WO2004043489A1 - Metodo de obtencion de vacunas conjugadas y composiciones vacunales que las contienen. - Google Patents

Metodo de obtencion de vacunas conjugadas y composiciones vacunales que las contienen. Download PDF

Info

Publication number
WO2004043489A1
WO2004043489A1 PCT/CU2003/000013 CU0300013W WO2004043489A1 WO 2004043489 A1 WO2004043489 A1 WO 2004043489A1 CU 0300013 W CU0300013 W CU 0300013W WO 2004043489 A1 WO2004043489 A1 WO 2004043489A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
polysaccharide
comes
protein
saccharide
Prior art date
Application number
PCT/CU2003/000013
Other languages
English (en)
French (fr)
Inventor
Osmir Cabrera Blanco
Maribel Cuello Perez
Victoriano Gustavo Sierra Gonzalez
Carmen Rosa Soto Rodriguez
Miguel Ernesto Martinez Pozo
Original Assignee
Instituto Finlay. Centro De Investigacion-Produccion De Vacunas Y Sueros.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Finlay. Centro De Investigacion-Produccion De Vacunas Y Sueros. filed Critical Instituto Finlay. Centro De Investigacion-Produccion De Vacunas Y Sueros.
Priority to EP03773443A priority Critical patent/EP1582217A1/en
Priority to AU2003281909A priority patent/AU2003281909A1/en
Priority to BR0316271-0A priority patent/BR0316271A/pt
Priority to CA002506090A priority patent/CA2506090A1/en
Publication of WO2004043489A1 publication Critical patent/WO2004043489A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/102Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention is related to the branch of biotechnology and especially to the methods of chemical conjugation for antigenic molecules.
  • meningitidis we find some where Polysaccharides are subjected to a structural modification consisting of a basic hydrolysis with NaOH with the aim of eliminating the O-Acetyl (O-Ac) groups present in them, it has been shown that the concentration of 0.02 N NaOH is capable of eliminating those Meningococcus polysaccharide O
  • Other studies have been carried out with the meningococcus B polysaccharide using concentrations of 2M NaOH where in addition to eliminating O-Ac groups, the generation of active amino groups is achieved, which allowed the replacement of the original acetyl group with an acyl group.
  • the polysaccharide is fragmented using an oxidation with sodium periodate, it is ta generates carbonyl groups that bind to a protein through a reductive amination, using sodium cyanoborohydride as a reducing agent (US 5425946).
  • this method to achieve the substitution of N-acetyl groups with N-acyls carried out employs a basic hydrolysis at a pH between 13-14, (2 M NaOH) and a temperature range of 90 ° -110 ° favors fragmentation of the polysaccharide and runs the risk of causing antigenic effects.
  • the percentage of N-deacetylation can vary from 30 to 100.
  • conjugation methods described so far have involved the activation of PRP in organic solvents, for which it is necessary to form tetra butyl ammonium salts and perform different purification steps, as well as the use of different spacers such as Adipic acid dihydrazide (ADH), 1, 4 di amino butane, amino hexanoic acid, with the use of more than one of them to achieve conjugation.
  • ADH Adipic acid dihydrazide
  • 1, 4 di amino butane 1, 4 di amino butane
  • amino hexanoic acid amino hexanoic acid
  • the PRP is reacted with: oxalic acid and a solution of N-tetrabutylammonium hydroxide; subsequently, it activates the hydroxyl groups of the polysaccharide with carbonyldiimidazole in the presence of dimethyl formamide (DMF) and the product obtained so far is reacted with 1,4-diaminobutane and with bromine acetyl chloride, thus activating this polysaccharide.
  • DMF dimethyl formamide
  • the protein is activated with the N-acetyl homocysteine thiolactone, then Dithiothreitol (DTT) is added to obtain the sulfihydryl group in the protein that will react with the activated polysaccharide.
  • DTT Dithiothreitol
  • the derivatized PRP and the activated Protein are reacted for 18 h and a first protein-polysaccharide conjugate is obtained where the SH groups of the protein and the bromoacetyl group of the polysaccharide are joined.
  • the second polysaccharide which is obtained from S.
  • tetrabutylammonium salt of this polysaccharide is first obtained with Dowex50x2 and N-tetrabutylammonium hydroxide in a column, then the hydroxyl groups with DMF are activated and CDI, reacting with the reagents: 2- (6-aminocaproyl) 4,9-dioxo-1, 12-diaminododecane-naphtalene-1, 5-disulphonic acid salt (ACA-DODAD-NDSA) and S-acetyl mercapto succinic anhydride (SAMSA), so that this second polysaccharide is derivatized.
  • 2- (6-aminocaproyl) 4,9-dioxo-1, 12-diaminododecane-naphtalene-1, 5-disulphonic acid salt (ACA-DODAD-NDSA) and S-acetyl mercapto succinic anhydride (SAMSA) so that this second poly
  • the second polysaccharide is linked (by the SH group generated) to the previous conjugate by bromoacetyl groups present in the polysaccharide part thereof, being formed a conjugate with a structure: Polysaccharide 2 - Spacer - Polysaccharide 1 - Spacer - Protein. Due to the high number of steps required in this method to achieve the activation of the antigens, their yields, prior to conjugation, are low.
  • the technical objective of the present invention is to obtain a method for the conjugation of saccharid antigens using the generation of amino groups in their structure (without causing great effects on their antigenicity) and to bind said groups to the carboxyls of the proteins, as well as the products obtained directly by the use of that method.
  • the present invention consists of a method of conjugation of saccharide antigens for obtaining multivalent vaccine preparations comprising the following steps: a) Treatment of a first saccharide antigen with a base that can be NaOH, KOH or LiOH at a concentration of 0.1 to 0.9 N at a temperature between 40 to 110 ° C, for 3 to 10 hours for the generation of amino groups, so that the antigen is not damaged in its antigenicity; b) In the case of a trivalent preparation, activation of the carboxyl groups of said first antigen with carbodiimide; c) To conjugate the activated carboxyl groups of the antigen obtained from step (b) with a second antigen that can be of a protein or saccharide nature; d) Purify the conjugate obtained in step (c); e) Activation of the carboxyl groups of a third protein antigen that increases the immunogenicity of the saccharide antigen (s), using carbodiimide; f) To obtain a bivalent preparation conjugate the
  • step (a) contains in its structure unions of the amide type and that also said removing comes from a bacterium. It may be this bacterium of the genus Neisseria, particularly Neisseria meningitidis and within it indistinctly of groups A, B or C. The case in which the saccharide mentioned in step (a) comes from a bacterium is also part of the present invention. of the genus Salmonella, particularly of S. typhi and is the polysaccharide Vi.
  • the saccharide antigen comes from a bacterium of the Vibrio genus within it, of the V.cholerae species, and particularly when the saccharide antigen is the lipopolysaccharide of V. cholerae, is also related in the present invention.
  • the method of the present invention is valid when the second protein antigen is a peptide or a protein, which can be obtained naturally, recombinantly or synthetically and can come from viruses, fungi, plants or animals.
  • This peptide or protein can come from bacteria, among which are mentioned: Escherichia coli, Salmonella, Shigella, V. cholerae and N. meningitidis.
  • the method of the present invention is also valid when the second antigen is of a saccharide nature, this antigen can be obtained from a bacterium of the Neisseria genus, particularly Neisseria meningitidis and within it indistinctly the polysaccharides or lipopolysaccharides of groups A, B or C. Also part of the present invention is the case in which the saccharide comes from a bacterium of the genus Salmonella, particularly S. typhi and is the Vi polysaccharide. Likewise, the case in which the saccharide antigen comes from a bacterium of the genus Vibrio and within this, of the species V.
  • the saccharide antigen is the lipopolysaccharide of V. cholerae
  • the method of the present invention is feasible when the second antigen of saccharide nature comes from H. influenzae type b and in particular Poliribosyl Ribitol Phosphate (PRP).
  • PRP Poliribosyl Ribitol Phosphate
  • PRP Poliribosyl Ribitol Phosphate
  • PRP Poliribosyl Ribitol Phosphate
  • the third protein antigen used in the described method is of bacterial origin and can be obtained naturally, recombinantly or synthetically and can come from viruses, fungi, plants or animals.
  • This antigen can come from a bacterium. Within which can be mentioned: ⁇ /. Meningitidis serogroup B, essentially outer membrane proteins, recombinant protein (p64K), Clostrid ⁇ um tetanic, being the tetanus toxoid, diphtheria toxoid, H. influenzae type b essentially outer membrane proteins.
  • ⁇ /. Meningitidis serogroup B essentially outer membrane proteins, recombinant protein (p64K), Clostrid ⁇ um tetanic, being the tetanus toxoid, diphtheria toxoid, H. influenzae type b essentially outer membrane proteins.
  • bivalent and trivalent conjugate vaccines can be obtained by the method described above which involves a relatively short number of steps and in addition the conjugates obtained are found to be effective against the diseases produced by the bacteria from which the antigens present in the vaccine.
  • vaccine compositions obtained directly from the described method
  • a vaccine composition comprising the N. meningitidis C polysaccharide conjugated to the P64k protein.
  • the vaccine composition where the LPS of V. cholerae is conjugated to tetanus toxoid.
  • vaccine compositions of S. typhi Vi polysaccharide conjugates with Shigella proteins and S. typhi Vi polysaccharide covalently linked with S. typhi proteins are included.
  • trivalent vaccine compositions derived from the use of the described method are included.
  • a vaccine composition where the polysaccharide of N. meningitidis C is covalently linked to tetanus toxoid and PRP; a vaccine composition where the polysaccharide of N. meningitidis C is covalently bound to the tetanus toxoid and to the polysaccharide of N. meningitidis A; the trivalent vaccine composition formed by S.
  • typhi Vi polysaccharide covalently bound to Shigella and S. typhi proteins
  • the trivalent vaccine composition formed by the S. typhi Vi polysaccharide covalently linked to Shigella proteins and the V. cholera LPS
  • a vaccine composition where the N. meningitidis C polysaccharide is covalently bound to the tetanus toxoid and the LPS of N. meningitidis B and the trivalent vaccine composition where the polysaccharide of N. meningitidis C is covalently bound to outer membrane proteins of N. meningitidis B and to the polysaccharide of N. meningitidis A.
  • the present invention differs from the The rest of the existing inventions up to the moment in which the conjugate vaccines obtained hereby are obtained from the generation of amino groups in the structure of the saccharide part, which generates a saccharide structure with two different reactive groups in the structure.
  • a pH range of 9 - 1 1 is used (with the use of NaOH in a concentration range of 0.1 to 0.7 N) below 110 °.
  • the ranges used have not been previously reported for this purpose and are below those referred to in the state of the art. Surprisingly under these conditions a high and stable percent of N-deacetylation is achieved.
  • Example 1.1 N-Deacetylation of Neisseria meningitidis polysaccharide O 60 mg of group C meningococcal polysaccharide (PMGC) was dissolved in 15 ml of NaOH in concentrations of 0.1 to 0.9 N, placed in the oven at 105 ° C for 5 hours . It was subsequently cooled to room temperature and the pH was neutralized with 1: 2 hydrochloric acid (V / V). The presence of free amino groups in the PMGC was determined by the technique that employs o-phthaldialdehyde (OPA), resulting in the generation of amino groups in a phased manner as the concentration of NaOH increases, as shown in Table 1. . Table 1: Determination of amino groups generated in the group C meningococcal polysaccharide product of the N-deacetylation of C-5.
  • OPA o-phthaldialdehyde
  • Example 1.2 Coupling of group C meningococcal polysaccharide modified with
  • the first peak detected at 206 nm was collected and coincided with the peak eluted at 280 nm, to which the protein concentration was determined by Lowry's method using bovine seroalbumine (BSA) and acid polysaccharide content as a standard sialic by the resorcinol method.
  • BSA bovine seroalbumine
  • the resulting conjugates were stored at 4 ° C with the addition of 0.01% thimerosal until later use.
  • Example 1.3 Procedure for immunization.
  • mice of the Balb / c line 8-10 weeks old were inoculated intraperitoneally with 3 doses (0, 14 and 28 days; each dose contained a polysaccharide concentration of 10 ug of polysaccharide) of each of the conjugates prepared in example 2. Prior to each inoculation and at 7 and 14 days after the last inoculation the animals were taken blood obtaining the sera to be evaluated in the antibody and bactericide determination tests.
  • Example 1.4 Determination of IgG antibodies in mice by the ELISA method. This technique was performed on Maxisorp plates (Nunc) with a coating of Poly-L Lysine (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a humid chamber, then the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of PMGC (5 ⁇ g / ml) or VME (according to interest) by adding 100 ⁇ l / well and left to incubate 4 hours in a humid chamber at 4 ° C The plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) by adding 100 ⁇ l / well and left incubating 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate for 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of the second antibody consisting of a mouse anti-IgG produced in peroxidase-conjugated ram (Sigma No.
