von unverbranntem Kraftstoff verursacht durch die zusätzliche Kraftstoffzufuhr eine Leistungserhöhung der Brennkraftmaschine und ermöglicht so indirekt eine Bestimmung der von dem Abgaskatalysator durchgelassenen Kraftstoffmenge.
Zur Ermittlung der durch die Testeinspritzung hervorgerufenen Leistungserhöhung der Brennkraftmaschine wird vorzugsweise die Drehbeschleunigung der Kurbelwelle bestimmt, woraus das Drehmoment der Brennkraftmaschine abgeleitet werden kann.
Die Drehbeschleunigung der Kurbelwelle kann im Rahmen der Erfindung durch zweimalige zeitliche Ableitung der Kurbelwellendrehzahl ermittelt werden, wobei die Kurbelwellendrehzahl beispielsweise von einem Drehzahlsensor ermittelt werden kann.
Es ist jedoch alternativ auch möglich, dass ein Geschwindigkeitssensor vorgesehen ist, der die Drehgeschwindigkeit der Kurbelwelle misst. Die Drehbeschleunigung der Kurbelwelle er- gibt sich dann durch einmalige zeitliche Ableitung der gemessenen Drehgeschwindigkeit.
Darüber hinaus kann die Drehbeschleunigung der Kurbelwelle auch direkt durch einen Beschleunigungssensor gemessen wer- den, so dass keine zeitliche Ableitung zur Bestimmung der Drehbeschleunigung erforderlich ist.
Schließlich besteht auch die Möglichkeit, die Drehbeschleunigung der Kurbelwelle aus anderen Betriebsgrößen der Brenn- kraftmaschine abzuleiten, wie beispielsweise aus der Drehzahl, der Drehgeschwindigkeit oder der Drehbeschleunigung der Nockenwelle oder einer anderen Welle, die mit der Kurbelwelle starr gekoppelt ist.
Die durch die Testeinspritzung hervorgerufene Leistungserhö- hung der Brennkraftmaschine wird jedoch nicht nur durch die Menge des unverbrannten Kraftstoffs bestimmt, der den Abgaskatalysator verlässt, sondern auch durch die Abgasrückführrate. Falls beispielsweise nur ein geringer Anteil des Abgases mit dem unverbrannten Kraftstoff in den Ansaugtrakt der Brennkraftmaschine zurückgeführt wird, verursacht auch eine schlechte Konvertierungsrate des Abgaskatalysators mit einer entsprechend großen Menge unverbrannten Kraftstoffs im Abgasstrom nur eine geringe Leistungserhöhung der Brennkraftmaschine. Zur Berücksichtigung dieses Effekts wird deshalb vor- zugsweise auch die Abgasrückführrate eingestellt oder ermittelt und bei der Bestimmung der Funktionsfähigkeit des Abgaskatalysators berücksichtigt.
Darüber hinaus ermöglicht das erfindungsgemäße Prüfverfahren auch eine Bestimmung der sogenannten Light-Off-Temperatur des Abgaskatalysators, also der Katalysatortemperatur, bei der dieser 50% seiner Nenn-Konvertierungsrate erreicht. Hierzu wird das vorstehend beschriebene Prüfverfahren bei verschiedenen Temperaturen durchgeführt, wobei jeweils die Konvertie- rungsrate des Abgaskatalysators ermittelt und mit der vorgegebenen Nenn-Konvertierungsrate verglichen wird. Beim Erreichen von rund 50% der Nenn-Konvertierungsrate wird der aktuelle Temperaturwert als Light-Off-Temperatur festgehalten und beispielsweise in der elektronischen Motorsteuerung abgespei- chert.
Vorzugsweise erfolgt die Bestimmung der Light-Off-Temperatur des Abgaskatalysators bei einem Kaltstart der Brennkraftmaschine, wenn die Katalysatortemperatur von der relativ gerin- gen Umgebungstemperatur ausgehend einen großen Temperaturbereich durchläuft. Die hierbei erforderliche Bestimmung der jeweiligen Katalysatortemperatur kann beispielsweise durch einen Temperatursensor erfolgen, der die Katalysatortemperatur direkt misst.
