JP2012173042A - Particle orientation apparatus and particle orientation method - Google Patents

Particle orientation apparatus and particle orientation method Download PDF

Info

Publication number
JP2012173042A
JP2012173042A JP2011033264A JP2011033264A JP2012173042A JP 2012173042 A JP2012173042 A JP 2012173042A JP 2011033264 A JP2011033264 A JP 2011033264A JP 2011033264 A JP2011033264 A JP 2011033264A JP 2012173042 A JP2012173042 A JP 2012173042A
Authority
JP
Japan
Prior art keywords
sample
magnetic field
fine particle
axis
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033264A
Other languages
Japanese (ja)
Other versions
JP5834422B2 (en
Inventor
Tsunehisa Kimura
恒久 木村
Fumiko Kimura
史子 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2011033264A priority Critical patent/JP5834422B2/en
Publication of JP2012173042A publication Critical patent/JP2012173042A/en
Application granted granted Critical
Publication of JP5834422B2 publication Critical patent/JP5834422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle orientation apparatus in which, when orientating particles in a three-dimensional manner, orientation accuracy can be improved, and a particle orientation method.SOLUTION: A particle orientation apparatus 1 includes a magnetic field generation unit 12, a drive unit 13, and a control unit 14. The drive unit 13 revolves a sample container 2 in which particles are suspended relatively to the magnetic field generation unit 12 at a speed required for forming a revolving magnetic field. Each time the sample container 2 is revolved at 180°, the control unit 14 controls driving of the drive unit 13 to approximately temporarily stop the relative revolution for a predetermined time trequired for forming a static magnetic field.

Description

本発明は、時間的に変動する磁場を印加することによって試料中に懸濁した微粒子を三次元配向させる微粒子配向装置及び微粒子配向方法に関する。   The present invention relates to a fine particle alignment apparatus and a fine particle alignment method for three-dimensionally aligning fine particles suspended in a sample by applying a time-varying magnetic field.

物体の結晶構造を解析するものとして、X線構造解析が知られている。このX線構造解析は、通常100μm程度以上の単結晶又は微結晶粉末を用いて行う。近年、試料中に懸濁した微結晶粒子(以下、単に「微粒子」という)を三次元配向させ、擬単結晶化した状態で解析を行う方法が開発されている。
この方法に関しては、従来、相互に直交する三方向の磁化率がそれぞれ異なる微粒子を三次元配向させるものとして、前記微粒子を懸濁させた試料に、時間的に変動する磁場を印加することによって微粒子を三次元配向させる微粒子配向装置が知られている(例えば、特許文献1,2及び非特許文献1参照)。
X-ray structural analysis is known as a technique for analyzing the crystal structure of an object. This X-ray structural analysis is usually performed using a single crystal or microcrystalline powder of about 100 μm or more. In recent years, a method has been developed in which microcrystalline particles suspended in a sample (hereinafter simply referred to as “fine particles”) are three-dimensionally oriented and analyzed in a quasi-single crystal state.
With respect to this method, conventionally, fine particles having different magnetic susceptibility in three directions orthogonal to each other are three-dimensionally oriented, and a fine particle is obtained by applying a time-varying magnetic field to a sample in which the fine particles are suspended. There is known a fine particle aligning apparatus for three-dimensionally aligning (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).

前記時間的に変動する磁場は、例えば非特許文献1に示すように、xy平面上に発生させた磁場において、xy平面に対して垂直なz軸回りに試料を90度毎に角速度を変化させながら回転させることによって形成される。前記角速度は、x軸を通過する90度の範囲内では低く、y軸を通過する90度の範囲内では高く設定されている。これにより、試料が低速回転するx軸付近では静磁場が形成されるとともに、高速回転するy軸付近では回転磁場が形成されるため、静磁場では微粒子の磁化容易軸をx軸方向に配向し、回転磁場では微粒子の磁化困難軸をz軸方向に配向することができる。   For example, as shown in Non-Patent Document 1, the time-varying magnetic field is a magnetic field generated on the xy plane, and the angular velocity of the sample is changed every 90 degrees around the z axis perpendicular to the xy plane. It is formed by rotating while. The angular velocity is set low in a range of 90 degrees passing through the x-axis and high in a range of 90 degrees passing through the y-axis. As a result, a static magnetic field is formed in the vicinity of the x axis where the sample rotates at a low speed, and a rotating magnetic field is formed in the vicinity of the y axis which rotates at a high speed. In the rotating magnetic field, the magnetization difficult axis of the fine particles can be oriented in the z-axis direction.

特開2008−039699号公報JP 2008-039699 A 特開2006−057055号公報JP 2006-057055 A

木村恒久、「強磁場を用いた微結晶粉末の配向制御−回折法,分光法への応用−」、「日本中性子科学会誌」、2007年 VOL17 No1 55〜58頁Tsunehisa Kimura, “Control of orientation of microcrystalline powder using a strong magnetic field-Application to diffraction and spectroscopy”, Journal of the Japan Neutron Science Society, VOL17 No. 55, pp. 55-58

従来の前記微粒子配向装置にあっては、試料を90度の広範囲に亘って低速回転させながら静磁場を形成しているため、静磁場において微粒子の磁界容易軸を配向させているときに、その直前の回転磁場で配向させた磁化困難軸が揺らいで、磁化困難軸の配向が乱れるという問題があった。   In the conventional fine particle aligning apparatus, since the static magnetic field is formed while rotating the sample at a low speed over a wide range of 90 degrees, when the magnetic easy axis of the fine particles is aligned in the static magnetic field, There was a problem that the hard axis of magnetization that was oriented by the immediately preceding rotating magnetic field fluctuated and the orientation of the hard axis of magnetization was disturbed.

本発明は、前記問題点に鑑みてなされたものであり、微粒子を三次元配向させる際の配向精度を高めることができる微粒子配向装置及び微粒子配向方法を提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fine particle aligning apparatus and a fine particle aligning method capable of improving the alignment accuracy when three-dimensionally aligning fine particles.

本発明の微粒子配向装置は、互いに直交する三方向の磁化率がそれぞれ異なる微粒子を懸濁させた試料に、時間的に変動する磁場を印加して、前記微粒子を三次元配向させる微粒子配向装置であって、磁場発生部と、前記試料を、前記磁場発生部に対して、回転磁場を形成するのに必要な速度で相対回転させる駆動部と、前記試料が略180×n度(nは任意の自然数)相対回転するたびに、静磁場を形成するのに必要な所定時間の間、前記相対回転を一時的に略停止させるように前記駆動部を駆動制御する制御部と、を備えていることを特徴とする。   The fine particle aligning device of the present invention is a fine particle aligning device that applies a time-varying magnetic field to a sample in which fine particles having different susceptibility in three directions orthogonal to each other are suspended to three-dimensionally align the fine particles. A magnetic field generation unit, a drive unit that rotates the sample relative to the magnetic field generation unit at a speed necessary to form a rotating magnetic field, and the sample is approximately 180 × n degrees (n is an arbitrary value) A control unit that drives and controls the drive unit so as to temporarily stop the relative rotation temporarily for a predetermined time required to form a static magnetic field each time it rotates relatively. It is characterized by that.

また、本発明の微粒子配向方法は、互いに直交する三方向の磁化率がそれぞれ異なる微粒子を懸濁させた試料に、時間的に変動する磁場を印加して、前記微粒子を三次元配向させる微粒子配向方法であって、前記試料を、磁場発生部に対して、回転磁場を形成するのに必要な速度で相対回転させ、前記試料が略180×n度(nは任意の自然数)相対回転するたびに、静磁場を形成するのに必要な所定時間の間、前記相対回転を一時的に略停止させることを特徴とする。   In addition, the fine particle orientation method of the present invention is a fine particle orientation method in which a magnetic field that varies with time is applied to a sample in which fine particles having different magnetic susceptibility in three directions orthogonal to each other are suspended to three-dimensionally orient the fine particles. A method in which the sample is rotated relative to the magnetic field generator at a speed required to form a rotating magnetic field, and the sample is rotated approximately 180 × n degrees (n is an arbitrary natural number). In addition, the relative rotation is temporarily substantially stopped for a predetermined time necessary for forming the static magnetic field.

本発明の微粒子配向装置及び微粒子配向方法によれば、微粒子を懸濁させた試料を、駆動部により磁場発生部に対して相対回転させることにより、回転磁場が形成されるため、微粒子の磁化困難軸を回転磁場面に対して垂直な方向に配向させることができる。また、前記試料の相対回転を一時的に略停止させることにより、静磁場が形成されるため、微粒子の磁化容易軸を静磁場面と平行になるように配向することができる。その際、前記相対回転を略180×n度の回転位置で局所的に略停止させているため、従来のように試料を90度の広範囲に亘って低速回転させる場合に比べて、静磁場が形成される時間を短くすることができる。これにより、微粒子の磁化容易軸を配向している間に、磁化困難軸の配向が乱れるのを抑制することができるため、微粒子を三次元配向させる際の配向精度を高めることができる。   According to the fine particle aligning apparatus and fine particle aligning method of the present invention, since a rotating magnetic field is formed by rotating a sample in which fine particles are suspended relative to a magnetic field generating unit by a driving unit, it is difficult to magnetize the fine particles. The axis can be oriented in a direction perpendicular to the rotating field surface. In addition, since the static magnetic field is formed by temporarily stopping the relative rotation of the sample temporarily, the easy magnetization axis of the fine particles can be oriented so as to be parallel to the static magnetic field surface. At that time, since the relative rotation is substantially stopped locally at a rotation position of about 180 × n degrees, the static magnetic field is less than that in the case where the sample is rotated at a low speed over a wide range of 90 degrees as in the prior art. The time to be formed can be shortened. Thereby, it is possible to prevent the orientation of the hard magnetization axis from being disturbed while orienting the easy magnetization axis of the fine particles, and therefore it is possible to increase the alignment accuracy when the fine particles are three-dimensionally oriented.

また、前記制御部は、前記試料が180度相対回転するたびに、その相対回転を一時的に略停止させるように前記駆動部を駆動制御することが好ましい。
この場合は、試料が180度相対回転するたびに、その相対回転を略停止させているため、試料が360度以上回転する場合に比べて回転磁場が形成される時間を短くすることができる。これにより、微粒子の磁化困難軸を配向している間に、磁化容易軸の配向が乱れるのを抑制することができるため、微粒子を三次元配向させる際の配向精度をさらに高めることができる。
In addition, it is preferable that the control unit drives and controls the drive unit so as to temporarily stop the relative rotation temporarily every time the sample rotates 180 degrees.
In this case, since the relative rotation is substantially stopped every time the sample rotates 180 degrees, the time for which the rotating magnetic field is formed can be shortened compared to the case where the sample rotates 360 degrees or more. Thereby, it is possible to prevent the orientation of the easy magnetization axis from being disturbed while orienting the hard magnetization axis of the fine particles, so that the alignment accuracy when the fine particles are three-dimensionally oriented can be further increased.

また、前記制御部は、前記相対回転を略停止させる際に、当該相対回転を完全に停止させるように前記駆動部を駆動制御することが好ましい。
この場合は、前記相対回転を完全に停止させているため、安定した静磁場を形成することができる。これにより、微粒子の磁化容易軸の配向を正確に行うことができるため、微粒子を三次元配向させる際の配向精度をさらに高めることができる。
Further, it is preferable that when the relative rotation is substantially stopped, the control unit drives and controls the drive unit so as to completely stop the relative rotation.
In this case, since the relative rotation is completely stopped, a stable static magnetic field can be formed. Thereby, since the orientation of the easy axis of the fine particles can be accurately performed, the alignment accuracy when the fine particles are three-dimensionally oriented can be further increased.

また、前記試料を相対回転させる前記所定時間は、次式の関係を満たすように設定されていることが好ましい。
<δ/D
ここで、tは試料を相対回転させる時間、δはX線構造解析に必要な回折スポットの許容最大半価幅、Dは磁化容易軸まわりの回転拡散係数である。
この場合は、微粒子を三次元配向させる際の配向精度をさらに高めることができる。
Moreover, it is preferable that the predetermined time for relatively rotating the sample is set so as to satisfy the relationship of the following equation.
tr2 / D 1
Here, t r is the time for relatively rotating the sample, [delta] is the permissible maximum half-width of the diffraction spot needed for X-ray structure analysis, D 1 is the rotational diffusion coefficient around the axis of easy magnetization.
In this case, the alignment accuracy when the fine particles are three-dimensionally aligned can be further increased.

また、前記試料の相対回転を略停止させる前記所定時間は、次式の関係を満たすように設定されていることが好ましい。
<δ/D
ここで、tは試料の相対回転を略停止させる所定時間、δはX線構造解析に必要な回折スポットの許容最大半価幅、Dは磁化困難軸まわりの回転拡散係数である。
この場合は、微粒子を三次元配向させる際の配向精度をさらに高めることができる。
Further, it is preferable that the predetermined time for substantially stopping the relative rotation of the sample is set so as to satisfy the relationship of the following equation.
t s2 / D 3
Here, t s is a predetermined time to substantially stop the relative rotation of the sample, [delta] is the permissible maximum half-width of the diffraction spot needed for X-ray structure analysis, D 3 is the rotational diffusion coefficient of around hard axis.
In this case, the alignment accuracy when the fine particles are three-dimensionally aligned can be further increased.

また、前記試料を相対回転させる時間と、前記試料の相対回転を略停止させる前記所定時間とは、次式の関係を満たすように設定されていることが好ましい。
/t=2(χ1−χ2)/(χ3−χ2)
ここで、tは試料を相対回転させる時間、tは試料の相対回転を略停止させる所定時間、χ1は磁化容易軸の磁化率、χ2は中間軸の磁化率、χ3は磁化困難軸の磁化率である(ただし、χ1>χ2>χ3)。
この場合は、微粒子を三次元配向させる際の配向精度をさらに高めることができる。
Moreover, it is preferable that the time for relatively rotating the sample and the predetermined time for substantially stopping the relative rotation of the sample are set so as to satisfy the relationship of the following formula.
t r / t s = 2 ( χ1-χ2) / (χ3-χ2)
Here, t r is the time for relatively rotating the sample, t s is a predetermined time to substantially stop the relative rotation of the sample, .chi.1 the magnetic susceptibility of the easy magnetization axis, chi-square magnetization of the intermediate shaft, Kai3 the magnetization hard axis Magnetic susceptibility (where χ1>χ2> χ3).
In this case, the alignment accuracy when the fine particles are three-dimensionally aligned can be further increased.

また、前記試料の相対回転速度は、次式の関係を満たすように設定されているのが好ましい。
ωq×6ημ/(B(χ1−χ2))>>1/2
ここで、ωqは試料が相対回転する角速度、ηは懸濁液の粘性係数、μは真空の透磁率、Bは磁場強度、χ1は磁化容易軸の磁化率、χ2は中間軸の磁化率である(ただし、χ1>χ2)。
この場合は、磁化容易軸の配向精度をさらに高めることができる。
Moreover, it is preferable that the relative rotational speed of the sample is set so as to satisfy the relationship of the following formula.
ωq × 6ημ 0 / (B 2 (χ1-χ2)) >> 1/2
Where ωq is the angular velocity at which the sample rotates relatively, η is the viscosity coefficient of the suspension, μ 0 is the permeability of vacuum, B is the magnetic field strength, χ 1 is the susceptibility of the easy axis, and χ 2 is the susceptibility of the intermediate axis. (Where χ1> χ2).
In this case, the orientation accuracy of the easy axis can be further increased.

また、前記駆動部は、前記試料を回転させるものであることが好ましい。この場合は、試料を回転させるようにしたので、磁場発生部を回転させる場合に比べて装置全体をコンパクトにすることができる。   Moreover, it is preferable that the said drive part is what rotates the said sample. In this case, since the sample is rotated, the entire apparatus can be made compact as compared with the case where the magnetic field generator is rotated.

また、前記駆動部は、ステッピングモータであることが好ましい。この場合は、ステッピングモータを用いることにより、制御部による駆動部の駆動制御を容易に行うことができる。   The driving unit is preferably a stepping motor. In this case, drive control of the drive unit by the control unit can be easily performed by using a stepping motor.

本発明によれば、微粒子の磁化容易軸を配向している間に磁化困難軸の配向が乱れるのを抑制することができるため、微粒子を三次元配向させる際の配向精度を高めることができる。   According to the present invention, it is possible to prevent the orientation of the hard magnetization axis from being disturbed while orienting the easy magnetization axis of the fine particles. Therefore, it is possible to improve the alignment accuracy when the fine particles are three-dimensionally oriented.

本発明の第1の実施形態に係る微粒子配向装置の概略構成を示す側面図である。1 is a side view showing a schematic configuration of a fine particle orientation device according to a first embodiment of the present invention. 微粒子の磁化軸を示す斜視図である。It is a perspective view which shows the magnetization axis | shaft of microparticles | fine-particles. 制御部による駆動部の制御方法を示す模式図である。It is a schematic diagram which shows the control method of the drive part by a control part. 微粒子の三次元配向を説明する斜視図である。It is a perspective view explaining the three-dimensional orientation of microparticles | fine-particles. 本発明の第2の実施形態に係る微粒子配向装置の制御部による駆動部の制御方法を示す模式図である。It is a schematic diagram which shows the control method of the drive part by the control part of the fine particle aligning apparatus which concerns on the 2nd Embodiment of this invention. 本発明の微粒子配向装置により擬単結晶化した試料のX線回折で得られたピークの半価幅を示す表である。It is a table | surface which shows the half value width of the peak obtained by the X-ray diffraction of the sample quasi-single-crystallized by the fine particle orientation device of this invention. 図6の条件Bにより擬単結晶化した試料のX線回折像を示す図面代用写真である。FIG. 7 is a drawing-substituting photograph showing an X-ray diffraction image of a sample quasi-single-crystallized under Condition B in FIG. 6. 図6の条件Dにより擬単結晶化した試料のX線回折像を示す図面代用写真である。FIG. 7 is a drawing-substituting photograph showing an X-ray diffraction image of a sample quasi-single-crystallized under Condition D in FIG. 6. 本発明の第3の実施形態に係る微粒子配向装置の概略構成を示す側面図である。It is a side view which shows schematic structure of the fine particle aligning apparatus which concerns on the 3rd Embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の第1の実施形態に係る微粒子配向装置の概略構成を示す側面図である。微粒子配向装置1は、所定位置に配置された試料容器2に時間的に変動する磁場(以下、時間変動磁場という)を印加するようになっている。試料容器2は、例えば、医薬分野、バイオテクノロジー分野、高分子材料分野等における有機化合物、無機化合物、生体物質等の微粒子3(図2参照)を懸濁させた試料が収容されたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing a schematic configuration of a fine particle orientation device according to a first embodiment of the present invention. The fine particle orientation device 1 applies a time-varying magnetic field (hereinafter referred to as a time-varying magnetic field) to the sample container 2 disposed at a predetermined position. The sample container 2 contains a sample in which fine particles 3 (see FIG. 2) such as an organic compound, an inorganic compound, or a biological material in a pharmaceutical field, a biotechnology field, a polymer material field, etc. are suspended. .

前記微粒子3は、互いに直交する三方向の磁化率がそれぞれ異なる二軸結晶からなり、磁気的に二軸異方性を有する。図2は、微粒子3の磁化軸を示す斜視図である。微粒子3は、図2に示すように、三軸方向それぞれに3つの異なる磁化率χ1、χ2及びχ3を有し、χ1>χ2>χ3の大小関係にある。以下、磁化率χ1の軸を磁化容易軸、磁化率χ2の軸を中間軸、磁化率χ3の軸を磁化困難軸という。   The fine particles 3 are made of biaxial crystals having different susceptibility in three directions orthogonal to each other, and magnetically have biaxial anisotropy. FIG. 2 is a perspective view showing the magnetization axis of the fine particles 3. As shown in FIG. 2, the fine particle 3 has three different magnetic susceptibility χ1, χ2, and χ3 in each of the three axial directions, and has a magnitude relationship of χ1> χ2> χ3. Hereinafter, the axis of the magnetic susceptibility χ1 is called an easy axis, the axis of the magnetic susceptibility χ2 is called an intermediate axis, and the axis of the magnetic susceptibility χ3 is called a hard axis.

前記微粒子配向装置1は、ケーシング11と、このケーシング11内に配置された磁場発生部12と、この磁場発生部12に対して試料容器2を回転させる駆動部13と、この駆動部13を駆動制御する制御部14とを備えている。   The fine particle orientation device 1 includes a casing 11, a magnetic field generation unit 12 disposed in the casing 11, a drive unit 13 that rotates the sample container 2 with respect to the magnetic field generation unit 12, and drives the drive unit 13. And a control unit 14 for controlling.

磁場発生部12は、ケーシング11に固定された上下一対の永久磁石12a,12bからなる。各永久磁石12a,12bは、球状に形成されており、互いにN極とS極とが向かい合うように配置されている。これらの永久磁石12a,12bの間には、試料容器2を配置するための空間Sが形成されている。   The magnetic field generator 12 includes a pair of upper and lower permanent magnets 12 a and 12 b fixed to the casing 11. Each permanent magnet 12a, 12b is formed in a spherical shape, and is disposed such that the north and south poles face each other. A space S for arranging the sample container 2 is formed between the permanent magnets 12a and 12b.

駆動部13は、例えばステッピングモータからなり、その回転軸13aの先端には、試料容器2を保持するチャック15が取り付けられている。これにより、駆動部13を駆動させると、回転軸13a及びチャック15を介して試料容器2が、固定された磁場発生部12に対して回転するようになっている。その際、試料容器2の回転速度は、回転磁場を形成するのに必要な速度に設定されている。より具体的には、試料容器2の回転速度は、下記式の関係を満たすように設定されている。
ωq×6ημ/(B(χ1−χ2))>>1/2 ・・・(1)
ここで、ωqは試料容器2が回転する角速度、ηは懸濁液の粘性係数、μは真空の透磁率、Bは磁場強度である。
The drive unit 13 is composed of, for example, a stepping motor, and a chuck 15 that holds the sample container 2 is attached to the tip of the rotating shaft 13a. Thus, when the drive unit 13 is driven, the sample container 2 rotates with respect to the fixed magnetic field generation unit 12 via the rotation shaft 13a and the chuck 15. At that time, the rotation speed of the sample container 2 is set to a speed necessary for forming a rotating magnetic field. More specifically, the rotation speed of the sample container 2 is set so as to satisfy the relationship of the following formula.
ωq × 6ημ 0 / (B 2 (χ1-χ2)) >> 1/2 (1)
Here, ωq is the angular velocity at which the sample container 2 rotates, η is the viscosity coefficient of the suspension, μ 0 is the vacuum permeability, and B is the magnetic field strength.

制御部14は、試料容器2が略180×n度(nは任意の自然数)回転するたびに、静磁場を形成するのに必要な所定時間tの間、その回転を一時的に略停止させるように駆動部13を駆動制御している。その際、試料容器2は、所定時間tをかけて、略180×n度回転するようになっている。ここで「略停止」とは、完全に停止している状態だけでなく、実質的に静磁場が形成されるように局所的にゆっくりと回転している状態も含む意味である。 Control unit 14, 180 × n degrees sample container 2 is substantially (n is an arbitrary natural number) to each rotation of a predetermined period of time t s required for forming a static magnetic field, temporarily substantially stops its rotation The drive unit 13 is controlled to be driven. At that time, the sample container 2, over the predetermined time t r, and rotates approximately 180 × n degrees. Here, “substantially stopped” means not only a state in which it is completely stopped but also a state in which it is slowly rotating locally so that a static magnetic field is substantially formed.

試料配管2を回転させる前記所定時間t、及び試料配管2の回転を略停止させる前記所定時間tは、それぞれ下記式(2)、(3)及び(4)の関係を満たすように設定されている。
<δ/D ・・・(2)
<δ/D ・・・(3)
/t=2(χ1−χ2)/(χ3−χ2) ・・・(4)
ここで、δはX線構造解析に必要な回折スポットの許容最大半価幅、Dは磁化容易軸まわりの回転拡散係数、Dは磁化困難軸まわりの回転拡散係数である。
The predetermined time t r for rotating the sample pipe 2 and the predetermined time t s for substantially stopping the rotation of the sample pipe 2 are set so as to satisfy the following expressions (2), (3), and (4), respectively. Has been.
tr2 / D 1 (2)
t s2 / D 3 (3)
t r / t s = 2 ( χ1-χ2) / (χ3-χ2) ··· (4)
Here, δ is an allowable maximum half width of the diffraction spot necessary for the X-ray structure analysis, D 1 is a rotational diffusion coefficient around the easy magnetization axis, and D 3 is a rotational diffusion coefficient around the hard magnetization axis.

図3は、制御部14による駆動部13の制御方法を示す模式図である。本実施形態では、図3に示すように、制御部14によってxy平面上に時間変動磁場を印加するようになっている。以下、例えばz軸よりも上側のx軸を基準(0度)として、試料容器2をz軸を中心に時計回り方向に回転させる場合について説明する。なお、x軸は矢印Bで示す磁場方向と平行に配置されている。   FIG. 3 is a schematic diagram illustrating a method for controlling the drive unit 13 by the control unit 14. In the present embodiment, as shown in FIG. 3, a time-varying magnetic field is applied on the xy plane by the control unit 14. Hereinafter, for example, a case where the sample container 2 is rotated clockwise around the z axis with the x axis above the z axis as a reference (0 degree) will be described. The x-axis is arranged in parallel with the magnetic field direction indicated by the arrow B.

まず、0度の位置から180度の位置までのy軸を含む180度の範囲(回転角度αq)では、所定の角速度ωq(好ましくは60rpm)により試料容器2を回転させる。そして、x軸上である180度の位置では、試料容器2を所定時間t(好ましくは1秒)の間、完全に停止させる。 First, the sample container 2 is rotated at a predetermined angular velocity ωq (preferably 60 rpm) in a 180-degree range (rotation angle αq) including the y-axis from the 0-degree position to the 180-degree position. At the position of 180 degrees on the x axis, the sample container 2 is completely stopped for a predetermined time t s (preferably 1 second).

その後、180度の位置から0度(360度)の位置までのy軸を含む180度の範囲(回転角度αq)では、前記角速度ωqにより試料容器2を再び回転させる。そして、0度の位置であるx軸上では、試料容器2を所定時間t(好ましくは1秒)の間、完全に停止させる。このように、試料容器2が180度回転するたびにその回転を一時的に停止させるように、制御部14が駆動部13を駆動制御することにより、時間変動磁場が印加される。 Thereafter, in the range of 180 degrees (rotation angle αq) including the y-axis from the position of 180 degrees to the position of 0 degrees (360 degrees), the sample container 2 is rotated again by the angular velocity ωq. Then, the sample container 2 is completely stopped for a predetermined time t s (preferably 1 second) on the x-axis which is the 0 degree position. Thus, the time-varying magnetic field is applied by controlling the drive unit 13 so that the rotation is temporarily stopped every time the sample container 2 rotates 180 degrees.

このように時間変動磁場が印加されると、試料容器2内において懸濁された微粒子3は、回転中に回転磁場が形成されることにより、微粒子3の磁化困難軸がxy平面(回転面)に対して垂直なz軸方向に配向される。そして、停止中に静磁場が形成されることにより、微粒子3の磁化容易軸が磁場方向Bと平行に配置されたx軸方向に配向されるとともに、残りの軸も自動的にy軸方向に配向される。これにより、微粒子3は、図4(a)に示すようにランダムに配置された状態から、図4(b)に示すように三次元配向された状態、すなわち擬単結晶化した状態となる。この状態において、試料容器2に対してX線源(図示省略)から図1の紙面垂直方向にX線aを照射することにより、X線構造解析を行うことができる。   When the time-varying magnetic field is applied in this way, the fine particles 3 suspended in the sample container 2 are formed with a rotating magnetic field during rotation, so that the hard axis of magnetization of the fine particles 3 is the xy plane (rotation surface). Oriented in the z-axis direction perpendicular to. Then, by forming a static magnetic field during the stop, the easy axis of magnetization of the fine particles 3 is oriented in the x-axis direction arranged parallel to the magnetic field direction B, and the remaining axes are automatically in the y-axis direction. Oriented. As a result, the microparticles 3 change from a randomly arranged state as shown in FIG. 4A to a three-dimensionally oriented state as shown in FIG. 4B, that is, a quasi-single crystal state. In this state, X-ray structure analysis can be performed by irradiating the sample container 2 with X-rays a from the X-ray source (not shown) in the direction perpendicular to the paper surface of FIG.

以上、本実施形態の微粒子配向装置及び微粒子配向方法によれば、微粒子3を懸濁させた試料容器2を、磁場発生部12に対して回転させることにより、回転磁場が形成されるため、微粒子3の磁化困難軸を回転磁場面に対して垂直な方向に配向させることができる。また、前記試料容器2の回転を一時的に略停止させることにより、静磁場が形成されるため、微粒子3の磁化容易軸を静磁場面と平行になるように配向することができる。その際、試料容器2の回転を略180×n度の回転位置で局所的に略停止させているため、従来のように試料を90度の広範囲に亘って低速回転させる場合に比べて、静磁場が形成される時間を短くすることができる。これにより、微粒子3の磁化容易軸を配向している間に、磁化困難軸の配向が乱れるのを抑制することができるため、微粒子3を三次元配向させる際の配向精度を高めることができる。   As described above, according to the fine particle alignment apparatus and the fine particle alignment method of the present embodiment, the rotating magnetic field is formed by rotating the sample container 2 in which the fine particles 3 are suspended with respect to the magnetic field generating unit 12. Can be oriented in a direction perpendicular to the rotating magnetic field plane. Further, since the static magnetic field is formed by temporarily stopping the rotation of the sample container 2, the easy magnetization axis of the fine particles 3 can be oriented so as to be parallel to the static magnetic field surface. At that time, since the rotation of the sample container 2 is substantially stopped locally at a rotation position of about 180 × n degrees, the sample container 2 is more static than the conventional case where the sample is rotated at a low speed over a wide range of 90 degrees. The time for forming the magnetic field can be shortened. Thereby, it is possible to prevent the orientation of the hard magnetization axis from being disturbed while the easy magnetization axis of the fine particles 3 is being oriented, so that the orientation accuracy when the fine particles 3 are three-dimensionally oriented can be increased.

また、制御部14は、試料容器2が180度回転するたびにその回転を一時的に略停止させるように駆動部13を駆動制御しているため、試料容器2が360度以上回転する場合に比べて回転磁場が形成される時間を短くすることができる。これにより、微粒子3の磁化困難軸を配向している間に、磁化容易軸の配向が乱れるのを抑制することができるため、微粒子3を三次元配向させる際の配向精度をさらに高めることができる。   Further, since the control unit 14 drives and controls the drive unit 13 so as to temporarily stop the rotation of the sample container 2 every time the sample container 2 rotates 180 degrees, it is compared with the case where the sample container 2 rotates 360 degrees or more. Thus, the time for forming the rotating magnetic field can be shortened. Thereby, it is possible to prevent the orientation of the easy magnetization axis from being disturbed while orienting the hard magnetization axis of the fine particles 3, so that the alignment accuracy when the fine particles 3 are three-dimensionally oriented can be further increased. .

また、制御部14は、試料容器2の回転を完全に停止させるように駆動部13を駆動制御しているため、安定した静磁場を形成することができる。これにより、微粒子3の磁化容易軸の配向を正確に行うことができるため、微粒子3を三次元配向させる際の配向精度をさらに高めることができる。   Moreover, since the control part 14 drive-controls the drive part 13 so that rotation of the sample container 2 may be stopped completely, it can form the stable static magnetic field. Thereby, since the orientation of the easy axis of the fine particles 3 can be accurately performed, the alignment accuracy when the fine particles 3 are three-dimensionally oriented can be further increased.

また、試料容器2を相対回転させる所定時間t及び試料容器2の相対回転を略停止させる所定時間tは、それぞれ上記式(2)、(3)及び(4)の関係を満たすように設定されているため、微粒子3を三次元配向させる際の配向精度をさらに高めることができる。特に、式(4)を満たす場合には、磁化容易軸、中間軸及び磁化困難軸のいずれの回折スポットの半価幅も等しくすることができる点で有効である。 Further, the predetermined time t s to substantially stop the relative rotation of the predetermined time t r and the sample container 2 for relatively rotating the sample container 2, each of the above formulas (2), so as to satisfy the relation (3) and (4) Since it is set, the alignment accuracy when the fine particles 3 are three-dimensionally aligned can be further increased. In particular, when Expression (4) is satisfied, it is effective in that the half widths of the diffraction spots of the easy magnetization axis, the intermediate axis, and the hard magnetization axis can be made equal.

また、試料容器2の回転速度は上記式(1)の関係を満たすように設定されているため、微粒子3の磁化容易軸の配向精度をさらに高めることができる。   Moreover, since the rotation speed of the sample container 2 is set so as to satisfy the relationship of the above formula (1), the orientation accuracy of the easy axis of the fine particles 3 can be further increased.

また、駆動部13は試料容器2を回転させるようにしたので、磁場発生部12を回転させる場合に比べて装置全体をコンパクトにすることができる。
また、試料容器2を回転させる駆動部13としてステッピングモータを用いているため、制御部14による駆動部13の駆動制御を容易に行うことができる。
Further, since the driving unit 13 rotates the sample container 2, the entire apparatus can be made compact as compared with the case where the magnetic field generating unit 12 is rotated.
In addition, since a stepping motor is used as the drive unit 13 that rotates the sample container 2, drive control of the drive unit 13 by the control unit 14 can be easily performed.

図5は、本発明の第2の実施形態に係る微粒子配向装置の制御部14による駆動部13の制御方法を示す模式図である。本実施形態の微粒子配向装置は、試料容器2を完全に停止させずに、局所的にゆっくりと回転させることによって略停止状態としている点で、第1の実施形態と相違している。   FIG. 5 is a schematic diagram showing a control method of the drive unit 13 by the control unit 14 of the fine particle orientation device according to the second embodiment of the present invention. The fine particle orientation device of the present embodiment is different from the first embodiment in that the sample container 2 is brought into a substantially stopped state by slowly rotating the sample container 2 locally without being completely stopped.

図5において、例えばz軸よりも上側のx軸を基準として試料容器2を時計回り方向に回転させる場合について説明すると、5度の位置から175度の位置までのy軸を含む170度の範囲(回転角度αq)では、所定の角速度ωq(好ましくは60rpm)により試料容器2を高速回転させる。そして、175度の位置から185度の位置までのx軸を含む10度の範囲(回転角度αs)では、所定の角速度ωs(好ましくは10rpm)により、試料容器2を低速回転させて略停止状態とする。   In FIG. 5, for example, the case where the sample container 2 is rotated in the clockwise direction with reference to the x-axis above the z-axis will be described. The range of 170 degrees including the y-axis from the position of 5 degrees to the position of 175 degrees. At (rotation angle αq), the sample container 2 is rotated at a high speed at a predetermined angular velocity ωq (preferably 60 rpm). In a range of 10 degrees including the x-axis from the position of 175 degrees to the position of 185 degrees (rotation angle αs), the sample container 2 is rotated at a low speed at a predetermined angular velocity ωs (preferably 10 rpm) and is substantially stopped. And

その後、185度の位置から355度の位置までのy軸を含む170度の範囲(回転角度αq)では、前記角速度ωqにより試料容器2を高速回転させ、さらに355度の位置から5度(365度)の位置までのx軸を含む10度の範囲(回転角度αs)では、前記角速度ωsにより試料容器2を低速回転させて略停止状態とする。このように、試料容器2が170度高速回転するたびに、一時的に低速回転(略停止)させるように、制御部14により駆動部13を駆動制御することにより、時間変動磁場が印加される。   Thereafter, in the range of 170 degrees including the y axis from the position of 185 degrees to the position of 355 degrees (rotation angle αq), the sample container 2 is rotated at a high speed by the angular velocity ωq, and further 5 degrees (365 degrees from the position of 355 degrees) In the range of 10 degrees (rotation angle αs) including the x-axis up to the position (degrees), the sample container 2 is rotated at a low speed by the angular velocity ωs to be in a substantially stopped state. In this way, a time-varying magnetic field is applied by drivingly controlling the drive unit 13 by the control unit 14 so as to temporarily rotate (substantially stop) each time the sample container 2 rotates at a high speed of 170 degrees. .

このように時間変動磁場が印加されると、試料容器2内において懸濁された微粒子3は、高速回転中に回転磁場が形成されることにより、微粒子3の磁化困難軸がxy平面(回転面)に対して垂直なz軸方向に配向される。そして、低速回転中に静磁場が形成されることにより、微粒子3の磁化容易軸が磁場方向Bと平行に配置されたx軸方向に配向されるとともに、残りの軸も自動的にy軸方向に配向される。これにより、微粒子3は、図4(a)に示すようにランダムに配置された状態から、図4(b)に示すように三次元配向された状態、すなわち擬単結晶化した状態となる。この状態において、試料容器2に対してX線源(図示省略)から図1の紙面垂直方向にX線aを照射することにより、X線構造解析を行うことができる。   When the time-varying magnetic field is applied in this way, the fine particles 3 suspended in the sample container 2 are formed with a rotating magnetic field during high-speed rotation, so that the hard magnetization axis of the fine particles 3 is the xy plane (rotation surface). ) In the z-axis direction perpendicular to. Then, by forming a static magnetic field during low-speed rotation, the easy axis of magnetization of the fine particles 3 is oriented in the x-axis direction arranged in parallel with the magnetic field direction B, and the remaining axes are automatically in the y-axis direction. Oriented. As a result, the microparticles 3 change from a randomly arranged state as shown in FIG. 4A to a three-dimensionally oriented state as shown in FIG. 4B, that is, a quasi-single crystal state. In this state, X-ray structure analysis can be performed by irradiating the sample container 2 with X-rays a from the X-ray source (not shown) in the direction perpendicular to the paper surface of FIG.

以上、本実施形態の微粒子配向装置及び微粒子配向方法においても、試料容器2を局所的にゆっくりと回転させて略停止状態としているため、従来のように磁場発生部32を90度の広範囲に亘って低速回転させる場合に比べて、静磁場が形成される時間を短くすることができる。これにより、微粒子3の磁化容易軸を配向している間に、磁化困難軸の配向が乱れるのを抑制することができるため、微粒子3を三次元配向させる際の配向精度を高めることができる。   As described above, also in the fine particle aligning apparatus and the fine particle aligning method of the present embodiment, the sample container 2 is rotated slowly and locally in a substantially stopped state, so that the magnetic field generating unit 32 extends over a wide range of 90 degrees as in the past. Thus, the time for forming the static magnetic field can be shortened as compared with the case of rotating at low speed. Thereby, it is possible to prevent the orientation of the hard magnetization axis from being disturbed while the easy magnetization axis of the fine particles 3 is being oriented, so that the orientation accuracy when the fine particles 3 are three-dimensionally oriented can be increased.

図6は、本発明の微粒子配向装置により擬単結晶化した試料のX線回折で得られたピークの半価幅を示す表である。この半価幅は、その値が小さいほど微粒子の配向精度が高いことを示すものである。図6の表では、高速回転時の回転角度αq及び角速度ωq、低速回転時の回転角度αs及び角速度ωsのいずれかが異なるA〜Dの4種類の試験条件下において、リゾチームを擬単結晶化させたときのX線回折結果を示している。   FIG. 6 is a table showing the half-value widths of peaks obtained by X-ray diffraction of a sample quasi-single-crystallized by the fine particle orientation apparatus of the present invention. This half-value width indicates that the smaller the value, the higher the fine particle orientation accuracy. In the table of FIG. 6, lysozyme is quasi-single-crystallized under four types of test conditions A to D in which the rotation angle αq and angular velocity ωq during high-speed rotation and the rotation angle αs and angular velocity ωs during low-speed rotation are different. The X-ray diffraction result is shown.

図6において、条件Aは、第1の実施形態の制御方法と同一の条件(前記角速度ωqは上記式(1)の関係を満たしており、前記所定時間t,tはそれぞれ上記式(2)〜(4)の関係を満たしている)に設定されている。また、条件Bは、第2の実施形態の制御方法と同一の条件(前記角速度ωqは上記式(1)の関係を満たしており、前記所定時間t,tはそれぞれ上記式(2)〜(4)の関係を満たしている)に設定されている。条件Aと条件Bとを比較すると、条件Aが条件Bよりも半価幅の値が小さいことが分かる。すなわち、微粒子の三次元配向時に試料の回転を略停止させる際は、ゆっくりと回転させるよりも、完全に停止させたほうが、微粒子の配向精度が高くなるのが分かる。 6, condition A, the same conditions as the control method of the first embodiment (the angular velocity ωq is satisfies the relationship of the above formula (1), the predetermined time t r, t s, respectively the equation ( 2) to (4) are satisfied). The condition B may be the same conditions as the control method of the second embodiment (the angular velocity ωq is satisfies the relationship of the above formula (1), the predetermined time t r, t s, respectively the equation (2) To (4) is satisfied). Comparing Condition A and Condition B, it can be seen that Condition A has a smaller half-value width than Condition B. That is, when the rotation of the sample is substantially stopped during the three-dimensional alignment of the fine particles, it is understood that the alignment accuracy of the fine particles is higher when the sample is completely stopped than when the sample is rotated slowly.

条件Cは、回転角度αq,αsが条件Bと同一の条件に設定され、角速度ωq,ωsが条件Bよりもそれぞれ低く設定されている。条件Bと条件Cとを比較すると、条件Bが条件Cよりも半価幅の値が小さいことが分かる。   In the condition C, the rotation angles αq and αs are set to the same condition as the condition B, and the angular velocities ωq and ωs are set lower than the condition B, respectively. Comparing Condition B and Condition C, it can be seen that Condition B has a smaller half-value width than Condition C.

一方、条件Dは、角速度ωq,ωsが条件Bと同一の条件に設定され、回転角度αqが条件Bよりも小さく、回転角度αsが条件Bよりも大きく設定されている。条件Bと条件Dとを比較すると、条件Bが条件Dよりも半価幅の値が小さいことが分かる。条件B〜DのX線回折結果より、高速回転を略停止させる際に低速回転させる場合には、条件Bの回転角度及び角速度に設定すれば、微粒子の配向精度が高くなるのが分かる。   On the other hand, in the condition D, the angular velocities ωq and ωs are set to the same condition as the condition B, the rotation angle αq is set smaller than the condition B, and the rotation angle αs is set larger than the condition B. Comparing condition B and condition D, it can be seen that condition B has a smaller half-value width than condition D. From the X-ray diffraction results of the conditions B to D, it is understood that when the rotation is performed at a low speed when the high-speed rotation is substantially stopped, if the rotation angle and the angular velocity of the condition B are set, the alignment accuracy of the fine particles is increased.

図7は、図6の条件Bにより擬単結晶化した試料のX線回折像を示す図面代用写真であり、図8は、図6の条件Dにより擬単結晶化した試料のX線回折像を示す図面代用写真である。図7の(a),(b),(c)は、図8の(a),(b),(c)にそれぞれ対応しており、両図の(a),(b),(c)は、微粒子の3方向の磁化軸をa軸,b軸及びc軸としたときのac平面、bc平面、ab平面のX線回折像をそれぞれ示している。図7と図8とを比較すると、図7の(a),(b),(c)は、いずれも図8の(a),(b),(c)よりも、ピークPの尾の長さが短くなっており、微粒子の配向精度が高い状態であることが分かる。   7 is a drawing-substituting photograph showing an X-ray diffraction image of a sample quasi-single-crystallized under condition B in FIG. 6, and FIG. 8 is an X-ray diffraction image of a sample quasi-single-crystallized under condition D in FIG. FIG. (A), (b), and (c) in FIG. 7 correspond to (a), (b), and (c) in FIG. 8 respectively, and (a), (b), and (c) in both figures. ) Shows X-ray diffraction images of the ac plane, the bc plane, and the ab plane when the magnetization directions in the three directions of the fine particles are the a-axis, b-axis, and c-axis, respectively. When FIG. 7 is compared with FIG. 8, (a), (b), and (c) in FIG. 7 are more tails of the peak P than (a), (b), and (c) in FIG. It can be seen that the length is shortened and the orientation accuracy of the fine particles is high.

図9は、本発明の第3の実施形態に係る微粒子配向装置の概略構成を示す側面図である。本実施形態の微粒子配向装置は、試料容器2を固定した状態で磁場発生部32を回転させて時間変動磁場を印加している点で、第1の実施形態と相違している。   FIG. 9 is a side view showing a schematic configuration of the fine particle orientation device according to the third embodiment of the present invention. The fine particle orientation device of the present embodiment is different from the first embodiment in that a time-varying magnetic field is applied by rotating the magnetic field generator 32 with the sample container 2 fixed.

前記微粒子配向装置は、回転台31と、この回転台31上に取り付けられた前記磁場発生部32と、この磁場発生部32を回転させる駆動部33と、この駆動部33を駆動制御する制御部34と、前記駆動部33が固定されている基台35とを備えている。   The fine particle orientation device includes a turntable 31, the magnetic field generation unit 32 mounted on the turntable 31, a drive unit 33 that rotates the magnetic field generation unit 32, and a control unit that drives and controls the drive unit 33. 34 and a base 35 on which the drive unit 33 is fixed.

磁場発生部32は、回転台31上に固定された左右一対の永久磁石32a,32bからなる。各永久磁石32a,32bは、互いにN極とS極とが向かい合うように配置されている。これらの永久磁石32a,32bの間の上方には、試料容器2が配置されるようになっている。なお、試料容器2は、図示しない固定部材によって基台35上に固定されている。   The magnetic field generator 32 includes a pair of left and right permanent magnets 32 a and 32 b fixed on the turntable 31. Each permanent magnet 32a, 32b is arranged so that the N pole and the S pole face each other. The sample container 2 is arranged above the permanent magnets 32a and 32b. The sample container 2 is fixed on the base 35 by a fixing member (not shown).

駆動部33は、例えばステッピングモータからなり、その回転軸33aには前記回転台31が固定されている。前記回転軸33aは、固定された試料容器2の真下に配置されている。これにより、駆動部33を駆動させると、回転軸33a及び回転台31とともに磁場発生部32が、固定された試料容器2を中心に回転するようになっている。その際、磁場発生部32の回転速度は、回転磁場を形成するのに必要な速度に設定されている。   The drive unit 33 is composed of, for example, a stepping motor, and the rotary table 31 is fixed to the rotary shaft 33a. The rotating shaft 33a is disposed directly below the fixed sample container 2. Thus, when the driving unit 33 is driven, the magnetic field generating unit 32 rotates around the fixed sample container 2 together with the rotating shaft 33a and the rotating table 31. At that time, the rotation speed of the magnetic field generator 32 is set to a speed necessary for forming the rotating magnetic field.

制御部34は、試料容器2を固定した状態で磁場発生部32が略180×n度(nは任意の自然数)回転するたびに、静磁場を形成するのに必要な所定時間tの間、その回転を一時的に略停止させるように駆動部13を駆動制御している。制御部34の具体的な制御方法は、第1の実施形態と同様であるため、その詳細な説明は省略する。 Control unit 34, the magnetic field generating unit 32 in a state of fixing the sample containers 2 are substantially 180 × n degrees (n is an arbitrary natural number) to each rotation of a predetermined period of time t s required for forming a static magnetic field The drive unit 13 is drive-controlled so as to temporarily stop the rotation temporarily. Since the specific control method of the control unit 34 is the same as that of the first embodiment, the detailed description thereof is omitted.

基台35は、図示しないゴニオメータ上に取り付けられており、X線構造解析時に前記ゴニオメータを駆動させると、基台35が試料容器2を中心として振れ回る歳差運動を起こすようになっている。これにより、X線源(図示省略)から図5の右側から試料容器2に向けて照射されたX線aに対して試料容器2の向きを任意に調節することができる。   The base 35 is mounted on a goniometer (not shown), and when the goniometer is driven during X-ray structure analysis, the base 35 causes a precession motion that swings around the sample container 2. Thereby, the direction of the sample container 2 can be arbitrarily adjusted with respect to the X-ray a irradiated from the X-ray source (not shown) toward the sample container 2 from the right side of FIG.

以上、本実施形態の微粒子配向装置及び微粒子配向方法においても、磁場発生部32の回転を局所的に略停止させているため、従来のように磁場発生部32を90度の広範囲に亘って低速回転させる場合に比べて、静磁場が形成される時間を短くすることができる。これにより、微粒子3の磁化容易軸を配向している間に、磁化困難軸の配向が乱れるのを抑制することができるため、微粒子3を三次元配向させる際の配向精度を高めることができる。   As described above, also in the fine particle aligning apparatus and the fine particle aligning method of the present embodiment, since the rotation of the magnetic field generating unit 32 is substantially stopped locally, the magnetic field generating unit 32 is slowed down over a wide range of 90 degrees as in the past. Compared with the case of rotating, the time for forming the static magnetic field can be shortened. Thereby, it is possible to prevent the orientation of the hard magnetization axis from being disturbed while the easy magnetization axis of the fine particles 3 is being oriented, so that the orientation accuracy when the fine particles 3 are three-dimensionally oriented can be increased.

なお、本発明は、上記の実施形態に限定されることなく適宜変更して実施可能である。例えば、上記実施形態では、略180度毎に相対回転を略停止させているが、360度(1回転)毎や540度(1回転半)毎など複数回転毎に相対回転を略停止させたり、毎回異なる回転角度で略停止させるようにしてもよい。要するに、略180度の任意の自然数倍まで相対回転させたときに略停止させるようにすればよい。   The present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications. For example, in the above embodiment, the relative rotation is substantially stopped every approximately 180 degrees, but the relative rotation is approximately stopped every plural rotations such as every 360 degrees (one rotation) or every 540 degrees (one and a half rotations). Alternatively, it may be stopped substantially at a different rotation angle each time. In short, it is only necessary to stop substantially when the relative rotation is performed up to an arbitrary natural number multiple of about 180 degrees.

また、上記実施形態では、試料を相対回転させる所定時間及び試料の相対回転を停止させる所定時間は、それぞれ上記式(2)及び(3)の関係を満たすように設定されているが、少なくともいずれか一方の所定時間が上記式の関係を満たすように設定されていればよい。   In the above embodiment, the predetermined time for relatively rotating the sample and the predetermined time for stopping the relative rotation of the sample are set so as to satisfy the relationship of the above expressions (2) and (3), respectively. Any one of the predetermined times may be set so as to satisfy the relationship of the above formula.

また、第3の実施形態にでは、相対回転を略停止させる際に、完全に停止させているが、局所的にゆっくりと回転させるようにしてもよい。
さらに、上記各実施形態においては、駆動部としてステッピングモータを用いているが、サーボモータ等の他のアクチュエータを用いてもよい。
Further, in the third embodiment, when the relative rotation is substantially stopped, the relative rotation is stopped completely, but it may be rotated slowly locally.
Furthermore, in each of the above embodiments, a stepping motor is used as the drive unit, but other actuators such as a servo motor may be used.

1 微粒子配向装置
2 試料容器
3 微粒子
12,32 磁場発生部
13,33 駆動部
14,34 制御部
χ1,χ2,χ3 磁化率
DESCRIPTION OF SYMBOLS 1 Fine particle orientation apparatus 2 Sample container 3 Fine particle 12, 32 Magnetic field generation part 13, 33 Drive part 14, 34 Control part χ1, χ2, χ3 Magnetic susceptibility

Claims (10)

互いに直交する三方向の磁化率がそれぞれ異なる微粒子を懸濁させた試料に、時間的に変動する磁場を印加して、前記微粒子を三次元配向させる微粒子配向装置であって、
磁場発生部と、
前記試料を、前記磁場発生部に対して、回転磁場を形成するのに必要な速度で相対回転させる駆動部と、
前記試料が略180×n度(nは任意の自然数)相対回転するたびに、静磁場を形成するのに必要な所定時間の間、前記相対回転を一時的に略停止させるように前記駆動部を駆動制御する制御部と、を備えていることを特徴とする微粒子配向装置。
A fine particle orientation device for applying three-dimensional orientation of the fine particles by applying a time-varying magnetic field to a sample in which fine particles having different susceptibility in three directions orthogonal to each other are suspended.
A magnetic field generator,
A drive unit that rotates the sample relative to the magnetic field generation unit at a speed necessary to form a rotating magnetic field;
Each time the sample rotates approximately 180 × n degrees (n is an arbitrary natural number), the drive unit temporarily stops the relative rotation temporarily for a predetermined time required to form a static magnetic field. And a control unit that controls the driving of the fine particle aligning device.
前記制御部は、前記試料が180度相対回転するたびに、その相対回転を一時的に略停止させるように前記駆動部を駆動制御する請求項1に記載の微粒子配向装置。   2. The fine particle orientation device according to claim 1, wherein the control unit drives and controls the driving unit so as to temporarily stop the relative rotation every time the sample rotates 180 degrees. 前記制御部は、前記相対回転を略停止させる際に、当該相対回転を完全に停止させるように前記駆動部を駆動制御する請求項1又は2に記載の微粒子配向装置。   The fine particle orientation device according to claim 1, wherein when the relative rotation is substantially stopped, the control unit drives and controls the drive unit so as to completely stop the relative rotation. 前記試料を相対回転させる時間は、次式の関係を満たすように設定されている請求項1〜3のいずれか一項に記載の微粒子配向装置。
<δ/D
ここで、tは試料を相対回転させる時間、δはX線構造解析に必要な回折スポットの許容最大半価幅、Dは磁化容易軸まわりの回転拡散係数である。
The fine particle orientation device according to any one of claims 1 to 3, wherein a time for relatively rotating the sample is set so as to satisfy a relationship of the following formula.
tr2 / D 1
Here, t r is the time for relatively rotating the sample, [delta] is the permissible maximum half-width of the diffraction spot needed for X-ray structure analysis, D 1 is the rotational diffusion coefficient around the axis of easy magnetization.
前記試料の相対回転を略停止させる前記所定時間は、次式の関係を満たすように設定されている請求項1〜4のいずれか一項に記載の微粒子配向装置。
<δ/D
ここで、tは試料の相対回転を略停止させる所定時間、δはX線構造解析に必要な回折スポットの許容最大半価幅、Dは磁化困難軸まわりの回転拡散係数である。
The fine particle orientation device according to any one of claims 1 to 4, wherein the predetermined time for substantially stopping the relative rotation of the sample is set so as to satisfy the relationship of the following formula.
t s2 / D 3
Here, t s is a predetermined time to substantially stop the relative rotation of the sample, [delta] is the permissible maximum half-width of the diffraction spot needed for X-ray structure analysis, D 3 is the rotational diffusion coefficient of around hard axis.
前記試料を相対回転させる時間と、前記試料の相対回転を略停止させる前記所定時間とは、次式の関係を満たすように設定されている請求項1〜5のいずれか一項に記載の微粒子配向装置。
/t=2(χ1−χ2)/(χ3−χ2)
ここで、tは試料を相対回転させる時間、tは試料の相対回転を略停止させる所定時間、χ1は磁化容易軸の磁化率、χ2は中間軸の磁化率、χ3は磁化困難軸の磁化率である(ただし、χ1>χ2>χ3)。
6. The fine particles according to claim 1, wherein the time for which the sample is relatively rotated and the predetermined time for which the relative rotation of the sample is substantially stopped are set to satisfy the relationship of the following formula. Orienting device.
t r / t s = 2 ( χ1-χ2) / (χ3-χ2)
Here, t r is the time for relatively rotating the sample, t s is a predetermined time to substantially stop the relative rotation of the sample, .chi.1 the magnetic susceptibility of the easy magnetization axis, chi-square magnetization of the intermediate shaft, Kai3 the magnetization hard axis Magnetic susceptibility (where χ1>χ2> χ3).
前記試料の相対回転速度は、次式の関係を満たすように設定されている請求項1〜6のいずれか一項に記載の微粒子配向装置。
ωq×6ημ/(B(χ1−χ2))>>1/2
ここで、ωqは試料が相対回転する角速度、ηは懸濁液の粘性係数、μは真空の透磁率、Bは磁場強度、χ1は磁化容易軸の磁化率、χ2は中間軸の磁化率である(ただし、χ1>χ2)。
The fine particle orientation device according to any one of claims 1 to 6, wherein a relative rotation speed of the sample is set so as to satisfy a relationship of the following formula.
ωq × 6ημ 0 / (B 2 (χ1-χ2)) >> 1/2
Where ωq is the angular velocity at which the sample rotates relatively, η is the viscosity coefficient of the suspension, μ 0 is the permeability of vacuum, B is the magnetic field strength, χ 1 is the susceptibility of the easy axis, and χ 2 is the susceptibility of the intermediate axis. (Where χ1> χ2).
前記駆動部が、前記試料を回転させるものである請求項1〜7のいずれか一項に記載の微粒子配向装置。   The fine particle orientation device according to any one of claims 1 to 7, wherein the driving unit rotates the sample. 前記駆動部が、ステッピングモータである請求項1〜8のいずれか一項に記載の微粒子配向装置。   The fine particle orientation device according to any one of claims 1 to 8, wherein the driving unit is a stepping motor. 互いに直交する三方向の磁化率がそれぞれ異なる微粒子を懸濁させた試料に、時間的に変動する磁場を印加して、前記微粒子を三次元配向させる微粒子配向方法であって、
前記試料を、磁場発生部に対して、回転磁場を形成するのに必要な速度で相対回転させ、
前記試料が略180×n度(nは任意の自然数)相対回転するたびに、静磁場を形成するのに必要な所定時間の間、前記相対回転を一時的に略停止させることを特徴とする微粒子配向方法。
A fine particle orientation method in which a fine particle having different magnetic susceptibility in three directions orthogonal to each other is suspended in a sample by applying a time-varying magnetic field to three-dimensionally orient the fine particles.
The sample is rotated relative to the magnetic field generator at a speed necessary to form a rotating magnetic field,
Each time the sample rotates approximately 180 × n degrees (where n is an arbitrary natural number), the relative rotation is temporarily stopped temporarily for a predetermined time required to form a static magnetic field. Fine particle orientation method.
JP2011033264A 2011-02-18 2011-02-18 Fine particle aligning apparatus and fine particle aligning method Active JP5834422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033264A JP5834422B2 (en) 2011-02-18 2011-02-18 Fine particle aligning apparatus and fine particle aligning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033264A JP5834422B2 (en) 2011-02-18 2011-02-18 Fine particle aligning apparatus and fine particle aligning method

Publications (2)

Publication Number Publication Date
JP2012173042A true JP2012173042A (en) 2012-09-10
JP5834422B2 JP5834422B2 (en) 2015-12-24

Family

ID=46976096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033264A Active JP5834422B2 (en) 2011-02-18 2011-02-18 Fine particle aligning apparatus and fine particle aligning method

Country Status (1)

Country Link
JP (1) JP5834422B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083536A (en) * 2012-10-29 2014-05-12 Civil Tech:Kk Magnetized fluid generator
JP2015121486A (en) * 2013-12-24 2015-07-02 国立大学法人京都大学 Microcrystal structure analysis method and microcrystal structure analysis device
WO2019203204A1 (en) * 2018-04-18 2019-10-24 国立大学法人京都大学 Oriented body device and method for manufacturing oriented body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030807A1 (en) * 2002-10-02 2004-04-15 Japan Society For The Promotion Of Science Production method for magnetic field orientating element and separation method for object
JP2006057055A (en) * 2004-08-23 2006-03-02 Tsunehisa Kimura Method for producing precisely oriented material using magnetic field
JP2008039699A (en) * 2006-08-09 2008-02-21 Tokyo Metropolitan Univ Magnetic field application device for particle orientation, and particle structure analysis method
JP2010006667A (en) * 2008-06-30 2010-01-14 National Institute For Materials Science Oxide superconductive sintered body, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030807A1 (en) * 2002-10-02 2004-04-15 Japan Society For The Promotion Of Science Production method for magnetic field orientating element and separation method for object
JP2006057055A (en) * 2004-08-23 2006-03-02 Tsunehisa Kimura Method for producing precisely oriented material using magnetic field
JP2008039699A (en) * 2006-08-09 2008-02-21 Tokyo Metropolitan Univ Magnetic field application device for particle orientation, and particle structure analysis method
JP2010006667A (en) * 2008-06-30 2010-01-14 National Institute For Materials Science Oxide superconductive sintered body, and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014026056; 木村 恒久: '「セルロース及び複合材料の磁場配向とその応用」' 繊維学会誌 Vol. 66, No. 8, 20100810, p. "P-274"-"P-277" *
JPN6014026057; Fumiko Kimura et al.: '"Single-Crystal X-ray Diffraction Study of a Magnetically Oriented Microcrystal Array of Lysozyme"' Crystal Growth & Design Vol.11, No. 1, 20110105, p. 12-15, American Chemical Society *
JPN6015005216; 堀井 滋、他6名: '「回転変調磁場および回転磁場による層状超伝導物質の配向制御」' 第70回応用物理学会学術講演会講演予稿集 , 20090908, p. 247 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083536A (en) * 2012-10-29 2014-05-12 Civil Tech:Kk Magnetized fluid generator
JP2015121486A (en) * 2013-12-24 2015-07-02 国立大学法人京都大学 Microcrystal structure analysis method and microcrystal structure analysis device
WO2019203204A1 (en) * 2018-04-18 2019-10-24 国立大学法人京都大学 Oriented body device and method for manufacturing oriented body
JP2019192668A (en) * 2018-04-18 2019-10-31 国立大学法人京都大学 Orientating element device and orientating element manufacturing method
JP7193107B2 (en) 2018-04-18 2022-12-20 国立大学法人京都大学 Oriented Body Manufacturing Apparatus and Oriented Body Manufacturing Method

Also Published As

Publication number Publication date
JP5834422B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6099053B2 (en) Microcrystal structure analysis apparatus, microcrystal structure analysis method, and X-ray shielding apparatus
JP4893626B2 (en) Magnetic field control method and magnetic field generator
JP5826837B2 (en) Hexapod
Rossini et al. Rotor design optimization for a reaction sphere actuator
KR101128045B1 (en) Drilling microrobot system using electromagnetic field
JP5834422B2 (en) Fine particle aligning apparatus and fine particle aligning method
CN107628272B (en) Satellite rotary part Wheel static and dynamic imbalance torque self-compensating device
JP2013529558A5 (en)
CN103943004A (en) Coriolis acceleration experiment device
JP2008039699A (en) Magnetic field application device for particle orientation, and particle structure analysis method
WO2020045490A1 (en) Nuclear magnetic resonance device, and microcrystalline structure analysis method
Maeda et al. Dynamic analysis of an independently controllable electromagnetic spherical actuator
JP2007215583A (en) Magnetic field control method and magnetic field generating device
JP6293173B2 (en) Demagnetizing rotating device
JP4155546B2 (en) Spherical ultrasonic motor
Sun et al. Noncontact spinning mechanism using rotary permanent magnets
JP2015121486A (en) Microcrystal structure analysis method and microcrystal structure analysis device
JP2011213138A (en) Simulated agravic state generating device
Smid et al. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet
Zheng et al. Magnetic field analysis of hybrid driven permanent magnet multi-DOF motor
Nishiura et al. Position control of 3-DOF spherical actuator with cogging torque compensation
CN108081032A (en) Multivariant workpiece surface Flexible Manufacture device and method
Liu et al. Modeling and optimization of a novel multi-DOF electromagnetic driven spherical motion generator
JP2000019189A (en) Rolling bearing, and moving condition measuring device for rolling element for rolling bearing
Unwin et al. Motor Bourn Magnetic Noise Filtering for Magnetometers in Micro-Rotary Aerial Vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250