  • Example 1.5 Determination of subclasses of IgG antibodies in mice by the ELISA method.
  • a biotin-streptavidin amplification ELISA was used.
  • Flat-bottom 96-well polystyrene plates (Maxisorp, Nunc) were used, which were coated with Poly-L-Lysine at a concentration of 3 ⁇ g / ml diluted in PBS, incubated 30 minutes at room temperature. The plates were washed three times with PBS. A second coating with PMGC or VME (according to interest) was incubated at 4 ° C overnight and blocked with PBS + BSA + Tween 20.
  • Example 1.6 Determination of bactericidal antibodies.
  • Example 2 Obtaining bivalent vaccines from the lipopolysaccharide of V. cholera.
  • Table 3 Determination of amino groups generated in the LPS product of the N-deacetylation of fatty acids of Lipid A.
  • Example 2.2 Coupling of the Vibrio cholerae lipopolysaccharide modified with NaOH to tetanus toxoid as carrier protein.
  • the first peak detected at 206 nm was collected and coincided with the peak eluted at 280 nm, to which the protein concentration was determined by the Lowry method using the BSA and the polysaccharide content as a standard by the Phenol method. Sulfuric.
  • the resulting conjugates were stored at 4 ° C with the addition of 0.01% thimerosal until later use. The results obtained are shown in table 4. Table 4: Results of the conjugation process.
  • Example 2.3 Determination of toxicity, by the Limulus Amebosites Used (LAL) method.
  • the toxicity of lipopolysaccharides was determined using the Limulus Amebocyte Lysate (LAL) test by the chromogenic method, Coatest Endotoxin® kit of the Swedish company Chromogenix AB. The test was run according to the manufacturer's technique, with a standard curve between 0.15 and 1.2 EU (Endotoxin Units) for the option in test tubes using a Stuart Scientific dry block heater for 24 tubes. For the development of the method, 10 x 75 mm borosilicate reaction tubes (Pyrotubes®) from the Associates of Cape Cod company, 15 mL centrifuge tubes of Costar brand polystyrene were used for the standard curve and Rainin pipette tips. All these materials were free of endotoxins.
  • LAL Limulus Amebocyte Lysate
  • Coatest Endotoxin® kit of the Swedish company Chromogenix AB The test was run according to the manufacturer's technique, with a standard curve between 0.15 and 1.2 EU (En
  • Example 2.4 ELISA to determine the antigenicity of the LPS of V. cholera after conjugate.
  • Example 2.5 Procedure for immunization. Groups of 8 male white mice of the Balb / c line (8-10 weeks old) were inoculated intraperitoneally with 3 doses (0, 7 and 28 days; each dose contained a concentration of 10 ug LPS) of each of the conjugates prepared in example 2. Prior to each inoculation and 7 days after the last inoculation, blood was taken from the animals obtaining the sera to be evaluated in the immunochemical tests.
  • Example 2.6 Determination of IgG antibodies in mice by the ELISA method. This technique was performed on Maxisorp plates (Nunc) with a coating of Poly-L Lysine (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a humid chamber, then the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of LPS (5 ⁇ g / ml) or protein (according to interest) by adding 100 ⁇ l / well and left to incubate 4 hours in a humid chamber at 4 ° C The plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) by adding 100 ⁇ l / well and left incubating 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of the second antibody consisting of a mouse anti-IgG produced in peroxidase-conjugated ram (Sigma No.
  • Example 3 Obtaining bivalent vaccines from the S. typhi Vi polysaccharide.
  • Example 3.1 N-Deacetylation of S. typhi Vi polysaccharide.
  • Vi polysaccharide 20 mg was dissolved in 5 ml of NaOH, placed in the oven in a temperature range that varied from 50 to 60 ° C for a time that ranged between 8 and 12 hours. It was subsequently cooled to room temperature and the pH was neutralized with 1: 2 hydrochloric acid (V / V). The presence of free amino groups in the Vi polysaccharide was determined by the OPA technique, resulting in the generation of 1.2 moles of amino groups / ml of solution.
  • Example 3.2 Coupling of the Vi polysaccharide modified with NaOH to different carrier proteins.
  • the first peak detected at 206 nm was collected and coincided with the peak eluted at 280 nm, at which the protein concentration was determined by the Lowry method using the BSA as a standard and the polysaccharide content was estimated by an ELISA method mounted for this purpose.
  • the resulting conjugates were stored at 4 ° C with the addition of 0.01% thimerosal until later use.
  • S. typhi and VME proteins of N. meningitidis serogroup B the same procedure described for TT was followed. The results are presented in the following table.
  • VMEs Salmonella typhi outer membrane vesicle
  • VMEm External membrane vesicle of N. meningitidis serogroup B.
  • mice of the Balb / c line 8-10 weeks old were inoculated intraperitoneally with 2 doses (0 and 28 days; each dose contained a concentration of 10 ug of Vi) of each of the conjugates prepared in example 2. Prior to each inoculation and 14 days after the last inoculation, blood was taken from the animals obtaining the sera to be evaluated in the immunochemical tests.
  • Example 3.4 Determination of IgG antibodies in mice by the ELISA method. This technique was performed on Maxisorp plates (Nunc) with a poly-L-lysine coating (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a humid chamber, then the plate was washed 4 times with PBS pH : 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of Vi polysaccharide (5 ⁇ g / ml) or protein (according to interest) by adding 100 ⁇ l / well and allowed to incubate 4 hours in a chamber wet at 4 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) by adding 100 ⁇ l / well and left incubating 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of the second antibody consisting of a mouse anti-lgG produced was added in peroxidase-conjugated ram (Sigma No. 3742) leaving for 1 hour at 37 oC, subsequently after washing the plate, the substrate (OPD + H2O2) was added, waiting 15 min. at room temperature and the reaction was stopped by adding 50 ⁇ l / well of 2N sulfuric acid, OD values were read at 492 nm in a Titertek Multieskam. The results are reflected in Figure 9.
  • Example 4 Obtaining trivalent vaccines from the Neisseria meningitidis C polysaccharide and Haemophilus influenzae polysaccharide.
  • Example 4.1 N-Deacetylation of Neisseria meningitidis polysaccharide O 60 mg of PMGC was dissolved in 15 ml of NaOH, placed in the oven for a period of time ranging from 3 to 4.5 hours. It was subsequently cooled to room temperature and the pH was neutralized with 1: 2 hydrochloric acid (V / V). The presence of free amino groups in the PMGC was determined by the OPA technique, resulting in 6.47 mM of amino groups.
  • Example 4.2 Activation of the hydroxyl groups of the H. influenzae type b polysaccharide (PRP).
  • This activated PRP was determined aminos groups by the OPA technique resulting in a concentration of 4.14 mmol of NH 2 / mg of PRP.
  • Example 4.3 Coupling of the modified group C meningococcal polysaccharide to the activated PRP.
  • PMGC in 3 ml of PBS at pH: 7.4; modified in Example 4.1, 30 mg of EDAC was added and allowed to stir for 25 min. at room temperature, after this time the activated PRP in example 4.2 was added and stirred for 3 h. After this time, it was diafiltered against PBS at pH: 7.4, performing the diafiltration process 5 times against 50 ml of the buffer on each occasion, at the end of the last diafiltration it was left at 2 ml and stored at 4 ° C until subsequent use.
  • Example 4.4 Coupling of conjugated polysaccharides to the carrier protein. 10 ml of a solution of Tetanus Toxoid (TT) of a concentration of 1 mg / ml (determined by Lowry's method) was taken, 50 mg of EDAC was added and allowed to stir at room temperature for 15 min., subsequently 2 ml of the polysaccharide solution obtained in example 4.3 was added and it was allowed to stir for 2.0 to 4.0 hours at room temperature; subsequently it was dialyzed overnight at 4 ° C against PBS at pH: 7.4 (5 L), making 2 buffer changes, the next day it was purified by a 16 x 100 mm column with Sepharose CL4B, the buffer used to elute the peak was PBS pH: 7.4.
  • TT Tetanus Toxoid
  • the first peak detected at 280 nm was collected, at which the protein concentration was determined by the Lowry method using the BSA as standard, the PMGC content by sialic acid by the resorcinol method and the PRP content determining ribose by the orcinol method.
  • the resulting conjugates were stored at 4 ° C with the addition of 0.02% thimerosal until later use.
  • Example 4.5 Procedure for immunization. Groups of male white mice of the Balb / C line (8-10 weeks old) were administered intraperitoneally 3 doses (0, 14 and 28 days; each dose contained a polysaccharide concentration of 10 ug of PMGC) of the conjugate prepared in example 4. At 12 days after the last inoculation, the animals were taken blood to obtain the sera to be evaluated in the immunogenicity and bactericidal assays.
  • Example 4.6 Determination of antibodies in mice by the ELISA method: This technique was performed on Maxisorp plates (Nunc) with a coating of Poly-L Lysine (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a humid chamber, then the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of PMGC or PRP (5 ⁇ g / ml) by adding 100 ⁇ l / well and left to incubate 4 hours in a humid chamber at 4 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) adding 100 ⁇ l / well, left incubating 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of each sample was added according to the working protocol and allowed to incubate for 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of the second antibody consisting of a mouse anti-IgG in peroxidase-conjugated ram (Sigma No. 3742) was added leaving it for 1 hour at 37 ° C, subsequently after washing the plate was added the substrate (OPD + H2O2), expected 15 min. at room temperature and the reaction was stopped by adding 50 ⁇ l / well of 2N sulfuric acid and the OD values at 492 nm of the plate were read on a Titertek Multiskam® device.
  • the values of Abs They are shown in Figures 10, 11 and 12.
  • Example 4.7 Determination of subgroups of IgG antibodies in mice by the ELISA method.
  • a biotin-streptavidin amplification ELISA was used.
  • Flat-bottom 96-well polystyrene plates (Maxisorp, Nunc) were used, which were coated with Poly-L-Lysine at a concentration of 3 ⁇ g / ml diluted in PBS, incubated 30 minutes at room temperature. The plates were washed three times with PBS. A second coating with the polysaccharide in question (Poly C or PRP) was incubated at 4 ° C overnight and blocked with PBS BSA Tween 20.
  • Example 5 Obtaining bivalent vaccines from the Neisseria meningitidis serogroup A polysaccharide.
  • Example 5.1 N-Deacetylation of the Neisseria meningitidis serogroup A polysaccharide 30 mg of group A meningococcus polysaccharide (PMGA) was dissolved in 8 ml of NaOH in a concentration range ranging from 0.5 to 0.9 N, placed in the oven in a temperature range that ranged between 40 and 60 ° C during a time range that can be from 1 to 8 hours. It was subsequently cooled to room temperature and the pH was neutralized with 1: 2 hydrochloric acid (V / V). The presence of free amino groups in the PMGA was determined by the OPA technique, resulting in the generation of 2.5 moles of amino groups / ml of solution.
  • PMGA group A meningococcus polysaccharide
  • Example 5.2 Coupling of the modified group A meningococcus polysaccharides from NaOH to tetanus toxoid.
  • the first peak detected at 206 nm was collected and coincided with the peak eluted at 280 nm, at which the protein concentration was determined by Lowry's method using as standard the BSA and the polysaccharide content by phosphate determination.
  • the resulting conjugates were stored at 4 ° C with the addition of 0.01 % thimerosal until later use and the results of the conjugation process are shown in table 6.
  • mice of the Balb / c line 8-10 weeks old were inoculated intraperitoneally with 2 doses (0 and 28 days; each dose contained a concentration of 10 ug of PMGA) of each of the conjugates prepared in example 2. Prior to each inoculation and 14 days after the last inoculation, blood was taken from the animals obtaining the sera to be evaluated in the immunochemical tests.
  • Example 5.4 Determination of IgG antibodies in mice by the ELISA method. This technique was performed on Maxisorp plates (Nunc) with a poly-L-lysine coating (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a humid chamber, then the plate was washed 4 times with PBS pH : 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of PMGA (5 ⁇ g / ml) or TT (according to interest) by adding 100 ⁇ l / well and left to incubate 4 hours in a humid chamber at 4 ° C.
  • PMGA 5 ⁇ g / ml
  • TT accordinging to interest
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) by adding 100 ⁇ l / well and left incubating 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of the second antibody consisting of a mouse anti-IgG produced in peroxidase-conjugated ram (Sigma No. 3742) was added leaving it for 1 hour at 37 ° C, subsequently after washing from the plate, the substrate (OPD + H 2 O 2 ) was added, waiting 15 min. at room temperature and the reaction was stopped by adding 50 ⁇ l / well of 2N sulfuric acid, OD values were read at 492 nm in a Titertek Multieskam.
  • Example 6 Obtaining bivalent vaccines from Neisseria meningitidis serogroup B lipopolysaccharide.
  • Example 6.1 N-Deacetylation of Neisseria meningitidis serogroup B Lipopolysaccharide.
  • Table 7 Determination of amino groups generated in the LPS product of the N-deacetylation of fatty acids of Lipid A.
