WO2004036141A1 - Pilotage d'un projectile par decharge plasma - Google Patents

Pilotage d'un projectile par decharge plasma Download PDF

Info

Publication number
WO2004036141A1
WO2004036141A1 PCT/FR2003/002976 FR0302976W WO2004036141A1 WO 2004036141 A1 WO2004036141 A1 WO 2004036141A1 FR 0302976 W FR0302976 W FR 0302976W WO 2004036141 A1 WO2004036141 A1 WO 2004036141A1
Authority
WO
WIPO (PCT)
Prior art keywords
projectile
nose
plasma discharge
piloting
external surface
Prior art date
Application number
PCT/FR2003/002976
Other languages
English (en)
Inventor
Patrick Gnemmi
Michel Samirant
Romain Charon
Original Assignee
Institut Franco-Allemand De Recherches De Saint-Louis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Franco-Allemand De Recherches De Saint-Louis filed Critical Institut Franco-Allemand De Recherches De Saint-Louis
Priority to DE60318096T priority Critical patent/DE60318096T2/de
Priority to CA2502081A priority patent/CA2502081C/fr
Priority to EP03773820A priority patent/EP1558890B1/fr
Publication of WO2004036141A1 publication Critical patent/WO2004036141A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust

Definitions

  • the present invention relates in particular to the field of provisions for guiding or piloting self-propelled or non-propelled projectiles or missiles and relates to a method, as well as an associated device, for piloting a projectile such as, for example, a shell , a bullet or a missile.
  • the piloting of a machine flying in the atmosphere can in particular be carried out by the deployment of bearing surfaces or by the operation of a pyrotechnic device, for example.
  • the main drawback of piloting a flying machine by the operation of a pyrotechnic device is that it can only operate once.
  • the object of the invention is to solve these drawbacks by proposing a method for piloting a hyperveloce projectile, that is to say one whose speed is greater than the speed of sound, having no moving part and which can be implemented as many times as necessary.
  • the solution provided is a method of piloting a hyperveloce projectile, such as, for example, a shell, a bullet or a missile, comprising a nose, generally in the shape of a cone, having a more or less pointed end and characterized in what it consists in carrying out a plasma discharge near said end and over a limited sector of the external surface of the nose.
  • a hyperveloce projectile such as, for example, a shell, a bullet or a missile
  • the invention relates to a method for deflecting in a direction Y a hyperveloce projectile, such, for example, as a shell, a bullet or a missile, comprising a nose, generally in the shape of a cone, having a more or less pointed, characterized in that it consists in carrying out a plasma discharge near said end, on a limited sector of the external surface of the nose and on the side of direction Y.
  • a hyperveloce projectile such, for example, as a shell, a bullet or a missile, comprising a nose, generally in the shape of a cone, having a more or less pointed, characterized in that it consists in carrying out a plasma discharge near said end, on a limited sector of the external surface of the nose and on the side of direction Y.
  • the invention also relates to a device for piloting a hyperveloce projectile, such as, for example, a shell, a bullet or a missile, comprising a nose, generally in the shape of a cone, having a more or less pointed end and characterized in that it includes means capable of transmitting a plasma discharge near said end and over a limited sector of the external surface of the nose.
  • a hyperveloce projectile such as, for example, a shell, a bullet or a missile
  • a nose generally in the shape of a cone, having a more or less pointed end and characterized in that it includes means capable of transmitting a plasma discharge near said end and over a limited sector of the external surface of the nose.
  • the means capable of emitting a plasma discharge comprise a triggered spark gap, two electrodes and a high voltage generator.
  • said means comprise at least one pair of electrodes.
  • said means comprise at least one pair of electrodes if the projectile is in rotation or several pairs of electrodes if it is not in rotation.
  • FIG. 1 shows a diagram of the shock waves generated by a supersonic projectile
  • FIG. 2 shows the result of a numerical simulation of the same craft operating under the same supersonic flight conditions as previously to which a plasma discharge is applied
  • FIG. 3 shows the asymmetry of the density distribution of the surrounding air over half the surface of the projectile and in the plane of symmetry of the flow for the example chosen.
  • FIG. 4 presents a diagram of a device according to an embodiment of the invention
  • FIG. 5 shows an example of installation of four pairs of electrodes arranged at ⁇ / 2 Radians from each other.
  • a shock wave occurs upstream of its nose.
  • the pressures distributed on its surface are balanced and the shock wave presents symmetries according to the shape of the craft.
  • the wave is attached to the tip of the cone and of conical shape.