Es ist jedoch alternativ auch möglich, dass die Katalysatortemperatur entsprechend einem vorgegebenen physikalischen Modell aus anderen bekannten Größen des Antriebssystems abgeleitet wird, so dass auf einen separaten Temperatursensor zur Messung der Katalysatortemperatur verzichtet werden kann.
Die Kenntnis der Light-Off-Temperatur ermöglicht im normalen Betrieb der Brennkraftmaschine die bedarfsgerechte Einleitung aktiver Katalysatorheizmaßnahmen, um den Abgaskatalysator möglichst schnell auf Betriebstemperatur zu bringen.
Darüber hinaus lassen sich aus der Light-Off-Temperatur des Abgaskatalysators Rückschlüsse auf den Alterungszustand und eine mögliche Schädigung des Abgaskatalysators ziehen, da sich die Light-Off-Temperatur eines Abgaskatalysators im Be- trieb aufgrund von Alterungseffekten verschieben kann.
In einer Variante der Erfindung wird das erfindungsgemäße Prüfverfahren jeweils nur für einen Brennraum der Brennkraftmaschine durchgeführt, so dass störende Wechselwirkungen mit Abgasrückführungen von anderen Brennräumen ausgeschlossen sind.
Eine andere Variante der Erfindung sieht dagegen vor, dass die Testeinspritzung bei mehreren Brennräumen der Brennkraft- maschine erfolgt. Die Zuordnung einer Testeinspritzung in einem bestimmten Brennraum der Brennkraftmaschine zu der resultierenden Leistungserhöhung erfolgt dann unter Berücksichtigung der Laufzeit des Abgases in der Abgasrückführung. Damit können innerhalb weniger Kurbelwellenumdrehungen alle Abgas- katalysatoren der Brennkraftmaschine überprüft werden, die parallel geschaltet sind. Das erfindungsgemäße Verfahren ist unter anderem bei Ottomotoren und Dieselmotoren anwendbar, jedoch ist die Erfindung nicht auf diese Typen von Brennkraftmaschinen beschränkt. Vorzugsweise wird das erfindungsgemäße Verfahren jedoch bei einem Common-Rail-Einspritzsystem eines Dieselmotors eingesetzt .
Schließlich umfasst die Erfindung auch eine entsprechende Prüfeinrichtung zur Durchführung des erfindungsgemäßen Prüf- Verfahrens.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen enthalten oder werden nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnungen erläutert. Es zeigen:
Figur 1 ein Antriebssystem für ein Kraftfahrzeug mit einer Brennkraftmaschine und einem Abgaskatalysator, Figur 2a und 2b ein Prüfverfahren für den Abgaskatalysator in
Figur 1 sowie
Figur 3 eine Variante des erfindungsgemäßen Prüfverfahrens zur Bestimmung der Light-Off- Temperatur des Abgaskatalysators
Die Darstellung in Figur 1 zeigt eine Brennkraftmaschine 1 mit einer Einspritzanlage, wobei die Brennkraftmaschine 1 in herkömmlicher Weise aufgebaut ist und deshalb nur schematisch dargestellt ist.
Die Brennkraftmaschine 1 wird durch eine elektronische Steuereinheit 2 angesteuert, wobei die Steuereinheit 2 beispielsweise den Einspritzzeitpunkt sowie die Einspritzdauer der Einspritzanlage vorgibt.
Als Eingangssignale wertet die Steuereinheit 2 die Messsignale eines Luftmassensensors 3 sowie einer Lambda-Sonde 4 aus, wobei der Luftmassensensor 3 in einem Ansaugtrakt 5 der Brennkraftmaschine 1 angeordnet ist, während sich die Lambda- Sonde 4 auf der Auslassseite der Brennkraftmaschine 1 in einem Abgaskanal 6 befindet.