  • Example 6.2 Coupling of the Neisseria meningitidis serogroup B lipopolysaccharide modified with NaOH to tetanus toxoid as carrier protein.
  • the first peak detected at 206 nm was collected and coincided with the peak eluted at 280 nm, to which the protein concentration was determined by the Lowry method using the BSA and the polysaccharide content as a standard by the Phenol method. Sulfuric.
  • the resulting conjugates were stored at 4 ° C with the addition of 0.01% thimerosal until later use. The results obtained are shown in table 8.
  • Example 6.3 Determination of toxicity, by the Limulus Amebosite Lysate (LAL) method.
  • the toxicity of lipopolysaccharides was determined using the Limulus Amebocyte Lysate (LAL) test by the chromogenic method, Coatest Endotoxin® kit of the Swedish company Chromogenix AB. The test was run according to the manufacturer's technique, with a standard curve between 0.15 and 1.2 EU (Endotoxin Units) for the option in test tubes using a Stuart Scientific dry block heater for 24 tubes. For the development of the method, 10 x 75 mm borosilicate reaction tubes (Pyrotubes®) from the Associates of Cape Cod company, 15 mL centrifuge tubes of Costar brand polystyrene were used for the standard curve and Rainin pipette tips. All these materials were free of endotoxins.
  • LAL Limulus Amebocyte Lysate
  • Coatest Endotoxin® kit of the Swedish company Chromogenix AB The test was run according to the manufacturer's technique, with a standard curve between 0.15 and 1.2 EU (En
  • the native LPS showed a value of 12140 EU / ⁇ g while the LPS treated under the conditions set forth in the example 1 showed values of 5.0 EU / ⁇ g, which represents a reduction of more than 2000 times the initial toxicity.
  • Example 6.4 Procedure for immunization. Groups of 8 male white mice of the Balb / c line (8-10 weeks old) were inoculated intraperitoneally with 2 doses (0 and 28 days; each dose contained a concentration of 10 ug LPS) of each of the Conjugates prepared in Example 2. Prior to each inoculation and 14 days after the last inoculation, the animals were taken blood to obtain the sera to be evaluated in the immunochemical tests.
  • Example 6.5 Determination of IgG antibodies in mice by the ELISA method. This technique was performed on Maxisorp plates (Nunc) with a poly-L-lysine coating (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a humid chamber, then the plate was washed 4 times with PBS pH : 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of LPS (5 ⁇ g / ml) or TT (depending on interest) by adding 100 ⁇ l / well and left to incubate 4 hours in a humid chamber at 4 ° C.
  • LPS 5 ⁇ g / ml
  • TT depending on interest
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) by adding 100 ⁇ l / well and left incubating 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of the second antibody consisting of a mouse anti-IgG produced in peroxidase-conjugated ram (Sigma No. 3742) was added leaving it for 1 hour at 37 oC, subsequently after washing from the plate, the substrate (OPD + H2O2) was added, waiting 15 min.
  • Example 7 Obtaining trivalent vaccines from the Neisseria meningitidis C polysaccharide and the Neisseria meningitidis A polysaccharide.
  • Example 7.1 N-Deacetylation of Neisseria meningitidis polysaccharide O 60 mg of PMGC was dissolved in 15 ml of NaOH and placed in the oven. It was subsequently cooled to room temperature and the pH was neutralized with 1: 2 hydrochloric acid (V / V). The presence of free amino groups in the PMGC was determined by the OPA technique, resulting in 6.47 mM of amino groups.
  • Example 7.2 N-Deacetylation of the Neisseria meningitidis serogroup A polysaccharide.
  • 30 mg of group A meningococcus polysaccharide (PMGA) was dissolved in 8 ml of NaOH and placed in the oven for the time determined in the previous example for this polysaccharide. It was subsequently cooled to room temperature and the pH was neutralized with 1: 2 hydrochloric acid (V / V). The presence of free amino groups in the polysaccharide was determined by the OPA technique, resulting in the generation of 2.5 moles of amino groups / ml of solution.
  • Example 7.3 Coupling of the modified group C meningococcal polysaccharide to the activated group A meningococcal polysaccharide.
  • Example 7.4 Coupling of conjugated polysaccharides to the carrier protein. 5 ml of a solution of Tetanus Toxoid (TT) of a concentration of 1 mg / ml (determined by Lowry's method) was taken, 50 mg of EDAC was added and allowed to stir at room temperature for 15 min., subsequently 2 ml of the polysaccharide solution obtained in Example 7.3 was added and allowed to stir between 2.0 and 4.0 hours at room temperature; subsequently it was dialyzed overnight at 4 ° C against PBS at pH: 7.4 (5 L), making 2 buffer changes, the next day it was purified by a 16 x 100 mm column with Sepharose CL4B, the buffer used to elute the peak was PBS pH: 7.4.
  • TT Tetanus Toxoid
  • the first peak detected at 280 nm was collected, to which the protein concentration was determined by the Lowry method using the BSA as standard, the PMGC content by sialic acid by the resorcinol method and the PMGA content determining PO 4 .
  • the resulting conjugates were stored at 4 ° C with the addition of 0.02% of thimerose until further use.
  • PMGA group A meningococcal polysaccharide
  • PMGC group C meningococcal polysaccharide
  • Example 7.5 Procedure for immunization.
  • mice of the Balb / C line 8-10 weeks old were given intraperitoneally 2 doses (0 and 28 days; each dose contained a polysaccharide concentration of 10 ug PMGC) of the conjugate prepared in the example "7.4". Prior to each immunization and 14 days after the last inoculation, the animals were taken blood to obtain the sera to be evaluated in the immunogenicity tests.
  • Example 7.6 Determination of antibodies in mice by the ELISA method: This technique was performed on Maxisorp plates (Nunc) with a poly-L-lysine coating (100 ⁇ l / well) followed by a 1 hour incubation at room temperature in a wet chamber, the plate was subsequently washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a PMGC or PMGA solution (5 ⁇ g / ml) (depending on interest) adding 100 ⁇ l / well and left to incubate 4 hours in a humid chamber at 4 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml Tween-20 per liter of buffer and coated with a solution of glutaraldehyde (in 0.015% PBS) adding 100 ⁇ l / well, allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times with PBS pH: 7.4 plus 0.5 ml of Tween-20 per liter of buffer and coated with a gelatin solution (100 ⁇ g / ml) by adding 100 ⁇ l / well and allowed to incubate 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and 100 ⁇ l / well of each sample was added according to the working protocol and allowed to incubate for 1 hour in a humid chamber at 37 ° C.
  • the plate was washed 4 times and (100 ⁇ l / well) antibody consisting of a mouse anti-lgG in peroxidase-conjugated ram (Sigma No. 3742) was added leaving it for 1 hour at 37 ° C, subsequently after washing the plate was added the substrate (OPD + H2O2), expected 15 min. at room temperature and the reaction was stopped by adding 50 ⁇ l / well of 2N sulfuric acid and the OD values at 492 nm of the plate were read on a Titertek Multiskam® device.
  • the figure shows how the values of Abs. at 492 nm, obtained in the sera of animals immunized (3 doses at 0, 14 and 28 days) with the group C meningococcal polysaccharide (PMGC) activated with 0.7N NaOH and covalently bound to the Tetanus Toxoid and VME are higher than those obtained for the conjugate that contains P64K as a carrier protein.
  • the values of Abs. obtained for the 3 conjugates are superior to those obtained for the native polysaccharide; observing in this way the first indication of change of thymus dependence of the PMGC after conjugate, by the method described.
  • This figure shows the results obtained by making the determination of anti-VME IgG antibodies in the sera of animals immunized with: Placebo, VME and the conjugate obtained with PMGC and these proteins.
  • the titers of anti-VME IgG antibodies are maintained in the sera of the immunized animals and although a small decrease in Abs values can be seen.
  • the VME does not suffer significant damage to its antigenic properties.
  • Figure 3 Determination of subclasses of IgG (lgG1, lgG2a) anti PMGC.
  • the figure shows the results obtained in the determination of the subclasses of IgG antibodies (lgG1 and lgG2a) against PMGC in the samples of sera from the mice that were administered the conjugates of PMGC with TT and VME obtained by our procedure, thus as, the results obtained in the sera of animals immunized with the native PMGC are presented.
  • Figure 4 Determination of subclasses of IgG (lgG1, lgG2a) anti VME.
  • Figure 6 Determination of bactericidal antibodies against N. meningitidis serogroup B.
  • the figure shows the results of the determination of bactericidal antibodies against N. meningitidis serogroup B and it can be seen that at 14 days, after inoculating the first dose to the animals, a bactericidal activity similar to the one obtained with the VME and later it is observed how this bactericidal activity persists in the sera of the animals that were inoculated with the conjugate, not so, for the VME where there is a tendency to decrease them.
  • This result indicates that, as for N. meningitidis serogroup C, this conjugate protects against N. meningitidis serogroup B.
  • Figure 7 Determination of antigenicity of the LPS conjugated to TT.
  • the antibodies present in the serum of humans immunized with the attenuated strain of V. cholerae recognized the conjugate obtained in our laboratory and showed Abs values. (492 nm) higher than those obtained for native LPS samples.
  • Figure 8 Determination of anti-LPS IgG antibodies of V. cholerae.
  • sera from animals immunized with the conjugate (LPS-TT) obtained in our laboratory showed Abs values. (492 nm) higher than those obtained in the sera of animals immunized with LPS and placebo.
  • Figure 9 Determination of IgG antibodies against polysaccharide Vi.
  • a superior anti-IgG response was obtained in the group of animals immunized with the native Vi polysaccharide with respect to the groups immunized with the conjugates.
  • Antibody titers for these last groups of animals were increased from 28 days after the second dose was administered, until reaching the maximum absorbance value at time 35, while the group of animals immunized with the native Vi polysaccharide did not show increase after the 2nd dose.
  • FIG. 10 Determination of anti PMGC IgG antibodies (PRP-PMGC-TT conjugates).
  • N. meningitidis serogroup C IgG anti-polysaccharide antibodies As can be seen in this figure, when the generation of N. meningitidis serogroup C IgG anti-polysaccharide antibodies is determined in the sera of the mice, it is observed that Abs values are obtained. elevated in the sera of mice immunized with the conjugate above the Abs. obtained for the rest of the samples under study (serum of mice immunized with PBS and serum of mice immunized with polysaccharide native to N. meningitidis serogroup C). It can also be seen that there is seroconversion of the immune response induced by the conjugate since a response is obtained that exceeds twice the initial response.
  • Figure 11 Determination of anti-PRP IgG antibodies (PRP-PMGC-TT conjugates).
  • PRP-PMGC-TT conjugates the response found in the sera of the animals immunized with the conjugate are superior from the day 14 which is when the second dose is inoculated to the animals under study and here in this study it can also be seen that there is seroconversion of the immune response against H. influenzae type b.
  • Figure 12 Determination of anti TT IgG antibodies (PRP-PMGC-TT conjugate). The figure shows a determination of anti TT IgG antibodies generated in the sera of the mice under study and here we can see that the anti TT response in animals immunized with the conjugate is high, which leads us to think that the protein does not It was affected during the conjugation process and it maintains its immunogenic properties.
  • the pH and temperature ranges used in the method decrease the chances of fragmentation of the polysaccharide, as well as the chances of affecting the antigenic properties.
  • the formation of the tretabutylammonium salts of the polysaccharides to be conjugated is eliminated, as well as avoiding the use of multiple steps for the derivatization thereof; which makes the method be carried out in a reduced time and at a low cost.
  • the process of activation of the antigens, for a trivalent vaccine consists of few steps, not being necessary to use complex molecules such as 2- (6- aminocaproyl) -4,9-dioxo-1, 12-diaminododecane-naphtalene- 1,5-disulphonic acid salt (ACA-DODAD-NDSA) and S-acetyl mercapto succinic anhydride (SAMSA), nor the intermediate purification steps necessary for the removal of residual reagents.
  • an increase in the performance of the antigens is favored, as well as a decrease in the number of exogenous substances present in the vaccine formulation, which are not of interest. All this makes it possible to reduce intermediate controls throughout the process and in the final vaccine product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La presente invención está relacionada con la rama de la biotecnología y en especial con los métodos de conjugación química para moléculas antigénicas. Se describe un método para la conjugación de antígenos sacarídicos. La invención se basa en la generación de grupos aminos en una estructura sacarídica, obteniéndose un sacárido con dos grupos funcionales diferentes y su uso para la unión de proteínas al sacárido. También se incluyen los conjugados que resultan ser efectivos contra enfermedades bacterianas y que fueron obtenidos por el método antes mencionado.