  • Figure 1 presents the result of a numerical simulation of a machine flying at a supersonic speed in the direction of the arrow. It fully shows a machine 1 and half of two other surfaces 2 and 3.
  • the machine has a conical front part 4 and a cylindrical rear part 5.
  • Said surfaces 2 and 3 characterize a constant pressure in the flow.
  • the surface 2 attached to the tip of the machine represents the surface of the conical shock wave while the surface 3 attached to the discontinuity of the surface of the machine (cone-cylinder junction) characterizes a relaxation wave.
  • the invention applied to such a projectile consists in unbalancing the flow around the nose of the device by producing a plasma discharge towards the end of the nose as close as possible to the point, in order to achieve an incidence of the device .
  • This plasma discharge carried out over a limited angular sector modifies the boundary layer which surrounds the surface of the machine.
  • the objective therefore consists in producing a discharge such that the imbalance of the thermodynamic quantities is large enough to cause the deviation of the machine with respect to its rectilinear trajectory.
  • Figure 2 shows the result of a numerical simulation of the same craft evolving in the same conditions of supersonic flight as previously to which a plasma discharge is applied near the point.
  • Each of the two surfaces 7, 3 which is represented there, characterizes a constant pressure in the flow.
  • FIG. 3 shows the asymmetry of the distribution of the density of the surrounding air over half the surface of the projectile and in the plane of symmetry of the flow for the example chosen.
  • This density is substantially constant and equal to 1 kg / m 3 between points A and B located opposite the plasma discharge 6 and downstream, relative to the direction Z of the projectile, of the plasma discharge (zone C ), while it is very low (of the order of 2.710-2 kg / m 3 ) at the level of the skin E of the projectile upstream of the plasma discharge 6.
  • FIG. 4 presents a diagram of part of a device according to an embodiment of the invention.
  • This part comprises a nose 4 in the form of a cone of a hyperveloce projectile. Near the end of the nose, a plasma discharge 6 is shown.
  • FIG. 5 shows an example of installation of four pairs of electrodes arranged at ⁇ / 2 Radians from each other and near the end of the nose of the projectile. These electrodes are connected to a circuit capable of generating an energy between the electrodes making up said pairs which is sufficient for priming the plasma.
  • This circuit includes a control device 12, a voltage distributor multiplier release 11.
  • control device 12 controls via the distributor multiplier release 11 on the one hand the generation of the adequate voltage difference and on the other hand the delivery of the voltage generated to the torque (s) corresponding to the direction of deviation desired.
  • this device can be associated with means enabling its control, such as, for example, a GPS system, a seeker type system, a remote control system, or any other system making it possible to know the roll position of the machine.
  • means enabling its control such as, for example, a GPS system, a seeker type system, a remote control system, or any other system making it possible to know the roll position of the machine.
  • a plasma discharge for a 20 mm caliber projectile flying at ground level under normal conditions at a speed corresponding to a Mach number of 3.2 and the front of which consists of a cone of 20 ° d angle at the top and of a cylindrical part not comprising a bearing surface, a plasma discharge, the temperature of which is approximately 15000K, is carried out on a surface of 9 mm 2 near the point of the projectile which requires a momentum corresponding to a mass flow rate of an explosive substance of approximately 15 10 "4 kg / s corresponding to a power of approximately 3 kVA.
  • the duration of the discharge comprised between 2 and 4 ms corresponding to an electrical energy around ten Joules.
  • the intensity of the discharge can be modulated by acting on the thermodynamic parameters such as the temperature in the discharge and the associated momentum.
  • the plasma is generated by high voltage discharge (s).
  • This (these) discharge (s) is (are) obtained by a voltage multiplier trigger, which, from an electrical or optical signal of low level, delivers sufficient energy to start the plasma.
  • the design optimizes the electrical energy stored before triggering and the voltage pulse appropriate to the conditions of the plasma discharge.
  • the impact on the aerodynamic effects is interesting.
  • the aerodynamic effects are first evaluated by numerical simulation in the case of the unmanned projectile evolving on a rectilinear trajectory with zero incidence.
  • the aerodynamic coefficients are calculated only for the front body of the projectile, the wake is therefore not taken into account:
  • the lift coefficient Cz and the moment coefficient Cm calculated at the tip of the projectile are obviously zero.
  • the shape of the nose can be arbitrary and not necessarily over.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

La présente invention concerne notamment le domaine des dispositions pour le guidage ou le pilotage des projectiles autopropulsés ou non ou des missiles (1) et concerne un procédé, ainsi qu’un dispositif associé, de pilotage d’un projectile hypervéloce tel, par exemple, qu’un obus, une balle ou un missile (1), comportant un nez (4), généralement en forme de cône, présentant une extrémité plus ou moins pointue et caractérisé en ce qu’il consiste à procéder à une décharge plasma (6) à proximité de ladite extrémité et sur un secteur limité de la surface externe du nez (4).

Description

PILOTAGE D'UN PROJECTILE PAR DECHA E PLASMA
La présente invention concerne notamment le domaine des dispositions pour le guidage ou le pilotage des projectiles autopropulsés ou non ou des missiles et concerne un procédé, ainsi qu'un dispositif associé, de pilotage d'un projectile tel, par exemple, qu'un obus, une balle ou un missile.
Le pilotage d'un engin volant dans l'atmosphère peut notamment être effectué par le déploiement de surfaces portantes ou par le fonctionnement d'un dispositif pyrotechnique, par exemple.
L'inconvénient principal des surfaces portantes se situe au niveau de leur déploiement qui nécessite des efforts importants, d'autant plus important que la vitesse de l'engin l'est aussi, et une résistance du dispositif à de très fortes pressions rencontrées à vitesses supersoniques. En outre, ce type de pilotage nécessite un temps long de réaction qui peut être un inconvénient majeur si l'engin est stabilisé par rotation.
Le principal inconvénient du pilotage d'un engin volant par le fonctionnement d'un dispositif pyrotechnique est qu'il ne peut fonctionner qu'une seule fois.
Le but de l'invention est de résoudre ces inconvénients en proposant un procédé de pilotage d'un projectile hypervéloce, c'est-à-dire dont la vitesse est supérieure à la vitesse du son, ne présentant aucune pièce en mouvement et pouvant être mis en œuvre autant de fois que nécessaire.
La solution apportée est un procédé de pilotage d'un projectile hypervéloce, tel, par exemple, qu'un obus, une balle ou un missile, comportant un nez, généralement en forme de cône, présentant une extrémité plus ou moins pointue et caractérisé en ce qu'il consiste à procéder à une décharge plasma à proximité de ladite extrémité et sur un secteur limité de la surface externe du nez.
Selon une caractéristique particulière l'invention concerne un procédé pour dévier selon une direction Y un projectile hypervéloce, tel, par exemple, qu'un obus, une balle ou un missile, comportant un nez, généralement en forme de cône, présentant une extrémité plus ou moins pointue, caractérisé en ce qu'il consiste à procéder à une décharge plasma à proximité de ladite extrémité, sur un secteur limité de la surface externe du nez et du côté de la direction Y.
L'invention concerne aussi un dispositif de pilotage d'un projectile hypervéloce, tel, par exemple, qu'un obus, une balle ou un missile, comportant un nez, généralement en forme de cône, présentant une extrémité plus ou moins pointue et caractérisé en ce qu'il comporte des moyens aptes à émettre une décharge plasma à proximité de ladite extrémité et sur un secteur limité de la surface externe du nez.
Selon une caractéristique particulière, les moyens aptes à émettre une décharge plasma comportent un éclateur déclenché, deux électrodes et un générateur de haute tension.
Selon une autre caractéristique, lesdits moyens comportent au moins un couple d'électrodes. En effet, lesdits moyens comportent au moins un couple d'électrodes si le projectile est en rotation ou plusieurs couples d'électrodes s'il n'est pas en rotation.
D'autres avantages et caractéristiques apparaîtront dans la description de modes particuliers de réalisation de l'invention au regard des figures annexées parmi lesquelles :
- la figure 1 montre un schéma des ondes de choc engendrées par un projectile supersonique,
- La figure 2 montre le résultat d'une simulation numérique du même engin évoluant dans les mêmes conditions de vol supersonique que précédemment auquel est appliquée une décharge plasma,
- La figure 3 montre la dissymétrie de la distribution de la masse volumique de l'air environnant sur la moitié de la surface du projectile et dans le plan de symétrie de l'écoulement pour l'exemple choisi.
- la figure 4 présente un schéma d'un dispositif selon un mode de réalisation de l'invention,
- la figure 5 montre un exemple d'implantation de quatre couples d'électrodes disposées à π/2 Radians les uns des autres.
Dans le cas d'un engin hypervéloce, une onde de choc se produit à l'amont de son nez. Lorsque l'engin vole sur une trajectoire rectiligne les pressions réparties sur sa surface sont équilibrées et l'onde de choc présente des symétries suivant la forme de l'engin. Dans le cas d'un projectile constitué d'un nez conique, l'onde est attachée à la pointe du cône et de forme conique.
La figure 1 présente le résultat d'une simulation numérique d'un engin volant à une vitesse supersonique dans le sens de la flèche. Elle montre intégralement un engin 1 et la moitié de deux autres surfaces 2 et 3. L'engin comporte une partie avant 4 conique et une partie arrière 5 cylindrique. Lesdites surfaces 2 et 3 caractérisent une pression constante dans l'écoulement. La surface 2 attachée à la pointe de l'engin représente la surface de l'onde de choc conique tandis que la surface 3 attachée à la discontinuité de la surface de l'engin (jonction cône-cylindre) caractérise une onde de détente.
L'invention appliquée à un tel projectile consiste à déséquilibrer l'écoulement autour du nez de l'engin en produisant une décharge plasma vers l'extrémité du nez au plus près de la pointe, afin de réaliser une mise en incidence de l'engin. Cette décharge plasma réalisée sur un secteur angulaire limité modifie la couche limite qui entoure la surface de l'engin. L'objectif consiste donc à produire une décharge telle que le déséquilibre des grandeurs thermodynamiques soit assez important pour provoquer la déviation de l'engin par rapport à sa trajectoire rectiligne.
L'absence de pièces en mouvement et la répétitivité des décharges constituent les principaux avantages de cette technique. En effet, le contrôle de l'engin sur sa trajectoire peut être réalisé par des décharges répétitives actionnées à la demande en fonction de la trajectoire désirée.
La figure 2 montre le résultat d'une simulation numérique du même engin évoluant dans les mêmes conditions de vol supersonique que précédemment auquel est appliquée une décharge plasma près de la pointe. Chacune des deux surfaces 7, 3 qui y est représentée, caractérise une pression constante dans l'écoulement.
On constate qu'à la pointe de l'engin 1 , l'onde de choc 7 est déviée sous l'action de la décharge plasma 6.
La figure 3 montre la dissymétrie de la distribution de la masse volumique de l'air environnant sur la moitié de la surface du projectile et dans le plan de symétrie de l'écoulement pour l'exemple choisi. Cette masse volumique est sensiblement constante et égale à 1 kg/m3 entre les points A et B situés à l'opposé de la décharge plasma 6 et en aval, par rapport à la direction Z du projectile, de la décharge plasma (zone C), tandis qu'elle est très faible ( de l'ordre de 2,710-2kg/m3) au niveau de la peau E du projectile en amont de la décharge plasma 6. Par contre elle est maximale, de l'ordre de 3kg/m3, au point D au niveau de la décharge plasma 6.
La figure 4 présente un schéma d'une partie d'un dispositif selon un mode de réalisation de l'invention. Cette partie comporte un nez 4 en forme de cône d'un projectile hypervéloce. A proximité de l'extrémité du nez, est représentée une décharge plasma 6.
Pour dévier le projectile selon une direction Y qui lui est perpendiculaire, il est procédé à une décharge plasma 6 sur un secteur limité 8 de la surface externe du nez et du côté de la direction Y. La figure 5 montre un exemple d'implantation de quatre couples d'électrodes disposés à π/2 Radians les uns des autres et à proximité de l'extrémité du nez du projectile. Ces électrodes sont reliées à un circuit apte à générer une énergie entre les électrodes composant lesdits couples qui est suffisante à l'amorçage du plasma. Ce circuit comporte un dispositif de commande 12, un déclencheur multiplicateur répartiteur de tension 11.
Ainsi, le dispositif de commande 12 commande via le déclencheur multiplicateur répartiteur 11 d'une part la génération de la différence de tension adéquate et d'autre part la délivrance de la tension générée au(x) couple(s) correspondant à la direction de déviation voulue.
La traînée de l'engin, la force et le moment de pilotage peuvent être déterminés par le calcul. Même dans le cas où les efforts seraient faibles, ce dispositif est intéressant car en agissant près de la pointe de l'engin, une petite dissymétrie de l'écoulement déstabilise le projectile et permet son pilotage. L'utilisation du même dispositif, ou d'un autre dispositif selon l'invention placé à un autre endroit sur le projectile, peut servir à stabiliser à nouveau le projectile sur sa trajectoire.
Par ailleurs ce dispositif peut être associé à des moyens permettant son contrôle, tel, par exemple, un système GPS, un système du type autodirecteur, un système de commande à distance, ou tout autre système permettant de connaître la position en roulis de l'engin.
A titre d'exemple, pour un projectile de calibre 20 mm volant au ras du sol dans des conditions normales à une vitesse correspondant à un nombre de Mach de 3,2 et dont l'avant est constitué d'un cône de 20° d'angle au sommet et d'une partie cylindrique ne comportant pas de surface portante, une décharge de plasma, dont la température est d'environ 15000K, est réalisée sur une surface de 9 mm2 à proximité de la pointe du projectile ce qui nécessite une quantité de mouvement correspondant à un débit massique d'une substance explosible d'environ 15 10"4 kg/s correspondant à une puissance d'environ 3 kVA. La durée de la décharge comprise entre 2 et 4 ms correspondant à une énergie électrique de l'ordre d'une dizaine de Joules.
L'intensité de la décharge peut être modulée en agissant sur les paramètres thermodynamiques tels que la température dans la décharge et la quantité de mouvement associée.
Le plasma est généré par décharge(s) à haute tension. Cette (ces) décharge(s) est (sont ) obtenue(s) par un déclencheur multiplicateur de tension, qui, à partir d'un signal électrique ou optique de faible niveau, délivre une énergie suffisante à l'amorçage du plasma. La conception permet d'optimiser l'énergie électrique stockée avant le déclenchement et l'impulsion de tension appropriée aux conditions de la décharge plasma.
L'incidence sur les effets aérodynamiques est intéressante. Les effets aérodynamiques sont d'abord évalués par la simulation numérique dans le cas du projectile non piloté évoluant sur une trajectoire rectiligne à incidence nulle. Les coefficients aérodynamiques sont calculés uniquement pour l'avant corps du projectile, le sillage n'étant donc pas pris en compte :
Le coefficient de traînée vaut Cx = 0,1157. Le coefficient de portance Cz et le coefficient de moment Cm calculé à la pointe du projectile sont bien évidemment nuls.
Les coefficients aérodynamiques sont maintenant déterminés pour le projectile évoluant sur la trajectoire rectiligne à incidence nulle et piloté par une décharge plasma modélisée dans les conditions énoncées auparavant :
Le coefficient de traînée vaut Cx = 0,0949. Le coefficient de portance vaut Cz = 0,0268 ce qui correspond à une force de 6 N orientée dans la direction d'action de la décharge. Le coefficient de moment calculé à la pointe du projectile vaut Cm = -0,0356 ce qui correspond à un moment de 0,1609 mN orienté de manière à accompagner les effets de la force de portance.
L'analyse des résultats de cette simulation montre :
Une réduction de la traînée du projectile lors de la décharge plasma d'environ 18
% ce qui est très important ;
que la force de pilotage agit dans la direction de la décharge ;
que le moment de tangage contribue d'une façon bénéfique à la force de pilotage pour rendre le projectile manœuvrant.
Bien évidemment de nombreuses modifications peuvent être réalisées sans sortir du cadre de l'invention. Ainsi, la forme du nez peut être quelconque et pas forcément de révolu.

Claims

REVENDICATIONS
1 Procédé pour dévier selon une direction Y un projectile hypervéloce, tel, par exemple, qu'un obus, une balle ou un missile, comportant un nez, généralement en forme de cône présentant une extrémité plus ou moins pointue, caractérisé en ce qu'il consiste à procéder à une décharge plasma sur un secteur limité de la surface externe du nez et du côté de la direction Y.
2 Procédé selon la revendication 1 , caractérisé en ce qu'il consiste à procéder à une décharge plasma à proximité de ladite extrémité, sur un secteur limité de la surface externe du nez et du côté de la direction Y.
3 Procédé de pilotage d'un projectile hypervéloce, tel, par exemple, qu'un obus, une balle ou un missile, comportant un nez, généralement en forme de cône, présentant une extrémité plus ou moins pointue et caractérisé en ce qu'il consiste à procéder, pour chaque modification de la trajectoire du projectile, à des décharges plasma à proximité de ladite extrémité et sur un secteur limité de la surface externe du nez.
4 Procédé de pilotage selon la revendication 3, caractérisé en ce qu'il consiste à procéder, pour chaque modification de la trajectoire du projectile, à des décharges plasma à proximité de ladite extrémité et sur un secteur limité de la surface externe du nez.
5 Dispositif de pilotage d'un projectile hypervéloce, tel, par exemple, qu'un obus, une balle ou un missile, comportant un nez, généralement en forme de cône présentant une extrémité plus ou moins pointue et caractérisé en ce qu'il comporte des moyens aptes à émettre une décharge plasma à proximité de ladite extrémité et sur un secteur limité de la surface externe du nez.
6. Dispositif selon la revendication 5, caractérisé en ce que les moyens aptes à émettre une décharge plasma comportent un éclateur déclenché, deux électrodes et un générateur de haute tension.
7. Dispositif selon l'une quelconque des revendications 5 et 6, caractérisé en ce que lesdits moyens comportent au moins un couple d'électrodes.
PCT/FR2003/002976 2002-10-17 2003-10-09 Pilotage d'un projectile par decharge plasma WO2004036141A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60318096T DE60318096T2 (de) 2002-10-17 2003-10-09 Steuerung eines geschosses durch plasmaentladung
CA2502081A CA2502081C (fr) 2002-10-17 2003-10-09 Pilotage d'un projectile par decharge plasma
EP03773820A EP1558890B1 (fr) 2002-10-17 2003-10-09 Pilotage d'un projectile par decharge plasma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0212906A FR2846081B1 (fr) 2002-10-17 2002-10-17 Pilotage d'un projectile par decharge plasma
FR02/12906 2002-10-17

Publications (1)

Publication Number Publication Date
WO2004036141A1 true WO2004036141A1 (fr) 2004-04-29

Family

ID=32050461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002976 WO2004036141A1 (fr) 2002-10-17 2003-10-09 Pilotage d'un projectile par decharge plasma

Country Status (6)

Country Link
US (1) US7002126B2 (fr)
EP (1) EP1558890B1 (fr)
CA (1) CA2502081C (fr)
DE (2) DE60318096T2 (fr)
FR (1) FR2846081B1 (fr)
WO (1) WO2004036141A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2891359B1 (fr) 2005-09-27 2007-12-14 Saint Louis Inst Nouveau dispositif embarque de generation de decharge(s) plasma pour le pilotage d'un engin supersonique ou hypersonique.
US7963442B2 (en) * 2006-12-14 2011-06-21 Simmonds Precision Products, Inc. Spin stabilized projectile trajectory control
US7988103B2 (en) * 2007-01-19 2011-08-02 John Hopkins University Solid state supersonic flow actuator and method of use
US7823510B1 (en) 2008-05-14 2010-11-02 Pratt & Whitney Rocketdyne, Inc. Extended range projectile
US7891298B2 (en) 2008-05-14 2011-02-22 Pratt & Whitney Rocketdyne, Inc. Guided projectile
AU2014276622A1 (en) * 2013-06-04 2015-12-24 Bae Systems Plc Drag reduction system
US10914559B1 (en) 2016-11-21 2021-02-09 Lockheed Martin Corporation Missile, slot thrust attitude controller system, and method
US10113844B1 (en) * 2016-11-21 2018-10-30 Lockheed Martin Corporation Missile, chemical plasm steering system, and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1022913B (de) * 1954-09-15 1958-01-16 Schoppe Fritz Einrichtung zur Erzeugung eines Vortriebes oder einer Bremsung an einem relativ zu einem Stroemungsmittel bewegten Koerper
US3151259A (en) * 1959-08-18 1964-09-29 Gen Electric Plasma accelerator system
GB1181431A (en) * 1967-01-11 1970-02-18 Rocket Research Corp Improvements in or relating to Plasma Accelerators for Generating Propulsion Thrust
DE3804931A1 (de) * 1988-02-17 1989-08-31 Deutsch Franz Forsch Inst Verfahren zur richtungssteuerung eines im hoeheren ueberschallbereich fliegenden flugkoerpers und derartiger flugkoerper
FR2686409A1 (fr) * 1988-06-22 1993-07-23 Saint Louis Inst Projectile supersonique pilotable.
US5273237A (en) * 1992-11-02 1993-12-28 The United States Of America As Represented By The Secretary Of The Air Force Forebody nozzle for aircraft directional control
WO1997037126A1 (fr) * 1996-04-01 1997-10-09 International Scientific Products Propulseur plasmique a effet hall
WO2002014781A1 (fr) * 2000-08-11 2002-02-21 Claverham Limited Projectile guide

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271001A (en) * 1959-08-18 1966-09-06 Gen Electric Quick acting valve
US3176227A (en) * 1959-09-23 1965-03-30 Bendix Corp Control of ions in ionic media for communication and other purposes
US3210926A (en) * 1962-06-18 1965-10-12 Trw Inc Ionic propulsion systems
US4109883A (en) * 1965-03-29 1978-08-29 The United States Of America As Represented By The Secretary Of The Army Anti-missile missile
FR2447320A1 (fr) * 1979-01-23 1980-08-22 Matra Perfectionnements aux procedes et dispositifs d'amortissement actif de nutation pour vehicule spatial
DE3615585C1 (de) * 1986-05-09 1991-02-28 Rheinmetall Gmbh Projektil zum Verschiessen aus einer elektromagnetischen Geschossbeschleunigungsvorrichtung
DE3937743A1 (de) * 1989-11-13 1991-05-16 Deutsch Franz Forsch Inst Flugkoerper
US5349532A (en) * 1992-04-28 1994-09-20 Space Systems/Loral Spacecraft attitude control and momentum unloading using gimballed and throttled thrusters
JPH09236399A (ja) * 1996-02-27 1997-09-09 Asahi Chem Ind Co Ltd 超高速飛翔弾体用弾頭
US6145298A (en) * 1997-05-06 2000-11-14 Sky Station International, Inc. Atmospheric fueled ion engine
US6205378B1 (en) * 1999-07-29 2001-03-20 Space Systems/Loral, Inc. Adaptive mass expulsion attitude control system
US6367735B1 (en) * 2000-02-10 2002-04-09 Quantic Industries, Inc. Projectile diverter
US6530212B1 (en) * 2000-02-25 2003-03-11 Photonic Associates Laser plasma thruster

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1022913B (de) * 1954-09-15 1958-01-16 Schoppe Fritz Einrichtung zur Erzeugung eines Vortriebes oder einer Bremsung an einem relativ zu einem Stroemungsmittel bewegten Koerper
US3151259A (en) * 1959-08-18 1964-09-29 Gen Electric Plasma accelerator system
GB1181431A (en) * 1967-01-11 1970-02-18 Rocket Research Corp Improvements in or relating to Plasma Accelerators for Generating Propulsion Thrust
DE3804931A1 (de) * 1988-02-17 1989-08-31 Deutsch Franz Forsch Inst Verfahren zur richtungssteuerung eines im hoeheren ueberschallbereich fliegenden flugkoerpers und derartiger flugkoerper
FR2686409A1 (fr) * 1988-06-22 1993-07-23 Saint Louis Inst Projectile supersonique pilotable.
US5273237A (en) * 1992-11-02 1993-12-28 The United States Of America As Represented By The Secretary Of The Air Force Forebody nozzle for aircraft directional control
WO1997037126A1 (fr) * 1996-04-01 1997-10-09 International Scientific Products Propulseur plasmique a effet hall
WO2002014781A1 (fr) * 2000-08-11 2002-02-21 Claverham Limited Projectile guide

Also Published As

Publication number Publication date
CA2502081C (fr) 2011-04-19
US7002126B2 (en) 2006-02-21
EP1558890B1 (fr) 2007-12-12
FR2846081B1 (fr) 2005-01-07
DE10347761A1 (de) 2004-05-06
EP1558890A1 (fr) 2005-08-03
DE60318096T2 (de) 2008-12-04
CA2502081A1 (fr) 2004-04-29
DE10347761A8 (de) 2004-08-12
FR2846081A1 (fr) 2004-04-23
DE10347761B4 (de) 2007-10-18
DE60318096D1 (de) 2008-01-24
US20050017124A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
EP0737297B1 (fr) Systeme de lancement et d'orientation d'engins volants
FR2517818A1 (fr) Methode de guidage terminal et missile guide operant selon cette methode
FR2695467A1 (fr) Procédé de neutralisation de cible aérienne évoluant à l'aide de pales et système et projectile pour la mise en Óoeuvre de ce procédé.
CA2560520C (fr) Dispositif embarque a courant basse tension pour la generation de decharge(s) plasma pour le pilotage d'un engin supersonique ou hypersonique
EP0439392B1 (fr) Projectile et son procédé d'utilisation
EP1558890B1 (fr) Pilotage d'un projectile par decharge plasma
EP0800054B1 (fr) Projectile dont la charge explosive est déclenchée au moyen d'un désignateur de cible
FR2844348A1 (fr) Munitions a bombe d'emploi universel et a cone de charge
EP0438343B1 (fr) Munition perforante pour des cibles à haute résistance mécanique
FR2554577A1 (fr) Systeme de commande pour munition guidee se propageant dans l'air a une vitesse supersonique
EP0918205B1 (fr) Projectile ayant une direction d'action radiale
EP1521053B1 (fr) Munition anti bunker
WO2011141527A1 (fr) Munition guidee protegee par une coiffe aerodynamique
EP0257163B1 (fr) Procédé et véhicule de lancement par un sous-marin en plongée d'un missile aérien
FR2704052A1 (fr) Charge formée multiamorçable.
FR2657157A1 (fr) Dispositif de correction de courbure d'un trajectoire d'une munition perforante pour des cibles a haute resistance mecanique.
FR2712683A1 (fr) Bombe de protection des avions et procédé d'utilisation.
EP0916921B1 (fr) Munition de déminage
FR2694389A1 (fr) Dispositif de défense.
CA2179929C (fr) Systeme de lancement et d'orientation d'engins volants
FR2674952A1 (fr) Guidage pour obus stabilise par rotation non empenne ni aile avec stabilisation de la trajectoire par tuyere tractrice a effet differentiel.
FR2833341A1 (fr) Systeme d'arme d'attaque de cibles sous-marines
FR2576095A1 (fr) Capteur pour mise a feu, pour projectiles et engins volants rapides
FR2657158A1 (fr) Munition perforante pour cible a haute resistance mecanique.
FR2911182A1 (fr) Dispositif pour neutraliser des projectiles et pour declencher ou devier des tetes militaires guidees

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2502081

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003773820

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003773820

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003773820

Country of ref document: EP