Darüber hinaus ist in dem Ansaugtrakt 5 der Brennkraftmaschine 1 auch eine Drosselklappe 7 angeordnet, die den von der Brennkraftmaschine 1 angesaugten Luftmassenstrom steuert und von der Steuereinheit 2 eingestellt wird.
Ferner ist in dem Abgaskanal 6 ein Abgaskatalysator 8 angeordnet, der als herkömmlicher Drei-Wege-Katalysator ausgebildet ist.
Zur Kraftstoffversorgung ist ein Kraftstoffbehälter 9 vorgesehen, der mit der Brennkraftmaschine 1 über eine nur schematisch dargestellte Kraftstoffleitung 10 verbunden ist.
Darüber hinaus weist der Kraftstoffbehälter 9 eine Entlüf- tungsleitung 11 auf, die in einen Aktivkohlefilter 12 mündet, wobei der Aktivkohlefilter 12 den aus dem Kraftstoffbehälter 9 ausgasenden Kraftstoff Zwischenspeichern kann. Hierdurch wird verhindert, dass ausgasender Kraftstoff aus dem Kraftstoffbehälter 9 austritt, was zu einer Umweltverschmut- zung führen würde.
Der Aktivkohlefilter 12 hat jedoch nur eine begrenzte Speicherfähigkeit und muss deshalb gelegentlich mit Umgebungsluft gespült werden, um den gespeicherten Kraftstoff aus dem Ak- tivkohlefilter 12 auszuspülen. Der Aktivkohlefilter 12 ist deshalb über ein steuerbares Ventil 13 mit der Umgebung verbunden, wobei das Ventil 13 von der Steuereinheit 2 angesteuert wird. Darüber hinaus ist der Aktivkohlefilter 12 über ein steuerbares Ventil 14 mit dem Ansaugtrakt 5 der Brennkraftma- schine 1 verbunden. Im geöffneten Zustand der Ventile 13 und 14 saugt die Brennkraftmaschine 1 also Umgebungsluft über den Aktivkohlefilter 12 an, wobei die in dem Aktivkohlefilter 12 gespeicherten Kraftstoffausgasungen ausgespült werden und dadurch das Ge- misch in dem Ansaugtrakt 5 der Brennkraftmaschine 1 anfetten, was von der Lambda-Sonde 4 gemessen wird. Zum Spülen des Aktivkohlefilters 12 werden die beiden Ventile 13 und 14 also solange geöffnet, bis die Lambda-Sonde 4 keine Anfettung des Gemischs in dem Ansaugtrakt 5 mehr misst, da dann die gesam- ten Kraftstoffausgasungen aus dem Aktivkohlefilter 12 ausgespült sind und die Speicherfähigkeit des Aktivkohlefilters 12 somit wieder hergestellt ist.
Während der Spülung des Aktivkohlefilters 12 wird der Fül- lungsgrad der Brennkraftmaschine 1 durch die aus dem Aktivkohlefilter 12 ausgespülten Kraftstoffdämpfe erhöht, was mit einer Leistungssteigerung verbunden ist. Die Steuereinheit 2 kompensiert diesen störenden Einfluss der Regeneration des Aktivkohlefilters 12 jedoch durch eine Verstellung der Dros- seiklappe 7 und eine Änderung des Zündwinkels. Hierbei berücksichtigt die Steuereinheit 2 die von der Lambda-Sonde 4 gemessene Luftzahl λ entsprechend einem vorgegebenen physikalischen Modell, in das auch die in einem Kennlinienglied gespeicherte Ventilkennlinie des Ventils 14 eingeht.
Darüber hinaus weist der Kraftstoffbehälter 9 einen Drucksensor 15 auf, der den Druck in dem Kraftstoffbehälter 9 misst und zur Auswertung des Messsignals mit der Steuereinheit 2 verbunden ist.
Ferner ist in dem Kraftstoffbehälter 9 noch ein Temperatursensor 16 angeordnet, der die Kraftstofftemperatur misst und an die Steuereinheit 2 weitergibt. Dies ermöglicht vorteilhaft eine Berücksichtigung der Kraftstofftemperatur bei der Bestimmung der Kraftstoffgualität aus dem Ausgasungsverhal- ten, wodurch temperaturbedingte Messfehler vermieden werden. Außerdem weist das Antriebssystem einen Drehzahlsensor 17 auf, der die Drehzahl n der Kurbelwelle der Brennkraftmaschine 1 misst und an die Steuereinheit 2 weitergibt. Die Steuereinheit 2 berechnet dann aus der gemessenen Drehzahl n der Kurbelwelle durch zweimaliges zeitliches Differenzieren die Drehbeschleunigung a der Kurbelwelle.
Darüber hinaus weist das Antriebssystem eine Abgasrückführung auf, die stromabwärts nach dem Abgaskatalysator 8 Abgas ent- nimmt und über ein steuerbares Abgasrückführventil 18 in den Ansaugtrakt 5 der Brennkraftmaschine 1 stromaufwärts vor dem Luftmassensensor 3 zurückführt. Das Abgasrückführventil 18 wird hierbei von der Steuereinheit 2 angesteuert, was eine Einstellung der Abgasrückführrate AGR ermöglicht.
Die Steuereinheit 2 ermöglicht hierbei eine Bestimmung der Katalysatortemperatur TKat entsprechend einem vorgegebenen physikalischen Modell aus bekannten Betriebsgrößen des Antriebssystems .
In einer alternativen Variante der Erfindung weist das Antriebssystem dagegen einen Temperatursensor 19 auf, der die Katalysatortemperatur TKat direkt misst, was wesentlich genauer ist.
Im folgenden wird nun das erfindungsgemäße Prüfverfahren für den Abgaskatalysator 8 beschrieben, das in den Figuren 2a und 2b als Flussdiagramm dargestellt ist.
Zu Beginn des erfindungsgemäßen Prüfverfahren wird zunächst untersucht, ob eine Prüfung der Funktionsfähigkeit des Abgaskatalysators 8 erforderlich ist. Dies kann beispielsweise nach Ablauf bestimmter Zeitintervalle der Fall sein oder jeweils nach einer vorgegebenen Fahrtstrecke. Falls keine Prü- fung des Abgaskatalysators 8 erforderlich ist, so wird das erfindungsgemäße Prüfverfahren beendet. Andernfalls wird in einem nächsten Schritt geprüft, ob die Betriebsbedingungen für die Durchführung des erfindungsgemäßen Prüfverfahrens geeignet sind. So erfordert das erfindungsgemäße Prüfverfahren beispielsweise einen vorgegebenen Einspritzdruck.
Falls die Betriebsbedingungen ungeeignet sind, so erfolgt in einem weiteren Schritt eine Anpassung der Betriebsbedingungen, bis schließlich Betriebsbedingungen vorliegen, die für das erfindungsgemäße Prüfverfahren geeignet sind.
In einem nächsten Schritt wird dann die Abgasrückführrate AGR auf einen vorgegebenen Wert von beispielsweise 50% eingestellt, indem die Steuereinheit 2 das Abgasrückführventil 18 entsprechend ansteuert. Eine Abgasrückführrate AGR von 50% bedeutet, dass der prozentuale volumetrische Anteil des Abgases im Frischgemisch gleich 50 ist.
Weiterhin wird dann eine vorgegebene Drosselklappenstellung DR eingestellt, indem die Steuereinheit 2 die Drosselklappe 7 entsprechend ansteuert.
Anschließend erfolgt dann ein normaler Einspritzbetrieb der Brennkraftmaschine 1, wobei jeweils eine vorgegebene Kraft- stoffmenge mN0RM_- eingespritzt wird.
Dabei wird aus der gemessenen Drehzahl n der Kurbelwelle die Kurbelwellenbeschleunigung aN0R_-A_, abgeleitet wird.
Aus der Kurbelwellenbeschleunigung aN0RMAL wird dann das Drehmoment MNQRMA berechnet, das im normalen Einspritzbetrieb aufgebracht wird und auf die Kurbelwelle der Brennkraftmaschine 1 wirkt.