Description

MÉTODO DE OBTENCIÓN DE VACUNAS CONJUGADAS Y COMPOSICIONES
VACUNALES QUE LAS CONTIENEN
Sector Técnico La presente invención está relacionada con la rama de la biotecnología y en especial con los métodos de conjugación química para moléculas antigénicas.
Técnica Anterior
Se ha demostrado en estudios en animales, que los polisacáridos bacterianos son los antígenos de mayor virulencia. Por tal motivo surgieron vacunas compuestas por polisacáridos capsulares purificados, pero se demostró en varios ensayos que los mismos son moléculas Timo Independientes (TI), lo cual trae como consecuencia que no sean inmunogénicas en niños menores de dos años (Lepow, M.L. et al. Persistence of antibody following immunization of children with group A and group C meningococcal polysaccharides. Pediatrics. 1977. 60: 673-80). Con la finalidad de obtener productos vacunales más eficientes en niños pequeños, contra diferentes bacterias se desarrollaron múltiples estrategias de trabajo entre las que se destaca la unión covalente de los polisacáridos o sus fragmentos a proteínas portadoras, como es el caso de las vacunas que ya existen comercialmente contra Haemophilus influenzae tipo b (Hib). (Decker, M.D. et al. Comparative trial in infants for four conjugates Haemophilus influenzae type b vaccines. J. Pediatrics. 1992. 120 (2) part I: 184-189.; Eskola, J. et al. Ten years' experience with Haemophilus influenzae type b (Hib) conjúgate vaccines in Finland. Rev. Med. Microbiol. 1996. 7:231-41 ). Los trabajos de conjugación también se han desarrollado en otras moléculas como el polisacárido de Neisseria meningitidis B o C (Richmond, P.C. et al. Meningococcal serogroup C conjúgate vaccine is immunogenic in infancy and primes for memory. J. Infecí. Dis. 1999. 179:1569-1572; Borrow, R. et al. Meningococcal serogroup C- specific IgG antibody responses and serum Bactericidal titres in children following vaccination with a meningococcal A/C polysaccharide vaccine. FEMS Immunology and Medical Microbiology. 2000. 28: 79-85).
En la literatura actual pueden encontrarse muchos trabajos sobre antígenos polisacarídicos conjugados a proteínas por diversos métodos como es por ejemplo la Pat. USA No. 4 673 574 donde se describe el uso de un polisacárido capsular bacteriano conjugado a una proteína portadora para formar un compuesto inmunogénico. Otro ejemplo se describe en la Pat. USA No. 4 356 170 donde se utiliza un polisacárido obtenido a partir de un cultivo microbiano de N. meningitidis serogrupo A y se une mediante enlace covalente a una proteína inmunogénica. De manera general en la actualidad los métodos empleados para la conjugación de polisacáridos se han caracterizado por trabajar en dos direcciones fundamentales. La primera relacionada con la obtención de fragmentos del polisacárido; y la segunda donde se utilizan los grupos funcionales presentes en la cadena polisacarídica (Martínez JC. et al. Preparación de Oligosacáridos de N. meningitidis serogrupo C por hidrólisis acida. Biotecnología Aplicada. 1999. 16:25-28; Pawlowski A. et al. Preparation of pneumococcal capsular polysaccharide-protein conjúgate vaccines utilizing new fragmentation and conjugation technologies. Vaccine. 2000. 18(8): 1873- 85; Cabrera O. y col. Fragmentación del polisacárido de Neisseria meningitidis serogrupo C para su uso en vacunas conjugadas. VacciMonitor. 2001.10 (3): 1-6). La tabla A expresa de forma resumida las características principales de los métodos empleados hasta la actualidad.
Tabla A. Principales métodos de conjugación. Características generales.
Figure imgf000004_0001
Figure imgf000005_0001
Figure imgf000006_0001
Leyenda:
Figure imgf000006_0002
Existen varios métodos para la conjugación de polisacáridos a proteínas portadora. En el caso de que el polisacárido sea el PRP de H. influenzae, encontramos métodos que se caracterizan por que se forma primero la sal de tetrabutilamonio del PRP, posteriormente se activan los grupos hidroxilos con Carbonil diímidazol (CDI), se introduce el 1 ,4 di-amino butano, y por último se introduce un Bromuro, el cual será el responsable de la unión con la proteína. La proteína que se va a emplear para la conjugación se activa previamente con N-Acetilhomocisteína tiolactona lo que genera un grupo SH" que reacciona con el Bromuro del polisacárido. En los métodos de conjugación realizados con polisacáridos provenientes de N. meningitidis encontramos algunos donde los polisacáridos son sometidos a una modificación estructural consistente en una hidrólisis básica con NaOH con el objetivo de eliminar los grupos O-Acetilos (O-Ac) presentes en estos. Se ha demostrado que la concentración de NaOH 0.02 N es capaz de eliminar esos grupos del polisacárido del meningococo O Otros estudios se han realizado con el polisacárido del meningococo B empleando concentraciones de NaOH 2M donde además de eliminar los grupos O- Ac se logra la generación de grupos aminos activos, los cuales permitieron la sustitución del grupo acetilo original por uno acilo. Posteriormente se fragmenta el polisacárido empleando una oxidación con peryodato de sodio, esta genera grupos carbonilos que se unen a una proteína por medio de una aminación reductiva, utilizando como agente reductor al cianoborohidruro de sodio (US 5425946).
Sin embargo vale señalar que este método para lograr la sustitución de los grupos N- acetilos por N-acilos realizada emplea una hidrólisis básica a un pH entre 13-14, (NaOH a 2 M) y un rango de temperatura de 90°-110° favorece la fragmentación del polisacárido y se corre el riesgo de provocar afectaciones antigénicas. Por otra parte el porciento de N-desacetilacion puede variar desde un 30 hasta un 100.
Los métodos de conjugación descritos hasta el momento han implicado la activación del PRP en solventes orgánicos, para lo cual se hace necesario la formación de sales de tetra butil amonio y la realización de diferentes pasos de purificación, así como el empleo de diferentes espaciadores como la Dihidrazida del ácido adípico (ADH), el 1 ,4 di amino butano, el ácido amino hexanoico, siendo frecuente el empleo de más de uno de ellos para lograr la conjugación.
Otros autores han trabajado en la conjugación de dos polisacáridos y una proteína como es el caso de unir el PRP al polisacárido de Streptococcus pneumoniae tipo 6a y estos unirlos al complejo de proteínas de membrana externa de N. meningitidis serogrupo B (Pat. Europea No. 0 534 764 A1 ).
Para la obtención de este producto se ha empleado el siguiente método: primeramente ponen a reaccionar el PRP con: ácido oxálico y una solución de hidróxido de N-tetrabutilamonio; posteriormente activa los grupos hidroxilos del polisacárido con carbonildiímidazol en presencia de dimetil formamida (DMF) y el producto obtenido hasta aquí se pone a reaccionar con el 1 ,4-diaminobutano y con cloruro de bromo acetilo, quedando de esta manera activado este polisacárido. Por otra parte se activa la proteína con el N-acetil homocisteina tiolactona, después, se añade Ditiotreitol (DTT) para obtener el grupo sulfihidrilo en la proteína que será quien reaccione con el polisacárido activado. En este caso se ponen a reaccionar el PRP derivatizado y la Proteína activada por 18 h y se obtiene un primer conjugado proteína-polisacárido donde se unen los grupos SH de la proteína y el grupo bromoacetilo del polisacárido. Posteriormente se activa el segundo polisacárido (que es obtenido de S. pneumoniae 6a), para lo cual se obtiene primero la sal de tetrabutilamonio de este polisacárido con Dowex50x2 e hidróxido de N- tetrabutilamonio en una columna, posteriormente se activan los grupo hidroxilos con DMF y CDI, poniéndose a reaccionar con los reactivos:2-(6-aminocaproyl)4,9-dioxo- 1 ,12-diaminododecane-naphtalene-1 ,5-disulphonic acid salt (ACA-DODAD-NDSA) y S-acetyl mercapto succinic anhydride (SAMSA), quedando de esa forma derivatizado este segundo polisacárido. El segundo polisacárido se une (por el grupo SH generado) al conjugado anterior por grupos bromoacetilos presentes en la parte polisacarídica del mismo, quedando formado un conjugado con una estructura: Polisacárido 2 - Espaciador - Polisacárido 1 - Espaciador - Proteína. Debido al número elevado de pasos necesarios en este método para lograr la activación de los antígenos los rendimientos de los mismos, previo a la conjugación, son bajos.
Todos los métodos existentes hasta el momento emplean para la conjugación, grupos carbonilos originados en los polisacáridos por la fragmentación de los mismos, grupos carboxilos o hidroxilos presentes en la estructura carbonada de los polisacáridos y los grupos aminos o carboxilos de la proteínas. Resulta interesante, que no ha sido reportado hasta este momento la unión de grupos aminos generados en la estructura de los polisacáridos, sin llegar a fragmentar los mismos, con grupos carboxilos de las proteínas como estrategia de conjugación de moléculas antigénicas. Divulgación de la Invención
El objetivo técnico de la presente invención es la obtención de un método para la conjugación de antígenos sacarídícos empleando la generación de grupos aminos en su estructura (sin ocasionar grandes afectaciones en su antigenicidad) y unir dichos grupos a los carboxilos de las proteínas, así como los productos obtenidos directamente por el empleo de ese método.
La presente invención consiste en un método de conjugación de antígenos sacarídicos para la obtención de preparados vacunales multivalentes que comprende los siguientes pasos: a) Tratamiento de un primer antígeno sacarídico con una base que puede ser NaOH, KOH o LiOH a una concentración de 0.1 a 0.9 N a una temperatura entre 40 a 110 °C, durante 3 a 10 horas para la generación de grupos aminos, de manera tal que el antígeno no sufra daños en su antigenicídad ; b) Para el caso de un preparado trivalente, activación de los grupos carboxilos de dicho primer antígeno con carbodiímida; c) Conjugar los grupos carboxilos activados del antígeno obtenido a partir del paso (b) con un segundo antígeno que puede ser de naturaleza proteica o sacarídica; d) Purificar el conjugado obtenido en el paso (c); e) Activación de los grupos carboxilos de un tercer antígeno proteico que incremente la inmunogenicidad del o de los antígenos sacarídicos, empleando carbodiímida; f) Para la obtención de un preparado bivalente conjugar los grupos aminos generados en los antígenos sacarídicos del paso (a) con el antígeno proteico activado según el paso (e) y para la obtención de un preparado trivalente conjugar los grupos aminos presente en los antígenos sacarídicos del paso (d) con el antígeno proteico activado según el paso (e); g) Purificar el conjugado resultante del paso (f).
Este método de conjugación es válido para cuando el sacárido del paso (a) contenga en su estructura uniones del tipo amida y que además dicho sacando proviene de una bacteria. Pudiendo ser esta bacteria del género Neisseria, particularmente Neisseria meningitidis y dentro de ella indistintamente de los grupos A, B o C. Forma también parte de la presente invención el caso en el que el sacárido mencionado en el paso (a) provenga de una bacteria del género Salmonella, particularmente de S. typhi y sea el polisacárido Vi. De igual manera también se relaciona en la presente invención el caso en el que el antígeno sacarídico proviene de una bacteria del género Vibrio dentro de este, de la especie V.cholerae y particularmente cuando el antígeno sacarídico es el lipopolisacárido de V. cholerae. De igual forma el método de la presente invención resulta válido cuando el segundo antígeno de naturaleza proteica es un péptido o una proteína, el cual puede obtenerse por vía natural, recombinante o sintética y puede provenir de Virus, hongos, plantas o animales. Este péptido o proteína puede provenir de bacterias, dentro de las cuales pueden mencionarse: Escherichia coli, Salmonella, Shigella, V. cholerae y N. meningitidis. El método de la presente invención resulta válido también cuando el segundo antígeno es de naturaleza sacarídica, este antígeno puede obtenerse de una bacteria del género Neisseria, particularmente Neisseria meningitidis y dentro de ella indistintamente los polisacáridos o lipopolisacáridos de los grupos A, B o C. Forma también parte de la presente invención el caso en el que el sacárido provenga de una bacteria del género Salmonella, particularmente de S. typhi y sea el polisacárido Vi. De igual manera también se relaciona en la presente invención el caso en el que el antígeno sacarídico proviene de una bacteria del género Vibrio y dentro de este, de la especie V. cholerae y particularmente cuando el antígeno sacarídico es el lipopolisacárido de V. cholerae. Así mismo el método de la presente invención es factible para cuando el segundo antígeno de naturaleza sacarídica proviene de H. influenzae tipo b y en particular el Polirribosil Ribitol Fosfato (PRP). Forma parte de la presente invención, para el caso en el que el PRP se emplea como segundo antígeno sacarídico y este es activado empleando el 1 ,8 di-aminooctano como brazo espaciador empleado. La presente invención también contempla que el tercer antígeno de naturaleza proteica que se emplea en el método descrito es de origen bacteriano y el mismo puede obtenerse por vía natural, recombinante o sintética y puede provenir de virus, hongos, plantas o animales. Este antígeno puede provenir de una bacteria. Dentro de las cuales puede mencionarse: Λ/. meningitidis serogrupo B, esencialmente proteínas de membrana externa, proteína recombinante (p64K), Clostridíum tetanic, pudiendo ser el toxoide tetánico, toxoide diftérico, H. influenzae tipo b esencialmente proteínas de membrana externa. Por medio de la presente invención se pueden obtener vacunas conjugadas bivalentes y trivalentes por el método antes descrito que implica un número de pasos relativamente corto y además los conjugados obtenidos resultan ser efectivos contra las enfermedades producidas por las bacterias de donde se obtienen los antígenos presentes en la vacuna. Son también parte de la presente invención las composiciones vacunales obtenidas directamente del método descrito como pueden ser:
Una composición vacunal donde el polisacárido de N. meningitidis C esté unido covalentemente al toxoide tetánico. Una composición vacunal que comprende el polisacárido de N. meningitidis C conjugado a la proteína P64k. Una composición vacunal donde el Lipopolisacárido (LPS) de N. meningitidis B esté unido covalentemente al toxoide tetánico. Una composición vacunal que comprende el polisacárido de N. meningitidis A conjugado al toxoide tetánico Una composición vacunal formado por el LPS de V. cholerae unido covalentemente a la subunidad B de la toxina de V. cholera. La composición vacunal donde el LPS de V. cholerae está conjugado al toxoide tetánico.
De igual forma las composiciones vacunales de conjugados de polisacárido Vi de S. typhi con proteínas de Shigella y el polisacárido Vi de S. typhi unido covalentemente con proteínas de S. typhi. Se incluye además, dentro del contenido de la presente invención, composiciones vacunales trivalentes derivadas del empleo del método descrito. Por ejemplo una composición vacunal donde el polisacárido de N. meningitidis C está unido covalentemente al toxoide tetánico y al PRP; una composición vacunal donde el polisacárido de N. meningitidis C está unido covalentemente al toxoide tetánico y al polisacárido de N. meningitidis A; la composición vacunal trivalente formada por el polisacárido Vi de S. typhi unido covalentemente a proteínas de Shigella y S. typhi; la composición vacunal trivalente formada por el polisacárido Vi de S. typhi unido covalentemente a proteínas de Shigella y al LPS de V. cholera; una composición vacunal donde el polisacárido de N. meningitidis C está unido covalentemente al toxoide tetánico y al LPS de N. meningitidis B y la composición vacunal trivalente donde el polisacárido de N. meningitidis C está unido covalentemente a proteínas de membrana externa de N. meningitidis B y al polisacárido de N. meningitidis A. La presente invención difiere del resto de las invenciones existentes hasta el momento en que las vacunas conjugadas que se obtienen por la presente, son obtenidas a partir de la generación de grupos aminos en la estructura de la parte sacarídica lo que genera una estructura sacarídica con dos grupos reactivos diferentes en la estructura. Para ello se emplea un rango de pH de 9 - 1 1 (con la utilización de NaOH en un rango de concentración de 0.1 a 0.7 N) por debajo de 110°. Los rangos empleados no han sido reportados con anterioridad para este fin y se encuentran por debajo de los referidos en el estado del arte. Sorprendentemente bajo estas condiciones se logra un por ciento elevado y estable de N-desacetilación. También el emplear, para la unión de proteínas al sacárido, los grupos aminos generados en la estructura de este último no había sido reportado hasta el momento, lográndose inesperadamente obtener una buena respuesta inmunológica contra la parte sacarídica del conjugado, aunque hasta el momento existían autores que defendían la necesidad de la presencia de los grupos O-Acetilos en la estructura para lograr un buen reconocimiento inmunológico. Por otra parte el espaciador que se utiliza en esta invención es el reactivo bifuncional 1 ,8 di-amínooctano no reportado anteriormente para este uso. La presente invención describe un método factible de desarrollarse en la industria que debido a la sencillez del mismo garantiza altos niveles de rendimiento, así como productos vacunales eficaces. Ejemplos de Realización Ejemplo 1 : Obtención de vacunas bivalentes a partir del polisacárido de Neisseria meningitidis O
Ejemplo 1.1 : N-Desacetilación del polisacárido de Neisseria meningitidis O Se disolvieron 60 mg de polisacárido del meningococo grupo C (PMGC) en 15 mi de NaOH en concentraciones de 0.1 a 0.9 N, se colocó en el horno a 105 °C durante 5 horas. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1 :2 (V/V). La presencia de grupos aminos libres en el PMGC fue determinada mediante la técnica que emplea al o-phthaldialdehido (OPA) obteniendo como resultado la generación de grupos aminos de forma escalonada a medida que aumenta la concentración de NaOH, según se muestra en la tabla 1. Tabla 1 : Determinación de grupos aminos generados en el polisacárido del meningococo grupo C producto de la N-desacetilación del C-5.
Figure imgf000013_0001
Ejemplo 1.2: Acoplamiento del polisacárido del meningococo grupo C modificado con
NaOH a diferentes proteínas portadoras.
Se tomaron 5 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 15 mg de 1-Etil-3-(3- Dimetyl Aminopropil) Carbodiímida (EDAC), se ajustó el pH entre 4.5 y 6 y se dejó en agitación a temperatura ambiente por 15 min, posteriormente se le adicionaron 2 mi de la solución de polisacárido tratada con NaOH como en el ejemplo 1, se ajustó el pH y se dejó agitando 5 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra 5 L de tampón fosfato salino (PBS) a pH: 7.4, realizándole 2 cambios del tampón, al día siguiente fue purificado por una columna 16 x 100 mm con Sefarosa CL 4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 206 nm y que coincidió con el pico eluido a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la seroalbumína bovina (BSA) y el contenido del polisacárido por ácido siálico por el método del resorcinol. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.01 % de timerosal hasta su posterior uso.
Para las proteínas P64K (recombinante) y VME, ambas de N. meningitidis serogrupo B, se siguió el mismo procedimiento descrito para el TT; mostrándose los resultados en la Tabla 2.
Tabla 2: Resultados del proceso de conjugación.
Figure imgf000014_0001
PMGC: polisacárido del meningococo grupo C
Ejemplo 1.3: Procedimiento para la inmunización.
A grupos de 8 ratones blancos machos de la línea Balb/c (8-10 semanas de nacido) les fueron inoculados por vía intraperitoneal 3 dosis (0, 14 y 28 días; cada dosis contenía una concentración de polisacárido de 10 ug de polisacárido) de cada uno de los conjugados preparados en el ejemplo 2. Previo a cada inoculación y a los 7 y 14 días después de la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos de determinación de anticuerpos y bactericida.
Ejemplo 1.4: Determinación de anticuerpos IgG en ratones por el método ELISA. Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de Poli-L Lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de PMGC (5 μg/ml) o VME (según interés) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl / pocilio y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocillo de suero (dilución= 1/800) de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron 100 μl/pocillo del segundo anticuerpo que consistió en una anti-lgG de ratón producida en carnero conjugado a peroxidasa (Sigma No. 3742) dejándose por 1 hora a 37 °C, posteriormente después del lavado de la placa, se añadió el sustrato 1 ,2-phenylendiamin más peróxido de hidrogeno (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N, los valores de DO se leyeron a 492 nm en un equipo Titertek Multieskam. Los resultados son mostrados en la Figura 1.
Ejemplo 1.5: Determinación de subclases de anticuerpos IgG en ratones por el método ELISA. Para determinar las subclases de IgG presentes en el suero de los animales, fue utilizado un ELISA de amplficación biotina-streptavidina. Se utilizaron placas de poliestireno de 96 pocilios de fondo plano (Maxisorp, Nunc), las cuales se recubrieron con Poli-L-Lisina a una concentración de 3μg/ml diluido en PBS, se incubaron 30 minutos a temperatura ambiente. Se lavaron tres veces las placas con PBS. Se realizó un segundo recubrimiento con PMGC o VME (según interés) se incubaron a 4 °C durante toda la noche y se bloqueó con PBS+BSA+Tween 20. Las muestras utilizadas se montaron con una dilución 1 :100 en PBS/Tween 20 con BSA y se incubaron toda la noche a 4 °C. Luego se añadieron los conjugado anti lgG1 o IgG 2a biotinilado (Sigma). Posteriormente se añadió streptavidina (Sigma). Como sustrato se utilizó 100 μl/pozo de H2O2 0,15% con O-fenilendiamina (Sigma) y se detuvo la reacción con H2SO4 2,5 N. La absorbancia se midió a 492 nm en un lector de micro-ELISA (Titertek Multieskan®). Seguido a cada paso de incubación se realizaron lavados con PBS/Tween 20. Los resultados de estas determinaciones se muestran en las Figuras 3 y 4.
Ejemplo 1.6: Determinación de anticuerpos bactericidas.
Es conocido que los anticuerpos bactericidas juegan un papel muy importante en la protección del individuo vacunado, y las vacunas realizadas a base de polisacáridos deben ser capaces de generar anticuerpos bactericidas para que se garantice una buena protección; por tal razón nos vimos motivados a realizar esta técnica a los sueros de los ratones inmunizados, mostrándose los resultados en la Figura 5. En los resultados expuestos en este trabajo se pone de manifiesto la obtención de la primera vacuna conjugada cubana contra N. meningitidis serogrupo C y la primera vacuna conjugada obtenida en el mundo que utilice grupos aminos generados en la cadena polisacarídica (como consecuencia de la eliminación de los grupos acetilos que están unidos a NH, presentes en la cadena polisacarídica) para la unión covalente con proteínas y que resulte ser altamente inmunogénica, no solo contra N. meningitidis serogrupo C, sino también contra las proteínas portadoras (N. meningitidis serogrupo B o toxoide tetánico según sea la formulación que se utilice) y que contribuiría a proteger a los niños por debajo de los 5 años de edad contra las enfermedades producidas por estas bacterias.
Ejemplo 2: Obtención de vacunas bivalentes a partir del lipopolisacárido de V. cholera. Ejemplo 2.1 : N-Desacetilación del Lipopolisacárido de V. cholera.
Se disolvieron 30 mg de LPS en 8 mi de NaOH en concentraciones de 0.25 a 1 N, se colocó en el horno a 105 °C durante 2,4 y 6 horas. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1 :2 (V/V). La presencia de grupos aminos libres en el LPS fue determinada mediante la técnica de la OPA obteniendo como resultado la generación de grupos aminos de forma escalonada a medida que aumenta la concentración de NaOH, así como también aumenta a medida que aumenta el tiempo de la reacción, según se muestra en la tabla 3.
Tabla 3: Determinación de grupos aminos generados en el LPS producto de la N-desacetilación de los ácidos grasos del Lípido A.
Figure imgf000016_0001
Figure imgf000017_0001
Ejemplo 2.2: Acoplamiento del lipopolisacárido de Vibrio cholerae modificado con NaOH a toxoide tetánico como proteína portadora.
Se tomaron 3 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 15 mg de EDAC, se ajustó el pH entre 4.5 y 6 y se dejó en agitación a temperatura ambiente por 15 min, posteriormente se le adicionaron 2 mi de la solución de LPS tratado con NaOH obtenido según el ejemplo 1 , se ajustó el pH a 8 y se dejó agitando 5 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra 5 L de PBS a pH: 7.4, realizándole 2 cambios del tampón, al día siguiente fue purificado por una columna 16 x 100 mm con Sefarosa CL 4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 206 nm y que coincidió con el pico eluido a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la BSA y el contenido del polisacárido por el método del Fenol-Sulfúrico. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.01 % de timerosal hasta su posterior uso. Los resultados obtenidos son mostrados en la tabla 4. Tabla 4: Resultados del proceso de conjugación.
Figure imgf000018_0001
Ejemplo 2.3: Determinación de la toxicidad, por el método del Usado de Amebosítos del Limulus (LAL).
La toxicidad de los lipopolisacáñdos se determinó empleando el ensayo del Lisado de Amebocitos del Limulus (LAL) por el método cromogénico, kit Coatest Endotoxin® de la Compañía sueca Chromogenix AB. El ensayo se corrió según la técnica del fabricante, con una curva patrón entre 0.15 y 1.2 UE (Unidades de Endotoxinas) por la opción en tubos de ensayos utilizando un calentador de bloque seco Stuart Scientific para 24 tubos. Para el desarrollo del método se emplearon tubos de reacción de borosilicato de 10 x 75 mm (Pyrotubes®) de la compañía Associates of Cape Cod, tubos de centrífuga de 15 mL de poliestireno marca Costar para la curva patrón y puntas de pipetas Rainin. Todos estos materiales eran libres de endotoxinas.
Como resultados del ensayo de LAL se obtuvo que el LPS nativo mostró un valor de
5.3477 UE/ng mientras los LPS tratados bajo las condiciones planteadas en el ejemplo 1 mostraron valores de 0.001 UE/ng, lo cual representa una reducción de mas de 5000 veces la toxicidad inicial.
Ejemplo 2.4: ELISA para determinar la antigenicidad del LPS de V. cholera después de conjugado.
Para comprobar si luego del proceso de hidrólisis y conjugación del LPS, este conservaba los epítopes nativos, se realizó un ELISA de inhibición utilizando placas Maxisorp (Nunc), como antígeno de recubrimiento se utilizó el conjugado obtenido a partir del LPS tratado con 1N de NaOH y 4 horas a 105 oC y el LPS nativo (como control), un conjugado anti IgG-HRP de humano diluido 1/4000 y como revelador la o- fenilendiamina (OPD) de la SIGMA; como anticuerpo se utilizó el suero de humanos inoculados oralmente con una cepa atenuada de V. cholerae O1 El Tor Ogawa candidata a vacuna oral contra el cólera. Los resultados obtenidos de esta determinación son mostrados en la Figura 7.
Ejemplo 2.5: Procedimiento para la inmunización. A grupos de 8 ratones blancos machos de la línea Balb/c (8-10 semanas de nacido) les fueron inoculados por vía Intraperitoneal 3 dosis (0, 7 y 28 días; cada dosis contenía una concentración de 10 ug LPS) de cada uno de los conjugados preparados en el ejemplo 2. Previo a cada inoculación y a los 7 días después de la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos inmunoquímicos.
Ejemplo 2.6: Determinación de anticuerpos IgG en ratones por el método ELISA. Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de Poli-L Lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de LPS (5 μg/ml) o proteína (según interés) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl / pocilio y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocillo de suero (dilución= 1/800) de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron 100 μl/pocillo del segundo anticuerpo que consistió en una anti-lgG de ratón producida en carnero conjugado a peroxidasa (Sigma No. 3742) dejándose por 1 hora a 37 oC, posteriormente después del lavado de la placa, se añadió el sustrato (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N, los valores de DO se leyeron a 492 nm en un equipo Titertek Multieskam. Los resultados son mostrados en la Figura 8. Ejemplo 3: Obtención de vacunas bivalentes a partir del polisacárido Vi de S. typhi. Ejemplo 3.1 : N-Desacetilación del polisacárido Vi de S. typhi.
Se disolvieron 20 mg de polisacárido Vi en 5 mi de NaOH, se colocó en el horno en un rango de temperatura que varió de 50 a 60 °C durante un tiempo que osciló entre 8 y 12 horas. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1 :2 (V/V). La presencia de grupos aminos libres en el polisacárido Vi fue determinada mediante la técnica de la OPA obteniéndose como resultado la generación de 1.2 moles de grupos aminos /mi de solución.
Ejemplo 3.2: Acoplamiento del polisacárido Vi modificado con NaOH a diferentes proteínas portadoras.
Se tomaron 2 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 15 mg de EDAC, se ajustó el pH entre 4.5 y 6 y se dejó en agitación a temperatura ambiente por 15 min, posteriormente se le adicionaron 2 mi de la solución de polisacárido Vi activado según el ejemplo 3.1 , se ajustó el pH y se dejó agitando 5 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra 5 L de PBS a pH: 7.4, realizándole 2 cambios de tampón, al día siguiente fue cromatografiado por una columna 16 x 100 mm con Sepharosa CL 4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 206 nm y que coincidió con el pico eluido a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la BSA y el contenido del polisacárido fue estimado por un método ELISA montado para este fin. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.01 % de timerosal hasta su posterior uso. Para las proteínas VME de S. typhi y VME de N. meningitidis serogrupo B, se siguió el mismo procedimiento descrito para el TT. Los resultados se presentan en la siguiente tabla.
Tabla 5: Resultados del proceso de conjugación
Figure imgf000020_0001
Figure imgf000021_0001
VMEs= Vesícula de membrana externa de Salmonella typhi; VMEm= Vesícula de membrana externa de N. meningitidis serogrupo B.
Ejemplo 3.3: Procedimiento para la inmunización.
A grupos de 8 ratones blancos machos de la línea Balb/c (8-10 semanas de nacido) les fueron inoculados por vía intraperitoneal 2 dosis (0 y 28 días; cada dosis contenía una concentración de 10 ug de Vi) de cada uno de los conjugados preparados en el ejemplo 2. Previo a cada inoculación y a los 14 días después de la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos inmunoquímicos.
Ejemplo 3.4: Determinación de anticuerpos IgG en ratones por el método ELISA. Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de poli-L- lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de polisacárido Vi (5 μg/ml) o proteína (según interés) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl / pocilio y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocillo de suero (dilución= 1/800) de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron 100 μl/pocillo del segundo anticuerpo que consistió en una anti-lgG de ratón producida en carnero conjugado a peroxidasa (Sigma No. 3742) dejándose por 1 hora a 37 oC, posteriormente después del lavado de la placa, se añadió el sustrato (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N, los valores de DO se leyeron a 492 nm en un equipo Titertek Multieskam. Los resultados aparecen reflejados en la Figura 9.
Ejemplo 4: Obtención de vacunas trivalentes a partir del polisacárido Neisseria meningitidis C y el polisacárido de Haemophilus influenzae.
Ejemplo 4.1 : N-Desacetilación del polisacárido de Neisseria meningitidis O Se disolvieron 60 mg de PMGC en 15 mi de NaOH, se colocó en el horno durante un periodo de tiempo que varió de 3 a 4.5 horas. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1:2 (V/V). La presencia de grupos aminos libres en el PMGC fue determinada mediante la técnica de la OPA, obteniéndose como resultado que se obtenían de 6.47 mM de grupos aminos.
Ejemplo 4.2: Activación de los grupos hidroxilos del polisacárido de H. influenzae tipo b (PRP).
Se tomó 40 mg de PRP, se disolvió en 300 ul de agua destilada y se adicionó a una solución de 1 mi de CDI en dimetil sulfóxido (DMSO) y se dejó en agitación por espacio de 3 h. Posteriormente se preparó una solución de 70 mg de 1,8 di- Aminooctano en 0.7 mi de agua destilada y NaOH 5 N, se puso a agitar en baño de agua fría por 60 min; pasado ese tiempo se añadió el PRP-CDI al espaciador y se dejó la reacción 1 h en el baño de agua fría, posteriormente se dejó 20 min. a temperatura ambiente. Por último se puso a dializar a 4 °C contra 5L de PBS a pH: 7.4 con 6 cambios de tampón y al terminar ese proceso se sacó de la bolsa de diálisis y se guardó a 4 oC.
A este PRP activado se le determinó Grupos aminos por la técnica de la OPA dando como resultado una concentración de 4.14 mmoles de NH2/mg de PRP.
Ejemplo 4.3 Acoplamiento del polisacárido del meningococo grupo C modificado al PRP activado. A 20 mg de PMGC en 3 mi de PBS a pH: 7.4; modificado en el ejemplo 4.1 , se le añadió 30 mg de EDAC y se dejó en agitación por 25 min. a temperatura ambiente, pasado este tiempo se añadió el PRP activado en el ejemplo 4.2 y se puso en agitación por espacio de 3 h. Pasado este tiempo se puso a diafiltrar contra PBS a pH: 7.4, realizando el proceso de diafiltración 5 veces contra 50 mi del tampón en cada ocasión, al terminar la última diafiltración se dejó en 2 mi y se guardó a 4 °C hasta su posterior uso.
Ejemplo 4.4: Acoplamiento de polisacáridos conjugados a la proteína portadora. Se tomaron 10 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 50 mg de EDAC y se dejó en agitación a temperatura ambiente por 15 min., posteriormente se le adicionaron 2 mi de la solución de polisacárido obtenida en el ejemplo 4.3 y se dejó agitando entre 2.0 y 4.0 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra PBS a pH: 7.4 (5 L), realizándole 2 cambios de tampón, al día siguiente fue purificado por una columna 16 x 100 mm con Sefarosa CL4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la BSA, el contenido de PMGC por ácido siálico por el método del resorcinol y el contenido de PRP determinando ribosa por el método del orcinol. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.02 % de timerosal hasta su posterior uso.
Ejemplo 4.5: Procedimiento para la inmunización. A grupos de ratones blancos machos de la línea Balb/C (8-10 semanas de nacido) les fue administrado por vía intraperitoneal 3 dosis (0, 14 y 28 días; cada dosis contenía una concentración de polisacárido de 10 ug de PMGC) del conjugado preparado en el ejemplo 4. A los 12 días posterior de la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos de inmunogénicidad y Bactericida.
Ejemplo 4.6: Determinación de anticuerpos en ratones por el método ELISA: Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de Poli-L Lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de PMGC o PRP (5 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl/pocillo, se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocillo de suero de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron 100 μl/pocillo del segundo anticuerpo que consistió en una anti-lgG de ratón en carnero conjugado a peroxidasa (Sigma No. 3742) dejándose por 1 hora a 37 oC, posteriormente después del lavado de la placa se añadió el sustrato (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N y se leyeron los valores de DO a 492 nm de la placa en un equipo Titertek Multiskam®. Los valores de Abs. son mostrados en las Figuras 10, 11 y 12.
Ejemplo 4.7: Determinación de sub clases de anticuerpos IgG en ratones por el método ELISA.
Para determinar las subclases de IgG presentes en el suero de los animales, fue utilizado un ELISA de amplficación biotina-streptavidina. Se utilizaron placas de poliestireno de 96 pocilios de fondo plano (Maxisorp, Nunc), las cuales se recubrieron con Poli-L-Lisina a una concentración de 3μg/ml diluido en PBS, se incubaron 30 minutos a temperatura ambiente. Se lavaron tres veces las placas con PBS. Se realizo un segundo recubrimiento con el polisacárido en cuestión (Poli C o PRP) se incubaron a 4 °C durante toda la noche y se bloqueó con PBS BSA Tween 20. Las muestras utilizadas se montaron con una dilución 1 :100 en PBS/Tween 20 con BSA y se incubaron toda la noche a 4 °C. Luego se añadieron los conjugado anti lgG1 y IgG 2a biotinilado (Sigma). Posteriormente se añadió streptavidina (Sigma). Como sustrato se utilizó 100 μl/pozo de H2O2 0,15% con O-fenilendiamina (Sigma) y se detuvo la reacción con H2SO4 2,5 N. La absorbancia se midió a 492 nm en un lector de microELISA (Titertek Multieskan). Seguido a cada paso de incubación se realizaron lavados con PBS/Tween 20. Los resultados de estas determinaciones se muestran en las Figuras 13 y 14.
Ejemplo 5: Obtención de vacunas bivalentes a partir del polisacárido de Neisseria meningitidis serogrupo A.
Ejemplo 5.1 : N-Desacetilación del polisacárido de Neisseria meningitidis serogrupo A Se disolvieron 30 mg de polisacárido del meningococo grupo A (PMGA) en 8 mi de NaOH en un rango de concentración que varió de 0.5 a 0.9 N, se colocó en el horno en un rango de temperatura que osciló entre 40 y 60 °C durante rango de tiempo que puede ser de 1 a 8 horas. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1:2 (V/V). La presencia de grupos aminos libres en el PMGA fue determinada mediante la técnica de la OPA obteniéndose como resultado la generación de 2.5 moles de grupos aminos /mi de solución.
Ejemplo 5.2: Acoplamiento del polisacáridos del meningococo grupo A modificado de NaOH al toxoide tetánico.
Se tomaron 3 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 15 mg de EDAC, se ajustó el pH entre 4.5 y 6 y se dejó en agitación a temperatura ambiente por 15 min, posteriormente se le adicionaron 2 mi de la solución de PMGA activado según el ejemplo 5.1, se ajustó el pH y se dejó agitando 5 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra 5 L de PBS a pH: 7.4, realizándole 2 cambios de tampón, al día siguiente fue purificado por una columna 16 x 100 mm con Sepharosa CL 4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 206 nm y que coincidió con el pico eluído a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la BSA y el contenido del polisacárído por la determinación de fosfato. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.01 % de timerosal hasta su posterior uso y los resultados del proceso de conjugación son mostrados en la tabla 6.
Tabla 6: Resultados del proceso de conjugación.
Figure imgf000026_0001
PMGA= polisacárido del meningococo grupo A
Ejemplo 5.3: Procedimiento para la inmunización.
A grupos de 8 ratones blancos machos de la línea Balb/c (8-10 semanas de nacido) les fueron inoculados por vía intraperitoneal 2 dosis (0 y 28 días; cada dosis contenía una concentración de 10 ug de PMGA) de cada uno de los conjugados preparados en el ejemplo 2. Previo a cada inoculación y a los 14 días después de la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos inmunoquímicos.
Ejemplo 5.4: Determinación de anticuerpos IgG en ratones por el método ELISA. Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de poli-L- lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de PMGA (5 μg/ml) o TT (según interés) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl / pocilio y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocillo de suero (dilución= 1/800) de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron 100 μl/pocillo del segundo anticuerpo que consistió en una anti-lgG de ratón producida en carnero conjugado a peroxidasa (Sigma No. 3742) dejándose por 1 hora a 37 oC, posteriormente después del lavado de la placa, se añadió el sustrato (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N, los valores de DO se leyeron a 492 nm en un equipo Titertek Multieskam.
Ejemplo 6: Obtención de vacunas bivalentes a partir del lípopolisacárido de Neisseria meningitidis serogrupo B.
Ejemplo 6.1: N-Deacetilación del Lipopolisacárido de Neisseria meningitidis serogrupo B.
Se disolvieron 20 mg de LPS en 5 mi de NaOH, se colocó en el horno en un rango de temperatura de 90 a 105 °C durante un rango de tiempo de 2 a 4 horas. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1 :2 (V/V). La presencia de grupos aminos libres en el LPS fue determinada mediante la técnica de la OPA, obteniendo como resultado la generación de grupos aminos según se muestra en la tabla 7.
Tabla 7: Determinación de grupos aminos generados en el LPS producto de la N- desacetilación de los ácidos grasos del Lípido A.
Figure imgf000027_0001
Ejemplo 6.2: Acoplamiento del lipopolisacárido de Neisseria meningitidis serogrupo B modificado con NaOH a toxoide tetánico como proteína portadora.
Se tomaron 2 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 15 mg de EDAC, se ajustó el pH entre 4.5 y 6 y se dejó en agitación a temperatura ambiente por 15 min, posteriormente se le adicionaron 2 mi de la solución de LPS tratado con NaOH, obtenido según el ejemplo 1 , se ajustó el pH a 8 y se dejó agitando 5 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra 5 L de PBS a pH: 7.4, realizándole 2 cambios del tampón, al día siguiente fue purificado por una columna 16 x 100 mm con Sefarosa CL 4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 206 nm y que coincidió con el pico eluido a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la BSA y el contenido del polisacárido por el método del Fenol-Sulfúrico. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.01 % de timerosal hasta su posterior uso. Los resultados obtenidos son mostrados en la tabla 8.
Tabla 8: Resultados del proceso de conjugación.
Figure imgf000028_0001
Ejemplo 6.3: Determinación de la toxicidad, por el método del Lisado de Amebositos del Limulus (LAL).
La toxicidad de los lipopolisacáridos se determinó empleando el ensayo del Lisado de Amebocitos del Limulus (LAL) por el método cromogénico, kit Coatest Endotoxin® de la Compañía sueca Chromogenix AB. El ensayo se corrió según la técnica del fabricante, con una curva patrón entre 0.15 y 1.2 UE (Unidades de Endotoxinas) por la opción en tubos de ensayos utilizando un calentador de bloque seco Stuart Scientific para 24 tubos. Para el desarrollo del método se emplearon tubos de reacción de borosilicato de 10 x 75 mm (Pyrotubes®) de la compañía Associates of Cape Cod, tubos de centrífuga de 15 mL de poliestireno marca Costar para la curva patrón y puntas de pipetas Rainin. Todos estos materiales eran libres de endotoxinas. Como resultados del ensayo de LAL se obtuvo que el LPS nativo mostró un valor de 12140 UE/μg mientras los LPS tratados bajo las condiciones planteadas en el ejemplo 1 mostraron valores de 5.0 UE/μg, lo cual representa una reducción de mas de 2000 veces la toxicidad inicial.
Ejemplo 6.4: Procedimiento para la inmunización. A grupos de 8 ratones blancos machos de la línea Balb/c (8-10 semanas de nacido) les fueron inoculados por vía Intraperitoneal 2 dosis (0 y 28 días; cada dosis contenía una concentración de 10 ug LPS) de cada uno de los conjugados preparados en el ejemplo 2. Previo a cada inoculación y a los 14 días después de la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos inmunoquímicos.
Ejemplo 6.5: Determinación de anticuerpos IgG en ratones por el método ELISA. Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de poli-L- lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de LPS (5 μg/ml) o TT (según interés) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl / pocilio y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocíllo de suero (dilución= 1/800) de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron 100 μl/pocillo del segundo anticuerpo que consistió en una anti-lgG de ratón producida en carnero conjugado a peroxidasa (Sígma No. 3742) dejándose por 1 hora a 37 oC, posteriormente después del lavado de la placa, se añadió el sustrato (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N, los valores de DO se leyeron a 492 nm en un equipo Titertek Multieskam. Ejemplo 7: Obtención de vacunas trivalentes a partir del polisacárido Neisseria meningitidis C y el polisacárido de Neisseria meningitidis A.
Ejemplo 7.1 : N-Desacetilación del polisacárido de Neisseria meningitidis O Se disolvieron 60 mg de PMGC en 15 mi de NaOH y se colocó en el horno. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1 :2 (V/V). La presencia de grupos aminos libres en el PMGC fue determinada mediante la técnica de la OPA, obteniéndose como resultado que se obtenían de 6.47 mM de grupos aminos.
Ejemplo 7.2: N-Desacetilación del polisacárido de Neisseria meningitidis serogrupo A. Se disolvieron 30 mg de polisacárido del meningococo grupo A (PMGA) en 8 mi de NaOH y se colocó en el horno durante el tiempo determinado en el ejemplo anterior para este polisacárido. Posteriormente se enfrió a temperatura ambiente y se neutralizó el pH con ácido clorhídrico 1 :2 (V/V). La presencia de grupos aminos libres en el polisacárido fue determinada mediante la técnica de la OPA obteniéndose como resultado la generación de 2.5 moles de grupos aminos /mi de solución.
Ejemplo 7.3 Acoplamiento del polisacárido del meningococo grupo C modificado al polisacárido del meningococo grupo A activado.
A 20 mg de PMGC en 3 mi de PBS a pH: 7.4; modificado en el ejemplo "7.1", se le añadió 30 mg de EDAC y se dejó en agitación por 25 min. a temperatura ambiente, pasado este tiempo se añadió el PMGA activado en el ejemplo "7.2" y se puso en agitación por espacio de 3 h. Pasado este tiempo se puso a diafiltrar contra PBS a pH: 7.4, realizando el proceso de diafiltración 5 veces contra 50 mi del tampón en cada ocasión, al terminar la última diafiltración se dejó en 2 mi y se guardó a 4 °C hasta su posterior uso.
Ejemplo 7.4: Acoplamiento de polisacáridos conjugados a la proteína portadora. Se tomaron 5 mi de una solución de Toxoide Tetánico (TT) de una concentración de 1 mg/ml (determinada por el método de Lowry), se le adicionó 50 mg de EDAC y se dejó en agitación a temperatura ambiente por 15 min., posteriormente se le adicionaron 2 mi de la solución de polisacárido obtenida en el ejemplo 7.3 y se dejó agitando entre 2.0 y 4.0 horas a temperatura ambiente; posteriormente se puso a dializar toda la noche a 4 °C contra PBS a pH: 7.4 (5 L), realizándole 2 cambios de tampón, al día siguiente fue purificado por una columna 16 x 100 mm con Sefarosa CL4B, el tampón utilizado para eluir el pico fue PBS pH: 7.4. Se colectó el primer pico detectado a 280 nm, al cual se le determinó la concentración de proteína por el método de Lowry utilizando como patrón la BSA, el contenido de PMGC por ácido siálico por el método del resorcinol y el contenido de PMGA determinando PO4. Los conjugados resultantes fueron almacenados a 4 °C con la adición de 0.02 % de tímerosal hasta su posterior uso
Tabla 9: Resultados del proceso de conjugación
Conjugado PMGA PMGC TT Relación (mg/ml) (mg/ml) (mg/ml) PMGA/PMGC/ TT
PMGA-PMGC - TT 0.75 0.83 0.54 1.4/1.5/1
PMGA= polisacárido del meningococo grupo A; PMGC= polisacárido de meningococo grupo C
Ejemplo 7.5: Procedimiento para la inmunización.
A grupos de ratones blancos machos de la línea Balb/C (8-10 semanas de nacido) les fue administrado por vía intraperitoneal 2 dosis (0 y 28 días; cada dosis contenía una concentración de polisacárido de 10 ug de PMGC) del conjugado preparado en el ejemplo "7.4". Previo a cada inmunización y a los 14 días posterior a la última inoculación se les extrajo sangre a los animales obteniendo los sueros para ser evaluados en los ensayos de inmunogénicidad.
Ejemplo 7.6: Determinación de anticuerpos en ratones por el método ELISA: Esta técnica fue realizada en placas Maxisorp (Nunc) con un recubrimiento de poli-L- lisina (100 μl/pocillo) seguido de una incubación de 1 hora a temperatura ambiente en una cámara húmeda, posteriormente se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de PMGC o PMGA (5 μg/ml) (según interés) añadiendo 100 μl/pocillo y se dejó incubando 4 horas en una cámara húmeda a 4 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de glutaraldehído (en PBS al 0,015 %) añadiendo 100 μl/pocillo, se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces con PBS pH: 7,4 más 0.5 mi de Tween-20 por litro de tampón y se recubrió con una solución de gelatina (100 μg/ml) añadiendo 100 μl/pocillo y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionó según el protocolo de trabajo 100 μl/pocillo de suero de cada muestra y se dejó incubando 1 hora en una cámara húmeda a 37 °C. Se lavó la placa 4 veces y se le adicionaron (100 μl/pocillo) anticuerpo que consistió en una anti- lgG de ratón en carnero conjugado a peroxidasa (Sigma No. 3742) dejándose por 1 hora a 37 oC, posteriormente después del lavado de la placa se añadió el sustrato (OPD + H2O2), se esperó 15 min. a temperatura ambiente y se detuvo la reacción añadiendo 50 μl/pocillo de ácido sulfúrico 2N y se leyeron los valores de DO a 492 nm de la placa en un equipo Titertek Multiskam®.
Breve Descripción de las Figuras
Figural : Determinación de anticuerpos IgG anti PMGC
En la figura se observa como los valores de Abs. a 492 nm, obtenido en los sueros de los animales inmunizados (3 dosis a los 0, 14 y 28 días) con el polisacárido del meningococo grupo C (PMGC) activado con 0.7N de NaOH y unido covalentemente al Toxoide Tetánico y a la VME son superiores a los obtenidos para el conjugado que contiene a la P64K como proteína portadora. En general los valores de Abs. obtenidos para los 3 conjugados son superiores a los obtenidos para el polisacárido nativo; observándose de esta forma el primer indicio de cambio de timodependencia del PMGC después de conjugado, por el método descrito.
Figura 2: Determinación de anticuerpos IgG anti VME
En esta figura se muestran los resultados obtenidos al hacer la determinación de anticuerpos IgG anti VME en los sueros de los animales inmunizados con: Placebo, VME y el conjugado obtenido con el PMGC y estas proteínas. Como se puede observar, después de la conjugación se mantienen elevados los títulos de anticuerpos IgG anti VME en los sueros de los animales inmunizados y aunque se puede apreciar una pequeña disminución de los valores de Abs. con respecto a los sueros de los animales inmunizados con la VME podemos plantear, que con el procedimiento de conjugación empleado, la VME no sufre daños relevantes en sus propiedades antigénicas.
Figura 3: Determinación de subclases de IgG (lgG1 , lgG2a) anti PMGC.
En la figura se presentan los resultados obtenidos en la determinación de las subclases de anticuerpos IgG (lgG1 e lgG2a) anti PMGC en las muestras de sueros de los ratones que se les administró los conjugados de PMGC con TT y VME obtenidos por nuestro procedimiento, así como, se presentan los resultados obtenidos en los sueros de los animales inmunizados con el PMGC nativo. En esta figura podemos observar en primer lugar que existe correlación entre los resultados obtenidos por esta técnica y los resultados de la determinación de anticuerpos IgG, ya que como se puede apreciar los títulos obtenidos para los conjugados son mas elevados que los obtenidos para el caso del PMGC nativo; por otra parte se puede observar que en las muestras de los ratones inmunizados con los conjugados aparece un aumento en los títulos de la lgG2a, siendo estos valores significativamente superiores para el caso del conjugado que contiene a la VME como proteína portadora. Con estos resultados se pudiera plantear que no solo cambia la timo dependencia del polisacárido una vez conjugado sino que cuando el conjugado es con la VME, esta induce un patrón T-helper (Th)1 , celular frente polisacárido, contrario a lo que hace el TT que induce un patrón Th2 frente al polisacárido una vez conjugado.
Figura 4: Determinación de subclases de IgG (lgG1 , lgG2a) anti VME.
En esa figura se muestran los resultados obtenidos en la determinación de subclases de anticuerpos IgG (lgG1, lgG2a) anti VME en los sueros de los animales inmunizados con la VME y el conjugado PMGC-VME. Los resultados mostrados en esta figura concuerdan con los resultados observados en la figura 2, donde aparecen reflejados los resultados de la determinación de IgG presente en los sueros de los animales que se les administró la VME o el conjugado PMGC-VME, ya que aparecen títulos altos. También se puede observar como la VME presenta valores de lgG2a elevados, mostrando un patrón de respuesta Th1. En los sueros de los animales inmunizados con el conjugado PMGC-VME se puede observar que a pesar de disminuir los valores de Abs. se mantiene el patrón de respuesta Th1 de la VME. Figura 5: Determinación de anticuerpos bactericidas contra N. meningitidis serogrupo O
Los resultados que se observan en la figura muestran claramente en los sueros de los animales del conjugado que se evalúa, es capaz de generar niveles de anticuerpos bactericidas contra N. meningitidis serogrupo C superior a los niveles que genera el PMGC nativo, lo cual indica que el conjugado obtenido es protectogenico.
Figura 6: Determinación de anticuerpos bactericidas contra N. meningitidis serogrupo B.
En la figura se muestran los resultados de la determinación de anticuerpos bactericidas contra N. meningitidis serogrupo B y se puede observar que a los 14 días, después de inoculado la primera dosis a los animales, se muestra para el conjugado, una actividad bactericida similar a la obtenida con la VME y posteriormente se observa como persiste esta actividad bactericida en los sueros de los animales que se les inoculó el conjugado, no así, para la VME donde se observa una tendencia a la disminución de los mismos. Este resultado nos indica que al igual que para N. meningitidis serogrupo C, este conjugado protege contra N. meningitidis serogrupo B.
Figura 7: Determinación de antigenicidad del LPS conjugado a TT.
Como se puede observar en la figura los anticuerpos presente en el suero de humanos inmunizados con la cepa atenuada de V. cholerae reconocieron al conjugado obtenido en nuestro laboratorio y mostraron valores de Abs. (492 nm) superior a los obtenidos para las muestras del LPS nativo.
Figura 8: Determinación de anticuerpos IgG anti LPS de V. cholerae. Como se puede observar en la figura los sueros de los animales inmunizados con el conjugado (LPS-TT) obtenido en nuestro laboratorio mostraron valores de Abs. (492 nm) superior a los obtenidos en los sueros de los animales inmunizados con el LPS y el placebo.
Figura 9: Determinación de anticuerpos IgG anti polisacárido Vi. En los resultados que se muestran en la figura 9, se observó que con una primera dosis se obtuvo una respuesta de IgG anti Vi superior en el grupo de anímales inmunizados con el polisacárido Vi nativo respecto a los grupos inmunizados con los conjugados. Los títulos de anticuerpos para estos últimos grupos de animales se incrementaron a partir de los 28 días al administrársele la segunda dosis, hasta alcanzar el máximo valor de absorbancia en el tiempo 35, mientras que el grupo de animales inmunizado con el polisacárido Vi nativo no mostró aumento después de la 2da dosis. Estos resultados reflejan la aparición de una respuesta inmune secundaria en los animales que fueron inmunizados con los conjugados. También podemos observar que en el tiempo 56 (28 días después de la 2da dosis) se encuentran valores de absorbancia superiores para el conjugado respecto al polisacárido Vi nativo, lo cual nos da una idea de que la respuesta de anticuerpos IgG obtenida con el conjugado es de mas larga duración que la obtenida con el polisacárido Vi sin conjugar. Estos resultados corroboran lo planteado en la literatura de que con el proceso de conjugación empleado para la obtención de vacunas se logra cambiar la TD del polisacárido utilizado.
Figura 10: Determinación de anticuerpos IgG anti PMGC (conjugados PRP-PMGC- TT). Como se puede observar en esta figura cuando se determina la generación de anticuerpos IgG anti polisacárido de N. meningitidis serogrupo C en los sueros de los ratones se observa que se obtienen valores de Abs. elevados en los sueros de ratones inmunizados con el conjugado por encima de los valores de Abs. obtenidos para el resto de las muestras en estudio (suero de ratones inmunizados con PBS y suero de ratones inmunizados con polisacárido nativo de N. meningitidis serogrupo C). También se puede observar que existe seroconversión de la respuesta inmune inducida por el conjugado ya que se obtiene respuesta que supera al doble de la respuesta inicial.
Figura 11 : Determinación de anticuerpos IgG anti PRP (conjugados PRP-PMGC-TT). En la figura se obtuvo como resultado que al determinar la generación de anticuerpos IgG anti PRP en los sueros de los ratones en estudio, la respuesta encontrada en los sueros de los animales inmunizados con el conjugado son superiores a partir del día 14 que es cuando se le inocula la segunda dosis a los animales en estudio y aquí en este estudio también se puede observar que existe seroconversión de la respuesta inmune contra el H. influenzae tipo b.
Figura 12: Determinación de anticuerpos IgG anti TT (conjugado PRP-PMGC-TT). En la figura se presenta una determinación de anticuerpos IgG anti TT generados en los sueros de los ratones en estudio y aquí podemos observar que la respuesta anti TT en los animales inmunizados con el conjugado es elevada, lo cual nos lleva a pensar que la proteína no fue afectada durante el proceso de conjugación y que mantiene sus propiedades inmunogenicas.
Figura 13: Determinación de subclases de anticuerpos IgG anti PMGC (conjugado
PRP-PMGC-TT). En la figura se puede observar que cuando se determina la generación de anticuerpos lgG1 anti polisacárido de N. meningitidis serogrupo C en los sueros de los ratones, se obtienen valores de Abs. muy elevados en los sueros de los ratones que fueron inmunizados con el conjugado, encontrándose por encima de los valores de Abs. obtenidos para las muestras del suero de los ratones inmunizados con polisacárido nativo de N. meningitidis serogrupo O Para el caso de los valores de Abs. obtenidos para la IgG 2a, aunque se puede observar que hay un ligero aumento en T3 (para Var I) este es muy pequeño, predominando la respuesta de tipo lgG1. También al igual que en los ejemplos anteriores se puede observar que existe seroconversión de la respuesta inmune inducida por el conjugado para las lgG1 ya que se obtiene una respuesta que supera al doble de la respuesta inicial.
Figura 14: Determinación de subclases de anticuerpos IgG anti PRP (conjugados
PRP-PMGC-TT). En la figura se puede observar que cuando se determina la generación de anticuerpos lgG1 anti polisacárido de H. influenzae tipo b en los sueros de los ratones, sucede algo parecido al anterior aunque para este polisacárido los valores obtenidos son algo inferiores que en el caso del polísacárido de N. meningitidis serogrupo C, lo cual era de esperarse debido a que es conocido que el Polisacárido de N. meningitidis serogrupo C es por si un mejor inmunogeno que el polisacárido de H. influenzae tipo b. No obstante en la figura se obtienen valores de Abs. mas elevados en los sueros de los ratones que fueron inmunizados con el conjugado, que en los sueros de los ratones inmunizados con el PRP. Para el caso de los valores de Abs. obtenidos para la IgG 2a, aunque se puede observar que hay un ligero aumento en T3 (para Var I) este es muy pequeño, predominando la respuesta de tipo lgG1. También al igual que en los ejemplos anteriores se puede observar que existe seroconversión de la respuesta inmune inducida por el conjugado para las lgG1 ya que se obtiene una respuesta que supera al doble de la respuesta inicial.
Ventajas del método propuesto.
Los rangos de pH y temperatura empleados en el método disminuyen las posibilidades de fragmentación del polisacárido, así como las posibilidades de afectar las propiedades antigénicas. Por medio de esta invención se elimina la formación de las sales de tretabutilamonio de los polisacáridos a conjugar, así como evita el uso de múltiples pasos para la derivatización de los mismos; lo cual hace que el método se realice en un tiempo reducido y a un bajo costo.
El proceso de activación de los antígenos, para una vacuna trivalente, consta de pocos pasos, no siendo necesario el empleo de moléculas complejas como el 2-(6- aminocaproyl)-4,9-dioxo-1 ,12-diaminododecane-naphtalene-1 ,5-disulphonic acíd salt (ACA-DODAD-NDSA) y el S-acetyl mercapto succinic anhydride (SAMSA), ni los pasos de purificación intermedios necesarios para la eliminación de reactivos residuales. De manera general se favorece un aumento en el rendimiento de los antígenos, así como una disminución del número de sustancias exógenas presentes en la formulación vacunal, que no son de interés. Todo esto hace posible la disminución de controles intermedios durante todo el proceso y en el producto vacunal final.

Claims

REIVINDICACIONES
1. Método para la obtención de preparados vacunales conjugados multivalentes, que comprende los siguientes pasos:
a. Tratamiento de un primer antígeno sacarídico en un medio básico a una concentración de la base de 0.1 a 0.9 N a una temperatura entre 40 a 110 °C, durante 3 a 10 horas; b. Activar de los grupos carboxilos del primer antígeno con carbodiímida; c. Conjugar los grupos carboxilos activados del antígeno obtenido a partir del paso (b) con un segundo antígeno que puede ser de naturaleza proteica o sacarídica, que puede estar o no previamente activado; d. Purificar el conjugado obtenido en el paso c); e. Activar los grupos carboxilos empleando carbodiímida de un tercer antígeno proteico; f. Conjugar los grupos aminos presente en el antígeno sacarídico del paso (d) con el antígeno proteico activado según el paso (e) o conjugar los grupos aminos generados en los antígenos sacarídicos del paso (a) con el antígeno proteico activado según el paso (e); g. Purificar el conjugado resultante del paso (f).
2. Método según reivindicación 1 , caracterizado porque para el tratamiento del primer antígeno sacarídico el medio básico se puede seleccionar del grupo NaOH, KOH o LiOH.
3. Método según reivindicación 1 , caracterizado porque el primer antígeno sacarídico contiene uniones del tipo amida.
4. Método según reivindicación 3, caracterizado porque el primer antígeno sacarídico proviene de una bacteria.
5. Método según la reivindicación 4, caracterizada porque el primer antígeno sacarídico se puede seleccionar de una bacteria del género Neisseria, Salmonella o Vibrio.
6. Método según reivindicación 5, caracterizada porque la bacteria que proviene del género Neisseria es de la especie N. meningitidis.
7. Método según reivindicación 6, caracterizada porque el antígeno sacarídico se puede seleccionar de N. meningitidis serogrupo C, N. meningitidis serogrupo B o N. meningitidis serogrupo A.
8. Método según reivindicación 5, caracterizada porque la bacteria que proviene del género Salmonella es de la especie S. typhi.
9. Método según reivindicación 8, caracterizada porque el antígeno sacarídico es el polisacárido Vi.
10. Método según reivindicación 5, caracterizado porque la bacteria que proviene del género Vibrio es de la especie V. cholera.
11. Método según reivindicación 10, caracterizada porque el antígeno sacarídico es el lipopolisacárido de V. cholera.
12. Método según reivindicación 1 , caracterizada porque cuando el segundo antígeno es de naturaleza proteica puede ser un péptido o una proteína.
13. Método según reivindicación 12 caracterizado porque dicho antígeno puede obtenerse por vía natural, recombinante o sintética.
14. Método según reivindicación 13, caracterizada porque dicho antígeno proviene de virus, hongos, plantas, animales o bacterias.
15. Método según reivindicación 14, caracterizada porque dicho antígeno se puede seleccionar de una bacteria del genero Escherichia, Salmonella, Shigella, Vibrio, Neisseria o Clostridium.
16. Método según reivindicación 15, caracterizada porque cuando el antígeno es del género Escherichia, proviene de la especie E. Coli.
17. Método según reivindicación 15, caracterizada porque cuando el antígeno es del género Salmonella, proviene de la especie S. typhi.
18. Método según reivindicación 15, caracterizada porque cuando el antígeno es del género Shigella, proviene de la especie Shigella sonnei.
19. Método según reivindicación 15, caracterizada porque cuando el antígeno es del género Vibrio, proviene de la especie V. cholera.
20. Método según reivindicación 19, caracterizada porque dicho antígeno es la sub unidad B de la toxina del cólera (CTB).
21. Método según reivindicación 15, caracterizada porque cuando el antígeno es del género Neisseria, proviene de la especie N. meningitidis.
22. Método según reivindicación 21 , caracterizada porque dicho antígeno proviene de N. meningitidis serogrupo B.
23. Método según reivindicación 15, caracterizada porque cuando el antígeno es del género Clostridium proviene de la especie O tetanic.
24. Método según reivindicación 23, caracterizada porque la proteína es el toxoide tetánico.
25. Método según reivindicación 1 , caracterizada porque cuando el segundo antígeno es de naturaleza sacarídica, proviene de una bacteria.
26. Método según reivindicación 25, caracterizada porque el antígeno de naturaleza sacarídica se puede seleccionar de una bacteria del género Haemophilus,
Neisseria o Vibrio.
27. Método según reivindicación 26, caracterizada porque cuando el antígeno sacarídico es del género Haemophilus, proviene de la especie H. Influenzae.
28. Método según reivindicación 27, caracterizada porque dicho antígeno sacarídico proviene de Haemophilus influenzae tipo b.
29. Método según reivindicación 28, caracterizada porque el antígeno sacarídico es el Polirribosil Ribitol Fosfato (PRP).
30. Método según reivindicación 1 , caracterizada porque cuando el segundo antígeno sacarídico es PRP, se debe activar empleando 1 ,8 di-amino octano.
31. Método según reivindicación 26, caracterizada porque cuando el antígeno es del género Neisseria, proviene de la especie N. meningitidis.
32. Método según reivindicación 31 , caracterizada porque el antígeno sacarídico se puede seleccionar de N. meningitidis serogrupo C, N. meningitidis serogrupo B o N. meningitidis serogrupo A.
33. Método según reivindicación 32, caracterizada porque el antígeno sacarídico puede ser el polisacárido de N. meningitidis serogrupo C, el lipopolisacárido de N. meningitidis serogrupo B o el polisacárido de N. meningitidis serogrupo A.
34. Método según reivindicación 26, caracterizado porque cuando el antígeno es del género Vibrio, proviene de la especie V. cholerae.
35. Método según reivindicación 34, caracterizada porque el antígeno sacarídico es el lipopolisacárido de V. cholerae.
36. Método según reivindicación 1 caracterizado porque el tercer antígeno de naturaleza proteica puede obtenerse por vía natural, recombinante o sintética.
37. Método según reivindicación 36, caracterizada porque el tercer antígeno de naturaleza proteica proviene de virus, hongos, plantas, animales o bacterias.
38. Método según reivindicación 37, caracterizada porque la proteína se puede seleccionar de una bacteria del género Salmonella, Neisseria, Clostridium o Shigella.
39. Método según reivindicación 38, caracterizada porque cuando la proteína es del género Salmonella, proviene de la especie S. typhi.
40. Método según reivindicación 39, caracterizada porque son proteínas de membrana externa.
41. Método según reivindicación 38, caracterizada porque cuando la proteína es del género Neisseria, proviene de la especie N. meningitidis.
42. Método según reivindicación 41, caracterizada porque la proteína proviene de N. meningitidis serogrupo B.
43. Método según reivindicación 42, caracterizada porque son proteínas de membrana externa.
44. Método según reivindicación 42, caracterizada porque la proteína es la p64k de N. meningitidis serogrupo B, obtenida por método recombinante.
45. Método según reivindicación 38, caracterizada porque cuando la proteína es del género Clostridium, proviene de la especie O tetanic.
46. Método según reivindicación 45, caracterizada porque la proteína es el toxoide tetánico.
47. Método según reivindicación 38, caracterizada porque cuando la proteína es del género Shigella, proviene de la especie Shigella sonnei.
48. Método según reivindicación 47, caracterizada porque son proteínas de membrana externa.
49. Composición vacunal multivalente obtenida por el método descrito en las reivindicaciones de la 1 a la 48 caracterizada porque comprende un sacárido conjugado disuelto en un vehículo farmacéuticamente aceptable.
50. Composición vacunal multivalente según reivindicación 49, caracterizada porque comprende entre 10 y 25 μg de sacárido conjugado.
51. Composición vacunal según la reivindicación 49 caracterizada porque el conjugado comprende al polisacárido de Neisseria meningitidis C que puede estar unido covalentemente al toxoide tetánico, a la proteína p64K de Neisseria meningitidis B obtenida por vías recombinante o a las proteínas de membrana externa de Neisseria meningitidis B .
52. Composición vacunal según reivindicación 49, caracterizada porque el conjugado comprende al lipopolisacárido de V. cholerae que puede estar unido covalentemente a la subunidad B de la toxina de V. cholerae o al toxoide tetánico.
53. Composición vacunal según reivindicación 49, caracterizada porque el conjugado comprende al polisacárido Vi que puede estar unido covalentemente al toxoide tetánico, a proteínas de Shigella o a proteínas de Salmonella.
54. Composición vacunal según reivindicación 49, caracterizada porque el conjugado puede estar compuesto por el polisacárido de Neisseria meningitidis A o por el lipopolisacárido de Neisseria meningitidis B unido covalentemente al toxoide tetánico.
55. Composición vacunal según reivindicación 49, caracterizada porque el conjugado comprende al polisacárido de Neisseria meningitidis C unido covalentemente al toxoide tetánico y al polirribosil ribitol fosfato (PRP).
56. Composición vacunal según reivindicación 49, caracterizada porque el conjugado comprende al polisacárido Vi unido covalentemente a proteínas de Shigella y Salmonella.
57. Composición vacunal según reivindicación 49, caracterizada porque el conjugado comprende al polisacárido Vi unido covalentemente a proteínas de Shigella y al lipopolisacárido de V. cholerae.
58. Composición vacunal según reivindicación 49, caracterizada porque el conjugado comprende al polisacárido de Neisseria meningitidis C unido covalentemente al toxoide tetánico y al polisacárido de Neisseria meningitidis A.
59. Uso de una composición vacunal según las reivindicaciones 49 a la 58 para la protección de enfermedades causadas por bacterias tales como, Neisseria meningitidis serogrupos A o C, S.typhi, V. cholerae, Shigella o toxoide tetánico.
PCT/CU2003/000013 2002-11-14 2003-11-14 Metodo de obtencion de vacunas conjugadas y composiciones vacunales que las contienen. WO2004043489A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03773443A EP1582217A1 (en) 2002-11-14 2003-11-14 Method of obtaining conjugate vaccines and vaccine compositions containing same
AU2003281909A AU2003281909A1 (en) 2002-11-14 2003-11-14 Method of obtaining conjugate vaccines and vaccine compositions containing same
BR0316271-0A BR0316271A (pt) 2002-11-14 2003-11-14 Método para a obtenção de preparados vacinais conjugados multivalentes, composição vacinal multivalente e uso da mesma
CA002506090A CA2506090A1 (en) 2002-11-14 2003-11-14 Method of obtaining conjugate vaccines and vaccine compositions containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20020257 2002-11-14
CU257-2002 2002-11-14

Publications (1)

Publication Number Publication Date
WO2004043489A1 true WO2004043489A1 (es) 2004-05-27

Family

ID=34305455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2003/000013 WO2004043489A1 (es) 2002-11-14 2003-11-14 Metodo de obtencion de vacunas conjugadas y composiciones vacunales que las contienen.

Country Status (6)

Country Link
EP (1) EP1582217A1 (es)
CN (1) CN1738642A (es)
AU (1) AU2003281909A1 (es)
BR (1) BR0316271A (es)
CA (1) CA2506090A1 (es)
WO (1) WO2004043489A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2870974A1 (en) * 2013-11-08 2015-05-13 Novartis AG Salmonella conjugate vaccines
CN107233567B (zh) * 2017-03-30 2020-09-08 武汉博沃生物科技有限公司 Rsv-pcv疫苗及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755381A (en) * 1986-03-27 1988-07-05 Swiss Serum And Vaccine Institute Berne Klebsiella capsular polysaccharide vaccine
US5204098A (en) * 1988-02-16 1993-04-20 The United States Of America As Represented By The Department Of Health And Human Services Polysaccharide-protein conjugates
WO1993013797A2 (en) * 1992-01-16 1993-07-22 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Detoxified lps-cholera toxin conjugate vaccine for prevention of cholera
US5286484A (en) * 1990-07-09 1994-02-15 Centro De Ingenieria Genetica Y Biotecnologia Nucleotide sequence coding for an outer membrane protein from Neisseria meningitidis and use of said protein in vaccine preparations
US5371197A (en) * 1991-09-24 1994-12-06 Merck & Co., Inc. Protein-dimeric polysaccharide conjugate vaccine
US6245892B1 (en) * 1998-09-30 2001-06-12 The United States Of America As Represented By The Secretary Of The Army Invaplex from gram negative bacteria, method of purification and methods of use
EP1132398A2 (en) * 2000-02-28 2001-09-12 Universiti Sains Malaysia DNA sequence encoding the specific and antigenic outer membrane protein of salmonella typhi
US20020006407A1 (en) * 1996-04-19 2002-01-17 Henry M. Jackson Foundation For The Advancement Of Military Medicine Histidine-tagged intimin and methods of using intimin to stimulate an immune response and as an antigen carrier with targeting capability
WO2002058737A2 (en) * 2001-01-23 2002-08-01 Aventis Pasteur Multivalent meningococcal polysaccharide-protein conjugate vaccine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755381A (en) * 1986-03-27 1988-07-05 Swiss Serum And Vaccine Institute Berne Klebsiella capsular polysaccharide vaccine
US5204098A (en) * 1988-02-16 1993-04-20 The United States Of America As Represented By The Department Of Health And Human Services Polysaccharide-protein conjugates
US5286484A (en) * 1990-07-09 1994-02-15 Centro De Ingenieria Genetica Y Biotecnologia Nucleotide sequence coding for an outer membrane protein from Neisseria meningitidis and use of said protein in vaccine preparations
US5371197A (en) * 1991-09-24 1994-12-06 Merck & Co., Inc. Protein-dimeric polysaccharide conjugate vaccine
WO1993013797A2 (en) * 1992-01-16 1993-07-22 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Detoxified lps-cholera toxin conjugate vaccine for prevention of cholera
US20020006407A1 (en) * 1996-04-19 2002-01-17 Henry M. Jackson Foundation For The Advancement Of Military Medicine Histidine-tagged intimin and methods of using intimin to stimulate an immune response and as an antigen carrier with targeting capability
US6245892B1 (en) * 1998-09-30 2001-06-12 The United States Of America As Represented By The Secretary Of The Army Invaplex from gram negative bacteria, method of purification and methods of use
EP1132398A2 (en) * 2000-02-28 2001-09-12 Universiti Sains Malaysia DNA sequence encoding the specific and antigenic outer membrane protein of salmonella typhi
WO2002058737A2 (en) * 2001-01-23 2002-08-01 Aventis Pasteur Multivalent meningococcal polysaccharide-protein conjugate vaccine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINDBERG A. A.: "Glycoprotein conjugate vaccines", VACCINE, vol. 17, 1999, pages S28 - S36, XP002989236 *

Also Published As

Publication number Publication date
EP1582217A1 (en) 2005-10-05
AU2003281909A1 (en) 2004-06-03
BR0316271A (pt) 2005-10-11
CN1738642A (zh) 2006-02-22
CA2506090A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
KR100593466B1 (ko) 다당류-펩타이드접합체
ES2200067T3 (es) Fragmentos de polisacaridos antigenicos de tipo ii y tipo iii de streptococcus del grupo b, que tienen una estructura terminal 2,5-anhidro-d-manosa, y su vacuna conjugada.
KR100704826B1 (ko) N-아크릴로일화된 폴리사카라이드를 사용하여 제조된백신으로서 사용하기에 적합한 면역원성β-프로피온아미도-결합 폴리사카라이드 단백질 컨쥬게이트
AU601742B2 (en) Immunogenic conjugates
US5370872A (en) Escherichia coliO-polysaccharide-protein conjugate vaccine
JP5745221B2 (ja) タンパク質マトリックスワクチンおよびそのようなワクチンの製造方法および投与方法
Pozsgay Oligosaccharide-protein conjugates as vaccine candidates against bacteria
JPH0825900B2 (ja) 細菌由来中性多糖類と免疫原性タン白との安定な、共有結合された多糖―タンパク質結合体、該結合体の製造方法並びに該結合体を含む医薬組成物
US8168195B2 (en) Vaccines against Escherichia coli O157 infection
ES2320334T3 (es) Uso de analogos de acidos grasos para el tratamiento y/o prevencion de enfermedades proliferativas de la piel.
HU211210B (en) Method for preparing immunogenic oligosaccharide-protein-conjugates
JP2008201793A (ja) Neisseriameningitidis血清型B複合糖質およびその使用法
ES2230687T3 (es) Copulacion de proteinas nomodificadas con polisacaridos derivados de haloacilo o de dihaloacilo para la preparacion de vacunas que incluyen proteinas-polisacaridos.
PT667787E (pt) Vacinas de conjugado de polissacarido-proteina de estreptococos do grupo b do tipo ii e tipo v
Peeters et al. Preparation of polysaccharide-conjugate vaccines
JPH07503238A (ja) コレラ予防用の無毒化lps−コレラ毒素結合ワクチン
WO2004043489A1 (es) Metodo de obtencion de vacunas conjugadas y composiciones vacunales que las contienen.
US20140287476A1 (en) Vibrio cholerae 0139 conjugate vaccines
Peeters et al. Polysaccharicb-conjugate vaccines
AU767047B2 (en) Vaccines against (escherichia coli) O157 infection
US9616139B2 (en) Conjugating amines
RU2249463C2 (ru) Иммуногенный конъюгат бета-пропионамид-связанного полисахарида с белком, использующийся в качестве вакцины
Szu et al. Vaccines for prevention of enteric bacterial infections caused by Salmonellae
Schneerson et al. VACCINES FOR PREVENTION OF ENTERIC BACTERIAL INFECTIONS CAUSED BY SALMONELLAE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2506090

Country of ref document: CA

Ref document number: 901/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003773443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A87799

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003773443

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0316271

Country of ref document: BR

WWW Wipo information: withdrawn in national office

Ref document number: 2003773443

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP