WO2004033384A1 - Method and system for removing thin metal film - Google Patents

Method and system for removing thin metal film Download PDF

Info

Publication number
WO2004033384A1
WO2004033384A1 PCT/JP2003/012630 JP0312630W WO2004033384A1 WO 2004033384 A1 WO2004033384 A1 WO 2004033384A1 JP 0312630 W JP0312630 W JP 0312630W WO 2004033384 A1 WO2004033384 A1 WO 2004033384A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal thin
electrode
metal
flat
Prior art date
Application number
PCT/JP2003/012630
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Daiku
Hidehiko Maehata
Masanori Tsukahara
Shogo Hamada
Tetsuya Inoue
Hiroshi Hamasaki
Original Assignee
Hitachi Zosen Corporation
Hitachi Zosen Metal Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation, Hitachi Zosen Metal Works Co., Ltd. filed Critical Hitachi Zosen Corporation
Publication of WO2004033384A1 publication Critical patent/WO2004033384A1/en
Priority to US11/103,182 priority Critical patent/US7544283B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Definitions

  • the present invention relates to a method of removing a metal thin film from a substrate and an apparatus for carrying out the method, for example, when the metal thin film formed by deposition and deposition does not meet the quality control standard.
  • High-performance glass substrates with excellent optical performance (such as transmittance) and mechanical performance (such as flatness) are used, for example, in flat panel displays.
  • optical performance such as transmittance
  • mechanical performance such as flatness
  • it is expensive if the metal thin film formed on the surface does not satisfy the quality control standard, it is desirable to remove and reuse the metal thin film.
  • Chemical solutions are basically disposable and generate a large amount of waste liquid.
  • the present invention has been made in view of the above-described conventional problems, and basically does not use a strong acid or strong alkali chemical solution and does not require precise position control. It is an object of the present invention to provide a method capable of efficiently removing a metal thin film by contact and an apparatus for carrying out the method. Disclosure of the invention
  • a flat metal plate electrode which is disposed in a slanted manner and which prevents the flow of electrolytic flow, and a part thereof is immersed in the electrolyte upstream or downstream of the flat metal plate electrode.
  • the first metal thin film removing apparatus which comprises an auxiliary electrode arranged to set the first and second electrodes, and a DC voltage power source applied to the both electrodes, a DC voltage is applied to the metal plate electrode and the auxiliary electrode.
  • the electrolytic solution flowing down on the flat metal plate electrode collides with the thin metal film on the surface of the insulator to remove the thin metal film.
  • the metal thin film can be efficiently removed without damaging the insulator without contact.
  • a portion extending between the metal flat plate electrode and the auxiliary electrode is provided below the both electrodes.
  • the bottom electrode is also configured to apply a DC voltage of the same polarity as the auxiliary electrode from a DC voltage power source.
  • a moving mechanism for moving at least one of an insulator immersed in an electrolytic solution or a metal plate electrode with respect to the other, and the insulator and the metal plate electrode By removing the metal thin film while moving the relative movement, a wide range of metal thin films can be removed.
  • the intrusion prevention member of the electrolytic solution is provided on the approach side of the insulator in the metal flat plate electrode.
  • the third metal thin film removal device is used to suppress the early infiltration of electrolytic solution to the end of the insulator.
  • the flat metal plate electrode can be rotated, and the contact portion of the electrode with the metal thin film can be polished.
  • a fourth metal thin film removal apparatus of the present invention provided with a material and means for supplying a polishing substrate to the contact portion of the electrode with the metal thin film, using the electrode contact with the metal thin film The surface of the metal thin film is abraded with a polishing substrate positioned at
  • the membrane remaining by the electrolytic elution can be completely removed.
  • FIG. 1 is a schematic block diagram showing an example of a metal thin film removal apparatus for carrying out the first invention
  • FIG. 2 is a metal thin film removal apparatus for carrying out the first invention
  • FIG. 3 is a schematic block diagram showing a second example
  • FIG. 3 is an overall block diagram of FIG.
  • FIG. 4 shows the relationship between voltage and current when a closed circuit is formed as a DC voltage power source-metal plate electrode-continuous flow-metal thin film-working bath electrolyte-auxiliary electrode-direct current voltage power source. It is a figure.
  • (A) of FIG. 5 is an explanatory view of the reason why the metal thin film remains at the termination in the first invention
  • (b) of FIG. 5 is a view of the insulator where the metal thin film remains at the termination.
  • FIG. 6 is a view for explaining a method of preventing the metal thin film from remaining at the end in the first invention.
  • FIGS. 7 (a) and 7 (b) are other explanatory views of an embodiment in which the metal thin film does not occur at the end of the first invention.
  • FIG. 8 is a schematic block diagram showing an example of a metal thin film removal apparatus for carrying out the second invention.
  • FIG. 9 is a view for explaining a metal thin film remaining in an irregular shape at the end of the insulator.
  • FIG. 10 is a schematic configuration view showing an example of a metal thin film removal apparatus for practicing the third invention, and
  • FIG. 11 is a metal thin film removal apparatus for practicing the third invention FIG. 10 is a schematic configuration view showing another example of FIG.
  • FIG. 12 is a schematic configuration view showing one example of a metal thin film removing apparatus for carrying out another embodiment of the third invention.
  • FIG. 13 is a schematic configuration view showing an example of a metal thin film removal apparatus for practicing the fourth invention
  • FIG. 14 is a metal thin film removal apparatus for practicing the fourth invention of the present invention.
  • Fig. 15 is a schematic view showing a second example of the present invention
  • Fig. 15 is a schematic view showing a third example of the metal thin film removal apparatus for practicing the fourth invention
  • Fig. 16 is a view The fourth of the metal thin film removal apparatus for practicing the present invention
  • FIG. 17 is a schematic configuration view showing a fifth example of the metal thin film removal apparatus for practicing the fourth invention of the present invention.
  • FIG. 18 is an explanatory view of a method of removing a metal thin film by chemical etching.
  • FIGS. 1 to 3 21 has, for example, a width substantially the same as the width of an insulator 24 described later, and is a metal flat electrode obliquely disposed above the electrolyte solution 26, 6 2
  • the lower end is an auxiliary electrode in which the lower end is immersed in an electrolyte 26, a DC voltage power supply 23, and an insulator in which 24 is immersed in an electrolytic solution (eg, saline solution) in the processing tank 25,
  • M indicates an electrolytic elution unit
  • V indicates a valve.
  • FIG. 1 shows that the electrolytic solution 26 in the electrolytic solution tank 27 is sent to the flat metal electrode 21 by a pump 28.
  • the auxiliary electrode 22 has a cylindrical shape. It stands in a non-contact state with the metal thin film 2 4 a of the surface of the insulator 2 4 ⁇
  • the auxiliary electrode 22 is formed, for example, in the form of a freely rotatable hole and disposed in parallel with the metal flat plate electrode 21, and the auxiliary electrode 22 is insulated. It is in contact with the metal thin film 2 4 a on the surface of the object 2 4. Then, as shown in FIG. 3, the processed electrolytic solution 26 is collected in the electrolytic solution tank 27, and the collected electrolytic solution is filtered through a filter 30 and sent to the metal plate electrode 21. In the figure, it is shown that electrolytic solution 26 is used in circulation.
  • the roll-shaped auxiliary electrode 22 may be fixedly disposed in a non-contact state with the metal thin film 2 4 a on the surface of the insulator 24.
  • the metal thin film 24a is removed according to the following principle.
  • Electrolyte 26 is flowed from metal flat plate electrode 21 to metal thin film 24a to form an electrical continuous flow 26a.
  • a closed circuit is formed with an electrolytic solution 26, an auxiliary 22 and a DC voltage power supply 23.
  • the D voltage is the minimum voltage value for metal elution, that is, the diversion angle voltage, and is determined by the electrode material (surface activity), the electrolyte concentration, the line resistance, and the like.
  • the first invention of the present invention (except for the example shown in FIGS. 2 and 3) is a non-contact processing method and therefore does not damage the insulator. In addition, high accuracy is not required for position control between the electrode and the metal thin film. Also, rather than a chemical removal, since it is sufficient electrolytic solution in which a current flows to a process by electrolysis elution, it is possible to use the NaN0 3, a neutral salt electrolytic solution such as NaC l, excellent workability, the electrolyte Waste solution treatment can be easily performed. In the first invention shown in FIGS. 2 and 3, the contact is only with the roll-shaped auxiliary electrode 22 and basically the same as above.
  • the metal thin film 24a and the auxiliary The distance between the electrodes 22 is increased, and the amount of current flowing to the metal thin film 24 a is reduced compared to that in the electrolyte 26. Therefore, as shown in FIG. 5 (b), the metal thin film 24a finally remains at the downstream end (the left side in the drawing of FIG. 5) of the current efficiency. Therefore, in the first invention, as shown in FIG. 6, a conductor plate 3 having substantially the same thickness as the insulator 24 at the downstream end (left side in the drawing of FIG. 6) of the insulator 24.
  • the electrodes used for the electroelution are arranged alternately in the cathode (for example, metal plate electrode 21) and the anode (for example, auxiliary electrode 22), or as shown in FIG. 7 (b). Even in the case of arranging a plurality of ones in which the inner side is a cathode and the outer side is an anode, the same function and effect as installing the conductor plate 31 can be obtained.
  • FIG. 7 (a) shows that in which the cathode and the anode are connected by the insulator 33.
  • FIG. 8 shows an example of a second metal thin film removal apparatus according to the present invention.
  • reference numeral 29 denotes a bottom electrode disposed between the flat metal electrode 21 and the auxiliary electrode 22.
  • the bottom electrode is disposed below the two electrodes 21 and 22.
  • the other configuration is shown in FIG. It is the same as the example shown in.
  • the metal thin film just under the anode part is eluted, if the elution proceeds, the distance between the anode and the thin film will separate and the current will not flow, so that it will not be eluted. If the surface of the object 24 is wide, the entire metal thin film 24a formed on the surface can not be removed.
  • a moving mechanism is provided to move at least one of the insulator 24 or the metal plate electrode 21 which has been immersed in the electrolyte relative to the other. If the metal thin film 24a is removed while the insulator 24 and the flat metal plate 21 are moved relative to each other, a wide range of the metal thin film 24a can be removed.
  • the width of the metal plate electrode 21 is Assuming that W (cm), relative movement speed v (cm / min), and current I (A), 0.1 0 1 / (WX v) 0 0. 0 3
  • the auxiliary electrode 22 positively applied is upstream of the metal plate electrode 21 negatively applied. It is desirable that the auxiliary electrode 22 be disposed on the side so that the auxiliary electrode 22 passes above the metal thin film 24a on the surface of the insulator 24 before the flat metal electrode 21 is disposed.
  • the elution of the metal thin film 24a is closer to the negative applied negative electrode because the positive applied anode portion is eluted in the electrolytic elution, for example, FIG. 1 to FIG. 3, FIG. In the example shown in FIG. 6 and FIG. 6, it is to elute from the metal thin film 2 4 a located below the metal flat plate electrode 21. In other words, if it moves in the reverse direction, the eluted part of the metal thin film 24a will pass between the electrodes, and the closed circuit described above can not be formed, and continuous elution becomes impossible. is there. In order to prevent the elution of the anode, it is desirable to apply carbon or platinum plating to the anode electrode.
  • the distance between the electrodes is moved as the metal flat electrode 21 moves. Since the voltage changes, the voltage-current changes, and the removal of the metal thin film 24a may not be uniformly performed.
  • the problem can be solved by disposing the auxiliary electrode 22 in parallel with the metal flat plate 21 as shown in FIG. 2 and FIG. 3, for example, and moving both of them simultaneously.
  • the insulator 2 is formed.
  • the electrolytic elution starts before passing through the end of the metal plate electrode 21 or the auxiliary electrode 22. This is because usually the electrode between the electrodes is the strongest electric field (the strength of the current concentration) and only the electrode elutes, but the electric field concentration occurs at the end of the insulator 24 immersed in the electrolyte 26 This is because the electric field strength is equal to that between the electrodes.
  • the metal thin film 24a is shown in FIG. 9 at the end of the insulator 24. As shown Remains in a pall. In FIG. 9, 24b indicates a thin metal film remaining in a bald manner.
  • the penetration suppressing member of the electrolytic solution 26 on the approach side of the insulator 24 in the metal flat plate electrode 21 has a width substantially the same as the width of the insulator 24, for example Place the rubber wall 34a as shown in Fig. 10 as close to the surface of the insulator 24 as much as possible, or Fig. 11 has a width substantially the same as the width of the insulator 24
  • Fig. 11 has a width substantially the same as the width of the insulator 24
  • the current flowing in the electrolytic solution 26 deteriorates the elution efficiency of the metal thin film 24a.
  • the insulator 2 as shown in FIG. 12 between the flat metal plate electrode 21 and the auxiliary electrode 22 on the surface side of the insulator 24, the insulator 2 as much as possible. If, for example, an insulator wall 36 having a width substantially the same as the width of the insulator 24 is disposed close to the surface of 4, the current flowing in the electrolyte 26 is reduced, and the elution of the metal thin film 24a is reduced. Efficiency improves.
  • the metal thin film 24a can be efficiently removed without damaging the insulator 24.
  • the current flowing in the electrolytic solution 26 is a metal thin film 24 Since the metal thin film 24a is removed by eluting a, there may be a case where the remaining film remains by electrolytic elution.
  • a rotatable electrode 37 is employed in place of the metal flat plate electrode 21 and a polishing base is used at the contact portion of the electrode 37 with the metal thin film 24a. And means for supplying a polishing substrate to the contact portion of the electrode 37 with the metal thin film 2 4 a.
  • the surface of the metal thin film 24 a was abraded with the polishing substrate positioned at the contact portion of the electrode 37 with the metal thin film 24 a, and the electrolytic elution remained. The membrane can be completely removed.
  • an electrolytic solution 26 is supplied from an electrolytic solution tank 27 to the central portion of a rotatable rod-like electrode 37 having a polishing substrate having water permeability at its outer periphery. It shows what makes the electrolyte solution 26 flow out from the outer peripheral part of the electrode 37.
  • the auxiliary electrode 22 of the example shown in FIG. 13 is disposed in parallel with the rod-like electrode 37, and in the example shown in FIG. In place of the rod-like electrode 37 shown in the figure, a rotatable disk-like electrode 37 having a water-permeable abrasive substrate disposed on its lower surface is disposed.
  • the auxiliary electrode 22 shown in FIG. 14 is formed in a roll and brought into contact with the metal thin film 24a on the surface of the insulator 24, In the example shown in FIG. 17, the supply of the electrolytic solution 26 is not from the inside of the electrode 37 but from the outside.
  • the polishing substrate is disposed at the contact portion of the electrode 37 with the metal thin film 24a.
  • the polishing substrate is not disposed at the electrode 27.
  • a polishing substrate may be supplied to the contact portion with the genus thin film 24a.
  • the first metal thin film removing apparatus having the configuration shown in FIG. 3 (width of metal flat plate electrode: 100 mm) is used under the following processing conditions according to the present invention.
  • the method of removing metal thin film was carried out.
  • an aluminum thin film with a thickness of 1 0 0 0 X 1 0 1 Q m was deposited efficiently on a glass substrate of 1 0 0 0 0 mm x 1 0 0 0 mm. It can be removed and the glass substrate can be regenerated.
  • the second metal thin film removal method according to the present invention is carried out under the same processing conditions except that the roll-shaped auxiliary electrode is fixedly arranged in non-contact with the glass substrate and the current is changed to 30 OA. Similar to the above, the aluminum thin film deposited on the glass substrate can be efficiently removed, and the glass substrate can be regenerated.
  • the first metal thin film removal apparatus having the configuration shown in FIG. 3, as shown in FIG. 6, at the end of a 100 Omm ⁇ 100 Omm glass substrate (0.7 mm thick)
  • 100 OX 10 deposited on the glass substrate was obtained.
  • a 1 Qm thick aluminum thin film can be removed efficiently to the edge, enabling regeneration of the glass substrate.
  • the third metal thin film removal method according to the present invention was carried out using the third metal thin film removal apparatus according to the present invention having the configuration shown in FIG. 10 under the following processing conditions.
  • the 1000 x 10-1 Q m thick aluminum thin film deposited on an Omm x 100 O mm glass substrate (7 mm thick) can be completely removed to the edge, making it possible to regenerate the glass substrate.
  • Intrusion control member rubber wall
  • the third metal thin film removal method according to the present invention is carried out under the following processing conditions using the third metal thin film removal apparatus according to the present invention having the configuration shown in FIG.
  • An aluminum thin film of 1000 x 10-1 D m thick deposited on an Omm x 100 O mm glass substrate (7 mm thick) is effectively removed even if the 10% moving speed is improved over the other examples. Yes, it became possible to regenerate glass substrates.
  • Insulation wall PVC wall
  • the fourth metal thin film removal method according to the present invention was carried out under the following processing conditions using the fourth metal thin film removal apparatus according to the present invention having the configuration shown in FIG. Ommx 100 can be completely removed without remaining aluminum film of 1000 x 10- 1 0 m thickness had been deposited on a glass substrate of Omm, became possible the glass substrate playback.
  • Electrolyte 20% NaC 1
  • Rod-shaped electrode rotation number 600 r pm
  • Abrasive Abrasive # 3000 Alumina Abrasive (mixed with electrolyte and supplied)
  • the present invention is basically noncontact without using strong acid or strong alkali chemical solution and without requiring precise control of the position of the electrode relative to the metal thin film on the insulator surface.
  • the metal thin film can be removed efficiently without damaging the insulator, and the expensive functional glass substrate used in the semiconductor field can be recycled.

Abstract

A system for removing a thin metal film comprising an inclining metal plate electrode (21) for guiding a downward electrolyte flow, an auxiliary electrode (22) placed on the upstream or downstream side of the metal plate electrode (21) such that a part of the auxiliary electrode is immersed into the electrolyte, and a power supply (23) for applying a DC voltage to the both electrodes. The system is used to remove a metal thin film (24a) on the surface of an insulator (24) by making the electrolyte (26) flowing down the metal plate electrode (21) strike against the metal thin film (24a) under a state where the DC voltage is applied to the metal plate electrode (21) and the auxiliary electrode (22).

Description

明細書 金属薄膜の除去方法及び装置 技術分野  Method and apparatus for removing metal thin film
本発明は、 例えば蒸着やめつきにより形成された金属薄膜が品質管理基準を満 足しない場合に、 基板からその金属薄膜を除去する方法及びその方法を実施する 装置に関するものである。 背景技術  The present invention relates to a method of removing a metal thin film from a substrate and an apparatus for carrying out the method, for example, when the metal thin film formed by deposition and deposition does not meet the quality control standard. Background art
光学的性能 (透過率等) や機械的性能 (平坦度等) に優れている高機能ガラス 基板は、 例えばフラットパネルディスプレイに用いられる。 しかしながら、 高価 であるため、 その表面に形成する金属薄膜が品質管理基準を満足しない場合には 、 その金属薄膜を除去して再利用することが望まれる。  High-performance glass substrates with excellent optical performance (such as transmittance) and mechanical performance (such as flatness) are used, for example, in flat panel displays. However, since it is expensive, if the metal thin film formed on the surface does not satisfy the quality control standard, it is desirable to remove and reuse the metal thin film.
この金属薄膜を除去する方法として、 化学エッチングにより除去する方法があ る。 この方法は、 第 1 8図に示すように、 金属薄膜を化学反応的に溶解させる化 学液 1に、 その表面に形成した金属薄膜を除去しょうとする基板 2を浸漬するこ とで、 金属薄膜を除去する方法である (例えば、 日本特開平 6— 3 2 1 5 8 1号 、 日本特閧平 9 _ 8 6 9 6 8号参照。 ) 。  There is a method of removing this metal thin film by chemical etching. In this method, as shown in FIG. 18, the metal thin film formed on the surface is dipped in a chemical solution 1 in which the metal thin film is dissolved by chemical reaction so that the metal 2 is dipped. It is a method of removing a thin film (see, for example, Japanese Patent Application Laid-Open No. Hei 6- 3 21 5 8 1 and Japanese Patent No. 9-8 6 9 6 8).
しかしながら、 化学エッチングによって除去する方法は、 強酸や強アルカリの 化学液を使用するので、 以下の問題があった。  However, since the method of removing by chemical etching uses a strong acid or strong alkali chemical solution, there are the following problems.
1 ) 取扱いに十分な注意を払う必要があり、 作業性が悪くなる。  1) It is necessary to pay careful attention to handling, and the workability becomes worse.
2) 装置に耐食性を施す必要があり、 コスト高になる。  2) The equipment needs to be corrosion resistant, which increases the cost.
3) 化学液は基本的に使い捨てであり、 大量の廃液が出る。  3) Chemical solutions are basically disposable and generate a large amount of waste liquid.
4) 使用後、 化学液の廃液処理が困難である。  4) It is difficult to treat the chemical solution after use.
本発明は、 上記した従来の問題点に鑑みてなされたものであり、 強酸や強アル カリの化学液を使用することなく、 また、 精密な位置制御を必要とすることなく 、 基本的に非接触で金属薄膜を効率良く除去できる方法及びこの方法を実施する 装置を提供することを目的としている。 発明の開示 The present invention has been made in view of the above-described conventional problems, and basically does not use a strong acid or strong alkali chemical solution and does not require precise position control. It is an object of the present invention to provide a method capable of efficiently removing a metal thin film by contact and an apparatus for carrying out the method. Disclosure of the invention
本発明の第 1の金属薄膜の除去方法は、 傾斜状に配置ざれ、 電解流の流下を案 内する金属平板電極と、 この金属平板電極の上流或いは下流側に一部が電解液中 に浸漬すべく配置された補助電極と、 前記両電極に印加する直流電圧電源とで構 成された本発明の第 1の金属薄膜の除去装置を使用し、 前記金属平板電極と補助 電極に直流電圧を印加した状態で、 前記金属平板電極上を流下させた電解液を、 絶縁物表面の金属薄膜に衝突させて金属薄膜を除去するものである。  In the first method for removing a metal thin film of the present invention, a flat metal plate electrode which is disposed in a slanted manner and which prevents the flow of electrolytic flow, and a part thereof is immersed in the electrolyte upstream or downstream of the flat metal plate electrode. Using the first metal thin film removing apparatus according to the present invention, which comprises an auxiliary electrode arranged to set the first and second electrodes, and a DC voltage power source applied to the both electrodes, a DC voltage is applied to the metal plate electrode and the auxiliary electrode. In the applied state, the electrolytic solution flowing down on the flat metal plate electrode collides with the thin metal film on the surface of the insulator to remove the thin metal film.
そして、 この第 1の本発明によれば、 強酸や強アルカリの化学液を使用するこ となく、 また、 絶縁物表面の金属薄膜に対するノズル電極の精密な位置制御を必 要とすることなく、 非接触で絶縁物を傷つけることなく金属薄膜を効率良く除去 できるようになる。  And, according to the first aspect of the present invention, without using a strong acid or strong alkali chemical solution, and without requiring precise position control of the nozzle electrode with respect to the metal thin film on the surface of the insulator. The metal thin film can be efficiently removed without damaging the insulator without contact.
また、 本発明の第 2の金属薄膜の除去方法は、 前記本発明の第 1の金属薄膜の 除去装置の、 前記金属平板電極と補助電極間に亘るベく、 これら両電極の下方に 底面電極を配置し、 この底面電極にも直流電圧電源から前記補助電極と同極の直 流電圧を印加すベく構成した本発明の第 2の金属薄膜の除去装置を使用し、 前記 本発明の第 1の金属薄膜の除去方法において、 前記絶縁物の裏面側に配置した底 面電極にも直流電圧を印加した状態で、 前記金属平板電極上を流下させた電解液 を、 絶縁物表面の金属薄膜に衝突させ、 金属薄膜を除去するものである。  Further, according to a second method for removing a metal thin film of the present invention, in the apparatus for removing a first metal thin film according to the present invention, a portion extending between the metal flat plate electrode and the auxiliary electrode is provided below the both electrodes. Using the second metal thin film removal apparatus of the present invention, wherein the bottom electrode is also configured to apply a DC voltage of the same polarity as the auxiliary electrode from a DC voltage power source, In the method for removing a metal thin film of 1, the electrolytic solution which is allowed to flow down the flat metal plate electrode in a state where a DC voltage is also applied to the bottom electrode disposed on the back surface side of the insulator is a metal thin film on the insulator surface. Impact and remove the metal thin film.
このようにすれば、 第 1の本発明よりも更に作用効果は助長される。  In this way, the function and effect are promoted more than in the first invention.
前記第 1又は第 2の本発明において、 少なくとも電解液中に浸漬した絶縁物、 或いは、 金属平板電極のどちらか一方を他方に対して移動させる移動機構を設け 、 前記絶縁物と金属平板電極とを相対移動させながら金属薄膜を除去するように すれば、 広範囲の金属薄膜を除去することができる。  In the first or second aspect of the present invention, there is provided a moving mechanism for moving at least one of an insulator immersed in an electrolytic solution or a metal plate electrode with respect to the other, and the insulator and the metal plate electrode By removing the metal thin film while moving the relative movement, a wide range of metal thin films can be removed.
また、 本発明の第 3の金属薄膜の除去方法は、 前記第 1又は第 2の本発明にお いて、 前記金属平板電極における絶縁物の進入側に電解液の侵入抑制部材を設置 した本発明の第 3の金属薄膜の除去装置を使用し、 絶縁物の端部側への早期の電 解液の侵入を抑制するものである。  Further, according to the third method for removing a metal thin film of the present invention, in the first or second aspect of the present invention, the intrusion prevention member of the electrolytic solution is provided on the approach side of the insulator in the metal flat plate electrode. The third metal thin film removal device is used to suppress the early infiltration of electrolytic solution to the end of the insulator.
このようにすれば、 あばた状金属薄膜の発生を防止できる。 また、 本発明の第 4の金属薄膜の除去方法は、 前記第 1〜第 3の本発明におい て、 金属平板電極を、 回転可能な となし、 この電極の金属薄膜との接触部に 研磨基材を配置したり、 前記電極の金属薄膜との接触部への研磨基材の供給手段 を備えた本発明の第 4の金属薄膜の除去装置を使用し、 前記電極の金属薄膜との 接触部に位置させた研磨基材で金属薄膜の表面を擦過するものである。 In this way, it is possible to prevent the generation of a bald metal thin film. Further, according to the fourth method for removing a metal thin film of the present invention, in the first to third inventions, the flat metal plate electrode can be rotated, and the contact portion of the electrode with the metal thin film can be polished. A fourth metal thin film removal apparatus of the present invention provided with a material and means for supplying a polishing substrate to the contact portion of the electrode with the metal thin film, using the electrode contact with the metal thin film The surface of the metal thin film is abraded with a polishing substrate positioned at
この第 4の本発明では、 電解溶出で残留した膜を完全に除去することができる  In the fourth invention, the membrane remaining by the electrolytic elution can be completely removed.
図面の簡単な説明 Brief description of the drawings
第 1図は、 第 1の本発明を実施するための金属薄膜の除去装置の一例を示す概 略構成図、 第 2図は、 第 1の本発明を実施するための金属薄膜の除去装置の第 2 の例を示す概略構成図、 第 3図は、 第 2図の全体構成図である。 第 4図は、 直流 電圧電源一金属平板電極—連続流一金属薄膜一加工槽内の電解液一補助電極一直 流電圧電源とした閉回路が形成された場合の電圧と電流の関係を示した図である 。第 5図の (a ) は、 第 1の本発明において終端部に金属薄膜が残留する理由の 説明図、 第 5図の (b ) は終端部に金属薄膜が残留した絶縁物の図である。 第 6 図は、 第 1の本発明において終端部に金属薄膜の残留を発生させない方法を説明 する図である。 第 7図の (a ) ( b ) は、 第 1の本発明において終端部に金属薄 膜の残留を発生させない態様の他の説明図である。 第 8図は、 第 2の本発明を実 施するための金属薄膜の除去装置の一例を示す概略構成図である。 第 9図は、 絶 縁物の端部にあばた状に残留する金属薄膜を説明する図である。 第 1 0図は、 第 3の本発明を実施するための金属薄膜の除去装置の一例を示す概略構成図、 第 1 1図は、 第 3の本発明を実施するための金属薄膜の除去装置の他の例を示す概略 構成図である。 第 1 2図は、 第 3の本発明の他の実施例を実施するための金属薄 膜の除去装置の一例を示す概略構成図である。 第 1 3図は、 第 4の本発明を実施 するための金属薄膜の除去装置の一例を示す概略構成図、 第 1 4図は、 第 4の本 発明を実施するための金属薄膜の除去装置の第 2の例を示す概略構成図、 第 1 5 図は、 第 4の本発明を実施するための金属薄膜の除去装置の第 3の例を示す概略 構成図、 第 1 6図は、 第 4の本発明を実施するための金属薄膜の除去装置の第 4 の例を示す概略構成図、 第 1 7図は、 第 4の本発明を実施するための金属薄膜の 除去装置の第 5の例を示す概略構成図である。 第 1 8図は、.金属薄膜を化学エツ チングにより除去する方法の説明図である。 発明を実施するための最良の形態 FIG. 1 is a schematic block diagram showing an example of a metal thin film removal apparatus for carrying out the first invention, and FIG. 2 is a metal thin film removal apparatus for carrying out the first invention. FIG. 3 is a schematic block diagram showing a second example, and FIG. 3 is an overall block diagram of FIG. FIG. 4 shows the relationship between voltage and current when a closed circuit is formed as a DC voltage power source-metal plate electrode-continuous flow-metal thin film-working bath electrolyte-auxiliary electrode-direct current voltage power source. It is a figure. (A) of FIG. 5 is an explanatory view of the reason why the metal thin film remains at the termination in the first invention, and (b) of FIG. 5 is a view of the insulator where the metal thin film remains at the termination. . FIG. 6 is a view for explaining a method of preventing the metal thin film from remaining at the end in the first invention. FIGS. 7 (a) and 7 (b) are other explanatory views of an embodiment in which the metal thin film does not occur at the end of the first invention. FIG. 8 is a schematic block diagram showing an example of a metal thin film removal apparatus for carrying out the second invention. FIG. 9 is a view for explaining a metal thin film remaining in an irregular shape at the end of the insulator. FIG. 10 is a schematic configuration view showing an example of a metal thin film removal apparatus for practicing the third invention, and FIG. 11 is a metal thin film removal apparatus for practicing the third invention FIG. 10 is a schematic configuration view showing another example of FIG. 12 is a schematic configuration view showing one example of a metal thin film removing apparatus for carrying out another embodiment of the third invention. FIG. 13 is a schematic configuration view showing an example of a metal thin film removal apparatus for practicing the fourth invention, and FIG. 14 is a metal thin film removal apparatus for practicing the fourth invention of the present invention. Fig. 15 is a schematic view showing a second example of the present invention, Fig. 15 is a schematic view showing a third example of the metal thin film removal apparatus for practicing the fourth invention, and Fig. 16 is a view The fourth of the metal thin film removal apparatus for practicing the present invention FIG. 17 is a schematic configuration view showing a fifth example of the metal thin film removal apparatus for practicing the fourth invention of the present invention. FIG. 18 is an explanatory view of a method of removing a metal thin film by chemical etching. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 先ず、 本発明の第 1の金属薄膜の除去装置の一例を第 1図〜第 3図に示す。 第 1図〜第 3図において、 2 1は例えば後述する絶縁物 2 4の幅と略同じ幅を 有し、 電解液 2 6の上方に斜め状に立設配置された金属平板電極、 2 2は下端部 を電解液 2 6に浸潰した補助電極、 2 3は直流電圧電源、 2 4は加工槽 2 5内の 電解液 (例えば食塩水) 2 6中に浸潰した絶縁物であり、 その表面に除去しょう とする金属薄膜 2 4 aが形成されている。 なお、 Mは電解溶出部、 Vはバルブを 示す。  This will be described according to the accompanying drawings in order to describe the invention in more detail. First, one example of the first apparatus for removing a metal thin film of the present invention is shown in FIGS. In FIGS. 1 to 3, 21 has, for example, a width substantially the same as the width of an insulator 24 described later, and is a metal flat electrode obliquely disposed above the electrolyte solution 26, 6 2 The lower end is an auxiliary electrode in which the lower end is immersed in an electrolyte 26, a DC voltage power supply 23, and an insulator in which 24 is immersed in an electrolytic solution (eg, saline solution) in the processing tank 25, A metal thin film 24a to be removed is formed on the surface. Here, M indicates an electrolytic elution unit, and V indicates a valve.
このうち第 1図に示した例では、 金属平板電極 2 1へは、 電解液タンク 2 7内 の電解液 2 6をポンプ 2 8によって送るものを示しており、 補助電極 2 2は円柱 状のものを前記絶縁物 2 4の表面の金属薄膜 2 4 aと非接触状態に立設している ο  Among them, the example shown in FIG. 1 shows that the electrolytic solution 26 in the electrolytic solution tank 27 is sent to the flat metal electrode 21 by a pump 28. The auxiliary electrode 22 has a cylindrical shape. It stands in a non-contact state with the metal thin film 2 4 a of the surface of the insulator 2 4 ο
また、 第 2図及び第 3図に示した例では、 補助電極 2 2を例えば回転自在な口 —ル状に形成して金属平板電極 2 1と平行に配置し、 この補助電極 2 2を絶縁物 2 4の表面の金属薄膜 2 4 aに接触させている。 そして、 第 3図に示したように 、 加工後の電解液 2 6を電解液タンク 2 7に回収し、 回収した電解液をフィル夕 — 3 0で濾過して金属平板電極 2 1に送ることで、 電解液 2 6を循環使用するも のを示している。 なお、 ロール状の補助電極 2 2は絶縁物 2 4の表面の金属薄膜 2 4 aと非接触状態に固定配置しても良い。  Further, in the example shown in FIG. 2 and FIG. 3, the auxiliary electrode 22 is formed, for example, in the form of a freely rotatable hole and disposed in parallel with the metal flat plate electrode 21, and the auxiliary electrode 22 is insulated. It is in contact with the metal thin film 2 4 a on the surface of the object 2 4. Then, as shown in FIG. 3, the processed electrolytic solution 26 is collected in the electrolytic solution tank 27, and the collected electrolytic solution is filtered through a filter 30 and sent to the metal plate electrode 21. In the figure, it is shown that electrolytic solution 26 is used in circulation. The roll-shaped auxiliary electrode 22 may be fixedly disposed in a non-contact state with the metal thin film 2 4 a on the surface of the insulator 24.
上記第 1の本発明では、 以下の原理によつて金属薄膜 2 4 aが除去される。 In the first aspect of the present invention, the metal thin film 24a is removed according to the following principle.
① 金属平板電極 2 1から金属薄膜 2 4 aに向けて電解液 2 6を流し、 電気的な 連続流 2 6 aを形成する。 1 Electrolyte 26 is flowed from metal flat plate electrode 21 to metal thin film 24a to form an electrical continuous flow 26a.
② 例えば金属平板電極 2 1を負極、 補助電極 2 2を正極とした直流電圧を印加 すると、 直流電圧電源 2 3—金属平板電極 2 1一連続流 2 6 a—金属薄膜 2 4 a 03012630 2 For example, when a DC voltage is applied with the metal plate electrode 21 as the negative electrode and the auxiliary electrode 22 as the positive electrode, DC voltage power supply 23-metal plate electrode 21 1 continuous flow 26a-metal thin film 24a 03012630
S  S
—電解液 26—補助 22—直流電圧電源 23とした閉回路が形成される。A closed circuit is formed with an electrolytic solution 26, an auxiliary 22 and a DC voltage power supply 23.
③ 前記回路が形成されると、 電圧と電流は第 4図に示したような曲線となる。 この第 4図中の A電圧を超えると、 金属平板電極 21及び金属薄膜 24 aの表面 からは、 水素 '酸素イオン及び微細気泡が発生し始める。 また、 B電圧を超える と、 電流は急激に上昇し始め、 それにつれて気泡の発生量も急激に増大する。3 Once the circuit is formed, the voltage and current will have curves as shown in FIG. When the voltage A in FIG. 4 is exceeded, hydrogen 'oxygen ions and microbubbles begin to be generated from the surface of the metal plate electrode 21 and the metal thin film 24a. Also, when the voltage B is exceeded, the current starts to rise sharply, and the amount of bubbles generated also increases rapidly.
④ 更に、 C電圧を超えると、 電圧と電流はほぼ比例関係になり、 下記①式に示 すク一ロンの法則がほぼ成り立って薄膜金属の溶出が見られ、 薄膜金属 24 aの 除去加工が行われる。 この際、 絶縁物 24は電解溶出しないことは言うまでもな い。 なお、 D電圧は金属溶出する最小の電圧値、 すなわち分角牟電圧であり、 電極 材料 (表面活性度)、 電解液濃度、 線路抵抗等によって決まる。 4 Furthermore, when the voltage C is exceeded, the voltage and current become approximately proportional, and Quonon's law shown in the following equation 1 almost holds, so that elution of the thin film metal is observed, and removal of the thin film metal 24 a To be done. At this time, it goes without saying that the insulator 24 is not electroeluted. The D voltage is the minimum voltage value for metal elution, that is, the diversion angle voltage, and is determined by the electrode material (surface activity), the electrolyte concentration, the line resistance, and the like.
W=?7l · ??2 · k · I · t …①  W =? 7 l ·? 2 · k · I · t ... 1
但し、 ί :溶出効率 (%)  However, ί: elution efficiency (%)
7)1 :電流効率 (%)  7) 1: Current efficiency (%)
k :電気化学当量 (mg/c)  k: electrochemical equivalent (mg / c)
I :電解電流 (A)  I: Electrolytic current (A)
t :電解時間 (s e c)  t: electrolysis time (s c)
上記第 1の本発明 (第 2, 3図に示した例を除く) は、 非接触の加工法である ため、 絶縁物を傷つけることがない。 加えて、 電極と金属薄膜間の位置制御に高 い精度は必要でない。 また、 化学的除去ではなく、 電解溶出による加工であって 電流が流れる電解液であれば良いため、 NaN03 、 NaC l等の中性塩電解液 を使用できるので、 作業性に優れ、 電解液の廃液処理も容易に行うことができる 。 なお、 第 2, 3図に示した第 1の本発明も接触はロール状の補助電極 22のみ であり、 基本的には上記と同様である。 The first invention of the present invention (except for the example shown in FIGS. 2 and 3) is a non-contact processing method and therefore does not damage the insulator. In addition, high accuracy is not required for position control between the electrode and the metal thin film. Also, rather than a chemical removal, since it is sufficient electrolytic solution in which a current flows to a process by electrolysis elution, it is possible to use the NaN0 3, a neutral salt electrolytic solution such as NaC l, excellent workability, the electrolyte Waste solution treatment can be easily performed. In the first invention shown in FIGS. 2 and 3, the contact is only with the roll-shaped auxiliary electrode 22 and basically the same as above.
ところで、 前記第 1の本発明では、 例えば絶縁物 2 が移動して金属薄膜 24 aが除去されていき、 最終端になると、 第 5図 (a) に示したように、 金属薄膜 24aと補助電極 22間の距離が離れてゆき、 金属薄膜 24 aに流れる電流量が 電解液 26中に比べて減少する。 従って、 電流効率が悪くなつて、 第 5図 (b) に示したように、 最終的に下流側 (第 5図における紙面左側) 端部に金属薄膜 2 4 aが残留することになる。 従って、 第 1の本発明において、 第 6図に示したように、 絶縁物 2 4の下流側 (第 6図における紙面左側) 端部に絶縁物 2 4と略同厚さの導電体板 3 1を設置 すれば、 絶縁物 2 4の最終端が補助電極 2 2を通過した後でも、 直流電圧電源 2 3—金属平板電極 2 1一連続流 2 6 a—金属薄膜 2 4 a一導電体板 3 1一電解液 2 6一補助電極 2 2一直流電圧電源 2 3とした閉回路が形成されることで、 電流 効率の低下を防止でき、 下流側端部に金属薄膜 2 4 aが残留しなくなる。 なお、 上記の閉回路を形成するためには、 導電体板 3 1の電極移動方向の長さは、 金属 平板電極 2 1と補助電極 2 2間の間隔 aよりも長いことが必要である。 By the way, in the first aspect of the present invention, for example, when the insulator 2 moves and the metal thin film 24a is removed and the end is reached, as shown in FIG. 5 (a), the metal thin film 24a and the auxiliary The distance between the electrodes 22 is increased, and the amount of current flowing to the metal thin film 24 a is reduced compared to that in the electrolyte 26. Therefore, as shown in FIG. 5 (b), the metal thin film 24a finally remains at the downstream end (the left side in the drawing of FIG. 5) of the current efficiency. Therefore, in the first invention, as shown in FIG. 6, a conductor plate 3 having substantially the same thickness as the insulator 24 at the downstream end (left side in the drawing of FIG. 6) of the insulator 24. If 1 is installed, even after the final end of the insulator 24 passes through the auxiliary electrode 22, DC voltage power supply 2 3-flat plate electrode 2 1 continuous flow 2 6 a-thin metal film 2 4 a single conductor Plate 3 1 Electrolyte solution 2 6 1 Auxiliary electrode 2 2 1 DC voltage power supply 2 3 By forming a closed circuit, it is possible to prevent a decrease in current efficiency, and a metal thin film 2 4 a remains at the downstream end. I will not do. In order to form the above-described closed circuit, the length of the conductor plate 31 in the electrode movement direction needs to be longer than the distance a between the metal flat plate electrode 21 and the auxiliary electrode 22.
また、 第 6図に示したような絶縁物 2 4の下流側端部に絶縁物 2 4と略同厚さ の導電体板 3 1を設置する代わりに、 第 7図 (a ) に示したように、 電気溶出に 使用する電極を、 陰極 (例えば金属平板電極 2 1 )、 陽極 (例えば補助電極 2 2 ) 交互に複数配置したものや、 第 7図 (b ) に示したように、 円筒 3 2の内側を 陰極、 外側を陽極としたものを複数個配置したものでも、 導電体板 3 1を設置す るのと同様の作用効果を奏する。  Also, instead of installing the conductor plate 31 having substantially the same thickness as the insulator 24 at the downstream end of the insulator 24 as shown in FIG. As shown in FIG. 7 (b), the electrodes used for the electroelution are arranged alternately in the cathode (for example, metal plate electrode 21) and the anode (for example, auxiliary electrode 22), or as shown in FIG. 7 (b). Even in the case of arranging a plurality of ones in which the inner side is a cathode and the outer side is an anode, the same function and effect as installing the conductor plate 31 can be obtained.
なお、 第 7図 (a ) に示したものは、 陰極と陽極を絶縁体 3 3で連結したもの を示している。  In addition, what is shown in FIG. 7 (a) shows that in which the cathode and the anode are connected by the insulator 33.
次に、 本発明に係る第 2の金属薄膜の除去装置の一例を第 8図に示す。 第 8図 において、 2 9は前記金属平板電極 2 1と補助電極 2 2間に亘るベく、 これら両 電極 2 1 , 2 2の下方に配置した底面電極であり、 その他の構成は第 3図に示し た例と同じである。  Next, FIG. 8 shows an example of a second metal thin film removal apparatus according to the present invention. In FIG. 8, reference numeral 29 denotes a bottom electrode disposed between the flat metal electrode 21 and the auxiliary electrode 22. The bottom electrode is disposed below the two electrodes 21 and 22. The other configuration is shown in FIG. It is the same as the example shown in.
ところで、 これら第 1、 第 2の本発明では、 陽極部分直下の金属薄膜が溶出す るため溶出が進んでいくと陽極と薄膜の距離が離れて電流が流れなくなり、 溶出 されなくなることから、 絶縁物 2 4の表面が広い場合には、 表面に形成された金 属薄膜 2 4 a全体を除去することができない。  By the way, in the first and second inventions, since the metal thin film just under the anode part is eluted, if the elution proceeds, the distance between the anode and the thin film will separate and the current will not flow, so that it will not be eluted. If the surface of the object 24 is wide, the entire metal thin film 24a formed on the surface can not be removed.
そこで、 これら第 1、 第 2の本発明において、 少なくとも電解液中に浸潰した 絶縁物 2 4、 或いは、 金属平板電極 2 1のどちらか一方を他方に対して移動させ る移動機構を設け、 前記絶縁物 2 4と金属平板電極 2 1を相対移動させながら金 属薄膜 2 4 aを除去するようにすれば、 広範囲の金属薄膜 2 4 aを除去すること ができる。 この場合、 第 1及び第 2の本発明においては、 金属平板電極 2 1の幅 を W ( c m) 、 相対移動速度を v ( c m/m i n) 、 電流を I (A) とすると、 0 . 1≥ 1 / (WX v) ≥0 . 0 3 Therefore, in the first and second inventions of the present invention, a moving mechanism is provided to move at least one of the insulator 24 or the metal plate electrode 21 which has been immersed in the electrolyte relative to the other. If the metal thin film 24a is removed while the insulator 24 and the flat metal plate 21 are moved relative to each other, a wide range of the metal thin film 24a can be removed. In this case, in the first and second inventions, the width of the metal plate electrode 21 is Assuming that W (cm), relative movement speed v (cm / min), and current I (A), 0.1 0 1 / (WX v) 0 0. 0 3
の関係を有する範囲の相対移動速度で移動させることが望ましい。 It is desirable to move at a relative moving speed in the range having the following relationship.
この金属平板電極 2 1を他方に対して移動させるに際し、 第 1及び第 2の本発 明では、 例えば正に印加させた補助電極 2 2が負に印加させた金属平板電極 2 1 よりも上流側に位置する、 すなわち、 補助電極 2 2が金属平板電極 2 1よりも先 に絶縁物 2 4表面の金属薄膜 2 4 a上を通過するように配置させることが望まし い。  In moving the metal plate electrode 21 relative to the other, in the first and second embodiments of the present invention, for example, the auxiliary electrode 22 positively applied is upstream of the metal plate electrode 21 negatively applied. It is desirable that the auxiliary electrode 22 be disposed on the side so that the auxiliary electrode 22 passes above the metal thin film 24a on the surface of the insulator 24 before the flat metal electrode 21 is disposed.
その理由は、 電解溶出では正に印加された陽極部分が溶出するために、 金属薄 膜 2 4 aの溶出は負に印加された負極に近い方、 例えば第 1図〜第 3図、 第 5図 及び第 6図、 第 8図に示した例では金属平板電極 2 1の下方に位置する金属薄膜 2 4 aから溶出するためである。 つまり、 逆方向に移動すると、 金属薄膜 2 4 a が溶出した部分が電極間を通過することになつて、 先に説明した閉回路を形成で きなくなり、 連続した溶出が不可能になるためである。 なお、 陽極の溶出を防止 するために、 陽極電極にカーボンや白金めつきを施すことが望ましい。  The reason is that the elution of the metal thin film 24a is closer to the negative applied negative electrode because the positive applied anode portion is eluted in the electrolytic elution, for example, FIG. 1 to FIG. 3, FIG. In the example shown in FIG. 6 and FIG. 6, it is to elute from the metal thin film 2 4 a located below the metal flat plate electrode 21. In other words, if it moves in the reverse direction, the eluted part of the metal thin film 24a will pass between the electrodes, and the closed circuit described above can not be formed, and continuous elution becomes impossible. is there. In order to prevent the elution of the anode, it is desirable to apply carbon or platinum plating to the anode electrode.
前記第 1、 第 2の本発明において、 金属平板電極 2 1を絶縁物 2 4に対して移 動させる場合、 補助電極 2 2が固定であると、 金属平板電極 2 1の移動につれて 極間距離が変わることから電圧—電流が変化し、 金属薄膜 2 4 aの除去が均一に 行えない場合が起こる。  In the first and second aspects of the present invention, in the case where the metal flat electrode 21 is moved relative to the insulator 24, if the auxiliary electrode 22 is fixed, the distance between the electrodes is moved as the metal flat electrode 21 moves. Since the voltage changes, the voltage-current changes, and the removal of the metal thin film 24a may not be uniformly performed.
このような場合には、 補助電極 2 2を例えば第 2図や第 3図に示したように金 属平板 2 1と平行に配置し、 これら両者を同時に移動させることで解決できる。 また、 前記第 1、 第 2の本発明では、 金属薄膜 2 4 aの除去処理を行っている 最中に電解液 2 6が漏洩して絶縁物 2 4上を覆ってしまうと、 絶縁物 2 の端部 は金属平板電極 2 1又は補助電極 2 2を通過する前に電解溶出が始まる。 これは 、 通常は、 電極間が最も電界(電流集中の強さ) が強いために電極間しか溶出し ないが、 電解液 2 6に浸った絶縁物 2 4の端部には電界集中が生じて電極間と同 等の電界強度となるためである。  In such a case, the problem can be solved by disposing the auxiliary electrode 22 in parallel with the metal flat plate 21 as shown in FIG. 2 and FIG. 3, for example, and moving both of them simultaneously. In the first and second aspects of the present invention, when the electrolytic solution 26 leaks and covers the insulator 24 while removing the metal thin film 24 a, the insulator 2 is formed. The electrolytic elution starts before passing through the end of the metal plate electrode 21 or the auxiliary electrode 22. This is because usually the electrode between the electrodes is the strongest electric field (the strength of the current concentration) and only the electrode elutes, but the electric field concentration occurs at the end of the insulator 24 immersed in the electrolyte 26 This is because the electric field strength is equal to that between the electrodes.
更に、 絶縁物 2 4の端部は電界が不均一であり、 金属薄膜 2 4 aの除去も不均 一に起こるため、 絶縁物 2 4の端部では、 金属薄膜 2 4 aは図 9に示すように、 あばた状に残留する。 なお、 第 9図における 2 4 bはあばた状に残留した金属薄 膜を示す。 Furthermore, since the electric field is not uniform at the end of the insulator 24 and the removal of the metal thin film 24a also occurs unevenly, the metal thin film 24a is shown in FIG. 9 at the end of the insulator 24. As shown Remains in a pall. In FIG. 9, 24b indicates a thin metal film remaining in a bald manner.
このようなあばた状金属薄膜 2 4 bが残留した部分を金属平板電極 2 1が通過 しても、 金属薄膜はあばた状部で連続性が途切れる為に先に説明したような閉回 路が形成されず、 金属薄膜 2 4 bが除去されずに残ってしまう。  Even if the flat metal plate electrode 21 passes through a portion where such a thin metal film 24 b remains, the metal thin film continues to be broken at the thin film, and a closed circuit as described above is formed. The metal thin film 24 b is left without being removed.
従って、 第 1又は第 2の本発明において、 金属平板電極 2 1における絶縁物 2 4の進入側に電解液 2 6の侵入抑制部材、 例えば絶縁物 2 4の幅と略同じ幅を有 する第 1 0図に示したようなゴム製壁 3 4 aを可及的に絶縁物 2 4の表面に近接 させて設置したり、 または、 絶縁物 2 4の幅と略同じ幅を有する第 1 1図に示し たようなゴム製ロール 3 4 bをばね 3 5によつて絶縁物 2 4の表面側に押し付け るように設置することで、 絶縁物 2 4の端部側への早期の電解液 2 6の侵入を抑 制し、 あばた状金属薄膜 2 4 bの発生を防止するのである。 これが、 第 3の本発 明である。  Therefore, in the first or second aspect of the present invention, the penetration suppressing member of the electrolytic solution 26 on the approach side of the insulator 24 in the metal flat plate electrode 21 has a width substantially the same as the width of the insulator 24, for example Place the rubber wall 34a as shown in Fig. 10 as close to the surface of the insulator 24 as much as possible, or Fig. 11 has a width substantially the same as the width of the insulator 24 By placing the rubber roll 34 b as shown in the figure so that it is pressed against the surface side of the insulator 24 by means of the spring 35, an early electrolyte on the end side of the insulator 24 can be obtained. By suppressing the penetration of 2 6, it prevents the generation of the flaky metal thin film 2 4 b. This is the third present invention.
また、 前記第 1〜第 3の本発明では、 電解液 2 6を介して電流を流しているた め、 電解液 2 6中に流れる電流が金属薄膜 2 4 aの溶出効率を悪くする。  In the first to third aspects of the present invention, since the current flows through the electrolytic solution 26, the current flowing in the electrolytic solution 26 deteriorates the elution efficiency of the metal thin film 24a.
従って、 第 1〜第 3の本発明において、 絶縁物 2 4の表面側における金属平板 電極 2 1と補助電極 2 2の間に、 第 1 2図に示すように、 可及的に絶縁物 2 4の 表面に近接させて、 例えば絶縁物 2 4の幅と略同じ幅を有する絶縁物壁 3 6を設 置すれば、 電解液 2 6中に流れる電流が減り、 金属薄膜 2 4 aの溶出効率が良く なる。  Therefore, in the first to third inventions, as shown in FIG. 12 between the flat metal plate electrode 21 and the auxiliary electrode 22 on the surface side of the insulator 24, the insulator 2 as much as possible. If, for example, an insulator wall 36 having a width substantially the same as the width of the insulator 24 is disposed close to the surface of 4, the current flowing in the electrolyte 26 is reduced, and the elution of the metal thin film 24a is reduced. Efficiency improves.
また、 前記第 1〜第 3の本発明は、 絶縁物 2 4を傷つけることなく金属薄膜 2 4 aを効率良く除去できるものではあるが、 電解液 2 6中に流れる電流が金属薄 膜 2 4 aを溶出させることで金属薄膜 2 4 aを除去するものであるため、 電解溶 出で残量した膜が残る場合もある。  In the first to third inventions described above, the metal thin film 24a can be efficiently removed without damaging the insulator 24. However, the current flowing in the electrolytic solution 26 is a metal thin film 24 Since the metal thin film 24a is removed by eluting a, there may be a case where the remaining film remains by electrolytic elution.
従って、 第 1〜第 3の本発明において、 金属平板電極 2 1に代えて、 回転可能 な電極 3 7を採用すると共に、 この電極 3 7の金属薄膜 2 4 aとの接触部に研磨 基材を配置したり、 前記電極 3 7の金属薄膜 2 4 aとの接触部への研磨基材の供 給手段を備える。 このような構成では、 前記電極 3 7の金属薄膜 2 4 aとの接触 部に位置させた研磨基材で金属薄膜 2 4 aの表面を擦過し、 電解溶出で残留した 膜を完全に除去できる。 これが、 第 4の本発明である。 Therefore, in the first to third inventions, a rotatable electrode 37 is employed in place of the metal flat plate electrode 21 and a polishing base is used at the contact portion of the electrode 37 with the metal thin film 24a. And means for supplying a polishing substrate to the contact portion of the electrode 37 with the metal thin film 2 4 a. In such a configuration, the surface of the metal thin film 24 a was abraded with the polishing substrate positioned at the contact portion of the electrode 37 with the metal thin film 24 a, and the electrolytic elution remained. The membrane can be completely removed. This is the fourth invention.
例えば第 1 3図に示した例では、 外周部に通水性を有する研磨基材を配置した 回転可能な棒状電極 3 7の中心部に電解液タンク 2 7から電解液 2 6を供給し、 棒状電極 3 7の外周部から電解液 2 6を流出させるものを示している。 また、 第 1 4図に示した例は、 第 1 3図に示した例の補助電極 2 2を棒状電極 3 7と平行 に配置したもの、 第 1 5図に示した例は、 第 1 3図に示した棒状電極 3 7に代え て、 その下面に通水性を有する研磨基材を配置した回転可能なディスク状の電極 3 7を配置したものである。 また、 第 1 6図に示した例は、 第 1 4図に示した補 助電極 2 2をロール状に形成して絶縁物 2 4の表面の金属薄膜 2 4 aに接触させ たもの、 第 1 7図に示した例は、 電解液 2 6の供給を電極 3 7の内部ではなく、 外部から供給するものである。  For example, in the example shown in FIG. 13, an electrolytic solution 26 is supplied from an electrolytic solution tank 27 to the central portion of a rotatable rod-like electrode 37 having a polishing substrate having water permeability at its outer periphery. It shows what makes the electrolyte solution 26 flow out from the outer peripheral part of the electrode 37. In the example shown in FIG. 14, the auxiliary electrode 22 of the example shown in FIG. 13 is disposed in parallel with the rod-like electrode 37, and in the example shown in FIG. In place of the rod-like electrode 37 shown in the figure, a rotatable disk-like electrode 37 having a water-permeable abrasive substrate disposed on its lower surface is disposed. In the example shown in FIG. 16, the auxiliary electrode 22 shown in FIG. 14 is formed in a roll and brought into contact with the metal thin film 24a on the surface of the insulator 24, In the example shown in FIG. 17, the supply of the electrolytic solution 26 is not from the inside of the electrode 37 but from the outside.
以上の例では電極 3 7における金属薄膜 2 4 aとの接触部に研磨基材を配置し たものを示したが、 電極 2 7には研磨基材を配置せず、 この電極 3 7における金 属薄膜 2 4 aとの接触部に研磨基材を供給するものでも良い。  In the above example, the polishing substrate is disposed at the contact portion of the electrode 37 with the metal thin film 24a. However, the polishing substrate is not disposed at the electrode 27. A polishing substrate may be supplied to the contact portion with the genus thin film 24a.
以下、 本発明の効果を確認するために行った実施結果について説明する。 A. 第 1の本発明の実施例 (その 1 )  Hereinafter, the implementation result performed in order to confirm the effect of this invention is demonstrated. A. First embodiment of the present invention (part 1)
第 3図に示した構成の本発明に係る第 1の金属薄膜の除去装置 (金属平板電極 の幅: 1 0 0 O mm) を使用し、 下記の加工条件にて、 本発明に係る第 1の金属 薄膜の除去方法を実施したところ、 1 0 0 O mmx 1 0 0 O mmのガラス基板上 に蒸着してあった 1 0 0 0 X 1 0— 1 Q m厚さのアルミ薄膜を効率良く除去でき、 ガラス基板の再生が可能になった。 また、 ロール状の補助電極をガラス基板と非 接触に固定配置し、 電流を 3 0 O Aに変更したほかは同じ加工条件で本発明に係 る第 2の金属薄膜の除去方法を実施した場合も、 前記と同様、 ガラス基板上に蒸 着してあったアルミ薄膜を効率良く除去でき、 ガラス基板の再生が可能になつた The first metal thin film removing apparatus according to the present invention having the configuration shown in FIG. 3 (width of metal flat plate electrode: 100 mm) is used under the following processing conditions according to the present invention. The method of removing metal thin film was carried out. As a result, an aluminum thin film with a thickness of 1 0 0 0 X 1 0 1 Q m was deposited efficiently on a glass substrate of 1 0 0 0 0 mm x 1 0 0 0 mm. It can be removed and the glass substrate can be regenerated. Also, the second metal thin film removal method according to the present invention is carried out under the same processing conditions except that the roll-shaped auxiliary electrode is fixedly arranged in non-contact with the glass substrate and the current is changed to 30 OA. Similar to the above, the aluminum thin film deposited on the glass substrate can be efficiently removed, and the glass substrate can be regenerated.
〔加工条件〕 〔Processing conditions〕
電解液: 2 0 %N a C l  Electrolyte: 20% N a C l
噴出流量:約 3 0リヅトル/ m i n  Ejection flow rate: about 3 0 ri / m i n
印加電圧:約 1 0 0 V 電流: 15 OA Applied voltage: about 1 0 0 V Current: 15 OA
ガラス基板移動速度: 1 m/m i n  Glass substrate moving speed: 1 m / m i n
B. 第 1の本発明の実施例 (その 2)  B. First embodiment of the present invention (part 2)
第 3図に示した構成の本発明に係る第 1の金属薄膜の除去装置を使用し、 第 6 図に示したように、 100 Ommx 100 Ommのガラス基板 (厚さ 0. 7mm ) の終端に同じ厚さのカーボン板を設置した状態で、 下記の加工条件にて、 本発 明に係る第 1の金属薄膜の除去方法を実施したところ、 上記ガラス基板上に蒸着 してあった 100 OX 10— 1Q m厚さのアルミ薄膜を、 端部まで効率良く除去で き、 ガラス基板の再生が可能になった。 Using the first metal thin film removal apparatus according to the present invention having the configuration shown in FIG. 3, as shown in FIG. 6, at the end of a 100 Omm × 100 Omm glass substrate (0.7 mm thick) When the first metal thin film removal method according to the present invention was performed under the following processing conditions with a carbon plate of the same thickness installed, 100 OX 10 deposited on the glass substrate was obtained. — A 1 Qm thick aluminum thin film can be removed efficiently to the edge, enabling regeneration of the glass substrate.
〔加工条件〕  〔Processing conditions〕
電解液: 5%NaC 1  Electrolyte: 5% NaC 1
噴出流量:約 30リヅトル /m i n  Ejection flow rate: about 30 liters / m i n
印加電圧:約 100 V  Applied voltage: about 100 V
電流: 300 A  Current: 300 A
ガラス基板移動速度: 1 m/m i n  Glass substrate moving speed: 1 m / m i n
C. 第 3の本発明の実施例 (その 1)  C. Third embodiment of the present invention (part 1)
第 10図に示した構成の本発明に係る第 3の金属薄膜の除去装置を使用し、 下 記の加工条件にて、 本発明に係る第 3の金属薄膜の除去方法を実施したところ、 100 Ommx 100 Ommのガラス基板 (厚さ 7mm)上に蒸着してあつ た 1000 X 10— 1Q m厚さのアルミ薄膜を端部まで完全に除去でき、 ガラス基 板の再生が可能になった。 The third metal thin film removal method according to the present invention was carried out using the third metal thin film removal apparatus according to the present invention having the configuration shown in FIG. 10 under the following processing conditions. The 1000 x 10-1 Q m thick aluminum thin film deposited on an Omm x 100 O mm glass substrate (7 mm thick) can be completely removed to the edge, making it possible to regenerate the glass substrate.
〔加工条件〕  〔Processing conditions〕
電解液: 5%NaCl  Electrolyte: 5% NaCl
噴出流量:約 30リヅトル/ m i n  Ejection flow rate: about 30 liters / min
印加電圧:約 100 V  Applied voltage: about 100 V
電流: 300 A  Current: 300 A
ガラス基板移動速度: 1 m/m i n  Glass substrate moving speed: 1 m / m i n
侵入抑制部材:ゴム製壁  Intrusion control member: rubber wall
D. 第 3の本発明の実施例 (その 2) 第 12図に示した構成の本発明に係る第 3の金属薄膜の除去装置を使用し、 下 記の加工条件にて、 本発明に係る第 3の金属薄膜の除去方法を実施したところ、 100 Ommx 100 Ommのガラス基板 (厚さ 7mm)上に蒸着してあつ た 1000 X 10— 1D m厚さのアルミ薄膜を、 他の実施例よりも 10 %移動速度 を向上させても効果的に除去でき、 ガラス基板の再生が可能になった。 D. Third embodiment of the present invention (part 2) The third metal thin film removal method according to the present invention is carried out under the following processing conditions using the third metal thin film removal apparatus according to the present invention having the configuration shown in FIG. An aluminum thin film of 1000 x 10-1 D m thick deposited on an Omm x 100 O mm glass substrate (7 mm thick) is effectively removed even if the 10% moving speed is improved over the other examples. Yes, it became possible to regenerate glass substrates.
〔加工条件〕  〔Processing conditions〕
電解液: 5%NaCl  Electrolyte: 5% NaCl
噴出流量:約 30リツトル/ m i n  Ejection flow rate: about 30 liters / min
印加電圧:約 100 V  Applied voltage: about 100 V
電流: 300 A  Current: 300 A
ガラス基板移動速度: 1. lm/min  Glass substrate moving speed: 1. lm / min
絶縁物壁:塩ビ製壁  Insulation wall: PVC wall
E. 第 4の本発明の実施例 E. Fourth embodiment of the present invention
第 16図に示した構成の本発明に係る第 4の金属薄膜の除去装置を使用し、 下 記の加工条件にて、 本発明に係る第 4の金属薄膜の除去方法を実施したところ、 100 Ommx 100 Ommのガラス基板上に蒸着してあった 1000 x 10— 1 0 m厚さのアルミ薄膜を残留することなく完全に除去でき、 ガラス基板の再生が 可能になった。 The fourth metal thin film removal method according to the present invention was carried out under the following processing conditions using the fourth metal thin film removal apparatus according to the present invention having the configuration shown in FIG. Ommx 100 can be completely removed without remaining aluminum film of 1000 x 10- 1 0 m thickness had been deposited on a glass substrate of Omm, became possible the glass substrate playback.
〔加工条件〕  〔Processing conditions〕
電解液: 20%NaC 1  Electrolyte: 20% NaC 1
供給流量:約 30リツトル/ m i n  Supply flow rate: about 30 liters / min
棒状電極回転数: 600 r pm  Rod-shaped electrode rotation number: 600 r pm
研磨剤砥粒: #3000アルミナ砥粒 (電解液に混ぜて供給)  Abrasive Abrasive: # 3000 Alumina Abrasive (mixed with electrolyte and supplied)
印加電圧:約 100 V  Applied voltage: about 100 V
電流: 200 A  Current: 200 A
ガラス基板移動速度: 1 m/m i n  Glass substrate moving speed: 1 m / m i n
上記実施例は各請求項に対応するもの全てについてのものではないが、 実施例 として挙げなかった請求項に記載の発明についても、 絶縁物上に形成した金属薄 膜を効率良く除去でき、 絶縁物の再生が可能になることは言うまでもない。 産業上の利用可能性 Although the above embodiment is not for all corresponding to the respective claims, the metal thin film formed on the insulator can be efficiently removed also for the invention described in the embodiments not listed as an embodiment, It goes without saying that the reproduction of objects is possible. Industrial applicability
以上のように、 本発明は、 強酸や強アルカリの化学液を使用することなく、 ま た、 絶縁物表面の金属薄膜に対する電極の精密な位置制御を必要とすることなく 、 基本的に非接触で絶縁物を傷つけることなく金属薄膜を効率良く除去でき、 半 導体分野で用 、られる高価な機能性ガラス基板の再生利用が可能になる。  As described above, according to the present invention, it is basically noncontact without using strong acid or strong alkali chemical solution and without requiring precise control of the position of the electrode relative to the metal thin film on the insulator surface. The metal thin film can be removed efficiently without damaging the insulator, and the expensive functional glass substrate used in the semiconductor field can be recycled.

Claims

請 求 の 範 囲 The scope of the claims
1 . 傾斜状に配置した金属平板電極と、 この金属平板電極の上流或いは下流側に 一部が電解液中に浸漬すべく配置した補助電極に、 直流電圧を印加した状態で、 前記金属平板電極上を流下させた電解液を、 絶縁物表面の金属薄膜に衝突させ、 金属薄膜を除去することを特徴とする金属薄膜の除去方法。 1. A flat metal plate electrode arranged in an inclined shape, and an auxiliary electrode arranged so as to be partially immersed in the electrolyte upstream or downstream of the flat metal plate electrode, in a state where a DC voltage is applied, A method for removing a metal thin film, comprising: colliding an electrolyte solution flowing down onto a metal thin film on an insulator surface; and removing the metal thin film.
2 . 請求項 1記載の金属薄膜の除去方法において、 前記絶縁物の裏面側に、 前記 金属平板電極と補助電極間に亘るべく底面電極を配置し、 この底面電極にも補助 電極と同極の直流電圧を印加した状態で、 前記金属平板電極上を流下させた電解 液を、 絶縁物表面の金属薄膜に衝突させ、 金属薄膜を除去することを特徴とする 金属薄膜の除去方法。  2. The method for removing a metal thin film according to claim 1, wherein a bottom electrode is disposed on the back surface side of the insulator so as to extend between the metal flat plate electrode and the auxiliary electrode, and the bottom electrode also has the same polarity as the auxiliary electrode. A method of removing a metal thin film comprising: colliding an electrolyte dropped down on the flat metal plate electrode with a metal thin film on a surface of an insulator while applying a direct current voltage, thereby removing the metal thin film.
3 . 前記絶縁物と金属平板電極を相対移動させながら金属薄膜を除去することを 特徴とする請求項 1又は 記載の金属薄膜の除去方法。  3. The method for removing a metal thin film according to claim 1 or 2, wherein the metal thin film is removed while relatively moving the insulator and the metal plate electrode.
4 . 前記金属平板電極の絶縁物進入側に電解液の侵入抑制部材を設置し、 電解液 の早期の侵入を抑制することを特徴とする請求項 1又は 2記載の金属薄膜の除去 方法。  4. The method for removing a metal thin film according to claim 1 or 2, wherein an intrusion suppressing member of an electrolytic solution is installed on the insulator approach side of the flat metal plate electrode to suppress an early intrusion of the electrolytic solution.
5 . 前記金属平板電極の絶縁物進入側に電解液の侵入抑制部材を設置し、 電解液 の早期の侵入を抑制することを特徴とする請求項 1を引用する請求項 3記載の金 属薄膜の除去方法。  5. The metal thin film according to claim 3, wherein an electrolytic solution intrusion suppressing member is installed on the insulator approach side of the flat metal plate electrode to suppress the early intrusion of the electrolytic solution. Removal method.
6 . 請求項 1又は 2記載の金属薄膜の除去方法において、 前記金 JS平板電極を、 回転可能な電極となし、 この電極の金属薄膜との接触部に位置させた研磨基材で 金属薄膜の表面を擦過することを特徴とする金属薄膜の除去方法。  6. The method for removing a metal thin film according to claim 1 or 2, wherein the gold JS flat plate electrode is a rotatable electrode, and a polishing substrate is disposed at a contact portion of the electrode with the metal thin film. The removal method of the metal thin film characterized by rubbing the surface.
7 . 請求項 4記載の金属薄膜の除去方法において、 前記金属平板電極を、 回転可 能な電極とし、 この電極の金属薄膜との接触部に位置させた研磨基材で金属薄膜 の表面を擦過することを特徴とする金属薄膜の除去方法。  7. The method for removing a metal thin film according to claim 4, wherein the flat metal plate electrode is a rotatable electrode, and the surface of the metal thin film is abraded with a polishing substrate positioned at a contact portion of the electrode with the metal thin film. A method of removing a metal thin film characterized by
8 . 請求項 5記載の金属薄膜の除去方法において、 前記金属平板電極を、 回転可 能な電極とし、 この電極の金属薄膜との接触部に位置させた研磨基材で金属薄膜 の表面を擦過することを特徴とする金属薄膜の除去方法。  8. The method for removing a metal thin film according to claim 5, wherein the flat metal plate electrode is a rotatable electrode, and the surface of the metal thin film is abraded with a polishing substrate positioned at a contact portion of the electrode with the metal thin film. A method of removing a metal thin film characterized by
9 . 請求項 1を引用する請求項 3記載の金属薄膜の除去方法において、 前記金属 平板電極を、 回転可能な電極とし、 この電極の金属薄膜との接触部に位置させた 研磨基材で金属薄膜の表面を擦過することを特徴とする金属薄膜の除去方法。9. The method for removing a metal thin film according to claim 3, wherein claim 1 is cited, wherein the metal What is claimed is: 1. A method of removing a metal thin film, comprising: using a flat plate electrode as a rotatable electrode; and rubbing the surface of the metal thin film with a polishing substrate positioned at a contact portion of the electrode with the metal thin film.
1 0 . 傾斜状に配置され、 電解液の流下を案内する金属平板電極と、 この金属平 板電極の上流或いは下流側に一部が電解液中に浸潰すベく配置された補助電極と 、 前記両電極に印加する直流電圧電源とで構成されたことを特徴とする金属薄膜 の除去装置。 1 0. A metal flat electrode arranged in an inclined shape and guiding the flow of the electrolyte, and an auxiliary electrode arranged so as to be partially immersed in the electrolyte upstream or downstream of the metal plate electrode, An apparatus for removing a metal thin film, comprising: a DC voltage power source applied to the both electrodes.
1 1 . 請求項 1 0記載の金属薄膜の除去装置において、 前記金属平板電極と補助 電極間に亘るベく、 これら両電極の下方に底面電極を配置し、 この底面電極にも 直流電圧電源から補助電極と同極の直流電圧を印加すベく構成したことを特徴と する金属薄膜の除去装置。  In the metal thin film removing apparatus according to claim 10, a bottom electrode is disposed under the two electrodes, and a bottom electrode is also disposed between the flat metal electrode and the auxiliary electrode, and the bottom electrode is also provided with a DC voltage power source. An apparatus for removing a metal thin film, which is configured to apply a DC voltage of the same polarity as the auxiliary electrode.
1 2 . 少なくとも電解液中に浸潰した絶縁物、 或いは、 金属平板電極のどちらか 一方を他方に対して移動させる移動機構を設けたことを特徴とする請求項 1 0又 は 1 1記載の金属薄膜の除去装置。  11. A moving mechanism is provided for moving at least one of an insulator immersed in the electrolytic solution or one of the flat metal plate electrodes with respect to the other. Thin metal film removal device.
1 3 . 前記金属平板電極の絶縁物進入側に電解液の侵入抑制部材を設置したこと を特徴とする請求項 1 0又は 1 1の何れか記載の金属薄膜の除去装置。  13. A metal thin film removing apparatus according to any one of claims 10 and 11, wherein an intrusion suppressing member of an electrolytic solution is installed on the insulator approach side of the flat metal plate electrode.
1 4 . 前記金属平板電極の絶縁物進入側に電解液の侵入抑制部材を設置したこと を特徴とする請求項 1 2記載の金属薄膜の除去装置。  14. The apparatus for removing a metal thin film according to claim 12, wherein an intrusion suppressing member for an electrolytic solution is provided on the insulator approach side of the flat metal plate electrode.
1 5 . 請求項 1 0又は 1 1の何れか記載の金属薄膜の除去装置において、 前記金 属平板電極を、 回転可能な電極となすと共に、 この電極の金属薄膜との接触部に 研磨基材を配置したり、 前記電極の金属薄膜との接触部への研磨基材の供給手段 を備えたことを特徴とするの金属薄膜の除去装置。  The apparatus for removing metal thin film according to any one of claims 10 or 11, wherein the flat metal plate electrode is used as a rotatable electrode, and a contact portion of the electrode with the metal thin film is polished. An apparatus for removing a metal thin film, comprising: a means for supplying a polishing substrate to a contact portion of the electrode with the metal thin film.
1 6 . 請求項: I 2記載の金属薄膜の除去装置において、 前記金属平板電極を、 回 転可能な電極となすと共に、 この電極の金属薄膜との接触部に研磨基材を配置し たり、 前記電極の金属薄膜との接触部への研磨基材の供給手段を備えたことを特 徴とするの金属薄膜の除去装置。  In the apparatus for removing metal thin film according to claim 6, the flat metal plate electrode functions as a rotatable electrode, and a polishing substrate is disposed at a contact portion of the electrode with the metal thin film. An apparatus for removing a metal thin film, comprising means for supplying a polishing substrate to a contact portion of the electrode with the metal thin film.
1 7 . 請求項 1 3記載の金属薄膜の除去装置において、 前記金属平板電極を、 回 転可能な電極となすと共に、 この電極め金属薄膜との接触部に研磨基材を配置し たり、 前記電極の金属薄膜との接触部への研磨基材の供給手段を備えたことを特 徴とするの金属薄膜の除去装置。 The apparatus for removing metal thin film according to claim 13, wherein the flat metal plate electrode is formed as a rotatable electrode, and a polishing substrate is disposed at a contact portion with the thin electrode metal film, or An apparatus for removing a metal thin film, comprising means for supplying a polishing substrate to a contact portion of the electrode with the metal thin film.
1 8 . 請求項 1 4記載の金属薄膜の除去装置において、 前記金属平板電極を、 回 転可能な電極となすと共に、 この電極の金属薄膜との接触部に研磨基材を配置し たり、 前記電極の金属薄膜との接触部への研磨基材の供給手段を備えたことを特 徴とするの金属薄膜の除去装置。 The apparatus for removing metal thin film according to claim 14, wherein the flat metal plate electrode is used as a rotatable electrode, and a polishing substrate is disposed at a contact portion of the electrode with the metal thin film, or An apparatus for removing a metal thin film, comprising means for supplying a polishing substrate to a contact portion of the electrode with the metal thin film.
PCT/JP2003/012630 2002-10-11 2003-10-02 Method and system for removing thin metal film WO2004033384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/103,182 US7544283B2 (en) 2002-10-11 2005-04-11 Method and apparatus for removing thin metal films

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-298947 2002-10-11
JP2002298947 2002-10-11
JP2002-336838 2002-11-20
JP2002336838A JP4157753B2 (en) 2002-10-11 2002-11-20 Method and apparatus for removing metal thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/103,182 Continuation US7544283B2 (en) 2002-10-11 2005-04-11 Method and apparatus for removing thin metal films

Publications (1)

Publication Number Publication Date
WO2004033384A1 true WO2004033384A1 (en) 2004-04-22

Family

ID=32095441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012630 WO2004033384A1 (en) 2002-10-11 2003-10-02 Method and system for removing thin metal film

Country Status (4)

Country Link
JP (1) JP4157753B2 (en)
KR (1) KR101015427B1 (en)
TW (1) TWI274616B (en)
WO (1) WO2004033384A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915565B2 (en) 2007-01-25 2011-03-29 Rolls-Royce Plc Apparatus and method for calibrating a laser deposition system
US8168046B2 (en) 2006-10-25 2012-05-01 Rolls-Royce Plc Method and apparatus for treating a component of a gas turbine engine
US8266801B2 (en) 2007-06-05 2012-09-18 Rolls-Royce Plc Method for producing abrasive tips for gas turbine blades

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101769612B1 (en) 2010-12-10 2017-08-21 삼성디스플레이 주식회사 Flattening method of a substrate
TWI587963B (en) * 2015-06-03 2017-06-21 遠東科技大學 Upright apparatus for optical disc
TWI587962B (en) * 2015-06-03 2017-06-21 遠東科技大學 Apparatus for optical disc surface coating removal with vibration unit attached

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150247A (en) * 1974-10-28 1976-05-01 Inoue Japax Res DENKAIKEN SAKUKAKOHOHO
JPS59193859U (en) * 1983-06-06 1984-12-22 株式会社 山田メツキ工業所 Etching device
JPS62290900A (en) * 1986-06-11 1987-12-17 Oki Electric Ind Co Ltd Method and apparatus for etching of transparent conductive film
JPH07207500A (en) * 1994-01-18 1995-08-08 Nishiyama Stainless Chem Kk Method for regenerating glass plate and device therefor
US6153535A (en) * 1996-10-23 2000-11-28 Asahi Glass Company Ltd. Method for removing a thin film for a window glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334942B1 (en) * 1999-02-09 2002-01-01 Tessera, Inc. Selective removal of dielectric materials and plating process using same
US6723224B2 (en) * 2001-08-01 2004-04-20 Applied Materials Inc. Electro-chemical polishing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150247A (en) * 1974-10-28 1976-05-01 Inoue Japax Res DENKAIKEN SAKUKAKOHOHO
JPS59193859U (en) * 1983-06-06 1984-12-22 株式会社 山田メツキ工業所 Etching device
JPS62290900A (en) * 1986-06-11 1987-12-17 Oki Electric Ind Co Ltd Method and apparatus for etching of transparent conductive film
JPH07207500A (en) * 1994-01-18 1995-08-08 Nishiyama Stainless Chem Kk Method for regenerating glass plate and device therefor
US6153535A (en) * 1996-10-23 2000-11-28 Asahi Glass Company Ltd. Method for removing a thin film for a window glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168046B2 (en) 2006-10-25 2012-05-01 Rolls-Royce Plc Method and apparatus for treating a component of a gas turbine engine
US7915565B2 (en) 2007-01-25 2011-03-29 Rolls-Royce Plc Apparatus and method for calibrating a laser deposition system
US8266801B2 (en) 2007-06-05 2012-09-18 Rolls-Royce Plc Method for producing abrasive tips for gas turbine blades

Also Published As

Publication number Publication date
KR20050057615A (en) 2005-06-16
TWI274616B (en) 2007-03-01
KR101015427B1 (en) 2011-02-22
TW200405838A (en) 2004-04-16
JP2004182998A (en) 2004-07-02
JP4157753B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US6743349B2 (en) Electrochemical machining method and apparatus
US7655118B2 (en) Electrolytic processing apparatus and method
US20070187259A1 (en) Substrate processing apparatus and method
JPS6051399B2 (en) Contaminant removal methods and equipment
JP3450333B2 (en) Method and apparatus for continuous uniform metallization or etching
US6939455B1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method
WO2004033384A1 (en) Method and system for removing thin metal film
US20080217164A1 (en) Electrolytic Processing Apparatus
KR101308505B1 (en) Method and device for removing conductive metal oxide thin film
JP5055269B2 (en) Method and apparatus for removing conductive metal oxide thin film
US7544283B2 (en) Method and apparatus for removing thin metal films
US20070095659A1 (en) Electrolytic processing apparatus and electrolytic processing method
US7476303B2 (en) Electrolytic processing apparatus and electrolytic processing method
JP4130073B2 (en) Ion exchanger regeneration method and regeneration apparatus
JP2003175422A (en) Electrochemical machining device and electrochemical machining method
JP4824365B2 (en) Conductive metal oxide removal method and apparatus
JPH0453958B2 (en)
CN116079580A (en) Electrochemical mechanical polishing device
KR20070021162A (en) Apparatus adapted for membrane mediated electropolishing
JP2003080421A (en) Electrochemical machining device
JPS59107100A (en) Method and device for removing electrolytically one side of metallic strip
JP2003080422A (en) Electrochemical machining device
KR20100076827A (en) Method for controlling current in electrochemical wastewater treatment apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057005724

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A12044

Country of ref document: CN

Ref document number: 11103182

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057005724

Country of ref document: KR

122 Ep: pct application non-entry in european phase