In dem in Figur 2b dargestellten Verfahrensabschnitt erfolgt dann zusätzlich zu der normalen Einspritzung eine Testeinspritzung während des Auslasstaktes der Brennkraftmaschine 1. Hierbei wird jeweils eine vorgegebene Kraftstoffmenge mTES eingespritzt, die aufgrund des sehr späten Einspritzzeitpunkts unverbrannt in den Abgaskatalysator 8 gelangt und dort mit einer Konvertierungsrate KR teilweise abgebaut wird. Ein Teil KR"mTEST des eingespritzten Kraftstoffs wird also in dem Abgaskatalysator 8 konvertiert, während der andere Teil (1- KR) "mTEsτ den Abgaskatalysator 8 durchläuft, so dass der Abgasstrom stromabwärts nach dem Abgaskatalysator 8 noch unverbrannten Kraftstoff enthält.
Durch die Abgasrückführung wird dann ein Teil AGR- (1-KR) "mTEST des unverbrannten Kraftstoffs in den Ansaugtrakt 5 der Brennkraftmaschine 1 stromaufwärts vor dem Luftmassensensor 3 zurückgeführt, so dass sich die gesamte Kraftstoffmenge ΠIGESAMT wie folgt berechnet:
m GESAMr = m NosMAL + AGR (l - KR) mTEST
Die durch die Testeinspritzung in Verbindung mit der Abgasrückführung erhöhte Kraftstoffmenge Π-GESAMT führt zu einer ent- sprechenden Erhöhung der Motorleistung, was sich in einer entsprechend größeren Kurbelwellenbeschleunigung niederschlägt. Die Steuereinheit 2 leitet deshalb aus der von dem Drehzahlsensor 17 gemessenen Drehzahl der Kurbelwelle die Kurbelwellenbeschleunigung aEsτ ab, die bei der Testeinsprit- zung auftritt.
Aus der Kurbelwellenbeschleunigung aTEST wird dann das entsprechende Drehmoment MTEsτ berechnet, das die Brennkraftmaschine 1 auf die Kurbelwelle aufbringt.
Die Konvertierungsrate KR des Abgaskatalysators 8 ergibt sich dann aus der Abgasrückführrate AGR, dem Drehmoment MNORMAL und der Einspritzmenge mN0RMAL iπi Normalbetrieb sowie dem Drehmoment MTEST und der zusätzlichen Einspritzmenge mTEST im Prüfbe- trieb nach folgender Formel: KR - 1- ^TEST 1 mNORMAL
M NORMAL AGR m TEST
Bei einer normalen Einspritzmenge mN0RMA =4 mg/Hub, einer Nach- einspritzmenge mTEsτ=4 mg/Hub, einer Abgasrückführrate AGR=0,5 und einer Drehmomenterhöhung im Prüfbetrieb von 20% entsprechend MTEST/MNORMÄL =1Λ2 ergibt sich also eine Konvertierungsrate KR=0,6 des Abgaskatalysators 8.
Schließlich zeigt das Flussdiagramm in Figur 3 eine Variante des erfindungsgemäßen Prüfverfahrens, bei dem die sogenannte Light-Off-Temperatur TLight-o_f des Abgaskatalysators ermittelt wird. Dies ist die Katalysatortemperatur, bei der die Konvertierungsrate KR des Abgaskatalysators 8 50% der Nenn- Konvertierungsrate KRNENN erreicht hat.
Hierzu wird bei einem Kaltstart in regelmäßigen Abständen die Katalysatortemperatur TKat gemessen, wobei jeweils die Konvertierungsrate KR entsprechend dem vorstehend beschriebenen Prüfverfahren ermittelt wird.
Die Konvertierungsrate KR wird dann mit einem vorgegebenen Nennwert KRNenn der Konvertierungsrate verglichen, um die Light-Off-Temperatur TLight-off des Abgaskatalysators zu bestimmen. Beim Erreichen von 50% des vorgegebenen Nennwerts KRNenn wird die aktuelle Katalysatortemperatur TKat als Light-Off- Temperatur Tught-off in der Steuereinheit 2 abgespeichert.
Die Erfindung ist nicht auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen

Claims

Patentansprüche
1. Prüfverfahren für einen Abgaskatalysator (8) einer Brennkraftmaschine (1) mit den folgenden Schritten: - Testeinspritzung von Kraftstoff während des Expansionstakts und/oder während des Auslasstakts der Brennkraftmaschine (1) ,
- Konvertierung mindestens eines Teils des im Abgas der Brennkraftmaschine (1) enthaltenen unverbrannten Kraft- stoffs in dem Abgaskatalysator (8),
- Abgasrückführung von stromabwärts nach dem Abgaskatalysator (8) entnommenem Abgas mit dem nicht konvertierten Kraftstoff der Testeinspritzung in einen Ansaugtrakt (5) der Brennkraftmaschine (1) , - Ermittlung der Leistungserhöhung der Brennkraftmaschine
(1) , die aus der Abgasrückführung des nicht konvertierten Kraftstoffs resultiert,
- Bestimmung der in dem Abgaskatalysator (8) nicht konvertierten Kraftstoffmenge aus der Leistungserhöhung der Brennkraftmaschine (1),
- Bestimmung der Funktionsfähigkeit des Abgaskatalysators (8) aus der nicht konvertierten Kraftstoffmenge.
2. Prüfverfahren nach Anspruch 1, g e k e n n z e i c h n e t d u r c h folgende Schritte
- Ermittlung der Drehbeschleunigung (aKormaι, aTest) der Brennkraftmaschine (1) - Bestimmung der aus der Testeinspritzung resultierenden
Leistungserhöhung aus der Drehbeschleunigung (aNorιtlai, aTest) der Brennkraftmaschine (1) .
3. Prüfverfahren nach mindestens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,dass bei der Testeinspritzung eine vorgegebene Kraftstoffmenge (mTES) ei- gespritzt wird und die Funktionsfähigkeit des Abgaskatalysators (8) in Abhängigkeit von der eingespritzten Kraftstoffmenge (mTEST) bestimmt wird.
4. Prüfverfahren nach mindestens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Abgasrückführrate (AGR) ermittelt wird und die Funktionsfähigkeit des Abgaskatalysators (8) in Abhängigkeit von der Abgasrückführrate (AGR) bestimmt wird.
5. Prüfverfahren nach mindestens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Funktionsfähigkeit des Abgaskatalysators (8) bei verschiedenen Temperaturen ermittelt wird.
6. Prüfverfahren nach mindestens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Temperatur (TLιght-off) ermittelt wird, bei der die Abbaumenge des Abgaskatalysators (8) im wesentlichen einem vorgegebenen Grenzwert entspricht.
7. Prüfeinrichtung für einen Abgaskatalysator (8) einer Brennkraftmaschine (1) mit
einer Einspritzanlage zur Testeinspritzung einer vorgegebenen Kraftstoffmenge während eines Expansionstakts und/oder wäh- rend eines Auslasstakts der Brennkraftmaschine (1) ,
einer Abgasrückführeinrichtung (18) zur Entnahme von Abgas aus dem Abgasstrom der Brennkraftmaschine (1) stromabwärts nach dem Abgaskatalysator (8) und zur Rückführung des entnom- menem Abgases in einen stromaufwärts vor der Brennkraftmaschine (1) befindlichen Ansaugtrakt (5), einer Messeinrichtung (17) zur Erfassung der durch die Testeinspritzung verursachten Leistungserhöhung der Brennkraftmaschine (1) ,
einer Auswertungseinheit (2) zur Bestimmung der Funktionsfä- higkeit des Abgaskatalysators (8) in Abhängigkeit von der eingespritzten Kraftstoffmenge (mTest) und der resultierenden Leistungserhöhung.
8. Prüfeinrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass zur Messung der Temperatur des Abgaskatalysators (8) ein mit der Auswertungseinheit (2) verbundener Temperatursensor (19) vorgesehen ist.
9. Prüfeinrichtung nach Anspruch 7 und/oder Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass die Messeinrichtung zur Ermittlung der Leistungserhöhung der Brennkraftmaschine (1) einen Drehzahlsensor (2) aufweist.
PCT/DE2003/003809 2002-11-21 2003-11-18 Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung WO2004046528A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50304004T DE50304004D1 (de) 2002-11-21 2003-11-18 Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung
EP03767429A EP1576270B1 (de) 2002-11-21 2003-11-18 Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung
US10/923,649 US6877366B2 (en) 2002-11-21 2004-08-20 Test method for an exhaust gas catalytic converter and a corresponding testing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10254477A DE10254477B3 (de) 2002-11-21 2002-11-21 Prüfverfahren für einen Abgaskatalysator und eine entsprechende Prüfeinrichtung
DE10254477.8 2002-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/923,649 Continuation US6877366B2 (en) 2002-11-21 2004-08-20 Test method for an exhaust gas catalytic converter and a corresponding testing device

Publications (1)

Publication Number Publication Date
WO2004046528A1 true WO2004046528A1 (de) 2004-06-03

Family

ID=32318614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003809 WO2004046528A1 (de) 2002-11-21 2003-11-18 Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung

Country Status (4)

Country Link
US (1) US6877366B2 (de)
EP (1) EP1576270B1 (de)
DE (2) DE10254477B3 (de)
WO (1) WO2004046528A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725393B (zh) * 2008-10-20 2013-03-06 通用汽车环球科技运作公司 涡轮增压发动机的减排系统
WO2015110247A3 (de) * 2014-01-21 2015-09-17 Volkswagen Ag Verfahren zur diagnose eines abgaskatalysators sowie kraftfahrzeug
US9593617B2 (en) 2012-12-20 2017-03-14 Volkswagen Aktiengesellschaft Method for diagnosing an exhaust gas catalytic converter, diagnosis device and motor vehicle having such a device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748976B2 (en) * 2005-03-17 2010-07-06 Southwest Research Institute Use of recirculated exhaust gas in a burner-based exhaust generation system for reduced fuel consumption and for cooling
DE102006006303B3 (de) * 2006-02-10 2007-06-28 Siemens Ag Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge
DE102006011822B4 (de) 2006-03-13 2010-05-20 Technische Universität Darmstadt Reaktor für heterogene Gasphasenreaktionen, Vorrichtung zum Testen von Katalysatoren für heterogene Gasphasenreaktionen und Verfahren zum Testen solcher Katalysatoren
DE102006021091B3 (de) * 2006-05-05 2007-12-06 Siemens Ag Verfahren und Vorrichtung zur Diagnose der Wirksamkeit eines Abgaskatalysators
DE102006048227B4 (de) 2006-10-11 2008-08-28 Siemens Ag Verfahren und Vorrichtung zur Ermittlung einer Betriebscharakteristik eines Einspritzsystems sowie ein entsprechend ausgerüsteter Verbrennungsmotor
DE102007007815B4 (de) * 2007-02-16 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7856868B2 (en) * 2007-05-17 2010-12-28 Chrysler Group Llc Method and system for determining the feasibility of an automotive exhaust catalyst
US7937208B2 (en) * 2008-12-09 2011-05-03 Deere & Company Apparatus for measuring EGR and method
WO2011135710A1 (ja) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 内燃機関の触媒劣化検出装置及び触媒劣化検出方法
DE102011103699A1 (de) * 2011-06-09 2012-12-13 Daimler Ag Verfahren zur Überwachung eines in einem Kraftfahrzeug installierten Subsystems
US10488379B2 (en) 2012-10-23 2019-11-26 Cummins Emission Solutions Inc. Uniformity index performance evaluation in an SCR aftertreatement system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516981A1 (de) * 1985-05-10 1986-11-13 Audi AG, 8070 Ingolstadt Verfahren zum ueberpruefen der funktionsfaehigkeit eines abgaskatalysators
DE4100397A1 (de) * 1990-02-10 1991-08-14 Volkswagen Ag Verfahren und anordnung zur ueberwachung des konvertierungsgrads eines katalysators
US6354269B1 (en) * 1999-09-29 2002-03-12 Mazda Motor Corporation Method and system for controlling engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302779C2 (de) * 1993-02-02 1995-10-05 Porsche Ag Verfahren zur Überprüfung der Funktionstüchtigkeit von im Abgasstrang, von mit einer Brennkraftmaschine ausgerüsteten Kraftfahrzeugen eingesetzten Abgaskatalysatoren
DE4337793C2 (de) * 1993-11-05 2002-08-14 Bosch Gmbh Robert Verfahren und Vorrichtung zum Beurteilen des Funktionszustandes eines Katalysators
US5431011A (en) * 1993-12-14 1995-07-11 General Motors Corporation Catalytic converter diagnostic
US5847271A (en) * 1996-05-08 1998-12-08 Chrysler Corporation Catalytic converter efficiency monitor
US5842339A (en) * 1997-02-26 1998-12-01 Motorola Inc. Method for monitoring the performance of a catalytic converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516981A1 (de) * 1985-05-10 1986-11-13 Audi AG, 8070 Ingolstadt Verfahren zum ueberpruefen der funktionsfaehigkeit eines abgaskatalysators
DE4100397A1 (de) * 1990-02-10 1991-08-14 Volkswagen Ag Verfahren und anordnung zur ueberwachung des konvertierungsgrads eines katalysators
US6354269B1 (en) * 1999-09-29 2002-03-12 Mazda Motor Corporation Method and system for controlling engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725393B (zh) * 2008-10-20 2013-03-06 通用汽车环球科技运作公司 涡轮增压发动机的减排系统
US9593617B2 (en) 2012-12-20 2017-03-14 Volkswagen Aktiengesellschaft Method for diagnosing an exhaust gas catalytic converter, diagnosis device and motor vehicle having such a device
WO2015110247A3 (de) * 2014-01-21 2015-09-17 Volkswagen Ag Verfahren zur diagnose eines abgaskatalysators sowie kraftfahrzeug
CN105917091A (zh) * 2014-01-21 2016-08-31 大众汽车有限公司 用于诊断废气催化器的方法以及机动车
KR101777986B1 (ko) 2014-01-21 2017-09-12 폭스바겐 악티엔 게젤샤프트 배기가스 촉매 컨버터의 진단 방법 및 자동차
CN105917091B (zh) * 2014-01-21 2018-11-06 大众汽车有限公司 用于诊断废气催化器的方法以及机动车
US10316770B2 (en) 2014-01-21 2019-06-11 Volkswagen Aktiengesellschaft Method for diagnosing an exhaust gas catalytic converter, and motor vehicle

Also Published As

Publication number Publication date
EP1576270A1 (de) 2005-09-21
US20050016266A1 (en) 2005-01-27
EP1576270B1 (de) 2006-06-21
US6877366B2 (en) 2005-04-12
DE50304004D1 (de) 2006-08-03
DE10254477B3 (de) 2004-06-24

Similar Documents

Publication Publication Date Title
EP3025045B1 (de) Verfahren zur diagnose eines abgaskatalysators sowie kraftfahrzeug
EP1524417B1 (de) Verbrennungsmotor mit Abgasturbolader und Sekundärlufteinblasung, sowie Diagnose und Regelung der Sekundärlufteinblasung
EP1097299B1 (de) VERFAHREN ZUR ÜBERPRÜFUNG DES WIRKUNGSGRADES EINES NOx-SPEICHERKATALYSATORS
EP1090220B1 (de) VERFAHREN ZUR REGENERATION EINES NOx-SPEICHERKATALYSATORS FÜR EINE BRENNKRAFTMASCHINE
EP1576270B1 (de) Prüfverfahren für einen abgaskatalysator und eine entsprechende prüfeinrichtung
DE19843859A1 (de) Katalysatorregenerationsverfahren
DE19801625A1 (de) Diagnose eines NOx-Speicherkatalysators beim Betrieb von Verbrennungsmotoren
DE4330997A1 (de) Verfahren zur Überwachung des Anspringverhaltens eines Katalysatorsystems in einem Kraftfahrzeug
WO2019170623A1 (de) Verfahren zum betreiben eines ottomotors, insbesondere eines kraftfahrzeugs, sowie kraftfahrzeug
DE60108995T2 (de) Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine
DE102018112263A1 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
EP1052385A2 (de) Verfahren zur Diagnose eines kohlenwasserstoffoxidierende Eigenschaften zeigenden Katalysators
DE10303911B4 (de) Verfahren zur Überwachung des Anspringverhaltens eines Abgaskatalysatorsystems
EP1420157B1 (de) Verfahren zur Ermittlung der Einspritzmenge einer Brennkraftmaschine
DE102006014249A1 (de) Verfahren zur Vorsteuerung eines Lambda-Wertes
DE10323869B4 (de) Verfahren zum Ansteuern eines Regenerierventils eines Kraftstoffdampf-Rückhaltesystems
DE102016119816A1 (de) Verfahren und Vorrichtung zur Überwachung eines Sekundärluftsystems
DE102008046719B3 (de) Verfahren und Vorrichtung zum Bestimmen des Ethanol-Anteils des Kraftstoffes in einem Kraftfahrzeug
DE102005058225B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10217376B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102020212725A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Recheneinheit und Computerprogramm
DE10307457A1 (de) Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators einer Brennkraftmaschine
EP1588041B1 (de) Verfahren zur überwachung einer brennkraftmaschine
DE102005029797A1 (de) Verfahren zur Katalysatorüberwachung
EP1565649B1 (de) Verfahren zur ermittlung der einspritzmenge einer brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003767429

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10923649

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003767429

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003767429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP