WO2004030807A1 - Production method for magnetic field orientating element and separation method for object - Google Patents

Production method for magnetic field orientating element and separation method for object Download PDF

Info

Publication number
WO2004030807A1
WO2004030807A1 PCT/JP2003/011496 JP0311496W WO2004030807A1 WO 2004030807 A1 WO2004030807 A1 WO 2004030807A1 JP 0311496 W JP0311496 W JP 0311496W WO 2004030807 A1 WO2004030807 A1 WO 2004030807A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
time
external magnetic
objects
oriented
Prior art date
Application number
PCT/JP2003/011496
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunehisa Kimura
Original Assignee
Japan Society For The Promotion Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Society For The Promotion Of Science filed Critical Japan Society For The Promotion Of Science
Priority to JP2004541220A priority Critical patent/JPWO2004030807A1/en
Publication of WO2004030807A1 publication Critical patent/WO2004030807A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0009Settling tanks making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap

Definitions

  • the present invention relates to a magnetic field oriented body that is reoriented by applying a magnetic field to an aggregate of objects, a method for manufacturing the same, and a method for separating an object, and in particular, applies an external magnetic field that fluctuates with time to the aggregate of objects.
  • the present invention relates to a magnetic field oriented body having an orientation that cannot be obtained by applying a normal constant external magnetic field, a method of manufacturing the same, and a method of separating an object.
  • a uniaxially symmetric object such as a fiber or a hexagonal crystal
  • the direction of the fiber axis or shape anisotropic axis is direction 1
  • the directions perpendicular thereto are direction 2 and direction 3, respectively
  • short fibers of carbon fiber were oriented in random directions by applying a constant external magnetic field while suspended in a liquid. All fiber axes could be uniaxially oriented parallel to the magnetic field (Tsunehisa Kimura, et al.
  • the direction can be uniaxially oriented in the direction that is the same as the direction in which the magnetic field in Fig. 11 is not applied.
  • the collection of which was the object by applying a magnetic field ⁇ in ⁇ axially, the object of Xa> 0, a collection of objects uniaxially oriented in the magnetic field direction is obtained (a diagram).
  • crystals there are crystal systems in which all three diamagnetic susceptibilities ⁇ , ⁇ 2 , and ⁇ 3 are different (eg, monoclinic).
  • ⁇ , ⁇ 2 , and ⁇ 3 are different (eg, monoclinic).
  • the whole object aggregate has the same magnetic properties as one crystal, and the magnetic, electrical, and thermal properties of itself are Having a property close to that of a single crystal, it became a very valuable object, and the realization of such an object was desired.
  • a magnetic field may be used to separate a diamagnetic or paramagnetic object (Japanese Patent Application Laid-Open No. 2002-86015 and Japanese Patent Application Laid-Open No. 2002-59026).
  • Magnetic It is a method of separating an object by levitating it to a different position using the fact that the magnetic force, gravity, and buoyancy acting on an object suspended in a liquid under a field gradient differ depending on the density and magnetic susceptibility of the object. .
  • the separation reflects the density and magnetic susceptibility of the object, but does not reflect the difference in the size or shape of the object, and separation based on these characteristics cannot be performed. Furthermore, it is impossible to separate objects whose shapes are mirror images of each other. Disclosure of the invention
  • the present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art, and an object of the present invention is to efficiently orient an aggregate of objects.
  • diamagnetic objects there is a means by which even objects with negative uniaxial anisotropic diamagnetic susceptibility, which could not be uniaxially oriented with conventional orientation technology, can have uniaxial orientation in the desired direction.
  • an assembly of three objects with different magnetic susceptibilities which was impossible under the conventional constant magnetic field, is precisely oriented in the three axial directions, which are the directions of the magnetic susceptibilities, and the entire assembly is Is to have magnetic properties like a single crystal.
  • the present invention has been made to achieve the above object, and has the following features with respect to manufacturing a magnetic field alignment body.
  • the invention of the three magnetic susceptibility chi, chi 2> chi 3 are different, or the aggregate of two are equal objects of which the the applied child an external magnetic field (temporal variation external magnetic field) that varies with time, It relates to orienting an object in a particular direction by causing the object to undergo motion specific to its magnetic properties and shape.
  • the three magnetic susceptibilities ⁇ 1 , ⁇ 2 , ⁇ 3 of the object each have the following directions: It relates to manufacturing a magnetic field oriented body (precision oriented body) oriented in a specific direction for each of the constituent objects. Further, the present invention relates to the production of a magnetic field oriented body, wherein the aggregate of the objects is a suspended body dispersed in a suspension medium. The present invention also relates to fixing the orientation of the object to be suspended by solidifying or removing the suspension medium.
  • the present invention also relates to a method for producing a magnetic field alignment body, wherein the object is a polymer liquid crystal or a low molecular liquid crystal. Further, the present invention is based on the fact that the object is an aggregate or microcrystal formed in a process of casting or solidifying from a polymer or low-molecular solution, or cooling from a molten state, or a process of melting or dissolving a crystal. The present invention relates to a method for manufacturing a magnetic field alignment body.
  • the present invention provides a method of fixing the orientation of a magnetic field generated in the above-described polymer or low molecule in a molded product, sheet, film, or thin film by completing a cooling process from a cast, solidified, or molten state. About.
  • the invention further object of the three magnetic susceptibility ⁇ , ⁇ 2, respective directions of chi 3 is directed to a magnetic field oriented material comprising an aggregate of an object are respectively oriented in a particular direction.
  • the present invention has been made to achieve the above object, and has the following features regarding a method for separating a mixture of substances.
  • an aggregate of objects whose three magnetic susceptibilities ⁇ , ⁇ 2 , ⁇ 3 are different or two of which are equal is a mixture of a plurality of objects having different shapes, and the mixture is temporally added to the mixture.
  • the present invention also relates to the above-mentioned mixture of objects separating a mixture of objects which are mirror images of each other.
  • the present invention relates to separating the suspended object, in which the mixed object is dispersed in a suspension medium.
  • the present invention also relates to fixing the separated individual objects present in the suspended body by solidifying or removing the suspension medium.
  • the present invention relates to a method in which the mixed object is a high-molecular liquid crystal or a low-molecular liquid crystal, and separates them according to shape.
  • the present invention also provides a method for applying a magnetic field effective for separating the above-mentioned magnetic field oriented body, a method for producing the same, and a mixture of objects, and has the following features.
  • the present invention relates to a method for producing a magnetic field oriented body and a method in which a time-varying external magnetic field in the separation of a mixture comprises a plurality of external magnetic fields having different directions and is applied sequentially and alternately at predetermined time intervals. (Sequential magnetic field).
  • the present invention also relates to the method for producing a magnetic field oriented body and the application of the time-varying external magnetic field in the separation of a mixture by a magnetic field rotating in a plane (rotating magnetic field).
  • the present invention relates to the fact that the time-varying external magnetic field is generated by moving an object with respect to a fixed magnetic field. Further, the present invention relates to the fact that the above-mentioned time-varying external magnetic field is applied by a combination of at least two external magnetic fields of a sequential magnetic field, a rotating magnetic field, and a fixed magnetic field (combination magnetic field).
  • the present invention is characterized in that by applying a magnetic field to an aggregate of objects, the aggregate is oriented and separated.
  • An object may exist alone as a large crystal, but in the present invention, a set of objects is targeted, and the direction of the set as a set is arranged in a certain direction. The purpose is to separate them if they are sets of different things.
  • Objects include paramagnetic and diamagnetic materials and utilize their magnetic properties.
  • Paramagnetic refers to magnetism that is magnetized in the direction of the magnetic field when a magnetic field is applied
  • diamagnetism refers to magnetism that is magnetized in the opposite direction to the magnetic field when a magnetic field is applied. It disappears reversibly when removed.
  • is a scalar
  • anisotropic object ⁇ is a tensor, and its three principal values (or principal axis directions) are defined as ⁇ " ⁇ 3
  • the present invention has three magnetic susceptibility chi iota, chi 2, chi 3 is different or the two are equal the object of which, (in the present invention, that the time variation external magnetic field), external magnetic field varies with time is applied thereto It is characterized by the following.
  • the present invention is particularly effective for a diamagnetic material, that is, an object in which all three susceptibilities are negative. It is also achieved by applying a time-varying external magnetic field to an object having an anisotropic diamagnetic susceptibility, particularly a uniaxial anisotropic diamagnetic susceptibility.
  • a substance having a positive x a is referred to as a substance having a positive uniaxial anisotropic diamagnetic susceptibility, and a substance having a negative x a is referred to as a substance having a negative uniaxial anisotropic diamagnetic susceptibility.
  • the aggregate of the object of the present invention also applies to a suspended object suspended in a suspension medium.
  • a time-varying external magnetic field By applying a time-varying external magnetic field to these suspensions, the suspended objects can be arranged and separated in a certain direction.
  • the entire system can be solidified by means such as cooling or chemical reaction of the suspension medium, particularly by heat or light, etc. Can be fixed.
  • the suspension medium is removed by evaporation or extraction in a state where the suspension bodies are arranged in a certain direction, thereby distributing the suspension medium.
  • the direction can be fixed.
  • Examples of the object to be suspended in the suspension system of the present invention include short fibers, and organic or inorganic microcrystals or nanocrystals.
  • an aggregate of objects includes a polymer liquid crystal or a low molecular liquid crystal, and by applying the time-varying external magnetic field of the present invention in such a liquid crystal state, these liquid crystals are oriented in a certain direction.
  • a mixture of these liquid crystals can be separated.
  • a side-chain type liquid crystal body containing a functional group having a high magnetic susceptibility such as an aromatic ring in the side chain often has Xa ⁇ 0 and is a target object of the present invention.
  • the side-chain type liquid crystal can also be expected to be effective in improving electrical conductivity if the main chain can be uniaxially oriented in a certain direction.
  • the object referred to in the present invention includes anisotropic aggregates formed during casting or solidification from a polymer or low-molecular solution, cooling from a molten state, or melting or dissolving a crystal, and tens of nanometers.
  • An anisotropic aggregate refers to a crystal precursor structure or a liquid crystal structure, a crystal melting, It means a melt that is insufficiently dissolved and is completely isotropic, and a structure that does not reach a solution. According to recent studies on polymer crystallization, such anisotropic aggregates are thought to exist before crystal formation or in the melt.
  • the anisotropic aggregate has a structure in which the polymer chains are more or less aligned
  • molecular orientation is achieved by orienting the anisotropic aggregate in the magnetic field.
  • the time-varying external magnetic field of the present invention in the case of a high molecule, it is possible to produce a magnetic field oriented body in which the molecular chains are uniaxially oriented.
  • the polymer melt of the present invention include melts of polyethylene terephthalate, polyethylene oxide, isotactic polypropylene, isotactic polystyrene, and the like.
  • the polymer solution a copper ammonia solution of cellulose, an aqueous solution of polyethylene oxide are used.
  • an organic solvent solution of cellulose triacetate When a time-varying external magnetic field is applied during the process of casting from these polymer or low-molecular solutions and solidifying or cooling from the molten state, the molecules are oriented in a certain direction as a molded body, sheet, film, or thin film It could be a magnetic field oriented body.
  • the present invention is characterized in that an aggregate of objects is oriented in a specific direction by applying a magnetic field.
  • Specific directions include uniaxial orientation, in which one susceptibility direction is oriented in one direction, and planar orientation, in which one susceptibility direction (principal axis) exists only within a certain plane.
  • the three principal axes of each object can be oriented as an aggregate of objects each pointing in a specific direction, which is referred to as precision alignment.
  • the degree of orientation in the present invention means, for example, that the Lie-axis orientation is caused by a magnetic field when an external magnetic field is applied to an aggregate of target objects so that the degree of Lie-axis orientation is larger than before the magnetic field is applied. That.
  • the degree of uniaxial orientation of an object can be determined by, for example, X-ray diffraction for a crystalline substance. Due to the angular distribution of diffraction from a specific crystal plane, its half value By evaluating the width, the degree of reorientation is determined. For crystalline or amorphous substances, the degree of orientation can also be determined from the dichroism of the absorption peak due to a specific functional group in infrared spectroscopy. The degree of orientation can also be determined from optical properties such as birefringence. In any case, it is possible to select an orientation measuring means suitable for the substance. By measuring before and after the application of an external magnetic field with the same degree of orientation measuring means, it is possible to verify whether or not the magnetic field is oriented.
  • the mixture of objects in the present invention refers to an aggregate of objects having the same magnitude of three magnetic susceptibilities but different shapes.
  • Objects include crystals, fibers, and liquid crystals.
  • a mixture of two or more objects having different shapes is also included. This includes the case where these substances are suspended in the suspending medium or the case where they are mixed without the suspending medium. If the shape of the object is different, for example, even if it is a crystal of the same compound, the shape differs depending on whether it is a needle or a plate. Also, the same type of fiber with the same diameter has a different shape if the length is different. Objects having different sizes but the same shape (similar) are also included when the shapes of the present invention are different. In addition, enantiomers are included.
  • the object whose shape is a mirror image body in the present invention means an object having a shape in which an image reflected on a mirror cannot be superimposed on an original image. If you mirror your right hand in a mirror, you can get an image of your left hand, but your right and left hands cannot be superimposed, so your hand is a mirror image.
  • a time-varying external magnetic field for example, a rotating magnetic field is applied to an aggregate of objects having a certain shape
  • the object receives a torque corresponding to its magnetic property from the rotating magnetic field and attempts to perform a rotational motion. Hydrodynamic torque acts on the movement to prevent rotational movement from the fluid surrounding the object.
  • the rotation axis of the mechanical rotation torque is generally different from the rotation axis of the torque received from the rotating magnetic field, except when the object is spherical. For this reason, the object is subject to its own rotational movement or its rotational movement, depending on its shape.
  • a unique translational movement is performed. For example, when a right-hand screw and a left-hand screw apply a rotating magnetic field around the screw axis, the left-hand screw moves backward while the left-hand screw moves forward.
  • the mixture of objects in the enantiomer according to the present invention includes microcrystals of optical isomers of organic, inorganic and biologically relevant substances.
  • the microcrystal must have a size such that the motion induced by the time-varying external magnetic field cannot be prevented by thermal disturbance. When a magnetic field of about 1 O T (tesla) is used, the size is about several tens of nanometers. It is also effective to lower the temperature of the medium, such as in liquid nitrogen, to reduce thermal disturbance. Furthermore, in order to effectively couple the rotational motion and the translational motion induced by it, the microcrystal is oriented in a predetermined direction using a sequentially changing magnetic field, and then a rotating magnetic field is applied. May be useful.
  • the time-varying external magnetic field applied in the present invention refers to a magnetic field that can be applied from outside the aggregate of the target object by a permanent magnet, an electromagnet, a superconducting magnet, or the like.
  • the magnitude of the time-varying external magnetic field used in the present invention is preferably such that the maximum value of the fluctuation is not less than 0.05 T (Tesla) and not more than 10 T, and more preferably not less than 0.5 T.
  • a magnetic field of less than 10 T is used.
  • the temporal variation may be periodic or non-periodic, but in the case of periodic variation, the period is preferably 0.01 Hz or more and 1 Hz or less, and more preferably 0.1 Hz or less. Used in the range from 1 Hz to 1 Hz.
  • the magnitude of the magnetic field of superconducting magnets that can be used at a comparatively reasonable level is about 10 mm, but if a magnetic field of 10 mm or more can be easily used in the future, it will be within these ranges.
  • the application of an external magnetic field according to the invention is also used. A magnetic field that does not reach 0.05 mm requires a long time for the magnetic field to take effect, Not a target.
  • the external magnetic field applied in the present invention is characterized by applying a time-varying external magnetic field (an external magnetic field that varies with time).
  • the conventional magnetic field orientation is performed by applying a constant external magnetic field from a certain direction.However, it has already been mentioned that an object with a negative ⁇ ⁇ cannot obtain an aggregate of uniaxially oriented objects.
  • the time-varying external magnetic field can be applied intermittently over time or by varying the magnitude or direction of the magnetic field over time.
  • a time-varying external magnetic field can also be realized by using a quadrupole magnet and repeatedly applying a magnetic field only in the X direction for a certain time, next only in the y direction, and then only in the X direction.
  • a time-varying external magnetic field can also be realized by applying a magnetic field in the X direction for a relatively long time and subsequently in the y direction for a relatively long time. It is easy to perform the temporal fluctuation by controlling the current flowing through the electromagnet, but the same effect can be obtained by mechanically moving the magnet.
  • the time-varying external magnetic field is a plurality of external magnetic fields having different directions, and an application method of alternately applying the magnetic field at predetermined time intervals is referred to as a sequential magnetic field applying unit.
  • a rotating magnetic field that is a planar rotating magnetic field can be used.
  • an object is fixed, and this can be achieved by rotating a magnet around the object. It can also be realized by fixing a magnet and rotating an object around the magnet.
  • a quadrupole magnet of the above-described sequential magnetic field is used, and the magnitude of the magnetic field is signified in the X direction and cosine in the y axis direction with a phase delay of 90 degrees.
  • the above-described sequential magnetic field, rotating magnetic field, and fixed magnetic field can be used in combination.
  • Sequential magnetic field, rotating magnetic field, fixed magnetic field By combining at least two external magnetic fields in the field, the desired time-varying external magnetic field was constructed, and the orientation and separation of the aggregate of objects could be realized.
  • a method for applying a magnetic field of constant intensity from the y-direction alternately is three susceptibility 3d is the object of the present invention, chi 2, chi 3 is It is particularly effective for realizing the precise orientation of different diamagnetic materials, or the uniaxial orientation of diamagnetic objects of X XS -XSO.
  • the reason for this effectiveness is intuitively explained as follows. First, the case of X Xs Xs O will be described. When a certain external magnetic field is applied to the fibrous object, the fibrous object is oriented so that its ⁇ direction (shape anisotropic axis, fiber axis) is orthogonal to the magnetic field.
  • uniaxial orientation of the fiber axis can be achieved.
  • a magnetic field is first applied to the system in which the fibers with negative X A are randomly dispersed in the z-axis direction and then in the y-axis direction, the fiber axis is eventually changed to both the z-axis and the y-axis.
  • Vertical direction, ie X axis direction Can be uniaxially oriented.
  • the object When a magnetic field whose time fluctuates in a given plane (time-varying magnetic field) is applied to an object having a negative uniaxial anisotropic diamagnetic susceptibility or a system consisting of an object with a negative Xa
  • the object can be uniaxially oriented in the vertical direction (shape anisotropic axis) in a direction orthogonal to the plane formed by the applied magnetic field.
  • an aggregate of an object having a negative uniaxial anisotropic diamagnetic susceptibility that cannot be uniaxially oriented by the conventional magnetic field orientation technology has a uniaxial orientation in a target direction. I was able to do it.
  • a magnetic field oriented body in a specific direction which could not be obtained in the past, the strength, electric conductivity, and thermal conductivity in a specific direction could be improved.
  • a magnetic field oriented body in which each of the three magnetic susceptibilities is oriented in a specific direction, which previously existed as only one crystal was realized in an aggregate of objects. was completed. As a result, it became possible for an aggregate of objects to have magnetic, electrical, thermal, and mechanical properties similar to a single crystal.
  • the magnetic separation method of the present invention it is possible to separate a mixture of two or more types of objects having different shapes in crystals, fibers, liquid crystals, etc. made of the same substance. Enabled. For example, we have made it possible to separate objects with different shapes because of the different crystal forms, even for crystals made of the same substance. In particular, it is extremely valuable to be able to separate a mixture of mirror-image organic compounds by a simple means such as the present invention in fields such as pharmacy, food chemistry, and biochemistry. It is. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a plan view showing an example of a device for applying a time-varying external magnetic field according to the present invention.
  • FIG. 2 is a conceptual diagram showing an example of applying a time-varying external magnetic field according to the present invention.
  • FIG. 3 is a conceptual diagram showing another example of applying a time-varying external magnetic field according to the present invention.
  • FIG. 4 is a conceptual diagram showing another example of applying a time-varying external magnetic field according to the present invention.
  • FIG. 5 is a perspective view of another example of the device for applying a time-varying external magnetic field of the present invention, showing a case where a magnet is rotated.
  • FIG. 6 is a conceptual diagram showing an example of a device for externally applying a time-varying magnetic field according to the present invention, in which an object is rotated.
  • FIG. 7 is a conceptual diagram showing an example of a method of applying a time-varying external magnetic field for precisely orienting the direction of the magnetic field of an aggregate of objects according to the present invention.
  • FIG. 8 is a conceptual diagram showing another example of the method of applying a time-varying external magnetic field for precisely orienting the magnetic field direction of an aggregate of objects according to the present invention.
  • FIG. 9 is a conceptual diagram showing a generation mechanism of a rotational torque applied to a fibrous object by applying a time-varying external magnetic field according to the present invention.
  • FIG. 10 is a conceptual diagram showing a case where an object is separated by applying a time-varying external magnetic field of the present invention.
  • Fig. 11 is a conceptual diagram showing the orientation behavior of an aggregate of objects when a conventional constant external magnetic field is applied.
  • Fig. 12 shows photographs of the experimental results of the present invention.
  • Photo A shows the state of the fiber when no magnetic field was applied.
  • Photo B shows the orientation of the fiber when the time-varying external magnetic field of the present invention was applied. Is shown.
  • FIG. 1 is a conceptual diagram of a means for applying a time-varying external magnetic field of the present invention, and is shown in a plan view.
  • the magnetic poles P 1 and P 2 of the electromagnet are set on the X axis of the plane, and are arranged so that a magnetic field can be applied from P 1 to P 2 or from P 2 to P 1.
  • the magnetic poles P 3 and P 4 of the electromagnet are provided on the y-axis of the plane, and are arranged so that a magnetic field can be applied from P 3 to P 4 or from P 4 to P 3. ing.
  • FIG. 2 shows a specific example of applying a time-varying external magnetic field using the means of FIG.
  • A shows a magnetic field applied in the X direction and the y direction, Bx, By in a plan view, and shows a, b, c, d over time.
  • B shows what time interval the magnetic field is applied in the X and y directions. As shown in (B), only BX is applied during the time (0-1). In addition, only B y during the time (1 — 2), only B x during the time (2 — 3), and time (3 — 4) In between, only B y is applied, and a magnetic field of intensity 1 is applied alternately at constant time intervals 1 in the x and y directions.
  • FIG. 1 Another specific example of applying a time-varying external magnetic field using the means of FIG. 1 is shown in FIG. In Fig. 2, the application of the magnetic field in the X and y directions was repeated many times at time interval 1. In Fig. 3, the magnetic field of intensity 1 was applied once in the X and y directions at time interval 10. .
  • FIG. 4A Another specific example of applying the time-varying external magnetic field using the means of FIG. 1 is shown in FIG. In Fig. 2 and Fig. 3, a constant external magnetic field of intensity 1 is applied alternately in the X and y directions (time-varying external magnetic field).
  • the time-varying external magnetic field can also be obtained by mechanically moving a pair of permanent magnets.
  • Figure 5 shows the means for mechanically generating a rotating magnetic field. If the permanent magnets P a and P b of the pair are rotated by the motor M and the sample 1 is placed at the center, the magnetic field applied to the sample is equivalent to the rotating magnetic field described in FIG. Become.
  • FIG. 6 shows an example in which a time-varying external magnetic field can also be obtained by moving a group of objects with respect to a pair of fixed magnets. By doing so, a rotating magnetic field effect equivalent to the rotating magnetic field shown in FIG. 5 is generated, and belongs to the category of the rotating magnetic field of the present invention.
  • a magnetic field B is applied to the sample in the z-axis direction
  • is oriented in a direction perpendicular to the magnetic field (step 1).
  • step 1 when the magnetic field ⁇ in the ⁇ axis direction is turned off and a magnetic field B is applied in the y axis direction, Xl rotates in the direction orthogonal to the magnetic field, that is, in the X axis direction. 6
  • step 2 if the application of the magnetic field in the y direction is continued, and are more accurately oriented in the X direction. In other words, no matter what the initial conditions, the uniaxial orientation as shown in Fig. C is finally obtained.
  • Fig. 8 explains the method of using a sequential magnetic field to perform precise orientation when ⁇ , ⁇ 2 ⁇ 3 ⁇ 0.
  • FIG Alpha the application of a magnetic field B in the Z axis direction to the sample, chi 3 is gradually aligned with the magnetic field direction (step 1).
  • step 1 the application of a magnetic field B in the Z axis direction to the sample, chi 3 is gradually aligned with the magnetic field direction (step 1).
  • step 1 the application of a magnetic field B in the Z axis direction to the sample
  • chi 3 is gradually aligned with the magnetic field direction (step 1).
  • FIG beta cut a magnetic field in the ⁇ -axis direction and a magnetic field is applied beta to the y-axis direction, chi 3 until Tama oriented in the z-axis, chi iota rotates the X-axis direction.
  • the angle 3 is more accurately oriented in the ⁇ -axis direction
  • ⁇ 2 is oriented in the y-axis direction
  • ⁇ -axis direction are more accurately oriented in the: ⁇ -axis direction. That is, the alignment from any initial conditions be star Bok, samples will ultimately such chi iota as in Figure C, chi 2, the magnetic field direction of the chi 3 is, respectively it x, y, the z-axis direction The precise orientation is obtained.
  • Fig. 9 shows the mechanism by which uniaxial orientation is induced by applying a rotating magnetic field to a fibrous object.
  • the rotating magnetic field B when the rotating magnetic field B is applied, it causes the object 2 to rotate.
  • the fluid resistance is large.
  • the fibrous object 2 rotates and, over time, gradually orients in a direction in which the fiber axis becomes parallel to the rotation axis (from left to right in the figure).
  • the fiber axis and the rotation axis coincide (right figure) In this way, when the rotating magnetic field B is applied to the fibrous object 2, the uniaxial orientation is brought about by the rotating torque applied to the object by the rotating magnetic field. Can be.
  • FIG. 10 shows an example of separating a mirror image object using a rotating magnetic field.
  • a rotating magnetic field B was applied to the right-handed screw object 3a and left-handed screw object 3b as examples of enantiomers to cause rotation in the direction of the arrow.
  • the mechanism that generates the rotating torque is shown in Fig. 9. T). Then, the right-handed screw object 3a moves forward (moves upward), The left-handed screw 3b retracts (goes down), so that the right-handed and left-handed screw can be separated.
  • FIG. 11 is a conceptual diagram illustrating a conventional magnetic field orientation.
  • a shape anisotropy of the first shaft such as fibers are oriented in a random direction, upon application of a constant external magnetic field B in the Z-axis direction, when the chi 3 is positive, all The anisotropic axis of the suspension is oriented in the direction of the magnetic field.
  • Xa is negative
  • the shape anisotropic axis finally rotates so as to be parallel to the X y plane perpendicular to the magnetic field, but the shape anisotropic axis on this plane is randomly distributed .
  • Example 2 Prepare the same suspension as in Example 1 and apply a magnetic field as in Example 1, but In this case, the magnetic field is applied continuously only in the X-axis direction, and is not applied in the y-axis direction. In this state, water in the suspension medium ethylene-vinyl acetate copolymer emulsion was removed to obtain an aggregate of objects in which high-density polyethylene fibers were oriented in ethylene vinyl acetate. When this object is irradiated with X-rays from the X direction, no orientation is seen in the de-icer ring, and when the object is irradiated with X-rays from the y and z directions, it shows the same orientation pattern. It can be seen that the surface is oriented on a plane perpendicular to the X axis.
  • Example 2 Example 2
  • a sample was prepared in which a plurality of polyethylene fibers of about 1 mm in length were suspended in a mixed liquid whose specific gravity was adjusted with water and ethanol.
  • the apparatus shown in Fig. 5 was used as the rotating magnetic field device, and the experiment was performed with the central magnetic field strength of about 0.9 T and the rotation speed of about 3 rpm.
  • the sample tube containing the sample was placed at the center of the rotating magnetic field, and a rotating magnetic field was applied.
  • Figure 12 shows the experimental results recorded with a CCD camera. Photo A in Fig. 12 shows the state of the polyethylene fibers in which the sample was left out of the magnetic field for 6 minutes. It can be seen that each fiber is oriented in a random direction.
  • Photo B shows the state of the fiber when the magnetic field was rotated for 1 minute after applying a static magnetic field (without rotating the magnet) for 5 minutes. It can be seen that all fibers are uniaxially oriented in the vertical (vertical) direction with respect to the rotating magnetic field plane (horizontal).
  • the paraffin was melted in a test tube (1 Omm in diameter) and solidified in a vertical 8 T magnetic field. From the obtained rod-shaped sample, two rod-shaped samples with a diameter of 2 mm were cut out from the direction perpendicular to the axis of the rod, one with a right-hand screw and the other with a left-hand screw. The screw was floated in a liquid whose specific gravity was adjusted with ethanol and water. To this, a magnetic field of 0.5 T was applied from a horizontal direction by a permanent magnet. After the screw turned in the vertical direction, a pair of permanent magnets were rotated clockwise at 4 rpm in a horizontal plane. As a result, the male screw moved upward and the left screw moved downward. Industrial applicability
  • the present invention makes it possible to produce various magnetic field oriented bodies by using a time-varying external magnetic field, and to improve magnetic properties, electrical properties, thermal properties, and mechanical properties. Further, by using the magnetic separation method of the present invention, it becomes possible to separate a mixture of two or more types of objects having different shapes in a crystal, a fiber, a liquid crystal, or the like made of the same object, and to obtain a mirror image of the object. The mixture of was made possible to separate by simple means.

Abstract

A means for orientating an assembly of objects having a negative uniaxial anisotropic diamagnetic susceptibility (difficult by a conventional technique), a means for orientating three objects respectively different in susceptibility in respective susceptibility directions, and a means for separating objects different in shape such as mirror images. A method characterized by comprising orientating or separating objects by applying a time-wise-varying external magnetic field to an assembly of objects, a time-wise-varying external magnetic field including a sequential magnetic field, a rotary magnetic field and a combination of them.

Description

明 細 書 磁場配向体の製造方法及び物体の分離方法 技術分野  Description Method for manufacturing a magnetic field alignment body and method for separating an object
本発明は、 物体の集合体に磁場を印加することによリ配向した磁場配向 体およびその製造方法および物体の分離方法に関し、 特に、 物体の集合体 に時間的に変動する外部磁場を印加することによリ、 通常の一定外部磁場 の印加では得ることのできない配向を有する磁場配向体およびその製造方 法および物体の分離方法に関する。  TECHNICAL FIELD The present invention relates to a magnetic field oriented body that is reoriented by applying a magnetic field to an aggregate of objects, a method for manufacturing the same, and a method for separating an object, and in particular, applies an external magnetic field that fluctuates with time to the aggregate of objects. In particular, the present invention relates to a magnetic field oriented body having an orientation that cannot be obtained by applying a normal constant external magnetic field, a method of manufacturing the same, and a method of separating an object.
¾ J¾¾技術 ¾ J¾¾ technology
近年、 物体の集合体に配向を賦与手段として、 磁場が盛んに用いるよう になってきた。 特に注目されているのが、 磁場配向による手段によって材 料の特定方向の強度をアップしたり (特開 20 0 2— 1 46 06 3号) 、 特定方向の熱伝導度を高めること (特開 200 2— 80 6 1 7号、 木村恒 久、 「未来材料」 、 株式会社ェヌ 'ティー 'エス、 平成 1 4年、 第 2巻、 第 8号、 p . 2 0 - 2 6) などに使用されている。  In recent years, a magnetic field has been actively used as a means for giving an orientation to an aggregate of objects. Particular attention has been paid to increasing the strength of a material in a specific direction by means of magnetic field orientation (Japanese Unexamined Patent Application Publication No. 2002-146603) or increasing the thermal conductivity in a specific direction (Japanese Unexamined Patent Publication No. 200 2—80 6 17 No. 7, Tsunehisa Kimura, “Materials of the Future”, N.T.S Co., Ltd., 2002, Vol. 2, No. 8, p. 20-26) It is used.
繊維や六方晶結晶のように一軸対称な物体 (繊維軸、 または形状異方軸 方向を方向 1、 それに直交する方向を各々、 方向 2、 方向 3とする) にお いては、 磁化率は方向 1 (χι) と方向 2 (χ2) 、 方向 3 (χ32) とで異 なる。 従来の磁場配向においては、 χ32χι < 0である反磁性物体 (以 下、 正の一軸異方性反磁性磁化率を有する物体、 または Xa xt— χ2=χι—In a uniaxially symmetric object such as a fiber or a hexagonal crystal (the direction of the fiber axis or shape anisotropic axis is direction 1, and the directions perpendicular thereto are direction 2 and direction 3, respectively), the susceptibility is the direction 1 ( χι ), direction 2 (χ 2 ), and direction 3 (χ 3 = χ 2 ). In a conventional magnetic field orientation, a diamagnetic object in which χ 3 = χ 2 χι <0 ( hereinafter , an object having a positive uniaxial anisotropic diamagnetic susceptibility, or Xa xt— χ 2 = χι—
> 0の物体) 、 例えば、 カーボンファイバーの短繊維は、 液体に懸濁した 状態で一定外部磁場を印加することにより、 ランダムな方向を向いていた 繊維軸をすベて磁場に平行に一軸配向させることができた (木村恒久、 他> 0) For example, short fibers of carbon fiber were oriented in random directions by applying a constant external magnetic field while suspended in a liquid. All fiber axes could be uniaxially oriented parallel to the magnetic field (Tsunehisa Kimura, et al.
1名、 「LangmuirJ 、 アメリカ化学会、 2000年、 第 1 6巻、 p. 85 8— 86 1、 米国) 。 すなわち磁化率の最も大きい方向 (反磁性体の場合 には、 磁化率の絶対値が最も小さい方向に同じ) に、 方向 (繊維軸方向) を一軸配向させることができる。 それらを図で具体的に説明すると、 第 1 1図の磁場を印加しない場合には、 ランダムに配向していた物体の集合体 に、 ζ軸方向に磁場 Βを印加することにより、 Xa>0の物体では、 磁場方 向に一軸配向した物体の集合体が得られる (a図) 。 しかし、 χι23 <0である物体 (以下、 負の一軸異方性反磁性磁化率を有する物体、 また は χ3=χι— x2=^— Χ3く 0の物体) 、 例えばポリエチレンの短繊維では、 液 体に懸濁した状態で一定外部磁場を印加すると、 ランダムな方向を向いて いた繊維軸は、 磁場に垂直な面上に並ぶが、 この面上での一軸配向は得ら れずランダムであった (第 1 1図の b図) 。 One, "LangmuirJ, American Chemical Society, 2000, Vol. 16, p. 858-861, USA", that is, the direction of the highest magnetic susceptibility (in the case of a diamagnetic material, the absolute value of the magnetic susceptibility) The direction (fiber axis direction) can be uniaxially oriented in the direction that is the same as the direction in which the magnetic field in Fig. 11 is not applied. the collection of which was the object, by applying a magnetic field Β in ζ axially, the object of Xa> 0, a collection of objects uniaxially oriented in the magnetic field direction is obtained (a diagram). However, Kaiiota < An object with χ 2 = χ 3 <0 (hereinafter, an object with a negative uniaxial anisotropic diamagnetic susceptibility, or an object with χ 3 = χι — x 2 = ^ — Χ3 = 0) When a constant external magnetic field was applied to a fiber suspended in a liquid, the fiber turned in a random direction.維軸 is arranged on a plane perpendicular to the magnetic field, (b view of the first FIG. 1) This uniaxially oriented on a plane was obtained, et al is not random.
結晶においては、 3つの反磁性磁化率 χι、 χ2、 χ3が全て異なる結晶系が ある (単斜晶など) 。 例えば、 X xs xa O 即ち χ3=χί— 2< 一 <0なる結晶が、 χι方向に細長い針状結晶である場合には、 ポリエチレン 繊維と同様なことが起こる。即ち、この結晶に一定外部磁場を印加しても、 針状結晶を一軸配向させることができない。 ましてや、 3つの磁化率の方 向を所定の方向に揃えることは全く不可能であった。 しかし、 物体の集合 体全体として 3つの磁化率の方向を揃えることができれば、 物体の集合体 全体が一つの結晶と同じ磁気的性質をもち、 そのものの磁気的、 電気的、 熱的性質は、 一つの結晶に近似した性質を持つことになリ、 大変価値のあ る物体となり、 そのような物体の実現が望まれていた。 In crystals, there are crystal systems in which all three diamagnetic susceptibilities χι , χ 2 , and χ 3 are different (eg, monoclinic). For example, when the crystal of X xs xa O, that is, χ 3 = χί— 2 <1 <0, is a needle-like crystal elongated in the χι direction, the same phenomenon as the polyethylene fiber occurs. That is, even if a constant external magnetic field is applied to this crystal, the needle-shaped crystal cannot be uniaxially oriented. Furthermore, it was impossible at all to align the directions of the three magnetic susceptibilities in a predetermined direction. However, if the direction of the three magnetic susceptibilities can be aligned in the whole object aggregate, the whole object aggregate has the same magnetic properties as one crystal, and the magnetic, electrical, and thermal properties of itself are Having a property close to that of a single crystal, it became a very valuable object, and the realization of such an object was desired.
反磁性ないしは常磁性物体の分離には、磁場が用いられる場合がある(特 開 2002— 860 1 5号公報、 特開 2002— 59026号公報) 。 磁 場勾配下において、 液体に懸濁した物体に働く磁気力、 重力、 および浮力 が、 物体の密度、 磁化率により異なることを利用して、 物体を異なる位置 に浮揚させることにより分離する方法である。 この方法では、 分離に物体 の密度、磁化率は反映されるが、物体のサイズや形状の相違は反映されず、 これらの特性に基づく分離はできない。 ましてや、 形状が互いに鏡像関係 にある物体については、 分離は全く不可能である。 発明の開示 A magnetic field may be used to separate a diamagnetic or paramagnetic object (Japanese Patent Application Laid-Open No. 2002-86015 and Japanese Patent Application Laid-Open No. 2002-59026). Magnetic It is a method of separating an object by levitating it to a different position using the fact that the magnetic force, gravity, and buoyancy acting on an object suspended in a liquid under a field gradient differ depending on the density and magnetic susceptibility of the object. . In this method, the separation reflects the density and magnetic susceptibility of the object, but does not reflect the difference in the size or shape of the object, and separation based on these characteristics cannot be performed. Furthermore, it is impossible to separate objects whose shapes are mirror images of each other. Disclosure of the invention
本発明は、 上記従来技術の欠点を除くためになされたものであって、 そ の目的とするところは、 物体の集合体を効率的に配向させることにある。 特に反磁性物体に対して、 従来の配向技術では、 一軸配向させ得なかった 負の一軸異方性反磁性磁化率を有する物体も、 目的とする方向へ一軸配向 を持たせることができる手段を提供することにある。 また、 従来の一定磁 場下では不可能であった、 3つの磁化率が異なる物体の集合体を、 それぞ れの磁化率の方向である 3軸方向に精密配向を実現させ、 集合体全体を一 つの結晶のような磁気的性質を持たせることにある。 さらに、 形状の異な る物体、 特に形状が鏡像体である物体の混合体の分離を可能ならしめる手 段を提供することにある。  The present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art, and an object of the present invention is to efficiently orient an aggregate of objects. In particular, for diamagnetic objects, there is a means by which even objects with negative uniaxial anisotropic diamagnetic susceptibility, which could not be uniaxially oriented with conventional orientation technology, can have uniaxial orientation in the desired direction. To provide. In addition, an assembly of three objects with different magnetic susceptibilities, which was impossible under the conventional constant magnetic field, is precisely oriented in the three axial directions, which are the directions of the magnetic susceptibilities, and the entire assembly is Is to have magnetic properties like a single crystal. It is another object of the present invention to provide a method for separating a mixture of objects having different shapes, particularly an object having a mirror image.
本発明は上記の目的を達成するためになされたものであって、 磁場配向 体を製造することに関しては、 以下の事項を特徴とする。 本発明は 3つの 磁化率 χ 、 χ2 > χ3が異なる、 またはそのうちの2つが等しい物体からなる 集合体に、 時間的に変動する外部磁場 (時間変動外部磁場) を印加するこ とにより、 その物体にその磁気的性質および形状に固有の運動を生じさせ て、 物体を特定の方向に配向させることに関する。 また本発明は、 χ ι23 < 0、 または χ ι23く 0である異なる反磁性磁化率を有する物体 の集合体に対して、 時間変動外部磁場を印加することによリ、 反磁性磁化 率の絶対値の一番大きい方向、即ち χ,方向に一軸配向させることに関する。 また本発明は、 物体に時間的変動外部磁場を印加した後、 さらに固定磁場 を印加することにより、 物体の 3つの磁化率 Χ 1、 χ2、 χ3のそれぞれの方向 が、 前記集合体を構成する各々の物体について、 特定の方向を向いている 磁場配向体 (精密配向体) を製造することに関する。 また本発明は、 上記 物体の集合体が、 懸濁媒体に分散している被懸濁体であることにより磁場 配向体の製造に関する。 また本発明は、 上記の懸濁媒体を固化または除去 することによリ、被懸濁体の配向を固定することに関する。また本発明は、 上記物体が、 高分子液晶または低分子液晶であることによリ磁場配向体の 製造方法に関する。 また本発明は、 上記物体が、 高分子または低分子溶液 からキャストや凝固、 あるいは溶融状態から冷却する過程、 または、 結晶 を溶融あるいは溶解する過程において生じた会合体、 微結晶であることに よる磁場配向体の製造方法に関する。 さらに本発明は、 上述の高分子又は 低分子において生じた磁場配向を、 キャスト、 凝固あるいは溶融状態から 冷却過程を完了することにより成型体、 シート、 フィルム、 薄膜中におい て、 配向を固定させることに関する。 The present invention has been made to achieve the above object, and has the following features with respect to manufacturing a magnetic field alignment body. The invention of the three magnetic susceptibility chi, chi 2> chi 3 are different, or the aggregate of two are equal objects of which the the applied child an external magnetic field (temporal variation external magnetic field) that varies with time, It relates to orienting an object in a particular direction by causing the object to undergo motion specific to its magnetic properties and shape. The present invention, an object having a χ ι <χ 2 <χ 3 <0 or chi iota <different diamagnetic susceptibility is χ 2 = χ 3 ° 0, It relates to uniaxial orientation in the direction in which the absolute value of the diamagnetic susceptibility is the largest, that is, in the χ, direction by applying a time-varying external magnetic field to the aggregate. Further, according to the present invention, after applying a time-varying external magnetic field to the object, and further applying a fixed magnetic field, the three magnetic susceptibilities Χ 1 , χ 2 , χ 3 of the object each have the following directions: It relates to manufacturing a magnetic field oriented body (precision oriented body) oriented in a specific direction for each of the constituent objects. Further, the present invention relates to the production of a magnetic field oriented body, wherein the aggregate of the objects is a suspended body dispersed in a suspension medium. The present invention also relates to fixing the orientation of the object to be suspended by solidifying or removing the suspension medium. The present invention also relates to a method for producing a magnetic field alignment body, wherein the object is a polymer liquid crystal or a low molecular liquid crystal. Further, the present invention is based on the fact that the object is an aggregate or microcrystal formed in a process of casting or solidifying from a polymer or low-molecular solution, or cooling from a molten state, or a process of melting or dissolving a crystal. The present invention relates to a method for manufacturing a magnetic field alignment body. Further, the present invention provides a method of fixing the orientation of a magnetic field generated in the above-described polymer or low molecule in a molded product, sheet, film, or thin film by completing a cooling process from a cast, solidified, or molten state. About.
また、 本発明は上記の目的を達成するためになされたものであって、 物 体の集合体の磁場配向体に関して、 以下の事項を特徴とする。 本発明は、 χι23く 0、 または、 X l <x2 =x3く 0である異なる反磁性磁化率を有 する物体の集合体が、 時間的に変動する外部磁場 (時間変動外部磁場) が 印加されたことにより、 反磁性磁化率の絶対値の一番大きい方向、 即ち X1 方向に一軸配向している磁場配向体に関する。 さらに本発明は、 物体の 3 つの磁化率 χι、 χ2、 χ3のそれぞれの方向が、 それぞれ特定の方向を向いて いる物体の集合体からなる磁場配向体に関する。 また、 本発明は上記の目的を達成するためになされたものであって、 物 体の混合物の分離方法に関して、 以下の事項を特徴とする。 本発明は、 3 つの磁化率 Χι、 χ2、 χ3が異なる、 またはそのうちの 2つが等しい物体の集 合体が、 形状の異なる複数の物体の混合体であって、 該混合体に時間的に 変動する外部磁場 (時間変動外部磁場) を印加することにより、 その混合 体に、 その磁気的性質および形状に固有の運動を生じさせて、 それぞれの 物体を特定の方向に移動させて分離することに関する。 また本発明は、 上 記物体の混合体が、 互いに鏡像の関係にある物体の混合体を分離すること に関する。 また本発明は、 上記の混合物体が、 懸濁媒体に分散している被 懸濁体を分離することに関する。 また本発明は、 上記懸濁媒体を固化また は除去することにより、 前記被懸濁体中に存在する分離された個々の物体 を固定することに関する。 さらに本発明は、 上記混合物体が、 高分子液晶 または低分子液晶であり、 それらを形状により分離することに関する。 また、 本発明は上記の磁場配向体やその製造方法および物体の混合体の 分離に有効な磁場の印加方法を提供するものであって、 以下の事項を特徴 とする。 本発明は、 上記の磁場配向体の製造方法や混合物の分離における 時間変動外部磁場が、 方向の異なる複数の外部磁場からなり、 所定の時間 間隔で交互に逐次的に印加するものであることに関する (逐次磁場) 。 ま た本発明は、 上記の磁場配向体の製造方法や混合物の分離における時間変 動外部磁場が、 平面状で回転する磁場により印加することに関する (回転 磁場) 。 さらに本発明は、 上記の時間変動外部磁場が、 固定された磁場に 対して物体を運動させることによリ発生するものであることに関する。 さ らに本発明は、 上述の時間変動外部磁場が、 逐次磁場、 回転磁場、 および 固定磁場のうちの少なくとも 2つの外部磁場の組み合わせによリ印加する ものであることに関する (組み合わせ磁場) 。 本発明は、 物体の集合体に磁場を印加することによって、 その集合体の 配向や分離を行うことを特徴とする。 物体は、 大きな結晶のように、 単独 で存在する場合もあるが、 本発明では、 物体の集合体を対象とし、 それら の集合体としての向きを一定の方向に配列させたり、 物体が形状等の異な るものの集合である場合に、 それらを分離することを目的とする。 物体に は、 常磁性体および反磁性体を含み、 それらの磁気的性質を利用する。 な お、常磁性とは、磁場を印加すると、磁場の方向に磁化される磁性をいい、 反磁性とは、磁場を印加すると、磁場と反対方向に磁化される磁性をいい、 いずれも磁場を取り除くと可逆的に消失する。 磁化率とは、 磁化 Mと磁場 Hとの関係 Μ =χΗを表す χをいう。等方的物体では、 χはスカラーであるが、 異方性物体では χはテンソルであり、 その 3つの主値 (あるいは主軸方向) を χ" χ3と疋義す The present invention has been made to achieve the above object, and has the following features regarding a magnetic field alignment body of an aggregate of objects. According to the present invention, an aggregate of objects having different diamagnetic susceptibilities of χι23 or X l <x 2 = x 3 00 is formed by a time-varying external magnetic field ( When a time-varying external magnetic field is applied, it relates to a magnetic field oriented body that is uniaxially oriented in the direction in which the absolute value of the diamagnetic susceptibility is the largest, ie, in the X1 direction. The invention further object of the three magnetic susceptibility χι, χ 2, respective directions of chi 3 is directed to a magnetic field oriented material comprising an aggregate of an object are respectively oriented in a particular direction. The present invention has been made to achieve the above object, and has the following features regarding a method for separating a mixture of substances. According to the present invention, an aggregate of objects whose three magnetic susceptibilities Χι , χ 2 , χ 3 are different or two of which are equal is a mixture of a plurality of objects having different shapes, and the mixture is temporally added to the mixture. Applying a fluctuating external magnetic field (time-varying external magnetic field) to cause the mixture to move in a specific way to its magnetic properties and shape, and to move and separate each object in a specific direction About. The present invention also relates to the above-mentioned mixture of objects separating a mixture of objects which are mirror images of each other. In addition, the present invention relates to separating the suspended object, in which the mixed object is dispersed in a suspension medium. The present invention also relates to fixing the separated individual objects present in the suspended body by solidifying or removing the suspension medium. Further, the present invention relates to a method in which the mixed object is a high-molecular liquid crystal or a low-molecular liquid crystal, and separates them according to shape. The present invention also provides a method for applying a magnetic field effective for separating the above-mentioned magnetic field oriented body, a method for producing the same, and a mixture of objects, and has the following features. The present invention relates to a method for producing a magnetic field oriented body and a method in which a time-varying external magnetic field in the separation of a mixture comprises a plurality of external magnetic fields having different directions and is applied sequentially and alternately at predetermined time intervals. (Sequential magnetic field). The present invention also relates to the method for producing a magnetic field oriented body and the application of the time-varying external magnetic field in the separation of a mixture by a magnetic field rotating in a plane (rotating magnetic field). Further, the present invention relates to the fact that the time-varying external magnetic field is generated by moving an object with respect to a fixed magnetic field. Further, the present invention relates to the fact that the above-mentioned time-varying external magnetic field is applied by a combination of at least two external magnetic fields of a sequential magnetic field, a rotating magnetic field, and a fixed magnetic field (combination magnetic field). The present invention is characterized in that by applying a magnetic field to an aggregate of objects, the aggregate is oriented and separated. An object may exist alone as a large crystal, but in the present invention, a set of objects is targeted, and the direction of the set as a set is arranged in a certain direction. The purpose is to separate them if they are sets of different things. Objects include paramagnetic and diamagnetic materials and utilize their magnetic properties. Paramagnetic refers to magnetism that is magnetized in the direction of the magnetic field when a magnetic field is applied, and diamagnetism refers to magnetism that is magnetized in the opposite direction to the magnetic field when a magnetic field is applied. It disappears reversibly when removed. The susceptibility is χ that represents the relationship 関係 = と between the magnetization M and the magnetic field H. In an isotropic object, χ is a scalar, while in an anisotropic object, χ is a tensor, and its three principal values (or principal axis directions) are defined as χ "χ 3
本発明は、 3つの磁化率 χ ι、 χ2、 χ3が異なる、 またはそのうちの 2つが 等しい物体に、 時間的に変動する外部磁場 (本発明においては、 時間変動 外部磁場という) を印加することを特徴とする。 本発明では、 特に反磁性 体、すなわち 3つの磁化率がすべて負である物体に特に有効である。また、 異方性の反磁性磁化率、 特に一軸異方性の反磁性磁化率を有する物体に、 時間変動外部磁場を印加することによリ達成される。 形状異方軸方向の磁 化率を、 χ ι、それに直交する方向の磁化率を χ2 ( =χ3 ) としたとき、 χΒ = χϊ 一 χ2 =χι— Χ3がゼロでない物体を、一軸異方性反磁性磁化率を有する物体と 呼ぶ。 そして、 xaが正のものを、 正の一軸異方性反磁性磁化率を有する物 体、 負のものを、 負の一軸異方性反磁性磁化率を有する物体と呼ぶ。 本発 明の対象である、 負の一軸異方性反磁性磁化率を有する物体、 または χ3 < 0の物体としては、 ポリエチレン繊維、 セルロース繊維等がある。 3つの 磁化率、 χι、 χ2、 χ3が異なる場合においても、 形状異方軸が χ ι、 χ2、 χ3の なかの一つ、 例えば χι ( <χ23 < 0 ) の方向と同じ場合には、 χ3 =χ,— χ3 <χ ι一 χ2く 0となリ、 負の一軸異方性反磁性磁化率を有する物体とみな すことができる。 The present invention has three magnetic susceptibility chi iota, chi 2, chi 3 is different or the two are equal the object of which, (in the present invention, that the time variation external magnetic field), external magnetic field varies with time is applied thereto It is characterized by the following. The present invention is particularly effective for a diamagnetic material, that is, an object in which all three susceptibilities are negative. It is also achieved by applying a time-varying external magnetic field to an object having an anisotropic diamagnetic susceptibility, particularly a uniaxial anisotropic diamagnetic susceptibility. When the magnetic susceptibility in the shape anisotropic axis direction is 、 ι and the magnetic susceptibility in the direction perpendicular to it is χ 2 (= χ 3 ), 物体Β = χϊ one χ 2 = χι — It is called an object with uniaxial anisotropic diamagnetic susceptibility. A substance having a positive x a is referred to as a substance having a positive uniaxial anisotropic diamagnetic susceptibility, and a substance having a negative x a is referred to as a substance having a negative uniaxial anisotropic diamagnetic susceptibility. Is present onset Ming object, as the object of the negative of the object having a uniaxial anisotropy diamagnetic susceptibility or chi 3 <0,, there are polyethylene fibers, cellulose fibers or the like. Even when the three magnetic susceptibilities, χι , χ 2 , χ 3, are different, the shape anisotropic axis is χ ι , χ 2 , χ 3 One of them, for example, in the same direction as χι (<χ 23 <0), 、 3 = χ, — χ 3 < χ ι1 χ 2 χ 0, negative uniaxial anisotropy It can be regarded as an object having a coercive diamagnetic susceptibility.
本発明の物体の集合体には、 懸濁媒体に懸濁している被懸濁体にも適用 される。 これらの懸濁系において時間変動外部磁場を印加することによつ て、 被懸濁物を一定方向に配列や分離を行わせることができる。 この懸濁 系において、 懸濁媒体を冷却や化学反応、 特に熱や光等により高分子化す ることなどの手段により、 系全体を固化することができ、 この固化により 被懸濁体における配向を固定することができる。 また、 懸濁系に対する時 間変動外部磁場の印加により、 被懸濁体が一定方向に配列させられている 状態で、 懸濁媒体を蒸発や抽出により除去することにより、 被懸濁体の配 向を固定することができる。 本発明の懸濁系における被懸濁体として、 短 繊維や、 有機や無機の微結晶あるいはナノ結晶などがある。  The aggregate of the object of the present invention also applies to a suspended object suspended in a suspension medium. By applying a time-varying external magnetic field to these suspensions, the suspended objects can be arranged and separated in a certain direction. In this suspension system, the entire system can be solidified by means such as cooling or chemical reaction of the suspension medium, particularly by heat or light, etc. Can be fixed. In addition, by applying a time-varying external magnetic field to the suspension system, the suspension medium is removed by evaporation or extraction in a state where the suspension bodies are arranged in a certain direction, thereby distributing the suspension medium. The direction can be fixed. Examples of the object to be suspended in the suspension system of the present invention include short fibers, and organic or inorganic microcrystals or nanocrystals.
本発明は、 物体の集合体には、 高分子液晶または低分子液晶が含まれ、 かかる液晶状態で本発明の時間変動外部磁場を印加することにより、 これ らの液晶を一定方向に配向させることや、 これらの液晶の混合体を分離さ せることができる。 側鎖に芳香族環のような磁化率の大きい官能基を含む 側鎖型液晶物体は、 多くの場合 X a < 0となり、 本発明の対象物体となる。 側鎖型液晶も、 主鎖を一定方向に一軸配向させることができれば、 電気伝 導性の向上等の有効性が期待できる。 According to the present invention, an aggregate of objects includes a polymer liquid crystal or a low molecular liquid crystal, and by applying the time-varying external magnetic field of the present invention in such a liquid crystal state, these liquid crystals are oriented in a certain direction. Alternatively, a mixture of these liquid crystals can be separated. A side-chain type liquid crystal body containing a functional group having a high magnetic susceptibility such as an aromatic ring in the side chain often has Xa <0 and is a target object of the present invention. The side-chain type liquid crystal can also be expected to be effective in improving electrical conductivity if the main chain can be uniaxially oriented in a certain direction.
本発明でいう物体には、 高分子または低分子溶液からキャストゃ凝固、 あるいは溶融状態から冷却する過程、 または、 結晶を溶融あるいは溶解す る過程において生じた異方性会合体、 および数十ナノメータから数百マイ クロメータの大きさの微結晶が含まれる。 異方性会合体とは、 これらの過 程において生じる、結晶前駆構造あるいは液晶的構造、または結晶の融解、 溶解が不十分で完全に等方的な溶融体、 溶液に至っていない構造を意味す る。 最近の高分子結晶化の研究によれば、 このような異方性会合体が結晶 生成の前、 あるいは溶融体中に存在すると考えられている。 異方性会合体 中では、 高分子鎖が多かれ少なかれ並んだ構造をとつているから、 異方性 会合体が磁場配向することにより、 結果として分子配向が達成される。 こ れらの過程において、 本発明の時間変動外部磁場を印加することによリ高 分子の場合には分子鎖を一軸配向させた磁場配向体を製造することができ る。 本発明の高分子融液としては、 ポリエチレンテレフタレート、 ポリエ チレンォキシド、 イソタクチックポリプロピレン、 イソタクチックポリス チレンなどの溶融体があり、 また高分子溶液として、 セルロースの銅アン モニァ溶液、 ポリエチレンォキシド水溶液、 セルロース卜リアセテートの 有機溶媒溶液等がある。 これらの高分子または低分子溶液からキャストゃ 凝固、 あるいは溶融状態から冷却する過程において時間変動外部磁場が印 加されることにおいて、 成型体、 シート、 フィルム、 薄膜として、 一定方 向に分子配向した磁場配向体とすることができた。 The object referred to in the present invention includes anisotropic aggregates formed during casting or solidification from a polymer or low-molecular solution, cooling from a molten state, or melting or dissolving a crystal, and tens of nanometers. To several hundred micrometer-sized microcrystals. An anisotropic aggregate refers to a crystal precursor structure or a liquid crystal structure, a crystal melting, It means a melt that is insufficiently dissolved and is completely isotropic, and a structure that does not reach a solution. According to recent studies on polymer crystallization, such anisotropic aggregates are thought to exist before crystal formation or in the melt. Since the anisotropic aggregate has a structure in which the polymer chains are more or less aligned, molecular orientation is achieved by orienting the anisotropic aggregate in the magnetic field. In these processes, by applying the time-varying external magnetic field of the present invention, in the case of a high molecule, it is possible to produce a magnetic field oriented body in which the molecular chains are uniaxially oriented. Examples of the polymer melt of the present invention include melts of polyethylene terephthalate, polyethylene oxide, isotactic polypropylene, isotactic polystyrene, and the like. Further, as the polymer solution, a copper ammonia solution of cellulose, an aqueous solution of polyethylene oxide are used. And an organic solvent solution of cellulose triacetate. When a time-varying external magnetic field is applied during the process of casting from these polymer or low-molecular solutions and solidifying or cooling from the molten state, the molecules are oriented in a certain direction as a molded body, sheet, film, or thin film It could be a magnetic field oriented body.
本発明は、 磁場を印加することにより、 物体の集合体を特定の方向に配 向させることを特徴とする。 特定の方向には、 一つの磁化率方向を一方向 に配向させる一軸配向や、 一つの磁化率方向 (主軸) が、 一定面内のみに 存在する面配向がある。 また、 本発明では、 物体の集合体において、 各々 の物体の 3つの主軸が、 それぞれ特定の方向を向いている物体の集合体と する配向を可能にし、 それを精密配向という。 本発明における配向の程度 は、 例えば、 磁場によリー軸配向したとは、 対象物体の集合体に対して外 部磁場を印加することにより、 磁場を印加する前よリー軸配向度が大きい こという。 物体の一軸配向度は、 例えば結晶性物質については、 X線回折 により決定できる。 特定の結晶面からの回折の角度分布により、 その半価 幅を評価することによリ配向度が決定される。 結晶性物質あるいは非晶性 物質については、 赤外分光法における特定の官能基に起因する吸収ピーク の二色性からも配向度を決定できる。 また複屈折などの光学的性質からも 配向度を決定できる。 いずれにせよ、 物質に適した配向度測定手段を選ぶ ことができる。 同一配向度測定手段で、 外部磁場の印加の前と後を測定す ることにより、 磁場配向したかどうかを検証することができる。 The present invention is characterized in that an aggregate of objects is oriented in a specific direction by applying a magnetic field. Specific directions include uniaxial orientation, in which one susceptibility direction is oriented in one direction, and planar orientation, in which one susceptibility direction (principal axis) exists only within a certain plane. Further, in the present invention, in an aggregate of objects, the three principal axes of each object can be oriented as an aggregate of objects each pointing in a specific direction, which is referred to as precision alignment. The degree of orientation in the present invention means, for example, that the Lie-axis orientation is caused by a magnetic field when an external magnetic field is applied to an aggregate of target objects so that the degree of Lie-axis orientation is larger than before the magnetic field is applied. That. The degree of uniaxial orientation of an object can be determined by, for example, X-ray diffraction for a crystalline substance. Due to the angular distribution of diffraction from a specific crystal plane, its half value By evaluating the width, the degree of reorientation is determined. For crystalline or amorphous substances, the degree of orientation can also be determined from the dichroism of the absorption peak due to a specific functional group in infrared spectroscopy. The degree of orientation can also be determined from optical properties such as birefringence. In any case, it is possible to select an orientation measuring means suitable for the substance. By measuring before and after the application of an external magnetic field with the same degree of orientation measuring means, it is possible to verify whether or not the magnetic field is oriented.
本発明における物体の混合体とは、 3つの磁化率の大きさは同じだが、 各々の形状が異なる物体の集合体をいう。 物体には、 結晶、 繊維、 液晶な どが含まれる。 形状の異なる 2種以上の物体の混合体も含まれる。 これら の物体が懸濁媒体中に懸濁した場合、 あるいは懸濁媒体を含まずに、 混合 している場合も含まれる。 物体の形状が異なるものとして、 例えば同一化 合物の結晶でも、 それが針状か板状かで形状は異なる。 また、 同種の同じ 直径の繊維でも、 長さが異なれば形状が異なる。 大きさが異なるが形状が 同一 (相似) である物体も、 本発明の形状が異なる場合に含まれる。 さら に、 鏡像体も含まれる。  The mixture of objects in the present invention refers to an aggregate of objects having the same magnitude of three magnetic susceptibilities but different shapes. Objects include crystals, fibers, and liquid crystals. A mixture of two or more objects having different shapes is also included. This includes the case where these substances are suspended in the suspending medium or the case where they are mixed without the suspending medium. If the shape of the object is different, for example, even if it is a crystal of the same compound, the shape differs depending on whether it is a needle or a plate. Also, the same type of fiber with the same diameter has a different shape if the length is different. Objects having different sizes but the same shape (similar) are also included when the shapes of the present invention are different. In addition, enantiomers are included.
本発明でいう形状が鏡像体である物体とは、 鏡に映った像を元の像と重 ね合わせることのできない形状を有する物体をいう。 右手を鏡に映すと左 手の像をい得るが、 右手と左手は重ね合わせることができないので、 手は 鏡像体である。 一般にある形状を有する物体の集合体に時間的変動外部磁 場、 例えば回転磁場を印加すると、 その物体はその磁気的性質に応じた卜 ルクを回転磁場から受けて、回転運動を行おうとする。その運動に対して、 その物体を取り巻く流体から回転運動を妨げようとする流体力学的トルク が作用する。 この力学的回転トルクの回転軸は、 その物体が球状の場合以 外は、一般的に回転磁場から受けるトルクの回転軸とは異なる。このため、 その物体はその形状に応じて、 固有の回転運動、 ないしはその回転運動に 伴う固有の併進運動を行う。 例えば、 右ネジと左ネジは、 ネジの軸に対し てお回りの回転磁場を印加すると、 おネジは前進するのに対して、 左ネジ は後退する。 The object whose shape is a mirror image body in the present invention means an object having a shape in which an image reflected on a mirror cannot be superimposed on an original image. If you mirror your right hand in a mirror, you can get an image of your left hand, but your right and left hands cannot be superimposed, so your hand is a mirror image. In general, when a time-varying external magnetic field, for example, a rotating magnetic field is applied to an aggregate of objects having a certain shape, the object receives a torque corresponding to its magnetic property from the rotating magnetic field and attempts to perform a rotational motion. Hydrodynamic torque acts on the movement to prevent rotational movement from the fluid surrounding the object. The rotation axis of the mechanical rotation torque is generally different from the rotation axis of the torque received from the rotating magnetic field, except when the object is spherical. For this reason, the object is subject to its own rotational movement or its rotational movement, depending on its shape. A unique translational movement is performed. For example, when a right-hand screw and a left-hand screw apply a rotating magnetic field around the screw axis, the left-hand screw moves backward while the left-hand screw moves forward.
本発明でいう鏡像体にある物体の混合体としては、 有機、 無機、 生体関 連物質の光学異性体微結晶が含まれる。 微結晶は、 時間的変動外部磁場に よリ誘起される運動が、 熱撹乱によリ妨げられないサイズを有する必要が ある。 1 O T (テスラ) 程度の磁場を用いる場合には、 サイズは数十ナノ メータ程度である。 熱撹乱を小さくするために、 液体窒素中など、 媒体の 温度を低下させることも有効である。 さらに回転運動と、 それによつて誘 起される併進運動を効果的にカップリングさせるために、 あらかじめ微結 晶を逐次変動磁場を用いて、 所定の方向に配向させた後、 回転磁場を印加 することが有効な場合がある。  The mixture of objects in the enantiomer according to the present invention includes microcrystals of optical isomers of organic, inorganic and biologically relevant substances. The microcrystal must have a size such that the motion induced by the time-varying external magnetic field cannot be prevented by thermal disturbance. When a magnetic field of about 1 O T (tesla) is used, the size is about several tens of nanometers. It is also effective to lower the temperature of the medium, such as in liquid nitrogen, to reduce thermal disturbance. Furthermore, in order to effectively couple the rotational motion and the translational motion induced by it, the microcrystal is oriented in a predetermined direction using a sequentially changing magnetic field, and then a rotating magnetic field is applied. May be useful.
本発明において印加される時間変動外部磁場は、 永久磁石、 電磁石、 超 伝導磁石等により、 対象物体の集合体の外から印加することができる磁場 をいう。 本発明に使用される時間変動外部磁場の大きさは、 好ましくは変 動の最大値が 0 . 0 5 T (テスラ) 以上であって 1 0 T以下、 さらに好ま しくは 0 . 5 T以上であって 1 0 T以下の磁場が使用される。 また、 時間 的な変動は、 周期的あるいは非周期的でよいが、 周期的な場合には、 好ま しくは周期が 0 . 0 1 H z以上であって 1 H Z以下、さらに好ましくは 0 . 1 H z以上であって 1 H z以下の範囲で使用される。 これらの範囲は、 対 象物体の χ3の大きさおよび粘度に応じて使用される。 現時点における比較 的手頃に利用できる超伝導磁石の磁場の大きさは、 1 Ο Τ程度であるが、 将来、 1 0 Τ以上の磁場が容易に利用できるようになった場合は、 それら の範囲においても、 本発明の外部磁場の印加は使用される。 なお、 0 . 0 5 Τに達しない磁場は、 磁場の効力が発現されるのに長時間を要し、 実用 的ではない。 The time-varying external magnetic field applied in the present invention refers to a magnetic field that can be applied from outside the aggregate of the target object by a permanent magnet, an electromagnet, a superconducting magnet, or the like. The magnitude of the time-varying external magnetic field used in the present invention is preferably such that the maximum value of the fluctuation is not less than 0.05 T (Tesla) and not more than 10 T, and more preferably not less than 0.5 T. A magnetic field of less than 10 T is used. The temporal variation may be periodic or non-periodic, but in the case of periodic variation, the period is preferably 0.01 Hz or more and 1 Hz or less, and more preferably 0.1 Hz or less. Used in the range from 1 Hz to 1 Hz. These ranges are used depending on the size and the viscosity of the chi 3 of Target object. At present, the magnitude of the magnetic field of superconducting magnets that can be used at a comparatively reasonable level is about 10 mm, but if a magnetic field of 10 mm or more can be easily used in the future, it will be within these ranges. The application of an external magnetic field according to the invention is also used. A magnetic field that does not reach 0.05 mm requires a long time for the magnetic field to take effect, Not a target.
本発明において印加される外部磁場は、 時間変動外部磁場 (時間的に変 動する外部磁場) をかけることを特徴とする。 従来の磁場配向は、 一定方 向から一定の外部磁場を印加することにより行われるが、 それでは、 χΒが 負の物体では、 一軸配向した物体の集合体を得ることができないことは、 既に述べた。 時間変動外部磁場の印加は、 時間的に間欠的に印加したり、 磁場の大きさあるいは方向を、時間的に変動させることによリ実現できる。 例えば、 四極磁石を用い、 ある時間 X方向のみに、 次は y方向のみに、 次 はまた X方向のみにというように繰り返し磁場を印加することによつても 時間変動外部磁場を実現できる。 また、 比較的長い時間 X方向に、 引き続 き比較的長い時間 y方向に磁場を印加することによつても、 時間変動外部 磁場を実現できる。 時間的変動は、 電磁石に流す電流を制御することによ つて行うのが簡便であるが、 磁石を機械的に運動させることによつても、 同様の効果を得ることが可能である。 このように、 時間変動外部磁場が方 向の異なる複数の外部磁場であり、 所定の時間間隔で交互に印加する印加 方法を逐次磁場印加手段という。 The external magnetic field applied in the present invention is characterized by applying a time-varying external magnetic field (an external magnetic field that varies with time). The conventional magnetic field orientation is performed by applying a constant external magnetic field from a certain direction.However, it has already been mentioned that an object with a negative 一Β cannot obtain an aggregate of uniaxially oriented objects. Was. The time-varying external magnetic field can be applied intermittently over time or by varying the magnitude or direction of the magnetic field over time. For example, a time-varying external magnetic field can also be realized by using a quadrupole magnet and repeatedly applying a magnetic field only in the X direction for a certain time, next only in the y direction, and then only in the X direction. A time-varying external magnetic field can also be realized by applying a magnetic field in the X direction for a relatively long time and subsequently in the y direction for a relatively long time. It is easy to perform the temporal fluctuation by controlling the current flowing through the electromagnet, but the same effect can be obtained by mechanically moving the magnet. As described above, the time-varying external magnetic field is a plurality of external magnetic fields having different directions, and an application method of alternately applying the magnetic field at predetermined time intervals is referred to as a sequential magnetic field applying unit.
本発明の時間変動外部磁場は、 平面状で回転する磁場である回転磁場を 用いることができる。 回転磁場では、 物体が固定しており、 磁石が物体の 周りを回転することにより実現できる。 また、 磁石が固定で、 その磁石の 周りを物体が回転することによつても実現できる。 また回転磁場の他の例 として、 上述の逐次磁場の四極磁石を用い、 X方向に磁場の大きさをサイ ン的に、 y軸方向には、 位相が 9 0度遅れたコサイン的に磁場を印加する ことにより、 X y平面を回転する回転磁場を発生することができる。  As the time-varying external magnetic field of the present invention, a rotating magnetic field that is a planar rotating magnetic field can be used. In a rotating magnetic field, an object is fixed, and this can be achieved by rotating a magnet around the object. It can also be realized by fixing a magnet and rotating an object around the magnet. As another example of the rotating magnetic field, a quadrupole magnet of the above-described sequential magnetic field is used, and the magnitude of the magnetic field is signified in the X direction and cosine in the y axis direction with a phase delay of 90 degrees. By applying, a rotating magnetic field that rotates the xy plane can be generated.
本発明の時間変動磁場として、 上述の逐次磁場、 回転磁場、 および固定 磁場を組み合わせて使用することができる。 逐次磁場、 回転磁場、 固定磁 場のうちの少なくとも 2つの外部磁場を組み合わせることにより、 目的の 時間的変動外部磁場を構成し、 物体の集合体の配向や分離を実現すること ができた。 As the time-varying magnetic field of the present invention, the above-described sequential magnetic field, rotating magnetic field, and fixed magnetic field can be used in combination. Sequential magnetic field, rotating magnetic field, fixed magnetic field By combining at least two external magnetic fields in the field, the desired time-varying external magnetic field was constructed, and the orientation and separation of the aggregate of objects could be realized.
以上の時間変動外部磁場のうち、 x、 y方向から交互に一定強度の磁場 を印加する方法 (逐次変動磁場) が、 本発明の対象物体である 3つの磁化 率 3d、 χ2、 χ3が異なる反磁性体の精密配向、 または X XS - XS Oである 反磁性物体の一軸配向を実現するのに特に有効である。 この有効性が発揮 される理由は、 直感的には次のように説明される。 まず、 X Xs Xs O である場合について説明する。繊維状物体に一定の外部磁場を印加すると、 χ ι方向 (形状異方軸、繊維軸)が磁場に直交するように配向する。例えば、 第 1 1図において、 ζ軸方向に磁場を印加すると、 繊維軸は第 1 1図 bの ごとく磁場に垂直な面上、 即ち X y平面に平行な面上へと回転し、 充分時 間が経た後には、 この平面上で静止する。 ところがこの回転は、 磁場方向 と初期の繊維軸方向の作る面内で起こるので、 回転後の繊維軸の方向は初 期の繊維軸の方向に大きく依存する。 したがって、 初期の繊維軸の分布が 図のようにランダムな場合には、 回転後の分布もランダムになる。 では、 第 1 1図 bの状態で、 第 2段目として z軸方向の磁場を切リ、 今度は y軸 方向に磁場を印加するとどうなるであろうか。繊維軸は磁場に垂直な方向、 すなわち X z面に平行な方向に回転するから、 繊維軸は最終的には X z平 面に平行な面上に至り、 回転が止まる。 第 1段目で X y平面に平行な面上 に、 第 2段目で X Z平面に平行な方向に回転した結果、 繊維軸は x y平面 と X z平面の両方に平行な方向、 すなわち、 X軸方向に向くことになる。 かく して繊維軸の一軸配向が達成できる。 まとめると、 XAが負の繊維がラ ンダムに分散した系に、 まず z軸方向、 引き続き y軸方向に磁場を印加す ると、 最終的には、 繊維軸を z軸と y軸に共に垂直な方向、 即ち X軸方向 に一軸配向させることが可能である。 上記の磁場印加方法は、 次のように 敷衍される。 負の一軸異方性反磁性磁化率を有する物体、 あるいは Xaが負 の物体からなる系に、 ある与えられた平面内で方向が時間的に変動する磁 場 (時間変動磁場) を印加すると、 その物体の χ ΐ方向 (形状異方軸) を印 加磁場のなす平面と直交する方向に一軸配向させることができる。 Among the above time varying external magnetic field, x, a method for applying a magnetic field of constant intensity from the y-direction alternately (sequential variable magnetic field) is three susceptibility 3d is the object of the present invention, chi 2, chi 3 is It is particularly effective for realizing the precise orientation of different diamagnetic materials, or the uniaxial orientation of diamagnetic objects of X XS -XSO. The reason for this effectiveness is intuitively explained as follows. First, the case of X Xs Xs O will be described. When a certain external magnetic field is applied to the fibrous object, the fibrous object is oriented so that its ι direction (shape anisotropic axis, fiber axis) is orthogonal to the magnetic field. For example, in Fig. 11, when a magnetic field is applied in the ζ-axis direction, the fiber axis rotates on a plane perpendicular to the magnetic field as shown in Fig. 11b, that is, on a plane parallel to the xy plane, After a while, it rests on this plane. However, since this rotation occurs in the plane created by the direction of the magnetic field and the initial fiber axis, the direction of the fiber axis after rotation largely depends on the direction of the initial fiber axis. Therefore, if the initial fiber axis distribution is random as shown in the figure, the distribution after rotation is also random. Then, in the state shown in Fig. 11 b, what happens when the magnetic field in the z-axis direction is turned off as the second step, and this time the magnetic field is applied in the y-axis direction? Since the fiber axis rotates in a direction perpendicular to the magnetic field, that is, in a direction parallel to the Xz plane, the fiber axis eventually reaches a plane parallel to the Xz plane and stops rotating. As a result of rotating on the plane parallel to the X and y planes in the first stage and in the direction parallel to the X and Z planes in the second stage, the fiber axis is in the direction parallel to both the xy and X z planes, that is, It will be oriented in the X-axis direction. Thus, uniaxial orientation of the fiber axis can be achieved. To summarize, when a magnetic field is first applied to the system in which the fibers with negative X A are randomly dispersed in the z-axis direction and then in the y-axis direction, the fiber axis is eventually changed to both the z-axis and the y-axis. Vertical direction, ie X axis direction Can be uniaxially oriented. The above magnetic field application method is extended as follows. When a magnetic field whose time fluctuates in a given plane (time-varying magnetic field) is applied to an object having a negative uniaxial anisotropic diamagnetic susceptibility or a system consisting of an object with a negative Xa However, the object can be uniaxially oriented in the vertical direction (shape anisotropic axis) in a direction orthogonal to the plane formed by the applied magnetic field.
つぎに、 X Xz Xa Oである場合について説明する。 このような磁化 率を有する結晶に、 まず Z軸方向から一定外部磁場を印可すると、 χ3が磁 場方向に、 χ,および χ2は磁場に垂直な面、すなわち X y平面上に配向する。 次に、 y軸方向に磁場を切り替えると、 χ3は z軸方向を向いたまま、 χ2は y軸方向に配向し、 χιは X軸方向に配向する。結局、 3つの磁化率方向 χ ι、 χ2、 χ3が、 各々 χ軸、 y軸、 z軸方向に配向する。 発明の効果 Next, the case of X Xz Xa O will be described. When a constant external magnetic field is applied to the crystal having such magnetic susceptibility from the Z- axis direction, χ 3 is oriented in the direction of the magnetic field, and お よ び and χ 2 are oriented in a plane perpendicular to the magnetic field, that is, in the xy plane. . Next, switching the magnetic field in the y-axis direction, the chi 3 while facing the z-axis direction, chi 2 is oriented in the y-axis direction, Kaiiota are oriented in the X-axis direction. After all, the three magnetic susceptibility direction χ ι, χ 2, χ 3 are aligned respectively chi axis, y-axis, the z-axis direction. The invention's effect
本発明は、 上記のように従来の磁場配向技術では、 一軸配向させ得なか つた負の一軸異方性反磁性磁化率を有する物体の集合体も、 目的とする方 向へ一軸配向を持たせることができたことにある。 このように、 従来でき なかった特定方向への磁場配向体が得られたことによリ、特定方向の強度、 電気伝導性、 熱伝導性をアップさせることができた。 特に精密配向体にお いては、 従来では、 一つの結晶体としてしか存在しなかった、 3つの磁化 率のそれぞれが、 それぞれ特定の方向向いた磁場配向体を、 物体の集合体 において実現することができた。 そのことにより、 物体の集合体が一つの 結晶体と近似した磁気的性質、 電気的性質、 熱的性質、 力学的性質を有す ることができるようになった。  According to the present invention, as described above, an aggregate of an object having a negative uniaxial anisotropic diamagnetic susceptibility that cannot be uniaxially oriented by the conventional magnetic field orientation technology has a uniaxial orientation in a target direction. I was able to do it. As described above, by obtaining a magnetic field oriented body in a specific direction, which could not be obtained in the past, the strength, electric conductivity, and thermal conductivity in a specific direction could be improved. In particular, in the case of a precision oriented body, a magnetic field oriented body in which each of the three magnetic susceptibilities is oriented in a specific direction, which previously existed as only one crystal, was realized in an aggregate of objects. Was completed. As a result, it became possible for an aggregate of objects to have magnetic, electrical, thermal, and mechanical properties similar to a single crystal.
本発明の磁気分離方式を用いることで、 同一物質からなる結晶、 繊維、 液晶などにおいて、 形状の異なる 2種以上の物体の混合体を分離すること を可能にした。 例えば、 同じ物質からなる結晶でも、 結晶形が異なるため に形状の異なる物体の分離を可能にした。 特に、 薬学や食品化学、 生化学 等の分野における鏡像関係にある有機化合物の混合体を、 本発明のような 簡便な手段での分離を可能にしたことは、 非常に価値があるものと思われ る。 図面の簡単な説明 By using the magnetic separation method of the present invention, it is possible to separate a mixture of two or more types of objects having different shapes in crystals, fibers, liquid crystals, etc. made of the same substance. Enabled. For example, we have made it possible to separate objects with different shapes because of the different crystal forms, even for crystals made of the same substance. In particular, it is extremely valuable to be able to separate a mixture of mirror-image organic compounds by a simple means such as the present invention in fields such as pharmacy, food chemistry, and biochemistry. It is. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の時間変動外部磁場を印加させる装置の例を、 平面図 で示す。  FIG. 1 is a plan view showing an example of a device for applying a time-varying external magnetic field according to the present invention.
第 2図は、 本発明の時間的に変動する外部磁場の印加の例を概念図で示 す。  FIG. 2 is a conceptual diagram showing an example of applying a time-varying external magnetic field according to the present invention.
第 3図は、 本発明の時間的に変動する外部磁場の印加の他の例を概念図 で示す。  FIG. 3 is a conceptual diagram showing another example of applying a time-varying external magnetic field according to the present invention.
第 4図は、 本発明の時間的に変動する外部磁場の印加の他の例を概念図 で示す。  FIG. 4 is a conceptual diagram showing another example of applying a time-varying external magnetic field according to the present invention.
第 5図は、 本発明の時間変動外部磁場を印加させる装置の他の例の斜視 図で、 磁石を回転する場合について示す。  FIG. 5 is a perspective view of another example of the device for applying a time-varying external magnetic field of the present invention, showing a case where a magnet is rotated.
第 6図は、 本発明の時間変動磁場外部印加させる装置の例を示す概念図 で、 物体を回転する場合を示す。  FIG. 6 is a conceptual diagram showing an example of a device for externally applying a time-varying magnetic field according to the present invention, in which an object is rotated.
第 7図は、 本発明の物体の集合体の磁場方向を精密配向させる時間的変 動外部磁場の印加方法の例を概念図で示す。  FIG. 7 is a conceptual diagram showing an example of a method of applying a time-varying external magnetic field for precisely orienting the direction of the magnetic field of an aggregate of objects according to the present invention.
第 8図は、 本発明の物体の集合体の磁場方向を精密配向させる時間的変 動外部磁場の印加方法の他の例を概念図で示す。  FIG. 8 is a conceptual diagram showing another example of the method of applying a time-varying external magnetic field for precisely orienting the magnetic field direction of an aggregate of objects according to the present invention.
第 9図は、 本発明の時間的に変動する外部磁場の印加によって、 繊維状 物体に与えられる回転トルクの発生メカニズムを概念図で示す。 第 1 0図は、 本発明の時間変動外部磁場を印加させて、 物体を分離させ る場合を概念図で示す。 FIG. 9 is a conceptual diagram showing a generation mechanism of a rotational torque applied to a fibrous object by applying a time-varying external magnetic field according to the present invention. FIG. 10 is a conceptual diagram showing a case where an object is separated by applying a time-varying external magnetic field of the present invention.
第 1 1図は、 従来の一定外部磁場を印加した場合における物体の集合体 の配向挙動を概念図で示す。  Fig. 11 is a conceptual diagram showing the orientation behavior of an aggregate of objects when a conventional constant external magnetic field is applied.
第 1 2図は、 本発明の実験結果を写真で示すもので、 写真 Aは、 磁場を かけない場合、 写真 Bは、 本発明の時間的変動外部磁場を印加させた場合 の繊維の配向状態を示す。 発明を実施するための最良の形態  Fig. 12 shows photographs of the experimental results of the present invention.Photo A shows the state of the fiber when no magnetic field was applied.Photo B shows the orientation of the fiber when the time-varying external magnetic field of the present invention was applied. Is shown. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を図面で示す実施例に基づいて説明する。  Hereinafter, the present invention will be described based on embodiments shown in the drawings.
第 1図は、 本発明の時間変動外部磁場を印加する手段の概念図であり、 平面図で示してある。 電磁石の磁極 P 1 と P 2が平面の X軸上に設置され ており、 P 1から P 2方向へ、 または P 2から P 1方向へ磁場が印加する ことができるように配置されている。 一方、 平面の y軸上には、 電磁石の 磁極 P 3と P 4が設置されており、 P 3から P 4方向、 または P 4から P 3方向へ磁場が印加することができるように配置されている。 これらの磁 極間で、 時間的に変動する磁場を、 これらの磁極間の中央に置かれた対象 物体 1に印加することで、 本発明の時間変動外部磁場の印加を実現するこ とができる。  FIG. 1 is a conceptual diagram of a means for applying a time-varying external magnetic field of the present invention, and is shown in a plan view. The magnetic poles P 1 and P 2 of the electromagnet are set on the X axis of the plane, and are arranged so that a magnetic field can be applied from P 1 to P 2 or from P 2 to P 1. On the other hand, the magnetic poles P 3 and P 4 of the electromagnet are provided on the y-axis of the plane, and are arranged so that a magnetic field can be applied from P 3 to P 4 or from P 4 to P 3. ing. By applying a time-varying magnetic field between these magnetic poles to the target object 1 located at the center between these magnetic poles, the application of the time-varying external magnetic field of the present invention can be realized. .
第 1図の手段を使用して、 時間変動外部磁場を印加する具体例を第 2図 に示す。 (A ) は、 X方向および y方向に印加された磁場、 B x、 B yを 平面図で、 a、 b、 c、 dと時間の経過にしたがって示す。 (B ) は、 X および y方向にどのような時間間隔で磁場を印加するかを示す。 (B ) に 示すように、 時間 (0— 1 ) 間では B Xのみが印加される。 さらに時間 ( 1 —2 ) 間では B yのみが、 時間 (2— 3 ) では B xのみが、 時間 (3— 4 ) 間では B yのみが、 というように xおよび y方向に一定の時間間隔 1で強 度 1の磁場が交互に逐次印加される。 FIG. 2 shows a specific example of applying a time-varying external magnetic field using the means of FIG. (A) shows a magnetic field applied in the X direction and the y direction, Bx, By in a plan view, and shows a, b, c, d over time. (B) shows what time interval the magnetic field is applied in the X and y directions. As shown in (B), only BX is applied during the time (0-1). In addition, only B y during the time (1 — 2), only B x during the time (2 — 3), and time (3 — 4) In between, only B y is applied, and a magnetic field of intensity 1 is applied alternately at constant time intervals 1 in the x and y directions.
第 1図の手段を使用して、 時間変動外部磁場を印加する他の具体例を、 第 3図に示す。 第 2図では、 時間間隔 1で多数回 Xおよび y方向の磁場の 印加を繰り返したが、 第 3図では、 時間間隔 1 0で、 Xおよび y方向に 1 回づっ強度 1の磁場を印加する。  Another specific example of applying a time-varying external magnetic field using the means of FIG. 1 is shown in FIG. In Fig. 2, the application of the magnetic field in the X and y directions was repeated many times at time interval 1.In Fig. 3, the magnetic field of intensity 1 was applied once in the X and y directions at time interval 10. .
第 1図の手段を使用して、 時間変動外部磁場を印加する他の具体例を、 第 4図に示す。 第 2図、 第 3図では、 Xおよび y方向に強度 1の一定外部 磁場を交互に印加 (時間変動外部磁場) したが、 第 4図 Aでは強度を B = c o s ( t ) 、 B= s i n ( t ) のように印加する。 これは、 図 Bに示す ような回転磁場を印加したに等しい。  Another specific example of applying the time-varying external magnetic field using the means of FIG. 1 is shown in FIG. In Fig. 2 and Fig. 3, a constant external magnetic field of intensity 1 is applied alternately in the X and y directions (time-varying external magnetic field). In Fig. 4A, the intensity is B = cos (t), B = sin Apply as shown in (t). This is equivalent to applying a rotating magnetic field as shown in Fig. B.
時間変動外部磁場は、 一対の永久磁石を機械的に運動させることによつ ても得ることができる。 第 5図には、 機械的に回転磁場を発生する手段を 示す。 モータ Mによリー対の永久磁石 P a、 P bを回転させ、 その中央に 試料 1を配置すれば、 試料に印加される磁場は、 第 5図で説明した回転磁 場と等価なものとなる。  The time-varying external magnetic field can also be obtained by mechanically moving a pair of permanent magnets. Figure 5 shows the means for mechanically generating a rotating magnetic field. If the permanent magnets P a and P b of the pair are rotated by the motor M and the sample 1 is placed at the center, the magnetic field applied to the sample is equivalent to the rotating magnetic field described in FIG. Become.
第 6図に、 時間変動外部磁場が、 一対の固定の磁石に対して、 物体の集 合体の方を運動させることによつても得ることができる例を示す。 このよ うにすることにより、 第 5図の回転磁場と同等の回転磁場効果を生じ、 本 発明の回転磁場の分類に属する。  FIG. 6 shows an example in which a time-varying external magnetic field can also be obtained by moving a group of objects with respect to a pair of fixed magnets. By doing so, a rotating magnetic field effect equivalent to the rotating magnetic field shown in FIG. 5 is generated, and belongs to the category of the rotating magnetic field of the present invention.
第 7図、 逐次磁場を使用して、 χι2 = ί3=Λ: <0の場合 (他の二軸の 磁性率が同じ場合) に、 χιを一軸配向させる方式について説明する。 図 A で、 試料に z軸方向に磁場 Bを印加すると、 χιは磁場と直交する方向へ配 向していく (ステップ 1 ) 。 次に、 ζ軸方向の磁場 Βを切り、 y軸方向へ 磁場 Bを印加すると、 Xlは磁場と直交する方向、 即ち、 X軸方向に回転す 6 る。 さらにステップ 2として、 y方向の磁場の印加を継続すると、 ,が X 方向へより正確に配向していく。 すなわち、 どのような初期条件からスタ 一卜しても、 最終的には、 図 Cのような一軸配向となる。 Fig. 7 describes a method of uniaxially orienting χι when χι2 = ί 3 = Λ: <0 (when the magnetic susceptibility of the other two axes is the same) using a sequential magnetic field. In Fig. A, when a magnetic field B is applied to the sample in the z-axis direction, χι is oriented in a direction perpendicular to the magnetic field (step 1). Next, when the magnetic field ζ in the ζ axis direction is turned off and a magnetic field B is applied in the y axis direction, Xl rotates in the direction orthogonal to the magnetic field, that is, in the X axis direction. 6 Further, as step 2, if the application of the magnetic field in the y direction is continued, and are more accurately oriented in the X direction. In other words, no matter what the initial conditions, the uniaxial orientation as shown in Fig. C is finally obtained.
第 8図は、 逐次磁場を使用して、 χ,< χ2 < χ3 < 0の場合に、 精密配向さ せる方式について説明する。 図 Αで、 試料に Z軸方向に磁場 Bを印加する と、 χ3は磁場方向へと配向していく (ステップ 1 ) 。 次に図 Βのように、 ζ軸方向の磁場を切り、 y軸方向へ磁場 Βを印加すると、 χ3は z軸を向い たままで、 χ ιが X軸方向に回転する。 さらにステップ 2として、 y方向の 磁場の印加を継続していくと、 ズ3が∑軸方向、 χ2が y軸方向、 ,が:^軸方 向へより正確に配向していく。 すなわち、 どのような初期条件からスター 卜しても、 試料は最終的には、 図 Cのような χ ι、 χ2、 χ3の磁場方向がそれ ぞれ x、 y、 z軸方向へ配向した精密配向となる。 Fig. 8 explains the method of using a sequential magnetic field to perform precise orientation when χ, <χ 23 <0. In FIG Alpha, the application of a magnetic field B in the Z axis direction to the sample, chi 3 is gradually aligned with the magnetic field direction (step 1). Next, as in FIG beta, cut a magnetic field in the ζ-axis direction and a magnetic field is applied beta to the y-axis direction, chi 3 until Tama oriented in the z-axis, chi iota rotates the X-axis direction. Further, as the magnetic field in the y direction is continued as Step 2, the angle 3 is more accurately oriented in the ∑-axis direction, χ 2 is oriented in the y-axis direction, and, are more accurately oriented in the: ^-axis direction. That is, the alignment from any initial conditions be star Bok, samples will ultimately such chi iota as in Figure C, chi 2, the magnetic field direction of the chi 3 is, respectively it x, y, the z-axis direction The precise orientation is obtained.
第 9図は、 繊維状物体に回転磁場を印可することによる 1軸配向が引き 起こされるメカニズムを示す。左側の図では、回転磁場 Bが印可されると、 物体 2に回転を引き起こす。 この場合、 繊維軸と回転軸の角度が大きいの で、 流体抵抗が大きい。 その結果、 繊維状物体 2は回転しながら、 時間の 経過とともに、 だんだん繊維軸が回転軸と平行となるような方向に配向し ていく (図の左から右へ〉 。 そして、 ついには完全に繊維軸と回転軸が一 致する (右図) 。 このように、 繊維状物体 2に回転磁場 Bを印加すると、 回転磁場によって物体に与えられる回転トルクによって一軸配向をもたら すようにすることができる。  Fig. 9 shows the mechanism by which uniaxial orientation is induced by applying a rotating magnetic field to a fibrous object. In the figure on the left, when the rotating magnetic field B is applied, it causes the object 2 to rotate. In this case, since the angle between the fiber axis and the rotation axis is large, the fluid resistance is large. As a result, the fibrous object 2 rotates and, over time, gradually orients in a direction in which the fiber axis becomes parallel to the rotation axis (from left to right in the figure). The fiber axis and the rotation axis coincide (right figure) In this way, when the rotating magnetic field B is applied to the fibrous object 2, the uniaxial orientation is brought about by the rotating torque applied to the object by the rotating magnetic field. Can be.
第 1 0図は、 回転磁場を用いて鏡像物体を分離する例を示す。 鏡像体の 例としての右ネジの物体 3 aと左ネジの物体 3 bに、 回転磁場 Bを印加し て、 矢印方向に回転を生じさせた (回転トルクが生じるメカニズムは、 第 9図に示した)。 そうすると、 右ネジの物体 3 aは前進 (上方向へ進む) 、 左ネジの物体 3 bは後退 (下方向へ進む) し、 その結果、 右ネジと左ネジ の物体を分離することができる。 FIG. 10 shows an example of separating a mirror image object using a rotating magnetic field. A rotating magnetic field B was applied to the right-handed screw object 3a and left-handed screw object 3b as examples of enantiomers to cause rotation in the direction of the arrow. (The mechanism that generates the rotating torque is shown in Fig. 9. T). Then, the right-handed screw object 3a moves forward (moves upward), The left-handed screw 3b retracts (goes down), so that the right-handed and left-handed screw can be separated.
第 1 1図は、 従来の磁場配向を説明する概念図である。 繊維のような一 軸の形状異方性を有する懸濁体がランダムな方向に向いている系に、 Z軸 方向に一定外部磁場 Bを印加すると、 χ3が正の場合には、 全ての懸濁体の 形状異方軸が磁場方向に配向する。 他方、 Xaが負の場合には、 形状異方軸 は最終的に磁場に垂直な X y平面に平行となるように回転するが、 この平 面上での形状異方軸はランダムに分布する。 実施例 1 FIG. 11 is a conceptual diagram illustrating a conventional magnetic field orientation. To systems suspension having a shape anisotropy of the first shaft, such as fibers are oriented in a random direction, upon application of a constant external magnetic field B in the Z-axis direction, when the chi 3 is positive, all The anisotropic axis of the suspension is oriented in the direction of the magnetic field. On the other hand, when Xa is negative, the shape anisotropic axis finally rotates so as to be parallel to the X y plane perpendicular to the magnetic field, but the shape anisotropic axis on this plane is randomly distributed . Example 1
懸濁媒体として、 エチレン酢酸ビニルコポリマーェマルジヨン、 固形分 Ethylene vinyl acetate copolymer emulsion as a suspending medium, solid content
5 0 %を使用し、 その中に被懸濁体とし超延伸ポリエチレン繊維 (直径 3 0 / m、 長さ 3 m m ) を 3 % (重量比) 分散させる。 この懸濁体をシヤー レに入れて、 第 1図の装置にセットする。 この試料に第 2図で説明した時 間変動外部磁場を印加する。 磁場強度は 1 T (テスラ) 、 時間間隔は 1 0 秒とし、 懸濁媒体中の水分がほぼ除去されるまで時間変動外部磁場の印加 を続け、 その後磁場から取り出し、 さらに完全に乾燥させた。 その結果、 エチレン酢酸ビニルコポリマー中に超延伸ポリエチレン繊維が一軸配向し た物体の集合体を得た。 この物体の X線配向度を半価幅法で測定すると、 配向度 8 0 . 2 %であり、 その配向方向は、 X— y面に垂直 (z軸方向) であった。 なお、 使用した超延伸ポリエチレン繊維の磁気的特性は、 χ3 = 一 7 . 7 X 1 0 _ 7 < 0であった。 比較例 1 Using 50%, 3% (weight ratio) of ultra-drawn polyethylene fiber (diameter 30 / m, length 3mm) is dispersed as a material to be suspended. This suspension is placed in a dish and set in the apparatus shown in Fig. 1. The time-varying external magnetic field described in FIG. 2 is applied to this sample. The magnetic field strength was 1 T (tesla) and the time interval was 10 seconds. The application of a time-varying external magnetic field was continued until almost all of the water in the suspension medium was removed, then the sample was removed from the magnetic field and dried completely. As a result, an aggregate of objects in which ultra-drawn polyethylene fibers were uniaxially oriented in an ethylene-vinyl acetate copolymer was obtained. When the X-ray orientation of this object was measured by the half-width method, the orientation was 80.2%, and the orientation was perpendicular to the xy plane (z-axis direction). The magnetic properties of the ultra drawn polyethylene fibers used was chi 3 = one 7. 7 X 1 0 _ 7 <0. Comparative Example 1
実施例 1 と同じ懸濁体を用意し、 実施例 1 と同様に磁場を印加するが、 この場合の磁場は、 X軸方向のみ連続に印加し、 y軸方向の印加は行わな い。 その状態で、 懸濁媒体エチレン酢酸ビニルコポリマーェマルジヨン中 の水分を除去して、 エチレン酢酸ビニル中に高密度ポリエチレン繊維が配 向した物体の集合体を得た。 この物体に X方向から X線を照射すると、 デ パイシエラーリングで配向は見られず、 y方向、 z方向から X線を照射す ると、 等しい配向パターンを示すことから、 この物体は、 X軸に垂直な平 面に面配向していることがわかる。 実施例 2 Prepare the same suspension as in Example 1 and apply a magnetic field as in Example 1, but In this case, the magnetic field is applied continuously only in the X-axis direction, and is not applied in the y-axis direction. In this state, water in the suspension medium ethylene-vinyl acetate copolymer emulsion was removed to obtain an aggregate of objects in which high-density polyethylene fibers were oriented in ethylene vinyl acetate. When this object is irradiated with X-rays from the X direction, no orientation is seen in the de-icer ring, and when the object is irradiated with X-rays from the y and z directions, it shows the same orientation pattern. It can be seen that the surface is oriented on a plane perpendicular to the X axis. Example 2
第 5図の装置を使用し、 長さ約 1 m mのポリエチレン繊維を複数本, 水 とエタノールで比重を合わせた混合液体中に浮遊させた試料を調整した。 回転磁場装置として、 第 5図の装置を使用し、 中心の磁場強度は、 約 0 . 9 T、 回転速度は約 3 r p mで実験した。 試料の入ったサンプル管を回転 磁場の中心に設置し、 回転磁場を印加した。 第 1 2図に、 実験結果を C C Dカメラで録画したもので示す。 第 1 2図の写真 Aは、 試料を 6分間、 磁 場外に放置したポリエチレン繊維の状態を示し、 各繊維は、 ランダムな方 向を向いていることがわかる。 写真 Bは、 静磁場 (磁石を回転させない状 態) で 5分間印加した後、 1分間、 磁場を回転させた時の繊維の状態を示 した。 回転磁場面 (水平) に対して、 すべての繊維が垂直 (鉛直) 方向に 一軸配向していることがわかる。 実施例 3  Using the apparatus shown in Fig. 5, a sample was prepared in which a plurality of polyethylene fibers of about 1 mm in length were suspended in a mixed liquid whose specific gravity was adjusted with water and ethanol. The apparatus shown in Fig. 5 was used as the rotating magnetic field device, and the experiment was performed with the central magnetic field strength of about 0.9 T and the rotation speed of about 3 rpm. The sample tube containing the sample was placed at the center of the rotating magnetic field, and a rotating magnetic field was applied. Figure 12 shows the experimental results recorded with a CCD camera. Photo A in Fig. 12 shows the state of the polyethylene fibers in which the sample was left out of the magnetic field for 6 minutes. It can be seen that each fiber is oriented in a random direction. Photo B shows the state of the fiber when the magnetic field was rotated for 1 minute after applying a static magnetic field (without rotating the magnet) for 5 minutes. It can be seen that all fibers are uniaxially oriented in the vertical (vertical) direction with respect to the rotating magnetic field plane (horizontal). Example 3
第 6図の装置を使用し、 不飽和ポリエステル 1 0 0部に、 約 5 m mのポ リエチレン短繊維 1部を分散させ、 水平方向に 1 O Tの磁場中で、 4 r p mで、 試料ビンの鉛直方向を軸として回転させた。 常温にて 2 0分、 ポリ エステルが固化するまで回転を続けた。 目視により得られた試料は、 ポリ エチレン繊維が鉛直方向に配向していた。 実施例 4 Using the apparatus shown in Fig. 6, 1 part of about 5 mm short polyethylene fiber is dispersed in 100 parts of unsaturated polyester, and the sample bottle is placed vertically in a magnetic field of 1 OT at 4 rpm in a horizontal direction. Rotated around the direction. 20 minutes at room temperature, poly Spinning was continued until the ester solidified. In the sample obtained by visual observation, the polyethylene fibers were oriented in the vertical direction. Example 4
パラフィンを試験管中 (直径 1 O m m ) で溶融し、 鉛直方向の 8 T磁場 中で凝固させた。 得られた棒状試料から、 棒の軸に垂直方向から直径 2 m mの棒状試料を 2つ切り出し、 一つには右ネジを、 もう一つには左ネジを 刻んだ。このネジをエタノールと水で比重を合わせた液体中に浮揚させた。 これに水平方向から 0 . 5 Tの磁場を永久磁石により印加した。 ネジが垂 直方向を向いた後、 一対の永久磁石を水平面内で、 4 r p mで右回転させ た。 その結果、 おネジは上方へ、 左ネジは下方へ移動した。 産業上の利用可能性  The paraffin was melted in a test tube (1 Omm in diameter) and solidified in a vertical 8 T magnetic field. From the obtained rod-shaped sample, two rod-shaped samples with a diameter of 2 mm were cut out from the direction perpendicular to the axis of the rod, one with a right-hand screw and the other with a left-hand screw. The screw was floated in a liquid whose specific gravity was adjusted with ethanol and water. To this, a magnetic field of 0.5 T was applied from a horizontal direction by a permanent magnet. After the screw turned in the vertical direction, a pair of permanent magnets were rotated clockwise at 4 rpm in a horizontal plane. As a result, the male screw moved upward and the left screw moved downward. Industrial applicability
本発明は、 時間的変動外部磁場を用いることにより、 種々の磁場配向体 を製造可能にし、 磁気的性質、 電気的性質、 熱的性質、 力学的性質を改善 することができる。 また、 本発明の磁気分離方式を用いることで、 同一物 体からなる結晶、 繊維、 液晶などにおいて、 形状の異なる 2種以上の物体 の混合体を分離することを可能にし、 鏡像関係にある物体の混合体を簡便 な手段で分離を可能にした。  INDUSTRIAL APPLICABILITY The present invention makes it possible to produce various magnetic field oriented bodies by using a time-varying external magnetic field, and to improve magnetic properties, electrical properties, thermal properties, and mechanical properties. Further, by using the magnetic separation method of the present invention, it becomes possible to separate a mixture of two or more types of objects having different shapes in a crystal, a fiber, a liquid crystal, or the like made of the same object, and to obtain a mirror image of the object. The mixture of was made possible to separate by simple means.

Claims

請 求 の 範 囲 3つの磁化率 χ ι、 χ2、 χ3が異なる、 またはそのうちの 2つが等しい物 体からなる集合体に、 時間的に変動する外部磁場 (時間変動外部磁場) を印加することにより、 該物体にその磁気的性質および形状に固有の 運動を生じさせて、 物体を特定の方向に配向させることを特徴とする 磁場配向体の製造方法。 Billed the range three magnetic susceptibility chi iota, chi 2, chi 3 is different or the aggregate of two are equal objects of them, applying an external magnetic field (temporal variation external magnetic field) that varies temporally A method of producing a magnetic-field oriented body, comprising: causing a motion peculiar to a magnetic property and a shape of the object to thereby orient the object in a specific direction.
請求の範囲第 1項において、 χ ι < χ2 < χ3く 0、 または χ, < χ2 = χ3 < 0 である異なる反磁性磁化率を有する物体の集合体に対して、 時間変動 外部磁場を印加することにより、 反磁性磁化率の絶対値の一番大きい 方向、 即ち χ 1方向に一軸配向させることを特徴とする磁場配向体の製 造方法。 In claim 1, wherein, χ ι <χ 2 <χ 3 ° 0 or chi,, for a set of objects having different diamagnetic susceptibility is <χ 2 = χ 3 <0 , the time fluctuation external A method for producing a magnetic field oriented body, characterized in that a magnetic field is applied to uniaxially orient in a direction in which the absolute value of the diamagnetic susceptibility is the largest, that is, in a χ1 direction.
求の範囲第 1項において、物体に時間的変動外部磁場を印加した後、 さらに固定磁場を印加することによって、物体の 3つの磁化率 χι、χ2、 χ3のそれぞれの方向が、 前記集合体を構成する各々の物体について、 特定の方向を向いている磁場配向体 (精密配向体) を製造することを 特徴とする磁場配向体の製造方法。 In the first item of the range of the calculation , after applying a time-varying external magnetic field to the object, and further applying a fixed magnetic field, each direction of the three magnetic susceptibilities χι , χ 2 , χ 3 of the object is determined by the set A method for producing a magnetic field oriented body, comprising producing a magnetic field oriented body (precision oriented body) oriented in a specific direction for each object constituting the body.
3つの磁化率 χ ι、 χ2、 χ3が異なる、 またはそのうちの 2つが等しい物 体の集合体が、 形状の異なる複数の物体の混合体であって、 該混合体 に時間的に変動する外部磁場 (時間変動外部磁場) を印加することに より、 該混合体に、 その磁気的性質および形状に固有の運動を生じさ せて、 それぞれの物体を特定の方向に移動させて分離することを特徴 とする物体の分離方法。 Three magnetic susceptibility chi iota, chi 2, chi 3 are different, or a collection of two are equal monoester of them, a mixture of different objects shapes, varying in time to the admix By applying an external magnetic field (time-varying external magnetic field) to cause the mixture to generate a motion unique to its magnetic properties and shape, to move and separate each object in a specific direction An object separation method characterized by the following.
請求の範囲第 4項の前記物体の混合体が、 互いに鏡像の関係にある物 体の混合体であることを特徴とする物体の分離方法。 請求の範囲第 1項または第 4項の時間変動外部磁場が、 方向の異なる 複数の外部磁場からなり、 所定の時間間隔で交互に逐次的に印加する ものであることを特徴とする時間的変動外部磁場の印加方法。 5. The method for separating an object according to claim 4, wherein the mixture of the objects is a mixture of objects having a mirror image relationship with each other. The time-varying external magnetic field according to claim 1 or 4, wherein the time-varying external magnetic field comprises a plurality of external magnetic fields having different directions, and is applied alternately and sequentially at predetermined time intervals. How to apply external magnetic field.
請求の範囲第 1項または第 4項の時間変動外部磁場が、 平面状で回転 する磁場であることを特徴とする時間的変動外部磁場の印加方法。 請求の範囲第 1項または第 4項の時間変動外部磁場が、 固定された磁 場に対して前記物体を運動させることによリ発生するものであること を特徴とする時間的変動外部磁場の印加方法。 5. A method for applying a time-varying external magnetic field, wherein the time-varying external magnetic field according to claim 1 or 4 is a plane-rotating magnetic field. The time-varying external magnetic field according to claim 1 or 4, wherein the time-varying external magnetic field is generated by moving the object with respect to a fixed magnetic field. Application method.
請求の範囲第 1項または第 4項の時間変動外部磁場が、 逐次磁場、 回 転磁場、 および固定磁場のうちの少なくとも 2つの外部磁場の組み合 わせであることを特徴とする時間的変動外部磁場の印加方法。The time-varying external magnetic field according to claim 1 or 4, wherein the time-varying external magnetic field is a combination of at least two of a sequential magnetic field, a rotating magnetic field, and a fixed magnetic field. How to apply a magnetic field.
. 請求の範固第 1項における前記物体の集合体が、 懸濁媒体に分散し ている被懸濁体であることを特徴とする磁場配向体の製造方法。 . 請求の範囲第 1 0項の懸濁媒体を固化または除去することにより、 被懸濁体の配向を固定することを特徴とする磁場配向体の製造方法。3. A method for producing a magnetic field oriented body, wherein the aggregate of the objects according to claim 1 is a suspended body dispersed in a suspension medium. A method for producing a magnetic field oriented body, comprising fixing or suspending the body to be suspended by solidifying or removing the suspension medium according to claim 10.
. 請求の範囲第 1項における前記物体が、 高分子液晶または低分子液 晶であることを特徴とする磁場配向体の製造方法。2. The method according to claim 1, wherein the object is a high-molecular liquid crystal or a low-molecular liquid crystal.
. 請求の範囲第 1項における前記物体が、 高分子または低分子溶液か らキャストや凝固、 あるいは溶融状態から冷却する過程、 または、 結 晶を溶融あるいは溶解する過程において生じた会合体、 微結晶である ことを特徴とする磁場配向体の製造方法。2. The aggregate or microcrystal formed in the process of claim 1, wherein the object is cast or solidified from a polymer or low-molecular solution, cooled in a molten state, or melted or dissolved in a crystal. A method for producing a magnetic field alignment body, characterized in that:
. 請求の範囲第 1 3項において生じた磁場配向を、 キャスト、 凝固あ るいは溶融状態から冷却過程を完了することにより成型体、 シート、 フィルム、 薄膜中において、 配向を固定させることを特徴とする磁場 配向体の製造方法。 The magnetic field orientation generated in claim 13 is fixed in a molded product, sheet, film, or thin film by completing a cooling process from a cast, solidified, or molten state. The method of manufacturing an oriented body.
. 請求の範囲第 4項における前記混合物体が、 懸濁媒体に分散してい る被懸濁体であることを特徴とする物体の分離方法。5. The method for separating an object according to claim 4, wherein the mixed object is an object to be suspended dispersed in a suspension medium.
. 請求の範囲第 1 5項の前記懸濁媒体を固化または除去することによ リ、 前記被懸濁体中に存在する分離された個々の物体を固定すること を特徴とする物体の分離方法。A method for separating an object, comprising: fixing the separated individual objects present in the object to be suspended by solidifying or removing the suspension medium according to claim 15. .
. 請求の範囲第 4項における前記混合物体が、 高分子液晶または低分 子液晶であることを特徴とする物体の分離方法。5. The method for separating an object according to claim 4, wherein the mixed object is a polymer liquid crystal or a low molecular liquid crystal.
. χ ι2く χ3く 0、 または、 χ, <χ23く 0である異なる反磁性磁化 を有する物体の集合体が、 時間的に変動する外部磁場 (時間変動外部 磁場) が印加されたことにより、 反磁性磁化率の絶対値の一番大きい 方向、 即ち、 方向、 に一軸配向していることを特徴とする磁場配向 体。An aggregate of objects with different diamagnetic magnetizations, where χ ι2 χ 3 0 0 or χ, <χ 2 = χ 3く 0, forms a time-varying external magnetic field (time-varying external magnetic field). ) Is a uniaxially oriented magnetic field characterized by being uniaxially oriented in the direction in which the absolute value of the diamagnetic susceptibility is greatest, ie, in the direction.
. 物体の 3つの磁化率 χι、 χ2、 χ3のそれぞれの方向が、 それぞれ特定 方向を向いている物体の集合体からなることを特徴とする磁場配向体, A magnetic field oriented body characterized in that each of the three magnetic susceptibilities χι , χ 2 , χ 3 of the object is composed of a set of objects each oriented in a specific direction,
PCT/JP2003/011496 2002-10-02 2003-09-09 Production method for magnetic field orientating element and separation method for object WO2004030807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004541220A JPWO2004030807A1 (en) 2002-10-02 2003-09-09 Method for manufacturing magnetic field orientation body and method for separating object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002323153 2002-10-02
JP2002-323153 2002-10-02

Publications (1)

Publication Number Publication Date
WO2004030807A1 true WO2004030807A1 (en) 2004-04-15

Family

ID=32064393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011496 WO2004030807A1 (en) 2002-10-02 2003-09-09 Production method for magnetic field orientating element and separation method for object

Country Status (2)

Country Link
JP (1) JPWO2004030807A1 (en)
WO (1) WO2004030807A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082721A (en) * 2003-09-09 2005-03-31 Polymatech Co Ltd Molded article of polymer composite material and method for producing the same
JP2008071495A (en) * 2006-09-12 2008-03-27 Kyoritsu Kagaku Sangyo Kk Orientation method of conductive material, anisotropy material using this orientation method, and manufacturing method of electronic device with anisotropy material using this orientation method
JP2008290294A (en) * 2007-05-23 2008-12-04 Osaka Gas Co Ltd Transparent resin molding and its manufacturing process
JP2010006667A (en) * 2008-06-30 2010-01-14 National Institute For Materials Science Oxide superconductive sintered body, and method for producing the same
JP2012173042A (en) * 2011-02-18 2012-09-10 Kyoto Univ Particle orientation apparatus and particle orientation method
WO2019203204A1 (en) * 2018-04-18 2019-10-24 国立大学法人京都大学 Oriented body device and method for manufacturing oriented body
KR20210057671A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Spiral magnetic field forming device for imparting chirality
KR20210057672A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Magnetoplasmonic particle
KR20210057673A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Chiral nanostructure and it's use
KR20210057670A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Method of manufacturing chiral nanostructures
KR20210057674A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Chiral nanostructure
KR20220142248A (en) * 2021-04-14 2022-10-21 충남대학교산학협력단 Optical isomer analysis device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195515A (en) * 1989-01-24 1990-08-02 Victor Co Of Japan Ltd Production of magnetic recording medium
US5465849A (en) * 1994-02-24 1995-11-14 Doryokuro Kakunenryo Kaihatsu Jigyodan Column and method for separating particles in accordance with their magnetic susceptibility
JP2000334466A (en) * 1999-05-25 2000-12-05 Sumitomo Electric Ind Ltd Liquid treating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195515A (en) * 1989-01-24 1990-08-02 Victor Co Of Japan Ltd Production of magnetic recording medium
US5465849A (en) * 1994-02-24 1995-11-14 Doryokuro Kakunenryo Kaihatsu Jigyodan Column and method for separating particles in accordance with their magnetic susceptibility
JP2000334466A (en) * 1999-05-25 2000-12-05 Sumitomo Electric Ind Ltd Liquid treating apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082721A (en) * 2003-09-09 2005-03-31 Polymatech Co Ltd Molded article of polymer composite material and method for producing the same
JP2008071495A (en) * 2006-09-12 2008-03-27 Kyoritsu Kagaku Sangyo Kk Orientation method of conductive material, anisotropy material using this orientation method, and manufacturing method of electronic device with anisotropy material using this orientation method
JP2008290294A (en) * 2007-05-23 2008-12-04 Osaka Gas Co Ltd Transparent resin molding and its manufacturing process
JP2010006667A (en) * 2008-06-30 2010-01-14 National Institute For Materials Science Oxide superconductive sintered body, and method for producing the same
JP2012173042A (en) * 2011-02-18 2012-09-10 Kyoto Univ Particle orientation apparatus and particle orientation method
WO2019203204A1 (en) * 2018-04-18 2019-10-24 国立大学法人京都大学 Oriented body device and method for manufacturing oriented body
JP2019192668A (en) * 2018-04-18 2019-10-31 国立大学法人京都大学 Orientating element device and orientating element manufacturing method
JP7193107B2 (en) 2018-04-18 2022-12-20 国立大学法人京都大学 Oriented Body Manufacturing Apparatus and Oriented Body Manufacturing Method
KR20210057670A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Method of manufacturing chiral nanostructures
KR20210057673A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Chiral nanostructure and it's use
KR20210057672A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Magnetoplasmonic particle
KR20210057674A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Chiral nanostructure
KR102350766B1 (en) * 2019-11-12 2022-01-14 충남대학교산학협력단 Spiral magnetic field forming device for imparting chirality
KR102357641B1 (en) * 2019-11-12 2022-02-07 충남대학교산학협력단 Method of manufacturing chiral nanostructures
KR102357642B1 (en) * 2019-11-12 2022-02-07 충남대학교산학협력단 Magnetoplasmonic particle
KR102357626B1 (en) * 2019-11-12 2022-02-07 충남대학교산학협력단 Chiral nanostructure
KR102357643B1 (en) * 2019-11-12 2022-02-07 충남대학교산학협력단 Chiral nanostructure and it's use
KR20210057671A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Spiral magnetic field forming device for imparting chirality
KR20220142248A (en) * 2021-04-14 2022-10-21 충남대학교산학협력단 Optical isomer analysis device
KR102515167B1 (en) * 2021-04-14 2023-03-27 충남대학교산학협력단 Optical isomer analysis device

Also Published As

Publication number Publication date
JPWO2004030807A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
Tanigaki et al. Real-space observation of short-period cubic lattice of skyrmions in MnGe
Zerrouki et al. Chiral colloidal clusters
Wang et al. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries
WO2004030807A1 (en) Production method for magnetic field orientating element and separation method for object
JPH0643456A (en) Deposition of high oriented ptfe film and usage thereof
Cholakova et al. “Self-shaping” of multicomponent drops
Gharbi et al. Microbullet assembly: interactions of oriented dipoles in confined nematic liquid crystal
Mundoor et al. Thermally reconfigurable monoclinic nematic colloidal fluids
Hess et al. Optical patterning of magnetic domains and defects in ferromagnetic liquid crystal colloids
Wang et al. Liquid crystalline tactoidal microphases in ferrofluids: spatial positioning and orientation by magnetic field gradients
Liu et al. A periodic magnetic field as a special environment for scientific research created by rotating permanent magnet pairs
Pappas New twist in chiral magnets
Nakiri et al. Piezoelectric characteristics of polymer film oriented under a strong magnetic field
Cairns et al. Ordered polymer microstructures synthesized from dispersions of liquid crystal mesogens
Senyuk et al. Design and preparation of nematic colloidal particles
JP4658540B2 (en) Manufacturing method of precision alignment body by magnetic field
Lagerwall An introduction to the physics of liquid crystals
Kim et al. A macroscopically oriented lyotropic chromonic liquid crystalline nanofiber mat embedding self-assembled Sunset-Yellow FCF nanocolumns
Rapis Properties and symmetry of the solid cluster phase of protein
Zhang et al. Formation and growth mechanism of ceftezole sodium monohydrate ring-banded spherulites
Hayashida et al. Switching crystallographic chirality in Ba (TiO) Cu4 (PO4) 4 by laser Irradiation
Kovarski et al. Temperature effects in the FMR spectra of magnetic nanoparticles dispersed in polymer film and viscous Fluid
Reyren et al. Skyrmions in magnetic multilayers: chirality, electrical detection and current-induced motion
Batra Field assisted self assembly for preferential vertical alignment of particles and phases using a novel roll-to-roll processing line
Ojha et al. XRD studies on magnetoelectrets using type-E orientation pattern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004541220

Country of ref document: JP

122 Ep: pct application non-entry in european phase